Part of Advances in Neural Information Processing Systems 36 (NeurIPS 2023) Main Conference Track
Bhaskar Mukhoty, Velibor Bojkovic, William de Vazelhes, Xiaohan Zhao, Giulia De Masi, Huan Xiong, Bin Gu
Spiking neural networks are becoming increasingly popular for their low energy requirement in real-world tasks with accuracy comparable to traditional ANNs. SNN training algorithms face the loss of gradient information and non-differentiability due to the Heaviside function in minimizing the model loss over model parameters. To circumvent this problem, the surrogate method employs a differentiable approximation of the Heaviside function in the backward pass, while the forward pass continues to use the Heaviside as the spiking function. We propose to use the zeroth-order technique at the local or neuron level in training SNNs, motivated by its regularizing and potential energy-efficient effects and establish a theoretical connection between it and the existing surrogate methods. We perform experimental validation of the technique on standard static datasets (CIFAR-10, CIFAR-100, ImageNet-100) and neuromorphic datasets (DVS-CIFAR-10, DVS-Gesture, N-Caltech-101, NCARS) and obtain results that offer improvement over the state-of-the-art results. The proposed method also lends itself to efficient implementations of the back-propagation method, which could provide 3-4 times overall speedup in training time. The code is available at \url{https://github.com/BhaskarMukhoty/LocalZO}.