Effective Size of Receptive Fields of Inferior Temporal Visual Cortex Neurons in Natural Scenes

Part of Advances in Neural Information Processing Systems 14 (NIPS 2001)

Bibtex Metadata Paper


Thomas Trappenberg, Edmund Rolls, Simon Stringer


Inferior temporal cortex (IT) neurons have large receptive fields when a single effective object stimulus is shown against a blank background, but have much smaller receptive fields when the object is placed in a natural scene. Thus, translation invariant object recognition is reduced in natural scenes, and this may help object selection. We describe a model which accounts for this by competition within an attractor in which the neurons are tuned to different objects in the scene, and the fovea has a higher cortical magnification factor than the peripheral visual field. Further- more, we show that top-down object bias can increase the receptive field size, facilitating object search in complex visual scenes, and providing a model of object-based attention. The model leads to the prediction that introduction of a second object into a scene with blank background will reduce the receptive field size to values that depend on the closeness of the second object to the target stimulus. We suggest that mechanisms of this type enable the output of IT to be primarily about one object, so that the areas that receive from IT can select the object as a potential target for action.