
Direct Training of SNN using Local Zeroth Order
Method

Bhaskar Mukhoty1,∗ Velibor Bojković1,∗ William de Vazelhes1 Xiaohan Zhao3

Giulia De Masi2,6 Huan Xiong1,5,† Bin Gu1,4,†

1 Mohamed bin Zayed University of Artificial Intelligence, UAE
2 ARRC, Technology Innovation Institute, UAE

2 Nanjing University of Information Science and Technology, China
4 School of Artificial Intelligence, Jilin University, China

5 Harbin Institute of Technology, China
6 BioRobotics Institute, Sant’Anna School of Advanced Studies, Pisa, Italy

Abstract

Spiking neural networks are becoming increasingly popular for their low energy re-
quirement in real-world tasks with accuracy comparable to traditional ANNs. SNN
training algorithms face the loss of gradient information and non-differentiability
due to the Heaviside function in minimizing the model loss over model parameters.
To circumvent this problem, the surrogate method employs a differentiable approx-
imation of the Heaviside function in the backward pass, while the forward pass
continues to use the Heaviside as the spiking function. We propose to use the zeroth-
order technique at the local or neuron level in training SNNs, motivated by its regu-
larizing and potential energy-efficient effects and establish a theoretical connection
between it and the existing surrogate methods. We perform experimental validation
of the technique on standard static datasets (CIFAR-10, CIFAR-100, ImageNet-
100) and neuromorphic datasets (DVS-CIFAR-10, DVS-Gesture, N-Caltech-101,
NCARS) and obtain results that offer improvement over the state-of-the-art results.
The proposed method also lends itself to efficient implementations of the back-
propagation method, which could provide 3-4 times overall speedup in training time.
The code is available at https://github.com/BhaskarMukhoty/LocalZO.

1 Introduction

Biological neural networks are known to be significantly more energy efficient than their artificial
avatars - the artificial neural networks (ANN). Unlike ANNs, biological neurons use spike trains to
communicate and process information asynchronously. [27] To closely emulate biological neurons,
spiking neural networks (SNN) use binary activation to send information to the neighbouring neurons
when the membrane potential exceeds membrane threshold. The event-driven binary activation
simplifies the accumulation of input potential and reduces the computation burden when the spikes
are sparse. Specialized neuromorphic hardware [11] is designed to carry out such event-driven and
sparse computations in an energy-efficient way [32, 20].

∗First co-author
†Correspondence to Huan Xiong (huan.xiong.math@gmail.com), and Bin Gu (jsgubin@gmail.com).

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://github.com/BhaskarMukhoty/LocalZO

There are broadly three categories of training SNNs: ANN-to-SNN conversion, unsupervised and
supervised. The first one is based on the principle that parameters for SNN can be inferred from the
corresponding ANN architecture [6, 15, 5]. Although training SNNs through this method achieves
performance comparable to ANNs, it suffers from the long latency needed in SNNs to emulate
the corresponding ANN or from retraining of ANNs required to achieve near lossless conversion
[10]. The unsupervised training is biologically inspired and uses local learning to adjust the SNN
parameters [14]. Although it is the most energy-efficient one among the three as it is implementable
on neuromorphic chips [11], it still lags in its performance compared to ANN-to-SNN conversion
and supervised training.

Finally, supervised training is a method of direct training of SNNs by using back-propagation (through
time). As such, it faces two main challenges. The first is due to the nature of SNNs, or more precisely,
due to the Heaviside activation of neurons (applied to the difference between the membrane potential
and threshold). As the derivative of the Heaviside function is zero, except at zero where it is not
defined, back-propagation does not convey any information for the SNN to learn [16]. One of the
most popular ways to circumvent this drawback is to use surrogate methods, where a derivative of a
surrogate function is used in the backward pass during training. Due to their simplicity, surrogate
methods have been widely used and have seen tremendous success in various supervised learning
tasks [36, 28]. However, large and complex network architectures, the time-recursive nature of SNNs,
and the fact that the training is oblivious of the sparsity of spikes in SNNs make surrogate methods
quite time and energy-consuming.

Regarding regularization or energy efficiency during direct training of SNNs, only a few methods
have been proposed addressing these topics together or separately, most of which deal with the
forward propagation in SNNs. For example, [1] uses stochastic neurons to increase energy efficiency
during inference. More recently, [42] uses regularization during the training to increase the sparsity
of spikes, reducing the computational burden and energy consumption. Further, [7] performs the
forward pass on a neuromorphic chip, while the backward pass is performed on a standard GPU.
Although these methods improve the SNN models’ performance, they do not significantly reduce
the computational burden or provide the potential to do so. On the other hand, [31] introduces a
threshold for surrogate gradients (or suggests using only a surrogate with bounded support). However,
introducing gradient thresholds has the drawback of limiting the full potential of surrogates during
training.

This paper proposes a direct training method for SNNs based on the zeroth order technique. We
apply it locally, at the neuronal level - hence dubbed Local Zeroth Order (LOCALZO) - with twofold
benefits: regularization, which comes as a side-effect of the introduced randomness that is naturally
associated with this technique, as well as a threshold for gradient backpropagation in the style of [31]
which translates to potential energy-efficient training when properly implemented.

We summarize the main contributions of the paper as follows:

• We introduce zeroth order techniques in SNN training at a local level. We provide extensive
theoretical properties of the method, relating it to the surrogate gradients via the internal
distributions used in LOCALZO.

• We experimentally demonstrate the main properties of LOCALZO: its superior performance
compared to baselines when it comes to generalizations, its ability to simulate arbitrary
surrogates as well as its property to speed up the training process, which translates to
energy-efficient training.

2 Background

2.1 Spiking neuron dynamics

An SNN consists of Leaky Integrate and Fire neurons (LIF) governed by differential equations in
continuous time [19]. They are generally approximated by discrete dynamics given in the form of

2

recurrence equations,

u
(l)
i [t] = βu

(l)
i [t− 1] +

∑
j

wijx
(l−1)
j [t]− x

(l)
i [t− 1]uth,

x
(l)
i [t] = h(u

(l)
i [t]− uth) =

{
1 if u(l)

i [t] > uth

0 otherwise,
(1)

where u
(l)
i [t] denote the membrane potential of i-th neuron in the layer l at time-step (discrete) t,

which recurrently depends upon its previous potential (with scaling factor β < 1) and spikes x(l−1)
j [t]

received from the neurons of previous layers weighted by wij . The neuron generates binary spike
x
(l)
i [t] whenever the membrane potential exceeds threshold uth, represented by the Heaviside function

h, followed by a reset effect on the membrane potential.

To implement the back-propagation of training loss through the network, one must obtain a derivative
of the spike function, which poses a significant challenge in its original form represented as:

dxi[t]

du
=

{
∞ if u(l)

i [t] = uth

0 otherwise.
(2)

where we denote u := u
(l)
i [t]− uth. To avoid the entire gradient becoming zero, known as the dead

neuron problem, the surrogate gradient method (referred to as SURROGATE) redefines the derivative
using a surrogate:

dxi[t]

du
:= g(u) (3)

Here, the function g(u) can be, for example, the derivative of the Sigmoid function (see section 4.4),
but in general, one takes a scaled probability density function as a surrogate (see Section 4.2 for more
details).

2.2 Motivation

Classically, the purpose of dropout in ANNs is to prevent a complex and powerful network from
over-fitting the training data, which consequently implies better generalization properties [3]. In
the forward pass, one usually assigns to each neuron in a targeted layer a probability of being
“switched-off” during both forward and backward passes, and this probability does not change during
the training. Moreover, the “activity” of the neuron, however we may define it, does not affect
whether the neuron will be switched on or off.

Our motivation comes along these lines: how to introduce a dropout-like regularizing effect in the
training of SNNs, but keeping in mind the temporal dimension of the data, as well as the neuron
activity at that particular moment (heuristically, a more active neuron would be kept “on” with a high
probability (randomness of the dropout) while a less active one would be “switched off”, again with
high probability, in a sense to be made precise shortly). Generally speaking, our idea consists of
the following two steps: 1) For each spiking neuron of our SNN network, measure how active the
neuron is in the forward pass at each time step t. Here, we define the activity based on how far the
current membrane potential of the neuron u[t] is from the firing threshold uth (this idea comes from
[31]). However, unlike in [31] where the sole distance is the determining factor, we introduce the
effect of randomness via a fixed PDF, say λ, sample z from it and say the neuron is active at time t if
|u[t]− uth| < c|z|, where c is some upfront fixed constant. 2) In the backward pass at the time t, if
the neuron is dubbed active, we will apply some surrogate function g(u[t]− uth); otherwise, we will
take the surrogate to be 0 (hence, switching off the propagation of gradients through the neuron in the
latter case).

Having said this, we ask ourselves the final question: can we have a systematic way of choosing
functions λ and g so that the expected surrogate we use (with respect to λ) equals the one we chose
upfront? A simple yet elegant solution that satisfies all of the above comes with zeroth order methods.

Zeroth order technique is a popular gradient-free method [26], well studied in neural networks
literature. To briefly introduce it, we consider a function f : Rd → R, that we intend to minimize

3

using gradient descent, for which the gradient may not be available or even undefined. The zeroth-
order method estimates the gradients using function outputs: given a scalar δ > 0, the 2-point ZO is
defined as

G2(w; z, δ) = ϕ(d)
f(w + δz)− f(w − δz)

2δ
z (4)

where, z ∼ λ is a random direction with Ez∼λ[∥z∥2] = 1 and ϕ(d) is a dimension dependent factor,
with d being the dimension. However, to approximate the full gradient of f up to a constant squared
error, we need an average of O(d) samples of G2, which becomes computationally challenging when
d is large, such as the number of learnable parameters of the neural network. Though well studied
in the literature, properties of 2-point ZO are known only for the continuous functions [29, 4]. In
the present context, we will apply it locally to the Heaviside function that produces the outputs of
spiking neurons, and we justify this by providing the necessary theoretical background for doing so.

3 The LOCALZO algorithm

Applying ZO on a global scale is challenging due to the large dimensionality of neural networks[25].
Since the non-differentiability of SNN is introduced by the Heaviside function at the neuronal level,
we apply the 2-point ZO method on h : R → {0, 1} itself,

G2(u; z, δ) =
h(u+ zδ)− h(u− zδ)

2δ
z =

{
0, |u| > |z|δ
|z|
2δ , |u| < |z|δ

(5)

where u = u
(l)
i [t]− uth and z is sampled from some distribution λ. We may average the 2-point ZO

gradient over a few samples zk so that the LOCALZO derivative of the spike function is defined as:

dxi[t]

dt
:=

1

m

m∑
k=1

G2(u; zk, δ) (6)

where, the number of samples, m, is a hyper-parameter to the LOCALZO method. We implement
this at the neuronal level of the back-propagation routine, where the forward pass uses the Heaviside
function, and the backward pass uses equation (6). Note that the gradient dxi[t]

dt being non-zero
naturally determines the active neurons of the backward pass (as was discussed in Section 2.2),
which can be inferred from the forward pass through the neuron. Algorithm 1 gives an abstract
representation of the process at a neuronal level, which hints that the backward call is redundant
when the neuron has a zero gradient.

4 Theoretical Properties of LOCALZO

4.1 General ZO function

Algorithm 1 LOCALZO
Forward

Require: u := u
(l)
i [t]− uth, dist. λ, const. δ,m

sample z1, z2, · · · zm ∼ λ

grad← 1
m

∑m
k=1 I(|u| < δ|zk|) |zk|2δ

if grad ̸= 0 then
SaveForBackward(grad)

end if
return I(u > 0)

Backward {Invoked if grad is non-zero}
Require: gradient from chain rule: grad input

return grad input ∗ grad

For the theoretical results around LOCALZO,
we consider a more general function than what
was suggested by eqn. 5, in the form

G2(u; z, δ) =

{
0, |u| > |z|δ
|z|α
2δ , |u| ≤ |z|δ,

(7)

where the new constant α is an integer different
from 0, while δ is a positive real number (so, for
example, setting α = 1 in (7), we obtain (5)).

The integer α is somewhat a normalizing con-
stant, which allows obtaining different surro-
gates as the expectation of function G2(u; z, δ)
when z is sampled from suitable distributions.
In practice, taking α = ±1 will suffice to account for most of the surrogates found in the literature.
The role of δ is somewhat different, as it controls the “shape” of the surrogate (narrowing it and
stretching around zero). The role of each constant will be more evident from what follows (see
section 4.4).

4

4.2 Surrogate functions

Definition 4.1. We say that a function g : R → R≥0 is a surrogate function (gradient surrogate) if it
is even, non-decreasing on the interval (−∞, 0) and c :=

∫∞
−∞ g(z)dz < ∞.

Note that the integral
∫∞
−∞ g(z)dz is convergent (as g(z) is non-negative), but possibly can be ∞

and the last condition means that the function 1
cg(t) is a probability density function. The first two

conditions, that is, requirements for the function to be even and non-decreasing, are not essential but
rather practical and consistent with examples from SNN literature.

Note that the function G : R → [0, 1], defined as G(t) := 1
c

∫ t

−∞ g(z)dz is the corresponding
cumulative distribution function (for PDF 1

cg(t)). Moreover, it is not difficult to see that its graph is
“symmetric” around point (0, 1

2) (or in more precise terms, G(t) = 1−G(−t)), hence G(t) can be
seen as an approximation of Heaviside function h(t). Then, its derivative d

dtG(t) = 1
cg(t) can serve

as an approximation of the “derivative” of h(t), or in other words, as its surrogate, which somewhat
justifies the terminology.

Finally, one may note that “true” surrogates would correspond to those functions g for which c = 1.
However, the reason we allow c to be different from 1 is again practical and simplifies the derivation
of the results that follow. We note once again that allowing general c is in consistency with examples
used in the literature.

4.3 Surrogates and ZO

To be in line with classic results around the ZO method and gradient approximation of functions,
we pose ourselves two fundamental questions: What sort of functions in variable u can be obtained
as the expectation of G2(u; z, δ) when z is sampled from a suitable distribution λ, and, given some
function g(u), can we find a distribution λ such that we obtain g(u) in the expectation when z is
sampled from λ?

Two theorems that follow answer these questions and are the core of this section. The main player in
both of the questions is the expected value of G2(u; z, δ), so we start by analyzing it more precisely.
Let λ be a distribution, λ(t) its PDF for which we assume that it is even and that

∫∞
0

zαλ(z)dz < ∞.
Then, we may write

Ez∼λ[G
2(u; z, δ)] =

∞∫
−∞

G2(u; z, δ)λ(z)dz =

∫
|u|≤|z|δ

|z|α

2δ
λ(z)dz =

1

δ

∞∫
|u|
δ

zαλ(z)dz. (8)

It becomes apparent from eqn. (8) that Ez∼λ[G
2(u; z, δ)] has some properties of surrogate functions

(it is even and non-decreasing on R<0). The proofs of the following results are detailed in the
appendix A.
Lemma 1. Assume further that

∫∞
0

zα+1λ(z)dz < ∞. Then, Ez∼λ[G
2(u; z, δ)] is a surrogate

function.

Theorem 2. Let λ be a distribution and λ(t) its corresponding PDF. Assume that integrals∫∞
0

tαλ(t)dt and
∫∞
0

tα+1λ(t)dt exist and are finite. Let further λ̃ be the distribution with cor-
responding PDF function

λ̃(z) =
1

c

∞∫
|z|

tαλ(t)dt,

where c is the scaling constant (such that
∫∞
−∞ λ̃(z)dz = 1). Then,

Ez∼λ[G
2(u; z, δ)] =

d

du
Ez∼λ̃[c h(u+ δz)].

For our next result, which answers the second question we asked at the beginning of this section,
note that a surrogate function is differentiable almost everywhere, which follows from the Lebesgue
theorem on the differentiability of monotone functions. So, taking derivatives here is understood in
an “almost everywhere” sense.

5

3 2 1 0 1 2 3
u = ui vth

0.0

0.2

0.4

0.6

0.8

1.0
z N(0, 1)

h
h , = 1
h , = 0.5

3 2 1 0 1 2 3
u = ui vth

0.0

0.2

0.4

0.6

0.8

1.0
z Unif([3 , 3])

h
h , = 1
h , = 0.5

3 2 1 0 1 2 3
u = ui vth

0.0

0.2

0.4

0.6

0.8

1.0

z Laplace(0, 1
2

)
h
h , = 1
h , = 0.5

Figure 1: The figure shows the expected surrogates derived in section 4.4 as z is sampled from
Normal(0, 1), Unif([

√
3,
√
3]) and Laplace(0, 1√

2
) respectively. Each figure shows the surrogates

corresponding to δ → 0, δ = 0.5 and 1. The surrogates are supplied to SPARSEGRAD methods for a
fair comparison with LOCALZO as the latter uses respective distributions to sample z.

Theorem 3. Let g(u) be a surrogate function. Suppose further that c = −2δ2
∫∞
0

1
zα g

′(zδ)dz < ∞
and put λ(z) = − δ2

czα g
′(zδ) (so that λ(z) is a PDF). Then,

cEz∼λ[G
2(u; z, δ)] = Ez∼λ[cG

2(u; z, δ)] = g(u).

4.4 Application of Theorem 2 and 3

Next, we spell out the results of Theorem 2 applied to some standard distributions, with α = 1.
For clarity, all the distributions’ parameters are chosen so that the scaling constant of the resulting
surrogate is 1. One may consult Figure 1 for the visual representation of the results, while the details
are provided in the appendix A.1. Recall that the standard normal distribution N(0, 1) has PDF of
the form 1√

2π
exp(− z2

2). Consequently, it is straightforward to obtain

Ez∼λ[G
2(u; z, δ)] =

1√
2π

∫ ∞

−∞

|z|
2δ

exp(−z2

2
)dz =

1

δ
√
2π

exp(− u2

2δ2
). (9)

In appendix, A.1, we further derive surrogates when z is sampled from Uniform and Laplace
distribution.

We recall that Theorem 3 provides a way to derive distributions for arbitrary surrogate functions
(that satisfy the conditions of the theorem). Consider the Sigmoid surrogate function, where the
differentiable Sigmoid function approximates the Heaviside [43]. The corresponding surrogate
gradient is given by,

dx

du
=

d

du

1

1 + exp(−ku)
=

k exp(−ku)

(1 + exp(−ku))2
=: g(u)

Observe that g(u) satisfies our definition of a surrogate (g(u) being even, non-decreasing on (−∞, 0)

and
∫∞
−∞ g(u)du = 1 < ∞). Thus, according to Theorem 3, we have c = −2δ2

∫∞
0

g′(tδ)
t dt = δ2k2

a2

where, a :=
√

1
0.4262 . The corresponding PDF is given by

λ(z) = −δ2

c

g′(δt)

z
= a2

exp(−kδz)(1− exp(−kδz))

z(1 + exp(−kδz))3
(10)

Observe that the temperature parameter k comes from the surrogate to be simulated, while δ is used
by LOCALZO. Appendix A.2 provides calculations and distribution corresponding to the popular
Fast-sigmoid surrogate, followed by a description of the inverse sampling method that can be used to
simulate sampling for arbitrary distributions using the uniform distribution.

4.5 Expected back-propagation threshold for LOCALZO

To study the energy efficiency of the LOCALZO method when training SNNs, we compute the
expected threshold B̃th for the activity of the neurons, i.e. the expectation of the quantity |z|δ when
z is sampled from a distribution λ. It is used in the experimental section when comparing our method
with the alternative energy-efficient method [31]. The expected threshold values are presented in
Table 1 (m denotes the number of samples used in (6)), while the details of the derivations can be
found in A.3.

6

0 1000 2000 3000 4000
Number of gradient updates

0.5

1.0

1.5

2.0

Lo
ss

SparseGrad
LocalZO

0 1000 2000 3000 4000
Number of gradient updates

2.0

2.5

3.0

3.5

4.0

4.5

Sp
ee

du
p

SparseGrad
LocalZO

0 1000 2000 3000 4000
Number of gradient updates

0.0

0.1

0.2

0.3

0.4

0.5

0.6

 P
er

ce
nt

ag
e

of
 a

ct
iv

e
ne

ur
on

s (
%

)

First Hidden Layer, SparseGrad
Second Hidden Layer, SparseGrad
First Hidden Layer, LocalZO
Second Hidden Layer, LocalZO

Figure 2: We plot training loss, overall speedup, and percentage of active neurons for the Sigmoid
surrogate, as reported in Table 3. The LOCALZO algorithm converges faster than the SPARSEGRAD
method while having a similar overall speedup. The percentage of active neurons being less than
0.6% explains the reduced computational requirement, which translates to backward speedup.

5 Experiments

5.1 General Performance of LOCALZO

Table 1: The expected back-propagation thresholds

z ∼ λ B̃th/δ
λ F|zk|(x) m = 1 m = 5

Normal(0, 1) erf(x√
2
) 0.798 1.569

Unif([
√
3,
√
3]) x√

3
0.866 1.443

Laplace(0, 1√
2
) 1− e−

√
2x 0.707 1.615

First, we evaluate the generalization perfor-
mance of LOCALZO as a substitute for the
surrogate method on standard static image
datasets such as CIFAR-10, CIFAR-100[22],
ImageNet-100[12] and neuromorphic datasets
such as DVS-CIFAR-10[24], DVS-Gesture[2],
N-Caltech-101[30], N-CARS[37]. More specif-
ically, by substituting surrogate gradients with
gradients computed with our method, we com-
bined LOCALZO with contemporary state-of-the-art methods in direct training of SNNs, such as
tDBN [45] and TET [13]. We opted for these two techniques due to their high performance and differ-
ent natures (the former is a batch normalization technique, while the latter introduces auxiliary loss
in training). We refer to the combined methods as LocalZO+tDBN and LocalZO+TET, respectively.
Following the recent results, we choose ResNet-19[45] architecture for CIFAR datasets, SEW-ResNet-
34[17] for ImageNet-100, and VGGSNN[13] architecture for the neuromorphic datasets. Table2
summarizes these results, where LOCALZO is implemented with m = 5, δ = 0.5, except for DVS-
CIFAR-10 where we have used m = 1. Table 7 reports the detailed training hyper-parameters for
each dataset.

Results on Static Datasets: The static datasets CIFAR-10, CIFAR-100, and ImageNet-100, have the
number of classes mentioned in the dataset name, while each class respectively have (5000, 1000),
(500, 100), and (1300, 50) train and test images. We use constant encoding to supply the images to the
SNN network, with standard latencies as mentioned in Table 2. We train separate models for different
latencies and report the test results respectively. The results of CIFAR datasets are reported with
cutout augmentation following TET[13], while for ImageNet-100, we use standard data augmentation
(random resized crop, random horizontal flip), without and with the ImageNet Policy[9]. We note
that in conjunction with LOCALZO, both tDBN and TET improve their performance significantly
for all the latencies. For example, in CIFAR-10, LOCALZO improves TET between 0.9− 1% for
different latencies, while for CIFAR-100, it improves TET by 2.5− 3.5%. The ImageNet-100 results
reported in Table 2 were further enhanced to 83.33% with m = 20 and batch size 72.

Results on Neuromorphic Datasets: Events of the neuromorphic datasets are collected into event
frames of dimension (2×H×W) where H and W stand for the height and width of the frame and are
resized to (2× 48× 48). The temporal events are collected into a fixed number (10) of frames (a.k.a.
bins), treated as the effective temporal dimension for the SNN. The experiments are reported without
and with standard data augmentation. For DVS-CIFAR-10, the TET result is re-computed to avoid
an obscure frame preparation step, which is replaced by an open-source routine. We obtain results
superior to the state-of-the-art for DVS-CIFAR-10[13] and DVS-Gesture[17]. For N-Caltech-101 and
NCARS, the improvements are 1.2% and 2.4%, respectively, compared to the state-of-the-art[18, 35].

7

Table 2: Comparison with the existing methods show that LOCALZO improves the accuracy of
existing direct training algorithms. For the existing methods, we compare the performance with the
results reported in respective literatures. For the rows with two accuracies reported, the second one is
for training with additional augmentation.

Dataset Methods Architecture Simulation Length Accuracy

Hybrid training[34] ResNet-20 250 92.22
Diet-SNN[33] ResNet-20 10 92.54

STBP[38] CIFARNet 12 89.83
STBP NeuNorm[39] CIFARNet 12 90.53

TSSL-BP[44] CIFARNet 5 91.41
6 93.16

tDBN[45] ResNet-19 4 92.92
2 92.34

CIFAR10 6 95.07
LOCALZO +tDBN ResNet-19 4 94.89

2 94.65
6 94.50

TET[13] ResNet-19 4 94.44
2 94.16
6 95.56

LOCALZO +TET ResNet-19 4 95.3
2 95.03

Hybrid training[34] VGG-11 125 67.87
Diet-SNN[33] ResNet-20 5 64.07

6 71.12
tDBN[45] ResNet-19 4 70.86

2 69.41
6 73.74

CIFAR100 LOCALZO +tDBN ResNet-19 4 74.13
2 72.78
6 74.72

TET[13] ResNet-19 4 74.47
2 72.87
6 77.25

LOCALZO +TET ResNet-19 4 76.89
2 76.36

ImageNet-100 EfficientLIF-Net[21] ResNet-19 5 79.44
LOCALZO +TET SEW-Resnet34 4 78.58, 81.56‡

tdBN[45] ResNet-19 10 67.8
Streaming Rollout [23] DenseNet 10 66.8

Conv3D[40] LIAF-Net 10 71.70
DVS-CIFAR10 LIAF[40] LIAF-Net 10 70.40

TET[13] VGGSNN 10 74.89⋆, 81.45⋆

LOCALZO +tDBN VGGSNN 10 72.6, 79.37
LOCALZO +TET VGGSNN 10 75.62, 81.87

AEGNN[35] GNN - 66.8
N-Caltech-101 EST[18] ResNet-34† 9 81.7

LOCALZO +tDBN VGGSNN 10 74.65, 79.05
LOCALZO +TET VGGSNN 10 79.86, 82.99

AEGNN[35] GNN - 94.5
N-CARS EST[18] ResNet-34† 9 92.5

LOCALZO +tDBN VGGSNN 10 95.96, 95.68
LOCALZO +TET VGGSNN 10 96.78, 96.96

DVS-Gesture SEW[17] SEW-Resnet 16 97.92
LOCALZO +TET VGGSNN 10 98.04, 98.43

⋆ our implementation, †pre-trained with ImageNet, ‡ 83.33 % with m = 20

8

5.2 Performance on Energy Efficient Implementation

In the energy-efficient implementation of the back-propagation [31], the optimization of the network
weights takes place in a layer-wise fashion through the unrolling of recurrence of equation (1)
w.r.t time. As the active neurons of each layer for every time step are inferred from the forward
pass, gradients of only active neurons are required to be saved for the backward pass, hence saving
the computation requirement of the backward pass. One may refer to [31] for further details of
this implementation framework. To compare, we supply SPARSEGRAD method the surrogate
approximated by LOCALZO, as per section 4.4. The SPARSEGRAD algorithm also requires a back-
propagation threshold parameter, Bth, to control the number of active neurons participating in the
back-propagation. We supply it the expected back-propagation threshold B̃th of LOCALZO as
obtained in sections 4.5. We follow the same experimental setting as in [31] for a fair comparison.
We use a fully connected LIF neural network with two hidden layers of 200 neurons each and input
and output layers. We train every model for 20 epochs and report the average training and test
accuracies computed over five trials. We compute the speedup of SPARSEGRAD and LOCALZO, with
respect to the full surrogate without truncation, that uses standard back-propagation. The backward
speedup (Back.) captures the number of times the backward pass of a gradient update is faster, while
the overall speedup (Over.) considers the total time for the forward and the backward pass and
then computes the speedup. The speedup reported is averaged over all the gradient updates and the
experimental trials.

We compare the performance of the algorithms on three datasets: 1) Neuromorphic-MNIST
(NMNIST) [30], which consists of static images of handwritten digits (between 0 and 9)
converted to temporal spiking data using visual neuromorphic sensors; 2) Spiking Heidel-
berg Digits (SHD) [8], a neuromorphic audio dataset consisting of spoken digits (between
0 and 9) in English and German language, totalling 20 classes. To challenge the gener-
alizability of the learning task, 81% of test inputs of this dataset are new voice samples,
which are not present in the training data; 3) Fashion-MNIST (FMNIST) [41] dataset is con-
verted using temporal encoding to convert static gray-scale images based on the principle that
each input neuron spikes only once, and a higher intensity spike results in an earlier spike.

Table 3: Performance on NMNIST, SHD and FMNIST

Method Train Test Back. Over.

NMNIST z ∼ Normal(0, 1), δ = 0.05,m = 1

SPARSEGRAD 93.26 ± 0.31 91.86± 0.29 99.57 3.38
LOCALZO 94.38 ± 0.12 93.29± 0.08 92.27 3.34

Sigmoid, δ = 0.05, k ≈ 30.63,m = 1

SPARSEGRAD 92.96± 0.26 91.04± 0.32 87.45 3.00
LOCALZO 93.98± 0.08 92.97± 0.05 83.54 3.02

SHD z ∼ Normal(0, 1), δ = 0.05,m = 1

SPARSEGRAD 92.03± 0.79 74.73± 0.73 143.7 4.83
LOCALZO 91.77± 0.27 76.55± 0.93 142.8 4.75

Sigmoid, δ = 0.05, k ≈ 30.63,m = 1

SPARSEGRAD 92.19± 0.41 75.80± 0.97 140.8 4.46
LOCALZO 91.96± 0.11 76.97± 0.40 133.6 4.36

FMNIST z ∼ Normal(0, 1), δ = 0.05,m = 1

SPARSEGRAD 81.91± 0.10 80.28± 0.11 15.74 1.97
LOCALZO 83.83± 0.07 81.79± 0.06 15.49 1.88

Sigmoid, δ = 0.05, k ≈ 30.63,m = 1

SPARSEGRAD 81.60± 0.11 80.02± 0.08 12.12 1.65
LOCALZO 83.39± 0.10 81.76± 0.10 12.50 1.57

Table 3 provides a comparison of
the algorithms, using surrogates cor-
responding to the Normal and Sig-
moid, with δ = 0.05 and m = 1.
For the normal distribution, we sup-
ply SPARSEGRAD algorithm the back-
propagation threshold B̃th obtained
in Table 1. In the section 4.4, we de-
rived distributions corresponding to
the Sigmoid surrogate. We use in-
verse transform sampling (see A.2.3),
and take the temperature parameter
k = a/δ ≈ 30.63 so that c = δ2k2

a2 =
1 and supply SPARSEGRAD method
the corresponding back-propagation
threshold, B̃th = 0.766δ. The LO-
CALZO method offers better test ac-
curacies than SPARSEGRAD, with a
slight compromise in speedup due to
the sampling of random variable z.
The difference between training and
test accuracies for the SHD dataset
can be attributed to the unseen voice
samples in the test data[8].

Figure 2 shows the training loss, over-
all speedup, and percentage of active

9

neurons after each gradient step for the Sigmoid surrogate. The sparseness of active neurons (under
0.6%) explains the reduced computational requirement that translates to the speedup.

0 200 400 600 800
Number of Gradient updates

0.00

0.05

0.10

0.15

0.20

Fr
ac

tio
n

of
 ze

ro
 n

eu
ro

ns

Surrogate
LocalZO

Figure 3: Comparison of gradient spar-
sity in CNN architecture

We further implement LOCALZO with δ = 0.5, z ∼
Normal(0, 1) to train a CNN architecture (Input- 16C5-
BN-LIF-MP2-32C5-BN-LIF-MP2-800FC-10) and com-
pare it with the corresponding surrogate gradient algorithm.
Figure 3 shows the corresponding sparsity of the methods
by plotting the number of zero elements at a neuronal level.
The plot suggests that during the training, LOCALZO ex-
hibits higher sparsity gradients than the surrogate method.

Ablation study: Table4 further shows the test accuracy
of the LOCALZO method and overall speed-up for a wide
range of values of m with z ∼ Normal(0, 1). Like Table
3, the experiments are repeated five times and mean test
accuracy is reported along with standard deviation (Std.).
In general, by increasing m, the method approximates the surrogate better, still offers the regularizing
effect and potentially improves the generalization, but also requires more computation. Larger m
leads to more non-zero gradients at the neuronal level in the backward pass, reducing overall speed-
up. On the other hand, smaller m introduces higher randomness (less “controlled”), still yielding
regularization, which helps obtain better generalization, as well as potential speed-up. In conclusion,
m should be treated as a hyper-parameter, its value depending on the training setting itself. In our
experiments, we chose m = 1 or 5 for most of the experiments, as a proof of concept, but also
because it offers a nice balance between the speed-up and performance.

Table 4: Trade-off of accuracy vs. speedup with hyper-parameter m

m 1 3 5 7 10 20 100

NMNIST

Accuracy 93.29 93.61 93.69 93.66 93.76 93.67 93.81
Std. 0.08 0.15 0.17 0.13 0.14 0.08 0.14
Over. 3.33 3.28 3.22 3.16 3.06 2.82 1.59

SHD

Accuracy 76.55 76.55 76.50 75.49 75.51 74.96 76.71
Std. 0.93 0.65 0.90 0.66 0.81 0.68 0.49
Over. 4.75 4.62 4.47 4.39 4.25 3.89 2.24

FMNIST

Accuracy 81.79 83.40 83.64 83.70 83.85 83.75 83.87
Std. 0.06 0.06 0.12 0.04 0.11 0.11 0.05
Over. 1.89 1.85 1.78 1.75 1.70 1.56 0.88

6 Discussions

We propose a new direct training algorithm for SNNs that establishes a formal connection between
the standard surrogate methods and the zeroth order method applied locally to the neurons. The
method introduces systematic randomness in the training that helps in better generalization. The
method simultaneously lends itself to efficient back-propagation. We experimentally demonstrate
the efficiency of the proposed method in terms of speed-up obtained in training under specialized
implementations and its top generalization performance when combined with other training methods,
ameliorating their respective strengths.

Acknowledgement

This work is part of the research project ”ENERGY-BASED PROBING FOR SPIKING NEURAL
NETWORKS” performed at Mohamed bin Zayed University of Artificial Intelligence (MBZUAI), in
collaboration with Technology Innovation Institute (TII) (Contract No. TII/ARRC/2073/2021).

10

References
[1] Mohammed Alawad, Hong-Jun Yoon, and Georgia Tourassi. Energy efficient stochastic-based

deep spiking neural networks for sparse datasets. In 2017 IEEE International Conference on
Big Data (Big Data), pages 311–318, 2017.

[2] Arnon Amir, Brian Taba, David Berg, Timothy Melano, Jeffrey McKinstry, Carmelo Di Nolfo,
Tapan Nayak, Alexander Andreopoulos, Guillaume Garreau, Marcela Mendoza, et al. A low
power, fully event-based gesture recognition system. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 7243–7252, 2017.

[3] Pierre Baldi and Peter J Sadowski. Understanding dropout. Advances in neural information
processing systems, 26, 2013.

[4] Albert S Berahas, Liyuan Cao, Krzysztof Choromanski, and Katya Scheinberg. A theoretical and
empirical comparison of gradient approximations in derivative-free optimization. Foundations
of Computational Mathematics, 22(2):507–560, 2022.

[5] Tong Bu, Wei Fang, Jianhao Ding, PengLin Dai, Zhaofei Yu, and Tiejun Huang. Optimal ann-
snn conversion for high-accuracy and ultra-low-latency spiking neural networks. In International
Conference on Learning Representations, 2021.

[6] Yongqiang Cao, Yang Chen, and Deepak Khosla. Spiking deep convolutional neural networks
for energy-efficient object recognition. International Journal of Computer Vision, 113(1):54–66,
2015.

[7] Benjamin Cramer, Sebastian Billaudelle, Simeon Kanya, Aron Leibfried, Andreas Grübl, Vitali
Karasenko, Christian Pehle, Korbinian Schreiber, Yannik Stradmann, Johannes Weis, et al.
Surrogate gradients for analog neuromorphic computing. Proceedings of the National Academy
of Sciences, 119(4):e2109194119, 2022.

[8] Benjamin Cramer, Yannik Stradmann, Johannes Schemmel, and Friedemann Zenke. The
heidelberg spiking data sets for the systematic evaluation of spiking neural networks. IEEE
Transactions on Neural Networks and Learning Systems, 2020.

[9] Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, and Quoc V Le. Autoaugment:
Learning augmentation policies from data. arXiv preprint arXiv:1805.09501, 2018.

[10] Simon Davidson and Steve B. Furber. Comparison of artificial and spiking neural networks on
digital hardware. Frontiers in Neuroscience, 15, 2021.

[11] Mike Davies, Narayan Srinivasa, Tsung-Han Lin, Gautham Chinya, Yongqiang Cao, Sri Harsha
Choday, Georgios Dimou, Prasad Joshi, Nabil Imam, Shweta Jain, et al. Loihi: A neuromorphic
manycore processor with on-chip learning. Ieee Micro, 38(1):82–99, 2018.

[12] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-
scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern
recognition, pages 248–255. Ieee, 2009.

[13] Shikuang Deng, Yuhang Li, Shanghang Zhang, and Shi Gu. Temporal efficient training of
spiking neural network via gradient re-weighting. arXiv preprint arXiv:2202.11946, 2022.

[14] Peter U Diehl and Matthew Cook. Unsupervised learning of digit recognition using spike-
timing-dependent plasticity. Frontiers in computational neuroscience, 9:99, 2015.

[15] Peter U Diehl, Daniel Neil, Jonathan Binas, Matthew Cook, Shih-Chii Liu, and Michael Pfeiffer.
Fast-classifying, high-accuracy spiking deep networks through weight and threshold balancing.
In 2015 International Joint Conference on Neural Networks (IJCNN), pages 1–8. ieee, 2015.

[16] Jason K Eshraghian, Max Ward, Emre Neftci, Xinxin Wang, Gregor Lenz, Girish Dwivedi,
Mohammed Bennamoun, Doo Seok Jeong, and Wei D Lu. Training spiking neural networks
using lessons from deep learning. arXiv preprint arXiv:2109.12894, 2021.

11

[17] Wei Fang, Zhaofei Yu, Yanqi Chen, Tiejun Huang, Timothée Masquelier, and Yonghong Tian.
Deep residual learning in spiking neural networks. Advances in Neural Information Processing
Systems, 34:21056–21069, 2021.

[18] Daniel Gehrig, Antonio Loquercio, Konstantinos G Derpanis, and Davide Scaramuzza. End-
to-end learning of representations for asynchronous event-based data. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pages 5633–5643, 2019.

[19] Wulfram Gerstner, Werner M Kistler, Richard Naud, and Liam Paninski. Neuronal dynamics:
From single neurons to networks and models of cognition. Cambridge University Press, 2014.

[20] Seijoon Kim, Seongsik Park, Byunggook Na, and Sungroh Yoon. Spiking-yolo: spiking neural
network for energy-efficient object detection. In Proceedings of the AAAI conference on artificial
intelligence, volume 34, pages 11270–11277, 2020.

[21] Youngeun Kim, Yuhang Li, Abhishek Moitra, Ruokai Yin, and Priyadarshini Panda. Sharing
leaky-integrate-and-fire neurons for memory-efficient spiking neural networks. arXiv preprint
arXiv:2305.18360, 2023.

[22] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

[23] Alexander Kugele, Thomas Pfeil, Michael Pfeiffer, and Elisabetta Chicca. Efficient processing
of spatio-temporal data streams with spiking neural networks. Frontiers in Neuroscience, 14:439,
2020.

[24] Hongmin Li, Hanchao Liu, Xiangyang Ji, Guoqi Li, and Luping Shi. Cifar10-dvs: an event-
stream dataset for object classification. Frontiers in neuroscience, 11:309, 2017.

[25] Yuhang Li, Yufei Guo, Shanghang Zhang, Shikuang Deng, Yongqing Hai, and Shi Gu. Differen-
tiable spike: Rethinking gradient-descent for training spiking neural networks. In M. Ranzato,
A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan, editors, Advances in Neural
Information Processing Systems, volume 34, pages 23426–23439. Curran Associates, Inc.,
2021.

[26] Sijia Liu, Pin-Yu Chen, Bhavya Kailkhura, Gaoyuan Zhang, Alfred O Hero III, and Pramod K
Varshney. A primer on zeroth-order optimization in signal processing and machine learning:
Principals, recent advances, and applications. IEEE Signal Processing Magazine, 37(5):43–54,
2020.

[27] Zachary F Mainen and Terrence J Sejnowski. Reliability of spike timing in neocortical neurons.
Science, 268(5216):1503–1506, 1995.

[28] Emre O Neftci, Hesham Mostafa, and Friedemann Zenke. Surrogate gradient learning in spiking
neural networks: Bringing the power of gradient-based optimization to spiking neural networks.
IEEE Signal Processing Magazine, 36(6):51–63, 2019.

[29] Yurii Nesterov and Vladimir Spokoiny. Random gradient-free minimization of convex functions.
Foundations of Computational Mathematics, 17(2):527–566, 2017.

[30] Garrick Orchard, Ajinkya Jayawant, Gregory K Cohen, and Nitish Thakor. Converting static
image datasets to spiking neuromorphic datasets using saccades. Frontiers in neuroscience,
9:437, 2015.

[31] Nicolas Perez-Nieves and Dan Goodman. Sparse spiking gradient descent. In M. Ranzato,
A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan, editors, Advances in Neural
Information Processing Systems, volume 34, pages 11795–11808. Curran Associates, Inc.,
2021.

[32] Michael Pfeiffer and Thomas Pfeil. Deep learning with spiking neurons: opportunities and
challenges. Frontiers in neuroscience, page 774, 2018.

[33] Nitin Rathi and Kaushik Roy. Diet-snn: Direct input encoding with leakage and threshold
optimization in deep spiking neural networks. arXiv preprint arXiv:2008.03658, 2020.

12

[34] Nitin Rathi, Gopalakrishnan Srinivasan, Priyadarshini Panda, and Kaushik Roy. Enabling deep
spiking neural networks with hybrid conversion and spike timing dependent backpropagation.
arXiv preprint arXiv:2005.01807, 2020.

[35] Simon Schaefer, Daniel Gehrig, and Davide Scaramuzza. Aegnn: Asynchronous event-based
graph neural networks. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 12371–12381, 2022.

[36] Sumit B Shrestha and Garrick Orchard. Slayer: Spike layer error reassignment in time. Advances
in neural information processing systems, 31, 2018.

[37] Amos Sironi, Manuele Brambilla, Nicolas Bourdis, Xavier Lagorce, and Ryad Benosman.
Hats: Histograms of averaged time surfaces for robust event-based object classification. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages 1731–
1740, 2018.

[38] Yujie Wu, Lei Deng, Guoqi Li, Jun Zhu, and Luping Shi. Spatio-temporal backpropagation for
training high-performance spiking neural networks. Frontiers in neuroscience, 12:331, 2018.

[39] Yujie Wu, Lei Deng, Guoqi Li, Jun Zhu, Yuan Xie, and Luping Shi. Direct training for spiking
neural networks: Faster, larger, better. In Proceedings of the AAAI conference on artificial
intelligence, volume 33, pages 1311–1318, 2019.

[40] Zhenzhi Wu, Hehui Zhang, Yihan Lin, Guoqi Li, Meng Wang, and Ye Tang. Liaf-net: Leaky
integrate and analog fire network for lightweight and efficient spatiotemporal information
processing. IEEE Transactions on Neural Networks and Learning Systems, 33(11):6249–6262,
2021.

[41] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for
benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

[42] Yulong Yan, Haoming Chu, Yi Jin, Yuxiang Huan, Zhuo Zou, and Lirong Zheng. Backpropaga-
tion with sparsity regularization for spiking neural network learning. Frontiers in Neuroscience,
16, 2022.

[43] Friedemann Zenke and Surya Ganguli. Superspike: Supervised learning in multilayer spiking
neural networks. Neural computation, 30(6):1514–1541, 2018.

[44] Wenrui Zhang and Peng Li. Temporal spike sequence learning via backpropagation for deep
spiking neural networks. Advances in Neural Information Processing Systems, 33:12022–12033,
2020.

[45] Hanle Zheng, Yujie Wu, Lei Deng, Yifan Hu, and Guoqi Li. Going deeper with directly-trained
larger spiking neural networks. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 35, pages 11062–11070, 2021.

13

Appendix: Direct Training of SNN using Local Zeroth Order Method

Appendix A Proofs of theoretical results

Lemma 1. Assume further that
∫∞
0

zα+1λ(z)dz < ∞. Then, Ez∼λ[G
2(u; z, δ)] is a surrogate

function.

Proof. Based on our remark above, the only thing left to prove is that the integral∫∞
−∞ Ez∼λ[G

2(u; z, δ)]du is finite. To this end, we have (by using equation (8))∫ ∞

−∞
Ez∼λ[G

2(u; z, δ)]du =

∫ ∞

−∞

1

δ

∫ ∞

|u|
δ

zαλ(z)dzdu =
2

δ

∫ ∞

0

∫ ∞

|u|
δ

zαλ(z)dzdu

=
2

δ

∫ ∞

0

∫ |z|δ

0

|z|αλ(z)dudz = 2

∫ ∞

0

zα+1λ(z)dz,

which proves the lemma, as by assumptions the resulting integral is finite.

Theorem 2. Let λ be a distribution and λ(t) its corresponding PDF. Assume that integrals∫∞
0

tαλ(t)dt and
∫∞
0

tα+1λ(t)dt exist and are finite. Let further λ̃ be the distribution with cor-
responding PDF function

λ̃(z) =
1

c

∞∫
|z|

tαλ(t)dt,

where c is the scaling constant (such that
∫∞
−∞ λ̃(z)dz = 1). Then,

Ez∼λ[G
2(u; z, δ)] =

d

du
Ez∼λ̃[c h(u+ δz)].

Proof. We have
d

du
Ez∼λ̃[c h(u+ δz)] = c

d

du

∫ ∞

−∞
h(u+ δz)λ̃(z)dz = c

d

du

∫ ∞

−u
δ

λ̃(z)dz =
c

δ
λ̃(−u

δ
) =

c

δ
λ̃(

u

δ
),

which coincides with (8).

For our following result, note that a surrogate function is differentiable almost everywhere, which
follows from the Lebesgue theorem on the differentiability of monotone functions. So, taking
derivatives here is understood in an “almost everywhere” sense.
Theorem 3. Let g(u) be a surrogate function. Suppose further that c = −2δ2

∫∞
0

1
zα g

′(zδ)dz < ∞
and put λ(z) = − δ2

czα g
′(zδ) (so that λ(z) is a PDF). Then,

cEz∼λ[G
2(u; z, δ)] = Ez∼λ[cG

2(u; z, δ)] = g(u).

Proof. Let us assume that u ≥ 0 (the other case is similar). Then,

Ez∼λ[cG
2(u; z, δ)] =

c

δ

∫ ∞

u
δ

zαλ(z)dz = −1

δ

∫ ∞

u
δ

zα
δ2

zα
g′(zδ)dz

which after change of variables u = δz becomes g(u) and finishes our proof.

A.1 Obtaining full-surrogates on Expectation

We demonstrate performance of LOCALZO over different distributions of z, such as standard Normal,
Uniform([

√
3,
√
3]) and Laplace(0, 1√

2
), for m ∈ {1, 5} and δ = 0.05. The distributions are of unit

variance so that parameter δ is comparable across the methods. We supply SPARSEGRAD algorithm
the back-propagation threshold B̃th obtained in Table 1. Table 5 shows the performance of the
methods on the N-MNIST dataset in terms of accuracy and speedup. The LOCALZO method obtains
better train and test accuracies for all cases with a slight compromise in the speedup, except for
the uniform distribution where it offers better speedup for m = 1 compared to the SPARSEGRAD
method.

14

A.1.1 From standard Gaussian

Recall that the standard normal distribution N(0, 1) has PDF of the form 1√
2π

exp(− z2

2). Conse-
quently, it is straightforward to obtain

Ez∼λ[G
2(u; z, δ)] =

1√
2π

∫ ∞

−∞

|z|
2δ

exp(−z2

2
)dz =

1

δ
√
2π

exp(− u2

2δ2
). (11)

A.1.2 From Uniform Continuous

Consider the PDF of a continuous uniform distribution:

f(z; a, b) =

{
1

b−a for z ∈ [a, b]

0 otherwise,

where a < b are some real numbers. For the distribution to be even and the resulting scaling constant
of the surrogate to be 1 (which translates to E[z] = 0 and E[z2] = 1, respectively) we set, a = −

√
3,

b =
√
3. Then,

Ez∼λ[G
2(u; z, δ)] =

∫ ∞

−∞

|z|
2δ

f(z)dz

=
1

2
√
3
[

∫ − |u|
δ

−
√
3

|z|
2δ

dz +

∫ √
3

|u|
δ

|z|
2δ

dz] =
1

4
√
3δ

z2
∣∣∣∣
√
3

|u|
δ

=

{
1

4
√
3δ
(3− u2

δ2) if |u|
δ <

√
3,

0 otherwise.
(12)

A.1.3 From Laplacian Distribution

The PDF of Laplace distribution is given by:

f(z;µ, b) =
1

2b
exp(−|z − µ|

b
)

with mean µ and variance 2b2. Setting, b = 1√
2

and µ = 0 and using (5) we obtain,

Ez∼λ[G
2(u; z, δ)] =

2√
2

∫ ∞

|u|
δ

|z|
2δ

exp(−
√
2|z|)dz =

1

δ
√
2

∫ ∞

|u|
δ

z exp(−
√
2z)dz

= − 1

δ
√
2
(
z√
2
+

1

2
) exp(−

√
2z)

∣∣∣∣∞|u|
δ

=
1

2δ
(
|u|
δ

+
1√
2
) exp(−

√
2
|u|
δ
). (13)

A.2 Simulating a specific Surrogate

A.2.1 Sigmoid

Consider the Sigmoid surrogate function, where the Heaviside is approximated by the differentiable
Sigmoid function [43]. The corresponding surrogate gradient is given by,

dx

du
=

d

du

1

1 + exp(−ku)
=

k exp(−ku)

(1 + exp(−ku))2
=: g(u)

and,

g′(u) = −k2 exp(−ku)(1− exp(−ku))

(1 + exp(−ku))3

Observe that g(u) satisfies our definition of a surrogate (g(u) being even, non-decreasing on (−∞, 0)
and

∫∞
−∞ g(u)du = 1 < ∞). Thus, according to Theorem 3, we have

c = −2δ2
∫ ∞

0

g′(tδ)

t
dt = 2δ2k2

∫ ∞

0

exp(−kδt)(1− exp(−kδt))

t(1 + exp(−kδt))3
dt =

δ2k2

a2
,

15

where, a :=
√

1
0.4262 . The corresponding PDF is given by

λ(z) = −δ2

c

g′(δt)

z
= a2

exp(−kδz)(1− exp(−kδz))

z(1 + exp(−kδz))3
(14)

Note that the temperature parameter k comes from the surrogate to be simulated, while δ is used by
LOCALZO. We compute the expected back-propagation threshold of SPARSEGRAD for m = 1 as,
B̃th = δ Ez∼λ[|z|], with,

Ez∼λ[|z|] = 2a2
∫ ∞

0

z
exp(−az)(1− exp(−az))

z(1 + exp(−az))3
dz =

a

2
= 0.7659. (15)

A.2.2 Fast Sigmoid

Consider also the Fast Sigmoid surrogate gradient [43, 31] that avoids computing the exponential
function in Sigmoid to obtain the gradient:

dx

du
=

1

(1 + k|u|)2
=: g(u).

We choose α = −1 (note that α = 1 does not work in this case) and apply theorem 3 so that,

c = −2δ2
∫ ∞

0

1

zα
g′(zδ)dz = 4δ2

∫ ∞

0

1

zα
k sign(zδ)

(1 + k|zδ|)3
dz

= 4δ2k

∫ ∞

0

z

(1 + kδz)3
dz =

4

k

∫ ∞

0

t

(1 + t)3
dt =

2

k
.

The PDF is then given by

λ(z) = −1

c

δ2

zα
g′(zδ) = k2δ2

z sign(zδ)

(1 + k|zδ|)3
. (16)

To compute the expected back-propagation threshold, we note,

B̃th = δEz∼λ[|z|] = 2δ3k2
∫ ∞

0

z2 sign(zδ)

(1 + k|zδ|)3
dz = 2δ3k2

∫ ∞

0

z2

(1 + kzδ)3
dz =

2

k

∫ ∞

0

x2

(1 + x)3
dx

The above integral does not converge. However, if we consider finite support [-a, a], we may compute,
2
k

∫ a

0
x2

(1+x)3 dx

A.2.3 Inverse Transform Sampling

To simulate a given surrogate in LOCALZO, one needs to sample from the corresponding distribution
described by the PDF λ. Given a sample r ∼ Unif([0, 1]) and the inverse CDF Λ−1 of the distribution,
the inverse sampling technique returns, Λ−1(r), as a sample from the distribution. Suppose the
inverse CDF is not computable analytically from the PDF (or not implementable practically). In that
case, we may choose a finite support over which the PDF is evaluated at a sufficiently dense set of
points and compute the discretized CDF using the Riemann sum. The inverse discretized CDF is then
computed empirically and stored as a list for a finite number of points (spaced regularly) between
[0, 1]. Sampling from the uniform distribution then amounts to randomly choosing the indices of the
list and picking the corresponding inverse CDF values.

A.3 Expected Back-propagation Thresholds

In what follows, m is the number of samples used in (6), while k is the index of a particular sample. To
compute the expected back-propagation threshold, we observe that a neuron is inactive in LOCALZO
back-propagation if,

|u(l)
i [t]− uth| > |zk|δ, for k = 1, . . . ,m,

or,|u(l)
i [t]− uth| > tδ, where t = max

k
{|z1|, · · · , |zm|}

16

Assume zk ∼ λ, where λ(t) denotes the PDF of the sampling distribution, with the corresponding
CDF denoted by Fzk . The PDF, λ̃, of the random variable |zk| is given by

λ̃(x) =

{
0, if x < 0

2λ(x), otherwise.
(17)

The corresponding CDF is obtained by integrating the previous expression,

F|zk|(x) =

{
0, if x < 0

2(Fzk(x)− Fzk(0)), otherwise.
(18)

Further note that,

Ft(x) = P (t < x) =

m∏
k=1

P (|zk| < x) = Fm
|zk|(x) (19)

If we denote the PDF of the random variable t as λ̂, we obtain

λ̂(x) = mFm−1
|zk| (x)λ̃(x). (20)

Finally, the expected back-propagation threshold takes the form

B̃th = δE[t] = δ

∫ ∞

0

tλ̂(t)dt. (21)

In the cases of distributions used in experimental sections, the previous expression simplifies. Table 1
gives the numerical values for some particular m. To obtain an expected back-propagation threshold,
we would like to evaluate:

B̃th = δE[t] = δ

∫ ∞

0

tλ̂(t)dt = δm

∫ ∞

0

tFm−1
|z| (t)λ̃(t)dt

For the standard normal distribution, λ = Normal(0, 1) we have, F|z|(t) = erf(t√
2
) giving,

B̃th =
2δm√
2π

∫ ∞

0

t erfm−1(
t√
2
) exp(− t2

2
)dt. (22)

For uniform continuous, λ = Unif([−
√
3,
√
3]), we have, F|z|(t) =

t√
3

giving,

B̃th =
δm√
3

∫ √
3

0

t(
t√
3
)m−1dt = δ

√
3

m

m+ 1
. (23)

For Laplace distribution, λ = Laplace(0, 1√
2
), we have, F|z|(t) = 1− exp(−

√
2t),

B̃th = δm
√
2

∫ ∞

0

t(1− exp(−
√
2t))m−1 exp(−

√
2t)dt. (24)

Appendix B Additional Results

B.1 Computational Speedup in SPARSEGRAD

The SPARSEGRAD frame-work derives speedup by performing the back-propagation in a layerwise
fashion. To summarize their finding, let us start with eqn. 1.

u
(l)
i [t] = βu

(l)
i [t− 1] +

∑
j

wijx
(l−1)
j [t]− x

(l)
i [t− 1]uth

which, after unfolding the recurrence and using the fact that u(l)
i [0] = 0, can be restated as:

17

0 1000 2000 3000 4000
Number of gradient updates

0.5

1.0

1.5

2.0

Lo
ss

SparseGrad
LocalZO

0 1000 2000 3000 4000
Number of gradient updates

0.5

1.0

1.5

2.0

Lo
ss

SparseGrad
LocalZO

0 1000 2000 3000 4000
Number of gradient updates

0.5

1.0

1.5

2.0

Lo
ss

SparseGrad
LocalZO

0 1000 2000 3000 4000
Number of gradient updates

102

103

Ba
ck

wa
rd

 S
pe

ed
up

SparseGrad
LocalZO

0 1000 2000 3000 4000
Number of gradient updates

102

103

Ba
ck

wa
rd

 S
pe

ed
up

SparseGrad
LocalZO

0 1000 2000 3000 4000
Number of gradient updates

102

103

Ba
ck

wa
rd

 S
pe

ed
up

SparseGrad
LocalZO

0 1000 2000 3000 4000
Number of gradient updates

2.75

3.00

3.25

3.50

3.75

4.00

4.25

4.50

Ov
er

al
l S

pe
ed

up

SparseGrad
LocalZO

0 1000 2000 3000 4000
Number of gradient updates

2.25

2.50

2.75

3.00

3.25

3.50

3.75

4.00

4.25

Ov
er

al
l S

pe
ed

up

SparseGrad
LocalZO

0 1000 2000 3000 4000
Number of gradient updates

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

Ov
er

al
l S

pe
ed

up

SparseGrad
LocalZO

Figure 4: We plot training loss, backward speedup (Back.), and overall speedup (Over.) of SPARSEG-
RAD and LOCALZO after each gradient update performed on NMNIST data, as summarized in
Table 5 . The columns represent plots for three distributions Normal(0, 1), Laplace(1, 1√

2
), and

Unif([−
√
3,
√
3]) respectively, with δ = 0.05 and m = 1. The LOCALZO algorithm converges faster

than the SPARSEGRAD method and provides comparable backward and overall speedup.

u
(l)
i [t] =

∑
j

t−1∑
k=0

βt−k−1x
(l−1)
j [k]wij −

t−1∑
k=0

βt−k−1x
(l)
i [k]uth (25)

where, the input trace,
∑t−1

k=0 β
t−k−1x

(l−1)
j [k] can be computed in a layer-wise fashion from the

forward propagation. Note that, by ignoring the reset mechanism in the gradient the computation, the
gradient of the loss can be written as:

∂l

∂wij
=

∑
t

∂l[t]

∂x[t]

∂x[t]

∂u[t]

∂u[t]

∂wij

=
∑
t

∂l[t]

∂x[t]

∂x[t]

∂u[t]

t−1∑
k=0

βt−k−1x
(l−1)
j [k] (26)

where, the term ∂l[t]
∂x[t] is coming from the next layer, the term ∂x[t]

∂u[t] is the given by 5, so it can be
computed in the forward propagation along with the input trace. Thus, whenever, many neurons
are inactive, i.e., ∂x[t]

∂u[t] = 0 the SPARSEGRAD frame-work can reduce the computation burden of the
back-propagation.

B.2 Further comparison with SPARSEGRAD

In the section 4.4, we derived surrogates corresponding to distributions and distributions corre-
sponding to popular surrogates. We implement LOCALZO, with δ = 0.05 for different distribution

18

Table 5: Performance comparison on NMNIST for m=1

METHOD TRAIN TEST BACK. OVER.

z ∼ NORMAL(0, 1), δ = 0.05,m = 1

SPARSEGRAD 93.26 ± 0.31 91.86± 0.29 99.57 3.38
LOCALZO 94.38 ± 0.12 93.29± 0.08 92.27 3.34

z ∼ LAPLACE(1, 1√
2
), δ = 0.05,m = 1

SPARSEGRAD 93.97 ± 0.43 92.65± 0.52 88.2 3.19
LOCALZO 94.25 ± 0.17 93.05± 0.09 83.7 3.07

z ∼ UNIF([−
√
3,
√
3]), δ = 0.05,m = 1

SPARSEGRAD 93.34 ± 0.44 91.85± 0.35 83.2 3.26
LOCALZO 94.24 ± 0.46 93.05± 0.37 84.8 3.43

SIGMOID, δ = 0.05, k ≈ 30.63,m = 1

SPARSEGRAD 92.96± 0.26 91.04± 0.32 87.45 3.00
LOCALZO 93.98± 0.08 92.97± 0.05 83.54 3.02

FASTSIGMOID, δ = 0.05, k = 100,m = 1

SPARSEGRAD 93.24± 0.23 92.16± 0.20 84.87 3.18
LOCALZO 93.44± 0.13 92.52± 0.09 73.23 3.11

Table 6: Performance comparison on NMNIST for m=5

METHOD TRAIN TEST BACK. OVER.

z ∼ NORMAL(0, 1), δ = 0.05,m = 5

SPARSEGRAD 95.02 ± 0.29 93.39± 0.25 80.0 3.40
LOCALZO 95.20 ± 0.22 93.69± 0.17 77.7 3.22

z ∼ LAPLACE(1, 1√
2
), δ = 0.05,m = 5

SPARSEGRAD 94.73 ± 0.29 93.13± 0.23 72.9 3.15
LOCALZO 95.07 ± 0.03 93.63± 0.05 69.4 2.80

z ∼ UNIF([−
√
3,
√
3]), δ = 0.05,m = 5

SPARSEGRAD 94.82 ± 0.27 93.38± 0.17 76.4 3.14
LOCALZO 94.95 ± 0.35 93.47± 0.23 73.5 2.91

such as Normal(0, 1), Laplace(1, 1√
2
), and Unif([−

√
3,
√
3]). They all have a unit variance to en-

sure δ is comparable across the distributions. The corresponding back-propagation thresholds for
SPARSEGRAD are derived in Table 1.

For the Sigmoid surrogate, we take the temperature parameter k = a/δ ≈ 30.63 so that c = δ2k2

a2 = 1
for the corresponding PDF derived in eqn.14. We supply SPARSEGRAD method the corresponding
back-propagation threshold, B̃th = 0.766δ, as obtained in eqn. 15.

For the Fast Sigmoid surrogate, we choose k = 100 following [31] so that c = 2
k . To compute

the expected back-propagation threshold, we consider finite support [−10, 10] used in the inverse
transform sampling of z and evaluate B̃th = 0.0461. Table 5 reports accuracies obtained by
LOCALZO and SPARSEGRAD across various sampling distributions, with m = 1. LOCALZO offers
better accuracies compared to SPARSEGRAD across all the distributions, with a slight compromise
in speed-up in most cases. For uniform distribution, LOCALZO offers even better speed-up than
SPARSEGRAD.

Table 6 reports the details of the comparison over the N-MNIST dataset for sampling z from various
distributions with m = 5. LOCALZO method obtains better test accuracies. The SPARSEGRAD
method is supplied with the respective surrogate and back-propagation threshold as computed in

19

Table 7: Hyper-parameter settings for general comparison

CIFAR-10/100 ImageNet-100 DVS-CIFAR-10 DVS-Gesture N-Caltech/NCARS
Number epochs 300 300 300 200 200
Mini batch size 64 64, 72 64 64 16
T 6,4,2 4 10 10 10
LIF: β 0.5 1 0.5 0.5 0.5
LIF: u0 0 0 0 0 0
LIF: uth 1 1 1 1 1
LOCALZO: δ 0.5 0.5 0.5 0.5 0.5
LOCALZO: m 5 5, 20 1 5 5
LOCALZO: λ N(0,1) N(0,1) N(0,1) N(0,1) N(0,1)
λTET 0.05 0.001 0.0001 0.05 0.05
Learning Rate 0.001 0.1 0.001 0.001 0.001

Optimizer: Adam with betas: (0.9; 0.999), Rate Scheduler: cosine annealing

Table 8: Hyper-parameter settings for comparison in SPARSEGRAD framework

FMNIST SHD N-MNIST
Number of Input Neurons 784 1156 700
Number of Hidden 200 200 200
Number of classes 10 10 20
Number epochs 20 20 20
Mini batch size 256 256 256
T 100 300 500
∆t 1ms 1ms 2ms
τeff 20ms N/A N/A
θ 0.2 N/A N/A
u0 0 0 0
uth 1 1 1
LOCALZO: δ 0.05 0.05 0.05
Optimiser Adam Adam Adam
Learning Rate 0.0002 0.0002 0.001
Betas (0.9; 0.999) (0.9; 0.999) (0.9; 0.999)

Tab.1. The LOCALZO method achieves better accuracies than SPARSEGRAD for all the distributions,
though the speed-up is reduced due to higher sampling cost at m = 5.

In table 8, we further provide the hyper-parameters for the comparison in the SPARSEGRAD frame-
work, which are replicated from their work. The FMNIST data uses latency encoding, where each
input pixel x, is converted to a single spike, the spike timing is determined by:

T (x) =
{
τeff log

x
x−θ

Table 7 gives the hyper-parameter setting for comparison in general framework reported in Tab. 2.

B.3 Dropout effect in LOCALZO

A fixed neuron has an active gradient for m = 1, only if |ui[t]− uth| < |z|δ as described in eqn5.
Observe that ui[t] is specific to an input data point and time-step. The same neuron can be inactive for
another data-point, or at a different time-step. Moreover, a neuron can have a non-zero gradient with
respect to a single data point, even if the spikes are zero. Fixing a neuron and time-step, we plot the
distribution of membrane potential (minus membrane threshold), spikes, and non-zero gradients over
different data points across batches, where we implement LOCALZO on MNIST data with δ = 0.5.
The plot captures the sparsity of spikes and sparsity of neuron gradients for LOCALZO.

20

1.75 1.50 1.25 1.00 0.75 0.50 0.25 0.00
(ui[t] uth) in 100 evenly spaced bins

0

50

100

150

200

250

co
un

t

t=1

2.0 1.5 1.0 0.5 0.0 0.5
(ui[t] uth) in 100 evenly spaced bins

0

50

100

150

200

250

co
un

t

t=2

2.5 2.0 1.5 1.0 0.5 0.0
(ui[t] uth) in 100 evenly spaced bins

0

50

100

150

200

co
un

t

t=4

x[t]=0 x[t]=1
0

1000

2000

3000

4000

5000

6000

co
un

t

Spike, t=1

x[t]=0 x[t]=1
0

1000

2000

3000

4000

5000

6000

co
un

t

Spike, t=2

x[t]=0 x[t]=1
0

1000

2000

3000

4000

5000

6000

co
un

t

Spike, t=4

inactive active
0

1000

2000

3000

4000

5000

6000

co
un

t

activity of a neuron, t=1

inactive active
0

1000

2000

3000

4000

5000

co
un

t

activity of a neuron, t=2

inactive active
0

1000

2000

3000

4000

5000

co
un

t

activity of a neuron, t=4

Figure 5: Fixing a neuron, we plot the distribution of membrane potential, spikes, and gradient
activity over different data points across batches, where we implement LOCALZO on MNIST data
with δ = 0.5. The plot captures the sparsity of spikes and sparsity of neuron gradients for LOCALZO
at different time-steps.

21

	Introduction
	Background
	Spiking neuron dynamics
	Motivation

	The LocalZO algorithm
	Theoretical Properties of LocalZO
	General ZO function
	Surrogate functions
	Surrogates and ZO
	Application of Theorem 2 and 3
	Expected back-propagation threshold for LocalZO

	Experiments
	General Performance of LocalZO
	Performance on Energy Efficient Implementation

	Discussions
	Proofs of theoretical results
	Obtaining full-surrogates on Expectation
	From standard Gaussian
	From Uniform Continuous
	From Laplacian Distribution

	Simulating a specific Surrogate
	Sigmoid
	Fast Sigmoid
	Inverse Transform Sampling

	Expected Back-propagation Thresholds

	Additional Results
	Computational Speedup in SparseGrad
	Further comparison with SparseGrad
	Dropout effect in LocalZO

