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Abstract

Private data analysis faces a significant challenge known as the curse of dimen-
sionality, leading to increased costs. However, many datasets possess an inherent
low-dimensional structure. For instance, during optimization via gradient de-
scent, the gradients frequently reside near a low-dimensional subspace. If the
low-dimensional structure could be privately identified using a small amount of
points, we could avoid paying for the high ambient dimension.
On the negative side, Dwork et al. [2014] proved that privately estimating subspaces,
in general, requires an amount of points that has a polynomial dependency on the
dimension. However, their bounds do not rule out the possibility to reduce the
number of points for “easy” instances. Yet, providing a measure that captures how
much a given dataset is “easy” for this task turns out to be challenging, and was
not properly addressed in prior works.
Inspired by the work of Singhal and Steinke [2021], we provide the first measures
that quantify “easiness” as a function of multiplicative singular-value gaps in the
input dataset, and support them with new upper and lower bounds. In particular,
our results determine the first types of gaps that are sufficient and necessary
for estimating a subspace with an amount of points that is independent of the
dimension. Furthermore, we realize our upper bounds using a practical algorithm
and demonstrate its advantage in high-dimensional regimes compared to prior
approaches.

1 Introduction

Differentially private (DP) Dwork et al. [2006b] algorithms typically exhibit a significant dependence
on the dimensionality of their input, as their error or sample complexity tends to grow polynomially
with the dimension. This cost of dimensionality is inherent in many problems, as Bun et al. [2014],
Steinke and Ullman [2017], Dwork et al. [2015] showed that any method that achieves lower error
rates is vulnerable to tracing attacks (also known as, membership inference attacks). However, these
lower bounds consider algorithms that guarantee accuracy for worst-case inputs and do not rule out
the possibility of achieving higher accuracy for “easy” instances.

Example: DP averaging. As a simple prototypical example, consider the task of DP averaging.
In this task, the input dataset consists of d-dimensional points x1, . . . , xn ∈ Rd, and the goal is to
estimate their average 1

n

∑n
i=1 xi using a DP algorithm while minimizing the ℓ2 additive error. One

natural way to capture input “easiness” for this task is via the maximal ℓ2 distance between any two
points (i.e., points that are closer to each other are considered “easier”). Indeed, Tsfadia et al. [2022],
Peter et al. [2024] showed that if the points are γ-close to each other, and we aim for an accuracy
of λγ (i.e., an accuracy that is proportional to the “easiness” parameter γ), then it is sufficient and

38th Conference on Neural Information Processing Systems (NeurIPS 2024).



necessary to use n = Θ̃(
√
d/λ) points. Equivalently, if we aim for an accuracy of α, then by applying

these results with λ = α/γ, we obtain that the answer is n = Θ̃(γ
√
d/α). This, in particular, implies

that when γ ≤ α/
√
d (i.e., the points are very close to each other), then Õ(1) points are sufficient,

but for γ = α/d1/2−Ω(1), a polynomial dependency on d is necessary in general.

DP subspace estimation. In this work, we consider the more complex problem of DP subspace
estimation: Given a dataset X = (x1, . . . , xn) ∈ (Rd)n of unit norm points and a parameter k,
estimate the top-k subspace of Span{x1, . . . , xn}. The main goal of this work is to answer the
following meta question:

Question 1.1. How should we quantify how “easy” a given dataset is for DP subspace estimation?

Since the dimension d is very large in many settings, we aim at providing tight measures that smoothly
eliminate the dependency on d as a function of input “easiness”. In particular, we want to be able to
identify when we can avoid paying on the ambient dimension d, and when a polynomial dependency
on d is unavoidable.

1.1 Motivation: DP-SGD

To motivate the problem, consider the task of privately training large neural networks. The most
commonly used tool to perform such a private training is the differentially-private stochastic gradient
descent (DP-SGD) Abadi et al. [2016b], Bassily et al. [2014], Song et al. [2013] – a private variant of
SGD that perturbs each gradient update with random noise vector drawn from an isotropic Gaussian
distribution. However, this approach does not differentiate between “easy” gradients and “hard” ones,
which results with high error rates when the ambient dimension - the number of parameters in the
model - is large. However, empirical evidence and theoretical analysis indicate that while training
some deep learning models, the gradients tend to live near a low-dimensional subspace Abadi et al.
[2016a], Li et al. [2018b], Gur-Ari et al. [2018], Li et al. [2018a], Demeniconi and Chawla [2020],
Zhou et al. [2021], Feng and Tu [2020], Li et al. [2022], Golatkar et al. [2022], Kairouz et al. [2020].
In particular, Gur-Ari et al. [2018] showed that in some cases, the low dimension is the number of
classes in the dataset, and the gradients tend to be close and well-spread inside this subspace. If we
could exploit such a low-dimensional structure into an (inexpensive) private and useful projection
matrix, we could reduce the error of DP-SGD by making it dependent solely on the low dimension.

We start by defining the setting of DP subspace estimation more formally.

1.2 Subspace Estimation

We consider the setting of Dwork et al. [2014]. That is, the input dataset consists of n points of
unit norm x1, . . . , xn ∈ Sd := {v ∈ Rd : ∥v∥2 = 1} and a parameter k, and the goal is to output a
k-dimensional projection matrix Π such that Π ·XT is “close” to XT as possible, where X denotes
the n× d matrix whose rows are x1, . . . , xn. We measure the accuracy of our estimation using the
“usefulness” definition of Dwork et al. [2014]:

Definition 1.2 (α-useful). We say that a rank-k projection matrix Π is α-useful for a matrix X ∈
(Sd)n if for any k-rank projection matrix Π′:∥∥Π ·XT

∥∥2
F
≥
∥∥Π′ ·XT

∥∥2
F
− α · n,

where ∥·∥F denotes the Frobenius norm.1

Observe that any projection matrix is 1-useful for any X (because ∥X∥2F =
∑n
i=1∥xi∥

2
2 = n).

Therefore, we will be interested in smaller values of α (e.g., 0.001).

1.3 Prior Works

Without privacy restrictions, we can find a 0-useful (i.e., optimal) solution using Singular-Value
Decomposition (SVD). The SVD of X is X = UΣV T , where U ∈ Rn×n and V ∈ Rd×d are unitary

1The Frobenius norm of a matrix A = (aj
i )i∈[n],j∈[d] is defined by ∥A∥F =

√∑
i∈[n],j∈[d]

(
aj
i

)2
.
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matrices, and Σ is an n× d diagonal matrix which has values σ1 ≥ . . . ≥ σmin{n,d} ≥ 0 along the
diagonal. The top-k rows subspace of X is given by the span of the first k columns of V , and it
can be computed, e.g., by applying Principal Component Analysis (PCA) on the covariance matrix
A = XTX (the eigenvectors of A are the columns of V ).

With differential privacy, however, the problem is much harder, and Dwork et al. [2014] showed
a lower bound of n ≥ Ω̃(k

√
d) for computing a 0.001-useful k-rank projection matrix under

(1,Ω(1/n2))-DP. This bound, however, only holds for algorithms that provide accuracy for worst-
case instances and does not rule out the possibility of achieving high accuracy with smaller values of
n for input points that are very close to being in a k-dimensional subspace (i.e., “easy" instances).

Perhaps the easiest instances are those that exactly lie in a k-dimensional subspace, and are well-
spread within it (i.e., there is no (k − 1)-dimensional subspace that contains many points). Indeed,
Singhal and Steinke [2021] and Ashtiani and Liaw [2022] developed (ε, δ)-DP algorithms for such
instances that precisely recover the subspace using only n = Θ̃ε,δ(k) points. However, while these
algorithms are robust to changing a few points, they are very brittle if we change all the points by a
little bit.

One approach to smoothly quantify how much a dataset is “easy” is to consider the additive-gap
σ2
k − σ2

k+1. Indeed, Dwork et al. [2014], Gonem and Gilad-Bachrach [2018] present (ε, δ)-DP

algorithms that output 0.001-useful projection using n = Θ̃ε,δ

(
k
√
d

σ2
k−σ

2
k+1

)
points. Yet, the downside

of such additive-gap based approaches is their inherent dependency on the dimension d. Even in the
extreme case where the points exactly lie in a k-dimensional subspace and well-spread within it, the
additive gap σ2

k − σ2
k+1 is at most n/k, which still results with a polynomial dependency on d.

The only existing approach to eliminate the dependency on d in some non-exact cases is the one of
Singhal and Steinke [2021] (their “approximate” case). Rather than quantifying easiness as a function
of the input dataset, they consider a setting where the points are sampled i.i.d. from some distribution,
and implicitly measure how “easy” a distribution is according to some stability notion. In particular,
they show that a d-dimensional Gaussian N (⃗0,Σ) with a multiplicative-gap σk+1(Σ)

σk(Σ) ≤ Θ̃ε,δ,k
(

1
d2

)
is “stable” enough for estimating the top-k subspace of Σ with sample complexity that is independent
of d. While Singhal and Steinke [2021] do not provide an answer to Question 1.1, they inspired our
work to consider multiplicative singular-value gaps in the input dataset as a measure for easiness.

1.4 Defining Subspace Estimators

Towards answering Question 1.1, we consider mechanisms M that are parameterized by k, λ, and β,
and satisfy the following utility guarantee: Given a dataset X = (x1, . . . , xn) ∈ (Sd)n and a value γ
as inputs, such that X is “γ-easy” for k-subspace estimation, then with probability at least β over
a random execution of M(X, γ), the output Π is an λγ-useful rank-k projection matrix for X .2 In
Definition 1.3, the “γ-easy" property is abstracted by a predicate f . We also allow an additional
parameter γmax to relax the utility for non-easy instances (i.e., we would not require a utility guarantee
for instances that are not “γmax-easy”). Furthermore, we only focus on cases in which X has at
least k significant directions, which is formalized by requiring that σ2

k(X) ≥ 0.01 · n/k (we refer to
Remark 2.3 for how our upper bounds, stated in Theorem 1.6, can handle smaller values of σk using
an additional parameter or different assumptions).
Definition 1.3 ((k, λ, β, γmax, f)-Subspace Estimator). Let n, k, d ∈ N s.t. k ≤ min{n, d}, let
β ∈ (0, 1], and let f : (Sd)n× [0, 1]→ {0, 1} be a predicate. We say that M : (Sd)n× [0, 1]→ Rd×d
is an (k, λ, β, γmax, f)-subspace estimator, if for every X ∈ (Sd)n and γ ≤ γmax with σ2

k(X) ≥
0.01 · n/k and f(X, γ) = 1, it holds that

PrΠ∼M(X,γ)[Π is (λγ)-useful for X] ≥ β.

1.5 Quantifying Easiness - Our Approach

In this work, we develop two types of smooth measures (captured by the predicate f in Definition 1.3)
for input “easiness”, which are translated to the following two types of subspace estimators:

2Similarly to the DP averaging example, we consider algorithms which guarantee accuracy that is proportional
to the “easiness” parameter γ, and we measure the “quality” of the estimations by the parameter λ.
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Definition 1.4 ((k, λ, β, γmax)-Weak Subspace Estimator). M : (Sd)n × [0, 1] → Rd×d is called
an (k, λ, β, γmax)-Weak Subspace Estimator, if it is (k, λ, β, γmax, f)-Subspace Estimator for the
predicate f(X, γ) that outputs 1 iff

∑n
i=k+1 σ

2
i (X) ≤ γ2σ2

k(X).

Definition 1.5 ((k, λ, β, γmax)-Strong Subspace Estimator). M : (Sd)n × [0, 1] → Rd×d is called
an (k, λ, β, γmax)-Strong Subspace Estimator, if it is (k, λ, β, γmax, f)-Subspace Estimator for the
predicate f(X, γ) that outputs 1 iff σk+1(X) ≤ γσk(X).

In both cases, we define f based on multiplicative singular-value gaps in the input dataset, but the
difference is what type of gap the value γ bounds: Strong estimators depend solely on the gap
σk+1/σk without taking into account smaller singular values. Weak estimators, on the other, depend

on the gap
√∑min{n,d}

i=k+1 σ2
i /σk. Note that a strong estimator is, in particular, a weak one (with the

same parameters). Also note that both measures smoothly converge to the exact k-subspace case:
When each gap tends to zero, the points tend to be closer to a k-dimensional subspace.

We provide new upper and lower bounds for both types of estimators.

1.5.1 Our Upper Bounds

Theorem 1.6 (Weak estimator). There exists an (k, λ, β = 0.9, γmax = Θ(min{ 1λ , 1}))-weak

subspace estimator M : (Sd)n× [0, 1]→ Rd×d with n = Õε,δ

(
k + min{k2

√
d, kd}

λ

)
such that M(·, γ)

is (ε, δ)-DP for every γ ∈ [0, 1].

Theorem 1.7 (Strong estimator). There exists an (k, λ, β = 0.8, γmax = Θ̃(min{ 1λ ,
λ2

k2d}))-strong

subspace estimator M : (Sd)n × [0, 1] → Rd×d with n = Õε,δ

(
k + k3d

λ2

)
such that M(·, γ) is

(ε, δ)-DP for every γ ∈ [0, 1].

Both of our estimators provide a useful projection by outputting a matrix that is close (in Frobenius
norm) to the projection matrix of the top-k rows subspace. Their running time is n

m · T (m, d, k) +

Õ(dkn) for some m = Θ̃(k), where T (m, d, k) denotes the running time required to compute
(non-privately) a projection matrix to the top-k rows subspace of an m × d matrix. We refer to
Section 2 for a detailed overview.

For simplifying the presentation and the formal utility guarantees, we assume that our algorithms
know the values of γ (the bound on the multiplicative-gap) and of k beforehand. Yet, we show that
both assumptions are not inherent, and we refer to Remark 2.4 for additional details.

We also remark that in both theorems, it is possible to increase the confidence β to any constant
smaller than 1 without changing the asymptotic cost.

1.5.2 Our Lower Bounds

Theorem 1.8 (Lower bound for weak estimators). If M : (Sd)n × [0, 1] → Rd×d is a (k, λ, β =
0.1, γmax = Θ( 1λ ))-weak subspace estimator for 1 ≤ λ ≤ Θ( d

k log k ) and M(·, γ) is
(
1, 1

50nk

)
-DP

for every γ ∈ [0, 1], then n ≥ Ω̃
(√

kd
λ

)
.

Theorem 1.9 (Lower bound for strong estimators). If M : (Sd)n × [0, 1] → Rd×d is a (k, λ, β =
0.1, γmax = Θ

(
1
λ

)
)-strong subspace estimator for 1 ≤ λ ≤ Θ( d

log k ) and M(·, γ) is
(
1, 1

50nk

)
-DP

for every γ, then n ≥ Ω̃
(
k
√
d

λ

)
.

Our lower bounds are more technically involved, and use a novel combination of generating hard-
instances using the tools from Peter et al. [2024] for proving smooth lower bounds, and extracting
sensitive vectors from useful projection matrices using ideas from the lower bound of Dwork et al.
[2014]. Both lower bounds are proven by generating hard-instances that are “γ-easy” for γ = 1

1000λ .

We refer to Section 3 for a detailed overview.

We remark that Peter et al. [2024] recently proved a similar lower bound for the special case of k = 1
(estimating the top-singular vector). However, their result strongly relies on the similarity between
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Weak Estimator Strong Estimator

Upper Bound Õε,δ

(
k + k2

√
d

λ

)
Õε,δ

(
k + k3d

λ2

)
Lower Bound Ω̃

(√
kd
λ

)
Ω̃
(
k
√
d

λ

)
Table 1: Our bounds on n for subspace estimation (ignoring restrictions on γmax and λ).

Weak Estimator Strong Estimator

Upper Bound Õε,δ

(
k + γ1k

2
√
d
)

Õε,δ
(
k + γ2

2k
3d
)

Lower Bound Ω̃
(
γ1
√
kd
)

Ω̃
(
γ2k
√
d
)

Table 2: Our bounds on n for computing 0.001-useful projection, where γ1 =
√∑min{n,d}

i=k+1 σ2
i /σk

and γ2 = σk+1/σk denote here the “easiness” parameters for weak and strong estimators, re-
spectively. As mentioned in Footnote 3, our upper bound for strong estimators only hold for
γ2 ≤ Θ(k−2/3d−1/3).

averaging and estimating top-singular vector in their hard instances, which does not hold for the case
k ≥ 2. Table 1 summarizes our bounds for k ≤

√
d.

1.5.3 Implications

We offer two formulations which have the property we seek: If we aim for an error α, and the dataset
is “γ-easy” for a very small γ, we take λ = α/γ to reduce the number of necessary and sufficient
points.

For strong estimators, the rate n = n(λ) in Theorem 1.7 does not match the corresponding lower
bound Theorem 1.9, and Theorem 1.7 is limited to small values of γ.3 Yet, for small values of k, the
strong-estimator bounds do imply that in order to privately compute an 0.001-useful rank-k projection
with number of points that is independent of d, it is sufficient and necessary to have a gap σk+1/σk
of at most ∝ 1/

√
d. Table 2 summarizes our bounds for the special case of outputing 0.001-useful

projection matrix, using our two different types of input “easiness”.

1.6 Empirical Evaluation

We believe that private subspace estimation of easy instances could find practical applications.
Therefore, we made an effort to realize our upper bounds using a practical algorithm. In Section 4
we empirically compared our method to the additive-gap based approach of Dwork et al. [2014] for
the task of privately estimating the empirical mean of points that are close to a small dimensional
subspace, demonstrating the advantage of our approach in high-dimensional regimes.

1.7 Paper Organization

In Sections 2 and 3 we present proof overviews for our results, and the empirical evaluation is
provided in Section 4. A limitations section is given in Section 5. Additional related work appears
at Appendix A. Notations, definitions and general statements are given in Appendix B. Our upper
bounds are proven in Appendix C, and our lower bounds are proven in Appendix D.

2 Upper Bounds - Overview

Both of our estimators (Theorems 1.6 and 1.7) follow the same structure, but with different parameters.
Similarly to Singhal and Steinke [2021], our algorithms follow the sample-and-aggregate approach
of Nissim et al. [2007]. That is, given a dataset X = (x1, . . . , xn) ∈ (Sd)n, we partition the rows
into t subsets, compute (non-privately) a projection matrix to the top-k rows subspace of each subset,

3If we take λ = α/γ (i.e., aiming for an error α), the utility restriction on γmax in Theorem 1.7 implies that

γ should be smaller than Θ
(

α2/3

k2/3d1/3

)
.
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and then privately aggregate the projection matrices Π1, . . . ,Πt. For doing that, we need to argue
that Π1, . . . ,Πt are expected to be close to each other. In the Gaussian setting of Singhal and Steinke
[2021], this holds by concentration properties of Gaussian distributions. In our setting, however, it is
unreasonable to expect that arbitrary partitions will lead to similar subspaces. For instance, consider
the matrix X whose first n/k rows are e1 = (1, 0, . . . , 0), the next n/k rows are e2 = (0, 1, . . . , 0),
and so forth until ek. Even though X is rank-k and has σ2

1 = . . . = σ2
k = n/k, if we simply partition

the rows according to their order, then most of those subsets will induce a rank-1 matrix which clearly
does not represent the original matrix X . Therefore, we must consider a more clever partition that
will guarantee a good representation of the top-k rows subspace of X in each subset.

There is an extensive line of works who aim for methods to choose a small subset of rows that
provides a good low-approximation for the original matrix (e.g., see Mahoney [2011] for a survey).
Yet, most of these methods are data-dependent, and therefore seem less applicable for privacy.

In this work we show that by simply using a uniformly random partition into subsets of size Θ̃(k),
then w.h.p. each subset induces a projection matrix that is close to the projection matrix of the top-k
rows subspace of X:
Lemma 2.1. Let X = (x1, . . . , xn) ∈ (Sd)n with singular values σ1 ≥ . . . ≥ σmin{n,d} ≥ 0, and

let γ1 = σk+1

σk
and γ2 =

√∑min{n,d}
i=k+1 σ2

i

σk
. Let X′ ∈ (Sd)m be a uniformly random m-size subset of

the rows of X (without replacement). Let Π and Π′ be the projection matrices to the top-k rows
subspace of X and X′, respectively. Assuming that σ2

k ≥ 0.01n/k, then the following holds for
m = Θ̃(k):

1. If γ1 ≤ m
2n , then Pr

[
∥Π−Π′∥ ≤ O

(√
n
m · γ1

)]
≥ 0.9. (∥·∥ denotes the Spectral norm4).

2. If γ2 ≤ 0.1, then Pr[∥Π−Π′∥F ≤ O(γ2)] ≥ 0.9. 5.

Namely, Item 1 bounds the expected spectral norm distance of the projection matrices using the first
type gap σk+1/σk (which is used in the analysis of our strong estimator), and Item 2 bounds the

expected Frobenius norm distance using the second type gap
√∑min{n,d}

i=k+1 σ2
i /σk (which is used in

the analysis of our weak estimator). We prove Lemma 2.1 in Appendix C.1.2.

The next step is to aggregate the non-private projection matrices Π1, . . . ,Πt into a private one Π̃.
We consider two types of aggregations. The first one simply treats each matrix as a d2 vector and
privately estimate the average of Π1, . . . ,Πt. The second type (which outperforms the first one in
most cases) follows a similar high-level structure of Singhal and Steinke [2021]. That is, to sample
i.i.d. reference points p1, . . . , pq ∼ N (⃗0, Id×d) for q = Θ(k), privately average the qd-dimensional
points {(Πjp1, . . . ,Πjpq)}tj=1 for obtaining a private P̃ ∈ Rq×d (whose ith row estimates the
projection of pi onto the top-k rows subspace of X), and then compute the projection matrix of the
top-k rows subspace of P̃ . But unlike Singhal and Steinke [2021] who perform this step using a
histogram-based averaging that has the same flavor of Karwa and Vadhan [2018], we perform this
step using FriendlyCore Tsfadia et al. [2022] that simplifies the construction and makes it practical
in high dimensional regimes. We remark that in both aggregation types, we need a DP averaging
algorithm that is resilient to a constant fraction of outliers (say, 20%) since both items in Lemma 2.1
only guarantee that the expected number of outliers is no more than 10%. Fortunately, FriendlyCore
can be utilized for such regimes of outliers (see Appendix B.8.3 for more details).

A few remarks are in order.
Remark 2.2. The first aggregation type (which privately estimate the average of Π1, . . . ,Πt directly)
outperforms the second type only for our weak estimator in the regime k ≥

√
d (as it inherently

posses larger dependency in the dimension).
Remark 2.3. We could avoid the requirement σ2

k ≥ 0.01n/k by adding an additional parameter
η such that σ2

k ≥ η · n/k, and using subsets of size m = Θ̃(k/η) (which would increase n by the
same factor of 1/η). For readability purposes, we chose to avoid this additional parameter. Because
our algorithms provide useful projection by estimating the actual top-k projection, then such a

4The spectral norm of a matrix A ∈ Rn×d is defined by ∥A∥ = supx∈Sd
∥Ax∥2 and is equal to σ1(A).

5The Frobenius norm of a matrix A ∈ Rn×d is equal to
√

σ1(A)2 + . . .+ σmin{n,d}(A)2.
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requirement is unavoidable if we would like to provide utility guarantees only as a function of the
singular values.6 In fact, any assumption that would imply that two random subsets induce similar
top-k projection matrices would suffice for the utility analysis.

Remark 2.4. To eliminate the known-γ assumption, we can replace the FriendlyCore-averaging step
Tsfadia et al. [2022] (that requires to know the diameter) with their unknown diameter variant that
gets two very rough bounds ξmin and ξmax, and performs a private binary search for estimating a
good diameter ξ ∈ [ξmin, ξmax] in a preprocessing phase. This step only replaces the dependency on
d with d+ log log(ξmax/ξmin) in the asymptotic sample complexity (section 5.1.2. in Tsfadia et al.
[2022]) and is very practical. In fact, we use this method in our empirical evaluation in Section 4.

For handling unknown values of k, note that our algorithms provide useful utility guarantees (com-
pared to the additive-gap based ones) only when σ2

k+1 ≪ 1. So in cases where σ2
k ≥ 2 · log(k/β)/ε′

for some (fixed) privacy budget ε′ < ε (say, ε′ = ε/10), we can privately determine w.p. 1 − β
the right value of k using a simple ε′-DP method. The main observation is that the ℓ1 sensitivity of
the vector (σ2

1 , . . . , σ
2
n) is at most 2 (Amin et al. [2019]), yielding that we can privately compute

(σ′21 , . . . , σ′2n ) = (σ2
1+Lap(2/ε′), . . . , σ2

n+Lap(2/ε′)), and then perform analysis on (σ′21 , . . . , σ′2n )
to set k as the first index i where σ2

i ≥ log(i/β)/ε′ and σ2
i+1 < log(i/β)/ε′.

3 Lower Bounds - Overview

Our lower bounds (Theorems 1.8 and 1.9) use the recent framework of Peter et al. [2024] for
generating smooth lower bounds for DP algorithms using Fingerprinting Codes (FPC), but require
technically involved analysis due to the complex structure of this problem for k ≥ 2.

Roughly speaking, let D be a distribution over {−1, 1}n0×d0 that induces an optimal FPC codebook
with d0 = Õ(n2

0) (e.g., Tardos [2008], Peter et al. [2024]). The connection between FPC and DP
(first introduced by Bun et al. [2014]) is that any DP algorithm, given a random codebook X =

(xji )i∈[n0],j∈[d0] ∼ D as input, cannot output a vector q = (q1, . . . , qd0) ∈ {−1, 1}d0 that “agrees"
with most of the “marked" columns of X (Formally, for b ∈ {−1, 1}, a columns xj = (xj1, . . . , x

j
n)

is called b-marked if xj1 = . . . = xjn = b, and q agrees with it if qj = b).

Now consider a DP mechanism M : Xn → W that satisfies some non-trivial accuracy guarantee.
Peter et al. [2024] reduces the task of lower bounding n to the following task: (1) Generate from an
FPC codebook X ∈ {−1, 1}n0×d0 hard instances Y ∈ Xn for M, and (2) Extract from the output
w ∼ M(Y ) a vector q ∈ {−1, 1}d0 that agrees with most of the marked columns of X (n0 and d0
are some functions of n, X and the weak accuracy guarantee of M). Peter et al. [2024] proved that
if there exists such generating algorithm G and extracting algorithm F (which even share a random
secret that M does not see) such that G is neighboring-preserving (i.e., maps neighboring databases
to neighboring databases), then it must hold that n0 ≥ Ω̃(

√
d0) (Otherwise, M cannot be DP).

Warm-up: DP averaging. We first sketch how Peter et al. [2024] applied their framework with
n0 = n and d0 = Θ(d/λ2) for proving a lower bound for the simpler problem of DP averaging. In
this setting, we are given a mechanism that guarantees λγ-accuracy (ℓ2 additive error) for γ-easy
instances (i.e., points that are γ-close to each other in ℓ2 norm). The generator G, given an FPC
codebook X ∈ {−1, 1}n0×d0 , uses the padding-and-permuting technique: It pads ℓ ≈ 104λ2d0
1-marked columns and ℓ (−1)-marked columns, and then permutes all the d = d0+2ℓ columns of the
new codebook X ′ using a random permutation π : [d]→ [d] that is shared with the extractor F. The
input Y to the algorithm would be the normalized rows of X ′ which are 1

100λ -close to each other in ℓ2
norm, so the mechanism has to output an 1

100 -accurate solution w. In particular, after rounding w to
{−1, 1}d, the coordinates of w must agree with a vast majority of the marked columns, and also with
a vast majority of the original marked columns that are located within π(1), . . . , π(d0) as it cannot
distinguish between them and the other marked columns (because π is hidden from it). The extractor
F, given w and π, rounds w to {−1, 1}d and outputs q = (wπ(1), . . . , wπ(d)) which agrees with most
of the marked columns of X . Hence, we obtain the lower bound of n ≥ Ω̃(

√
d0) = Ω̃(

√
d/λ).

6To illustrate why σ1, . . . , σk should be large, consider a matrix X whose first n− k + 1 rows are e1, and
the next k − 1 rows are e2, . . . , ek. This matrix has σ2 = . . . = σk = 1, and even though it is a rank-k matrix,
it is clearly impossible to output a projection matrix that reveals any of the directions e2, . . . , ek under DP.
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Figure 1: From Left to Right: (1) The normalized rows of the fingerprinting codebook X are
well-spread on the d0-dimensional unit sphere. (2) Applying the padding-and-permuting (PAP)
technique makes the normalized points very close to each other on the d-dimensional unit sphere
(d≫ d0). (3) We create hard instances for DP subspace estimation using k-independent (normalized)
PAP-FPC codebooks B1, . . . , Bk, where PAP (X) is planted in one of the Bi’s (in this example, in
B2). Reducing α (i.e., increasing the padding length) makes the points in each group Bi closer to
each other, which in particular, increases the closeness to a k-dimensional subspace.

DP Subspace Estimation In our case, we are given a (weak or strong) subspace estimator
M : (Sd)n → Rd×d that outputs an λγ-useful rank-k projection matrix if σk+1(X) ≤ γσk(X)

(or
√∑min{n,d}

i=k+1 σi(X)2 ≤ γσk(X)). We prove our lower bounds by applying the framework with
n0 = n/k and d0 = Θ(αd), for some parameter α = α(λ) that will depend on the type of M we
consider. In order to generate hard instances Y ∈ (Sd)n for M given an FPC codebook X ∼ D
(X ∈ {−1, 1}(n/k)×d0), we use a variation of the approach to Dwork et al. [2014]. Namely, our
generator G samples k independent FPC codebooks A1, . . . , Ak ∼ D where it plants Ai = X for
a random i ← [k]. Then for each j ∈ [k], it applies (independently) the padding-and-permuting
technique of Peter et al. [2024] where it pads ℓ 1-marked columns and ℓ (−1)-marked columns for
ℓ ≈ d0

2α , and permute all the columns. This induces k matrices B1, . . . , Bk ∈ {−1, 1}(n/k)×d (for
d = d0 + 2ℓ) such that each Bj is “almost” rank-1 and their vertical concatenation B ∈ {−1, 1}n×d
is almost rank-k. It provides Y = 1√

d
B as the input for M. See Figure 1 for graphical illustrations.

We remark that at this step, the main difference from Dwork et al. [2014] (who implicitly follow a
similar paradigm) is that they use a fixed padding length of ℓ = 15d0 that suffices for the robustness
properties that they need. On the other hand, we use Peter et al. [2024]’s observation that increasing
the padding can handle low-accuracy regimes of many problems, and indeed we use the padding
length ℓ to increase the k’th singular value gap, which will be a function of the quality parameter λ.

The next step is to choose the right value of α = α(λ) such that M, on input Y , will have to output a
useful projection matrix. We show that the input matrix Y has w.h.p. σ1(Y )2 ≥ . . . ≥ σk(Y )2 ≥
(1− O(α)) · nk , which yields that

∑min{n,d}
i=k+1 σi(Y )2 ≤ O(α)n. If M is a weak estimator, then we

simply use α = Θ
(

1
λ2k

)
to guarantee that

∑min{n,d}
i=k+1 σi(Y )2 ≤ γ2 · σk(Y )2 for γ = 1

1000λ , which
yields that by the utility guarantee of M, we get an 0.001-useful projection matrix. If M is a strong
estimator, then we use α = Θ

(
1
λ2

)
(i.e., we decrease the padding length by a factor of k). Yet, in

order to meet the requirements of M, we must argue that w.h.p., σk+1(Y )2 ≤ Õ(α) · nk , and this is
more complex than the previous case. Here we use more internal properties of the fingerprinting
distribution D. Namely, that in Peter et al. [2024]’s construction (which is also true for Tardos
[2008]’s one), each entry of the codebook matrix has expectation 0 and the columns of the matrix are
independent. Using known concentration bounds, this allows us to argue that if we pick a unit vector
v that is orthogonal to the top-k rows subspace of Y , then with probability at least 1− exp(−Ω̃(d))
it holds that ∥Y v∥22 ≤ Õ(α) · nk . Since σ2

k is bounded by the supremum of ∥Y v∥22 under such unit
vectors, we conclude the proof of this part using a net argument.

Finally, the last step, which is not trivial for k ≥ 2, is to extract from an 0.001-useful projection
matrix Π̃ for Y , a vector q ∈ {−1, 1}d0 that with noticeable probability, strongly agrees with the
marked columns of the original codebook X ∈ {−1, 1}n0×d0 . For that, our extractor F uses the
random permutations and the random location i (which are part of the shared secret between the
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generator and the extractor) and follows the strategy of Dwork et al. [2014]. That is, it applies the
ith invert permutation over the columns of Π̃ (denote the resulting matrix by Π̃i), chooses a vector
u ∈ Span(Π̃i) that has the maximal agreement with half of the padding bits, and then simply outputs
its first d0 coordinates after rounding to {−1, 1}. The intuition is that an 0.001-useful projection
matrix must be also 0.001-useful for at least one of the parts Yj = 1√

d
Bj . Since all the Yj’s have the

same distribution and the location i (where the original X is planted) is hidden from M, then it must
be 0.001-useful for Yi with probability at least β/k (where β denotes the success probability of M).
Given that this event occurs, the usefulness of Π̃ implies that there must exists a vector in Span(Π̃i)
that strongly agrees with half of the padding locations. But because all the marked columns (that
includes the padding locations) are indistinguishable from the eyes of M who computed Π̃, then a
similar agreement must hold for the marked columns of X .

4 Empirical Evaluation

We implemented a zCDP (Definition B.24) variant of our subspace estimation algorithm in Python
(denoted by EstSubspace), and in this section we present empirical results for the fundamental
task of privately estimating the average of d dimensional points that approximately lie in a much
smaller k-dimensional subspace. Namely, given a dataset X = (x1, . . . , xn) ∈ Snd , a parameter k,
and zCDP parameters ρ, δ, we perform the following steps: (a) Compute a (ρ/2, δ)-zCDP rank-k
projection matrix Π̃ using EstSubspace that estimates the projection onto the top-k rows subspace
of X , (b) Compute a ρ/2-zCDP estimation of the average of X using the Gaussian Mechanism:
x̃ = 1

n

∑n
i=1 xi +N (0, σ2 · Id×d) for σ = 2

n
√
ρ , and (c) Output x̂ = Π̃ · x̃.

The accuracy is measured by the ℓ2 error from the average:
∥∥x̂− 1

n

∑n
i=1 xi

∥∥
2
.

In all our experiments, we use ρ = 2 and δ = 10−5, t = 125 (the number of subsets in the sample-
and-aggregate process), n = 2tk data points, q = 10 · k (the number of reference points in the
aggregation), and use the zCDP implementation of the FriendlyCore-based averaging algorithm of
Tsfadia et al. [2022].7 All experiments were tested on a MacBook Pro Laptop with 8-core Apple M1
CPU with 16GB RAM.

Rather than using Tsfadia et al. [2022]’s algorithm for the known-diameter case, we use their
unknown-diameter implementation with ξmin = 10−6 and ξmax = 100 (see Remark 2.4 for details).
Furthermore, we reduced the space complexity of our implementation from Θ̃(d2) to Θ̃(kd).8

In order to generate a synthetic dataset that approximately lie in a k-dimensional subspace, we initially
sample uniformly random b1, . . . , bk ← {−1, 1}d and perform the following process to generate
each data point: (i) Sample a random unit vector u in Span{b1, . . . , bk}, (ii) Sample a random noise
vector ν ← {1/τ,−1/τ}d, and (iii) Output u+ν

∥u+ν∥ (note that higher τ results with data points that
are closer to a k-dimensional subspace).

We compare our averaging method to two other approaches: The first one simply applies the Gaussian
mechanism directly on X = (x1, . . . , xn) using the entire privacy budget ρ (i.e., without computing
a projection matrix). The second one replaces our Step (a) by computing the projection matrix
Π̃ using a (ρ/2, δ)-zCDP variant of the additive-gap based algorithm of Dwork et al. [2014] (see
Appendix B.8.4 for more details). 9 The empirical results are presented in Figure 2. In all experiments,
we perform 30 repetitions for generating each graph point which represents the trimmed average of

7Their source code is publicly available in https://media.icml.cc/Conferences/ICML2022/
supplementary/tsfadia22a-supp.zip.

8We do not explicitly compute a d× d rank-k projection matrix in each subset, but rather only compute a
good approximation of the top-k rows V = (v1, . . . , vk) ∈ Sk

d using the Python function randomized_svd
(provided in the sklearn library). We then compute the projection of any vector u ∈ Rd onto Span{v1, . . . , vk},
given by V TV u, from right to left, which only involves O(kd) time and space computation cost. We do the
same thing w.r.t. to the output projection Π̃ (i.e., represent it using only k vectors).

9We remark that unlike EstSubspace, Dwork et al. [2014]’s algorithm requires O(d2) time and space
complexity as it requires an explicit access to the d× d projection matrix onto the top-k rows subspace, and
therefore is limited to moderate values of d. Still, we were able to use it as baseline since we saw the advantage
of our approach in terms of accuracy even when d is not extremely high.

9
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Figure 2: From Left to Right: (1) The case k = 4 and τ = 10d, varying d (the X-axis is
√
d). (2)

The case d = 104 and τ = 10d, varying k. (3) The case d = 104 and k = 4, varying τ (the X-axis is
τ/d). In all the experiments, we use n = 250 · k data points.

values between the 0.1 and 0.9 quantiles. We show the ℓ2 error of our estimate on the Y -axis. The
first graph illustrates the inherent dependency on d that Dwork et al. [2014]’s algorithm has, while
our algorithm EstSubspace takes advantage of the closeness of the points to dimension k in order
to eliminate this dependency. The second graph illustrates that when d is fixed, increasing k and n
in the same rate a has similar affect on both EstSubspace and Dwork et al. [2014]’s algorithm. In
the last graph we compare the accuracy of EstSubspace and Dwork et al. [2014]’s algorithm as a
function of the closeness to a subspace k (measured in our experiments by the parameter τ ), and
show in what regimes EstSubspace outperforms Dwork et al. [2014]’s algorithm.

5 Limitations and Future Directions

From a theoretical perspective, our work is the first to provide proper measures for how “easy” a
given dataset is which smoothly eliminates the dependency on the dimension d. Yet, closing the
gap between our upper and lower bounds is still left open. Specifically, for weak estimator, there
is still a gap of k1.5 between Theorems 1.6 and 1.8. For strong estimators, the upper-bound rate
n = n(λ) (Theorem 1.7) does not align with the one of the lower bound (Theorem 1.9), and it is
left open to relax the restriction on γmax. One possible reason for some of these gaps (especially
the dependency in k) is that our upper bounds follow the approach of Singhal and Steinke [2021]
to estimate (under some matrix norm) the projection matrix to the top-k rows subspace (we do it
in Frobenius norm). While estimating the projection matrix itself provides, in particular, a useful
solution (Proposition B.16), the opposite direction is not true in general, and it could be possible to
reduce the sample complexity by focusing on α-usefulness (Definition 1.2) directly, or alternatively,
providing stronger lower bounds for estimating the projection matrix.

From a more practical standpoint, we empirically demonstrate the advantage of our approach in
high-dimension regimes when the data is very close to a low-dimensional structure, which is directly
translated to an advantage in private mean estimation of such instances. The downside of our approach
is that it requires the points to be very close to a k-dimensional structure in order to be effective,
which might not be sufficient for typical training scenarios in deep learning. It would be intriguing
to explore if there is a connection between training parameters (e.g., the network structure) to the
phenomena of gradients that are close to a low-dimensional subspace (mentioned in Section 1.1). If
we could boost this closeness to regimes where our method achieves high accuracy, we could generate
drastically improved private models. On the other hand, if we cannot do it, then our lower bounds
indicate that improving DP-SGD via private subspace estimation might not be the right approach,
and we should focus on different approaches for this task.
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A Additional Related Work

A closely related line of work is on Private PCA. Dwork et al. [2014] consider the simple algorithm
that adds independent Gaussian noise to each entry of the covariance matrix A =

∑n
i=1 x

T
i xi ∈ Rd×d,

and then performs analysis on the noisy matrix. This method, predating the development of differential
privacy Blum et al. [2005], was later analyzed under differential privacy by McSherry and Mironov
[2009] and Chaudhuri et al. [2013]. This simple algorithm is versatile and several bounds are provided
for the accuracy of the noisy PCA. The downside of this is that a polynomial dependence on the
ambient dimension d is inherent for any instances (including “easy" ones). While this approach has
a variant that improves the accuracy of estimating the top-k subspace as a function of the additive
gap σ2

k − σ2
k+1 (Appendix B.8.4), it does not prevent the polynomial dependency on the dimension d

even for very easy instances.

Techniques from dimensionality reduction have been applied by Hardt and Roth [2012] and Arora et al.
[2018] to privately compute a low-rank approximation to the input matrix X . Similarly, Hardt and
Roth [2013] and Hardt and Price [2014] utilize the power iteration method with noise injected at each
step to compute low-rank approximations to X . Despite their effectiveness, these methods, relying
on noise addition, require sample complexity to grow polynomially with the ambient dimension to
achieve meaningful guarantees.

Another approach, employed by Blocki et al. [2012] and Sheffet [2019], involves approximating the
covariance matrix A using dimensionality reduction. They show that the dimensionality reduction
step itself provides a privacy guarantee (whereas the aforementioned results did not exploit this and
relied on noise added at a later stage).

Chaudhuri et al. [2012], Kapralov and Talwar [2013], Wei et al. [2016] apply variants of the expo-
nential mechanism McSherry and Talwar [2007] to privately select a low-rank approximation to the
covariance matrix A. This method is nontrivial to implement and analyse, but it ultimately requires
the sample complexity to grow polynomially in the ambient dimension.

Gonem and Gilad-Bachrach [2018] exploit smooth sensitivity Nissim et al. [2007] to release a lowrank
approximation to the matrix A. This allows adding less noise than worst case sensitivity, under an
eigenvalue gap assumption. However, the sample complexity n is polynomial in the dimension d.

Another related area involves estimating the parameters of unbounded Gaussians Kamath et al. [2022],
Ashtiani and Liaw [2022], Kothari et al. [2022], Tsfadia et al. [2022]. Notably, Kamath et al. [2022]
used the subspace learning algorithm of Singhal and Steinke [2021] to efficiently learn the covariance
matrix.

A recent popular trend in DP learning is to utilize a few public examples to enhance accuracy. This has
led to methods for private ML which project the sensitive gradients onto a subspace estimated from
the public gradients. By using a small amount of i.i.d. public data, Zhou et al. [2021] demonstrate
that this approach can improve the accuracy of differentially private stochastic gradient descent in
high-privacy regimes and achieve a dimension-independent error rate. Similarly, Yu et al. [2021]
proposed GEP, a method that utilizes public data to identify the most useful information carried
by gradients, and then splits and clips them separately. These works underscore the importance of
identifying the subspace of gradients in private ML.

B Preliminaries

B.1 Notations

We use calligraphic letters to denote sets and distributions, uppercase for matrices and datasets,
boldface for random variables, and lowercase for vectors, values and functions. For n ∈ N, let
[n] = {1, 2, . . . , n}. Throughout this paper, we use i ∈ [n] as a row index, and j ∈ [d] as a column
index (unless otherwise mentioned).

For a matrix X = (xji )i∈[n],j∈[d], we denote by xi the ith row of X and by xj the jth column of X .
A column vector x ∈ Rn is written as (x1, . . . , xn) or x = x1...n, and a row vector y ∈ Rd is written
as (y1, . . . , yd) or y1...d. In this work we consider mechanisms who receive an n× d matrix X as
input, which is treated as the dataset X = (x1, . . . , xn) where the rows of X are the elements (and
therefore, we sometimes write X ∈ (Rd)n instead of X ∈ Rn×d to emphasize it).
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For a vector x ∈ Rd we define ∥x∥2 =
√∑n

i=1 x
2
i (the ℓ2 norm of x), and for a subset S ⊆ [d]

we define xS = (xi)i∈S , and in case x is a row vector we write xS . Given two vectors x =
(x1, . . . , xn), y = (y1, . . . , yn), we define ⟨x, y⟩ =

∑n
i=1 xiyi (the inner-product of x and y). We

denote by Sd the set of d-dimensional unit vectors, that is, Sd = {v ∈ Rd : ∥v∥2 = 1}. For
a matrix X = (xji )i∈[n],j∈[d] we let ∥X∥ = maxv∈Sd∥Xv∥2 (the spectral norm of X) and let

∥X∥F =
√∑

i∈[n],j∈[d](x
j
i )

2 (the Forbenius norm of X). For a matrix X = (xji )i∈[n],j∈[d] ∈
{−1, 1}n×d and b ∈ {−1, 1}, we define the b-marked columns of X as the subset J bX ⊆ [d] defined
by J bX = {j ∈ [d] : xji = b for all i ∈ [n]}.
For d ∈ N we denote by Pd the set of all d × d permutation matrices. For a permutation matrix
P ∈ Pd and i ∈ [d] we denote by P (i) the index j ∈ [d] for which eiP = ej (where ei and ej are
the corresponding one-hot row vectors), and for I ⊆ [d] we denote P (I) = {P (i) : i ∈ I}.
For d, k ∈ N we denote by Wd,k the set of all d × d projection matrices of rank k. For a matrix
A ∈ Rn×d we denote by Span(A) the columns subspace of A (and therefore the rows subspace of
A is Span(AT )).

For z ∈ R, we define sign(z) :=
{
1 z ≥ 0

−1 z < 0
and for v = (v1, . . . , vd) ∈ Rd we define sign(v) :=

(sign
(
v1
)
, . . . , sign

(
vd
)
) ∈ {−1, 1}d.

B.2 Distributions and Random Variables

Given a distribution D, we write x ∼ D to denote that x is sampled according to D. For a set S , we
write x← S to denote that x is sampled from the uniform distribution over S.

B.3 Singular Value Decomposition (SVD)

For a matrix X ∈ Rn×d, the singular value decomposition of X is defined by X = UΣV T , where
U ∈ Rn×n and V ∈ Rd×d are unitary matrices. The matrix Σ ∈ Rn×d is a diagonal matrix with
non-negative entries σ1 ≥ . . . ≥ σmin{n,d} ≥ 0 along the diagonal, called the singular values of X .
The SVD of X can also be written in the form X =

∑min{n,d}
i=1 σiuiv

T
i , where ui and vi are the ith

columns of U and V (respectively). It holds that ∥X∥2F =
∑
i σ

2
i and ∥X∥ = σ1. We define the

top-k rows subspace of X as the subspace spawned by the first k columns of V .
Fact B.1 (Min-Max principle for singular values). For every matrix X ∈ Rn×d and i ∈ [min{n, d}]
it holds that

σi(X) = max
dim(E)=i

min
v∈Sd∩E

∥Xv∥2 = min
dim(E)=i

max
v∈Sd∩E

∥Xv∥2.

B.4 Concentration Bounds

Fact B.2 (Montgomery-Smith [1990]). Let x = (x1, . . . ,xn) where the xi’s are i.i.d. random
variables with Pr[xi = 1] = Pr[xi = −1] = 1/2, and let v ∈ Rn. Then

∀t ≥ 0 : Pr[|⟨x, v⟩| > t · ∥v∥2] ≤ 2 exp(−t2/2).
Fact B.3 (Bernstein’s Inequality for sampling without replacement (Bardenet and Maillard
[2015], Proposition 1.4)). Let x1, . . . ,xm be a random sample drawn without replacement from
{w1, . . . , wn} for n ≥ m. Let a = mini∈[n] wi, b = maxi∈[n] wi, µ = 1

n

∑n
i=1 wi and

σ2 = 1
n

∑n
i=1(wi − µ)2. Then for every t ≥ 0,

Pr

[∣∣∣∣∣
m∑
i=1

xi −m · µ

∣∣∣∣∣ ≥ t

]
≤ 2 · exp

(
− t2

mσ2 + (b− a)t/3

)
.

The following proposition is used for proving Lemma 2.1.
Proposition B.4. Let X = (x1, . . . , xn) ∈ (Sd)n with singular values σ1 ≥ . . . ≥ σmin{n,d} ≥ 0.
Let X′ = (x′1, . . . ,x

′
m) be the random matrix that is generated by taking a uniformly random
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m-size subset of the rows of X . Let v ∈ Sd and a2 = ∥Xv∥22 =
∑n
i=1⟨xi, v⟩2. Assuming that

m ≥ 2n ln(1/β)
9a2 , it holds that

Pr

[∣∣∣∥X′v∥22 − m

n
a2
∣∣∣ ≥√2

m

n
a2 ln(1/β)

]
≤ 2β.

Proof. The random variable ∥X′v∥22 is distributed as the sum of a uniformly random m-size subset
of (⟨x1, v⟩2, . . . , ⟨xn, v⟩2) (each element is bounded in [0, 1]). In the notations of Fact B.3, it holds
that µ = 1

n

∑n
i=1⟨xi, v⟩2 = a2/n, and

σ2 =
1

n

n∑
i=1

(⟨xi, v⟩2 − a2/n)2

=
1

n

n∑
i=1

(⟨xi, v⟩4 − 2⟨xi, v⟩2a2/n+ a4/n2)

=
1

n

n∑
i=1

⟨xi, v⟩4 − a4/n2

≤ 1

n

n∑
i=1

⟨xi, v⟩2 = a2/n,

where the last inequality holds since ⟨xi, v⟩2 ≤ 1.

Let t =
√
2mn a

2 ln(1/β). By Fact B.3,

Pr
[∣∣∣∥X′v∥22 − m

n
a2
∣∣∣ ≥ t

]
≤ 2 · exp

(
− t2

m
n a

2 + t/3

)
= 2 · exp

(
−

2mn a
2 ln(1/β)

m
n a

2 +
√

2mn a
2 ln(1/β)/3

)

≤ 2 · exp
(
−
2mn a

2 ln(1/β)

2mn a
2

)
≤ 2β,

where the penultimate inequality holds by the assumption on m. □

B.4.1 Hypergeometric Distributions

Definition B.5. For n ∈ N, m ∈ [n] and w ∈ {−n, . . . , n}, define the Hypergeometric probability
distribution HGn,m,w as the output of the following process: Take a vector v ∈ {−1, 1}n with∑n
i=1 vi = w, choose a uniformly random subset I ⊆ [n] of size m, and output

∑
i∈I vi.

Fact B.6 (Scala [2009], Equations 10 and 14). If x ∼ HGn,m,w then

∀t ≥ 0 : Pr[|x− µ| ≥ t] ≤ e−
t2

2ℓ ,

where µ = E[x] = m·w
n .

B.4.2 Sub-Exponential Distributions

Definition B.7 (Sub-Exponential Random Variable and Norm). We say that a random variable x ∈ R
is sub-exponential if there exists t > 0 such that E

[
e|x|/t

]
≤ 2. The sub-exponential norm of x,

denoted ∥x∥ψ1
, is

∥x∥ψ1
= inf{t > 0: E

[
e|x|/t

]
≤ 2}.

Fact B.8 (Bernstein’s inequality (Theorem 2.8.1 in Vershynin [2018])). Let x1, . . . ,xn be indepen-
dent, mean zero, sub-exponential random variables. Then

∀t ≥ 0 : Pr

[∣∣∣∣∣
n∑
i=1

xi

∣∣∣∣∣ ≥ t

]
≤ 2 exp

(
−Ω

(
min

(
t2∑n

i=1∥xi∥
2
ψ1

,
t

maxi∥xi∥ψ1

)))
.
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B.5 Nets

Definition B.9 (γ-Net). Let T be a subspace of Rd. Consider a subset K ⊂ T and let γ > 0. A
subsetN ⊆ K is called an γ-net of K if every point in K is within distance γ of some point ofN , i.e.,

∀x ∈ K ∃y ∈ N : ∥x− y∥2 ≤ γ

Fact B.10 (Extension of Corollary 4.2.13 in Vershynin [2018]). If E is a subspace with dim(E) = k,
then there exists an γ-net of size (3/γ)

k to the unit sphere in E (i.e., to E ∩ Sd).

B.6 Projections

Recall thatWd,k denotes the set of all d× d rank-k projection matrices. For a matrix A ∈ Rd, we
denote that ΠA the projection matrix onto the subspace spawned by the columns of A (in case A is a
unitary matrix, ΠA = AAT ).
Fact B.11 (Theorem 1 and Lemma 1 in Cai and Zhang [2018]). Let X,Y, Z ∈ Rn×d such that
X = Y + Z. Let [U U⊥]Σ[V V⊥]

T be the SVD of Y , and let [Û Û⊥]Σ̂[V̂ V̂⊥]
T be the SVD of X ,

where U, V, Û , V̂ denote the first k columns of [U U⊥], [V V⊥], [Û Û⊥], [V̂ V̂⊥] (respectively). Let
Z12 = ΠUZΠV⊥ and Z21 = ΠU⊥ZΠV . In addition, let zij = ∥Zij∥, let α = σmin(U

TXV ) (i.e.,
the smallest singular value larger than 0), and β =

∥∥UT
⊥XV⊥

∥∥. If α2 > β2 +min{z212, z221}, then∥∥ΠV −ΠV̂
∥∥ ≤ 2 · αz12 + βz21

α2 − β2 −min{z212, z221}
and ∥∥ΠV −ΠV̂

∥∥
F
≤
√
2 ·

α∥Z12∥F + β∥Z21∥F
α2 − β2 −min{z212, z221}

.

Proposition B.12. Let X,Y, Z, V, V̂ as in Fact B.11 such that Y has rank-k and Span(Y T ) is
orthogonal to Span(ZT ). If σk(Y )2 ≥ 2∥Z∥2, then

1.
∥∥ΠV −ΠV̂

∥∥ ≤ 4 · ∥Z∥σk(Y ) , and

2.
∥∥ΠV −ΠV̂

∥∥
F
≤ 2
√
2 · ∥Z∥Fσk(Y ) .

Proof. Note that Span(V ) = Span(Y T ). Therefore ZV = 0, which implies that Z21 =
ΠU⊥ZΠV = 0. Compute

α = σmin(U
TXV )

= σmin(U
TY V + UT ZV︸︷︷︸

0

)

= σk(Y ).

β =
∥∥UT
⊥XV⊥

∥∥
=

∥∥∥∥∥∥UT
⊥ Y V⊥︸︷︷︸

0

+UT
⊥ZV⊥

∥∥∥∥∥∥
≤ ∥U⊥∥ · ∥Z∥ · ∥V⊥∥
≤ ∥Z∥.

∥Z12∥ = ∥ΠU · Z ·ΠV⊥∥ ≤ ∥Z∥,

∥Z12∥F ≤ ∥ΠU · Z ·ΠV⊥∥F ≤ ∥Z∥F ,
where the last inequalities in the above two equations hold since for any matrix A and projection ma-
trices Π1,Π2 it holds that ∥Π1AΠ2∥ ≤ ∥A∥ and ∥Π1AΠ2∥F ≤ ∥A∥F . The proof now immediately
follows by applying Fact B.11. □
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Proposition B.13. Let P ∈ Rn×d be a rank-k matrix and let P ′ ∈ Rn×d such that ∥P − P ′∥F ≤ α.
Let Π be the projection matrix onto Span(PT ), and let Π′ be the projection onto the top-k rows
subspace of P ′. If σk(P ) ≥ 2α, then

∥Π−Π′∥F ≤ 2
√
2 · α

σk(P )− α
.

Proof. Let E = P ′ − P , and divide E into E = EP + EP̄ where the rows of EP belong to the
rows subspace of P and the rows of EP̄ are orthogonal to it. Let Y = P + EP , so we can write
P ′ = Y +EP̄ . Note that ∥EP̄ ∥F ≤ α, and σk(Y ) ≥ σk(P )− ∥EP ∥ ≥ σk(P )− α. The proof now
follows by applying Proposition B.12(2) on P ′, Y, EP̄ . □

Fact B.14 (Implied by Corollary 4.6 in Singhal and Steinke [2021]). Let Π,Π1, . . . ,Πt ∈ Wd,k s.t.
for all j ∈ [t], ∥Π−Πj∥ ≤ α. Let p1, . . . ,pq be i.i.d. random vectors in Rd fromN (⃗0, Id×d). Then

Pr
[
∀i ∈ [q], j ∈ [t], ∥(Π−Πj)pi∥2 ≤ O

(
α
(√

k +
√
ln(qt)

))]
≥ 0.95.

Fact B.15 (Implied by the proof of Lemma 4.9 in Singhal and Steinke [2021]). Let Π ∈ Wd,k and
let p1, . . . ,pq be i.i.d. random vectors in Rd from N (⃗0, Id×d). Let P be the d × q matrix whose
columns are Πp1, . . . ,Πpq . If q ≥ c · k for some large enough constant c, then w.p. 0.95 it hold that
σk(P) ≥ Ω(

√
k) (and in particular, Span(P) = Span(Π)).

Proposition B.16. For any Π, Π̃ ∈ Wd,k and X ∈ (Sd)n, it holds that∥∥Π ·XT
∥∥2
F
−
∥∥∥Π̃ ·XT

∥∥∥2
F
≤ 2n ·

∥∥∥Π− Π̃
∥∥∥
F
.

Proof. Compute∥∥ΠXT
∥∥2
F
−
∥∥∥Π̃XT

∥∥∥2
F
= (
∥∥ΠXT

∥∥
F
−
∥∥∥Π̃XT

∥∥∥
F
) · (
∥∥ΠXT

∥∥
F
+
∥∥∥Π̃XT

∥∥∥
F
)

≤ (
∥∥ΠXT

∥∥
F
−
∥∥∥Π̃XT

∥∥∥
F
) · 2
√
n

≤
∥∥∥(Π− Π̃)XT

∥∥∥
F
· 2
√
n

≤
∥∥∥Π− Π̃

∥∥∥
F
·
∥∥XT

∥∥
F
· 2
√
n

= 2n ·
∥∥∥Π− Π̃

∥∥∥
F
.

□

Proposition B.17. Let v1, . . . , vk ∈ Sd with maxi,j |⟨vi, vj⟩| ≤ α ≤ 1
20 . Let u1, . . . , uk be the result

of the Gram-Schmidt process applied on v1, . . . , vk. Then for every i ∈ [k], there exists λi−1 ∈ R
with |λi−1| ≤ α(1 + 4α) and wi ∈ Rd with ∥wi∥2 ≤ 2α2 such that

ui = vi + λi−1vi−1 + wi.

Proof. We prove it by induction on i. The case i = 1 holds since u1 = v1. Assume it holds for i, and
we prove it for i+ 1. Define λi = −⟨ui, vi+1⟩ and wi+1 = λi(λi−1vi−1 + wi). Note that

|λi| = |⟨vi + λi−1vi−1 + w, vi+1⟩|
= |⟨vi, vi+1⟩+ λi−1⟨vi−1, vi+1⟩+ ⟨w, vi+1⟩|
≤ α+ |λi−1|α+ ∥w∥2
≤ α+ α2(1 + 4α) + 2α2

≤ α(1 + 4α),

and that ∥w∥2 ≤ α2(1 + 4α)2 + 2α3 ≤ 2α2 (recall that α ≤ 1
20 ). The proof now follows since

ui+1 = vi+1 − ⟨ui, vi+1⟩ui
= vi+1 + λi(vi + λi−1vi−1 + wi)

= vi+1 + λivi + wi+1.

□
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B.7 Algorithms

Let M be a randomized algorithm that uses m random coins. For r ∈ {0, 1}m we denote by Mr the
(deterministic) algorithm M after fixing its random coins to r. Given an oracle-aided algorithm A and
algorithm B, we denote by AB the algorithm A with oracle access to B.

B.8 Differential Privacy

Definition B.18 (Differential privacy [Dwork et al., 2006b,a]). A randomized mechanism M : Xn →
Y is (ε, δ)-differentially private (in short, (ε, δ)-DP) if for every neighboring databases X =
(x1, . . . , xn), X

′ = (x′1, . . . , x
′
n) ∈ Xn (i.e., differ by exactly one entry), and every set of outputs

T ⊆ Y , it holds that

Pr[M(X) ∈ T ] ≤ eε · Pr[M(X ′) ∈ T ] + δ

B.8.1 Basic Facts

Fact B.19 (Post-Processing). If M : Xn → Y is (ε, δ)-DP then for every randomized F : Y → Z , the
mechanism F ◦M : Xn → Z is (ε, δ)-DP.

Post-processing holds when applying the function on the output of the DP mechanism. In this work
we sometimes need to apply the mechanism on the output of a function. While this process does not
preserve DP in general, it does so assuming the function is neighboring-preserving.
Definition B.20 (Neighboring-Preserving Algorithm). We say that a randomized algorithm G : Xn →
Ym is neighboring-preserving if for every neighboring X,X ′ ∈ Xn, the outputs G(X),G(X ′) ∈ Ym
are neighboring w.p. 1.
Fact B.21. If G : Xn → Ym is neighboring-preserving and M : Ym → Z is (ε, δ)-DP, then
M ◦ G : Xn → Z is (ε, δ)-DP.

B.8.2 Zero-Concentrated Differential Privacy (zCDP)

Our empirical evaluation (Section 4) is performed in the zCDP model of Bun and Steinke [2016],
defined below.
Definition B.22 (Rényi Divergence (Rényi [1961])). Let y and y′ be random variables over Y . For
α ∈ (1,∞), the Rényi divergence of order α between y and y′ is defined by

Dα(y||y′) =
1

α− 1
· ln

(
Ey←y

[(
P (y)

P ′(y)

)α−1])
,

where P (·) and P ′(·) are the probability mass/density functions of y and y′, respectively.
Definition B.23 (zCDP Indistinguishability). We say that two random variable y,y′ over a domain
Y are ρ-indistinguishable (denote by y ≈ρ y′), iff for every α ∈ (1,∞) it holds that

Dα(y||y′), Dα(y
′||y) ≤ ρα.

We say that y,y′ are (ρ, δ)-indistinguishable (denote by y ≈ρ,δ y′), iff there exist events E,E′ ⊆ X
with Pr[y ∈ E],Pr[y′ ∈ E′] ≥ 1− δ such that y|E ≈ρ y|E′ .
Definition B.24 ((ρ, δ)-zCDP Bun and Steinke [2016]). A mechanism M is δ-approximate ρ-zCDP
(in short, (ρ, δ)-zCDP), if for any neighboring databases X,X ′ it holds that M(X) ≈ρ,δ M(X ′).

The Gaussian Mechanism
Fact B.25 (The Gaussian Mechanism Dwork et al. [2006a], Bun and Steinke [2016]). Let x,x′ ∈ Rd
be vectors with ∥x− x′∥2 ≤ λ. For ρ > 0, σ = λ√

2ρ
and Z ∼ N (0, σ2 · Id×d) it holds that

x+ Z ≈ρ x′ + Z.

B.8.3 FriendlyCore Averaging

We use the following DP averaging algorithm that given the diameter ξ of a ball that contain most of
the points, it can estimate their average.
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Fact B.26 (Tsfadia et al. [2022]). Let λ ≥ 1 and δ ≤ ε, β ≤ 1. There exists an (ε, δ)-DP algorithm
FC_Average that gets as input a dataset S = (x1, . . . , xn) ∈ (Rd)n and a parameter ξ > 0 and

satisfies the following utility guarantee: If n ≥ O

(
log(1/δ)

ε +

√
d log(1/δ) log(1/β)

λε

)
and ∃S′ ⊆ S

with |S′| ≥ 0.8n s.t. ∀xi, xj ∈ S′ : ∥xi − xj∥2 ≤ ξ, then

Pry∼FC_Average(S,ξ)[∥y − µ∥ > λξ] ≤ β,

where µ = 1
|S′|
∑
x∈S′ x. Furthermore, the running time of FC_Average(S, ·) is Õ(dn log(n/δ))

(See Appendix B in Tsfadia et al. [2022]).

Fact B.26 is not explicitly stated in Tsfadia et al. [2022] since they only analyzed the utility guarantee
of their averaging in the zCDP model. Yet, it can be achieved using similar steps. First, we
need to consider a “friendly" DP variant of their FriendlyAvg algorithm (Algorithm 3.3 in Tsfadia
et al. [2022]), and as Tsfadia et al. [2022] noted, we can do it such that the probability of failure
is low whenever n ≥ O

(
log(1/δ)

ε

)
, and the additive error (given success) decreases in a rate of

ξ
√
d log(1/δ) log(1/β)

nε , where ξ is the diameter of the points. Fact B.26 immediately obtained by
combining FriendlyAvg with their paradigm for DP (Theorem 4.11 in Tsfadia et al. [2022] applied
with α = 0.2).

B.8.4 Subspace Recovery Algorithm of Dwork et al. [2014]

We next describe the subspace recovery algorithm of Dwork et al. [2014] that strongly takes advantage
of a large additive gap σ2

k − σ2
k+1 for decreasing the noise that is required for privacy. This algorithm

is only used in our empirical evaluation (Section 4).

Algorithm B.27 (Algorithm 2 in Dwork et al. [2014]).
Input: A dataset X = (x1, . . . , xn) ∈ (Sd)n.
DP parameters: ε, δ.
Rank parameter: k.
Operation:

1. Compute a projection matrix Π to the top-k rows subspace of X , and compute the
singular values σk, σk+1.

2. Compute g = σ2
k − σ2

k+1 + Lap(2/ε).
3. Compute W = Π+ E, where E is a d× d symmetric matrix where the upper triangle is

i.i.d. samples from N (0,
(

∆ε,δ

g−2 log(1/δ)/ε−2

)2
), where ∆ε,δ =

1+
√

2 log(1/δ)

ε .

4. Output a projection matrix Π̃ to the top k eigenvectors of W .

Note that when the additive gap σ2
k−σ2

k+1 is large, the algorithm will add smaller noise per coordinate
in Step 3.
Fact B.28 (Theorem 11 in Dwork et al. [2014]). Algorithm B.27 is (2ε, 2δ)-DP.

The privacy analysis is done by the following steps. First, by the Laplace mechanism, Step 2 is ε-DP.
Second, by tail bound on the Laplace distribution, the probability that g− 2 log(1/δ)/ε ≤ σ2

k−σ2
k+1

is at least 1−δ. Furthermore, they show that if σ2
k−σ2

k+1 ≥ α then the Forbenius-norm sensitivity of
the matrix Π is at most 2

α−2 . So conditioned on the above 1−δ probability event, the Forbenius-norm
sensitivity of Π is at most 2

g−2 log(1/δ)/ε−2 , and therefore the Gaussian mechanism step (Item 3)
guarantees (ε, δ)-DP, and by composition the entire process is (2ε, 2δ)-DP.

In order to consider a zCDP version of Algorithm B.27, we replace the Laplace noise Lap(2/ε) with
a Gaussian noise N (0, σ2) for σ =

√
2/ρ. Given this change, now it holds that g − σ

√
2 ln(1/δ) ≤

σ2
k − σ2

k+1 w.p. at least 1− δ (by tail bound on Gaussian distribution). Finally, in Step 3 we replace
∆ε,δ (the required standard deviation for (ε, δ)-DP) to 1/

√
2ρ (what is required for ρ-zCDP). This

results with the following (2ρ, δ)-zCDP algorithm:
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Algorithm B.29 (zCDP version of Algorithm 2 in Dwork et al. [2014]).
Input: A dataset X = (x1, . . . , xn) ∈ (Sd)n.
zCDP parameters: ρ, δ.
Rank parameter: k.
Operation:

1. Compute a projection matrix Π to the top-k rows subspace of X , and compute the
singular values σk, σk+1.

2. Compute g = σ2
k − σ2

k+1 +N (0, 2/ρ).
3. Compute W = Π+ E, where E is a d× d symmetric matrix where the upper triangle is

i.i.d. samples from N (0,

( √
1/(2ρ)

g−2
√

ln(1/δ)/ρ−2

)2

).

4. Output a projection matrix Π̃ to the top k eigenvectors of W .

B.8.5 Lower Bounding Tools from Peter et al. [2024]

Peter et al. [2024] showed that for d = Θ̃(n2), the distributionD(n, d) below induces a fingerprinting
codebook for n users, each codeword is of length d.

Definition B.30 (FPC hard distribution D(n, d) Peter et al. [2024]). Let ρ be the distribution
that outputs p = (et − 1)/(et + 1) ∈ [−1, 1] for t ← [− ln(5n), ln(5n)]. For n, d ∈ N, let
D(n, d) be the distribution that chooses independently p1, . . . , pd ∼ ρ, and outputs a codebook
(x1, . . . , xn) ∈ ({−1, 1}d)n where for each i ∈ [n] and j ∈ [d], xji is drawn independently over
{−1, 1} with expectation pj .

Framework for Lower Bounds Consider a mechanism M : Xn → W that satisfies some weak
accuracy guarantee. Peter et al. [2024] showed that the task of proving a lower bound on n is
reduced to the following task: Transform an FPC codebook X ∈ {−1, 1}n0×d0 into hard instances
Y ∈ Xn for M, and then extract from the output w ∈ W of M(Y ) a vector q ∈ {−1, 1}d0 that is
strongly-correlated with X (n0 and d0 are some functions of n and d and the weak accuracy guarantee
of M), where

Definition B.31 (Strongly Correlated). We say that a random variable q = (q1, . . . ,qd) ∈ {−1, 1}d
is strongly-correlated with a matrix X ∈ {−1, 1}n×d, if

∀b ∈ {−1, 1}, ∀j ∈ J bX : Pr
[
qj = b

]
≥ 0.9

(recall that J bX = {j ∈ [d] : xji = b for all i ∈ [n]}).

Denote by G : {−1, 1}n0×d0 × Z → Xn the algorithm that generates the hard instances using a
uniformly random secret z ← Z (i.e., z could be a random permutation, a sequence of random
permutations, etc). Denote by F : Z ×W → {−1, 1}d0 the algorithm that extracts a good q using the
secret z and the output w. We denote by AM,F,G(X) the entire process:

Definition B.32 (Algorithm AM,F,G). Let Z ,W be domains, and let n0, d0, n, d ∈ N. Let (M,F,G)
be a triplet of randomized algorithms of types G : {−1, 1}n0×d0 × Z → Xn, M : Xn → W , and
F : Z ×W → [−1, 1]d0 , each uses m random coins. Define AM,F,G : {−1, 1}n0×d0 → [−1, 1]d0 as
the randomized algorithm that on inputs X ∈ {−1, 1}n0×d0 , samples z ← Z , Y ∼ G(X, z) and
w ∼ M(Y ), and outputs q ∼ F(z, w).

Definition B.33 (β-Leaking). Let M,F,G be randomized algorithms as in Definition B.32, each uses
m random coins, and let D(n0, d0) be the distribution from Definition B.30. We say that the triplet
(M,F,G) is β-leaking if

Prr,r′,r′′←{0,1}m, X←D(n0,d0)

[
AMr,Fr′ ,Gr′′ (X) is strongly-correlated with X

]
≥ β,

where recall that Mr denotes the algorithm M when fixing its random coins to r (Fr′ ,Gr′′ are
similarly defined).
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Lemma B.34 (Framework for Lower Bounds Peter et al. [2024]). Let β ∈ (0, 1], n0, n, d0, d ∈ N. Let
M : Xn →W be an algorithm such that there exists two algorithms G : {−1, 1}n0×d0 ×Z → Xn
and F : Z × W → [−1, 1]d0 such that the triplet (M,F,G) is β-leaking (Definition B.33). If M

is
(
1, β

4n0

)
-DP and G(·, z) is neighboring-preserving (Definition B.20) for every z ∈ Z , then

n0 ≥ Ω
( √

d0
log1.5(d0/β)

)
.

Padding-And-Permuting (PAP) FPC The main technical tool of Peter et al. [2024] for generating
hard instance is to sample a random fingerprinting codebook from D(n, d0), append many 1-marked
and (−1)-marked columns, and randomly permute all the columns.

Definition B.35 (PAPn,d0,ℓ). Let ℓ, n, d0 ∈ N, and let d = d0 + 2ℓ. We define
PAPn,d0,ℓ : {−1, 1}n×d0 × Pd → {−1, 1}n×d as the function that given X ∈ {−1, 1}n×d0 and a
permutation matrix P ∈ Pd as inputs, outputs X ′ = X ′′ · P (i.e., permutes the columns of X ′′
according to P ), where X ′′ is the {−1, 1}n×d matrix after appending ℓ 1-marked and ℓ (−1)-marked
columns to X (where recall that a b-marked is a column with all entries equal to b).

Note that for every n, d0, ℓ ∈ N and P ∈ Pd, the function PAPn,d0,ℓ(·, P ) is neighboring-preserving
(Definition B.20).

Definition B.36 (Strongly Agrees). We say that a vector q = (q1, . . . , qd) strongly-agrees with a
matrix X ∈ {−1, 1}n×d, if

∀b ∈ {−1, 1} :
∣∣{j ∈ J bX : qj = b}

∣∣ ≥ 0.9
∣∣J bX ∣∣.

The following lemma capture the main technical property of the PAP technique.

Lemma B.37 (Peter et al. [2024]). Let ℓ, n, d0 ∈ N such that d = d0 + 2ℓ. Let M : {−1, 1}n×d →
[−1, 1]d be an mechanism that uses m random coins, P ← Pd (a random variable) and for
X ∈ {−1, 1}n×d0 let YX = PAP(X,P). Then for any distribution D over {−1, 1}n×d0 :

Prr←{0,1}m, X∼D
[
(Mr(YX) ·PT )1,...,d0 is strongly-correlated with X

]
≥ EX∼D[Pr[M(YX) strongly-agrees with YX ]].

C Upper Bounds

In this section we prove our upper bounds for subspace estimation. In Appendix C.2 we prove
Theorem 1.6, and in Appendix C.3 we prove Theorem 1.7. Both algorithm share a similar structure
that is defined next in Appendix C.1.

C.1 Base Algorithms

Similarly to Singhal and Steinke [2021], our algorithms will follow the sample and aggregate approach
of Nissim et al. [2007]. That is, we partition the rows into t subsets, compute (non-privately) the top-k
projection matrix of each subset, and then privately aggregate the projections. This is Algorithm C.1
that uses oracle access to an aggregation algorithm. Unlike Singhal and Steinke [2021] who assumed
that the rows are i.i.d. Gaussian samples, here we take a random partition and show that with large
enough probability over the randomness of the partition, the projection matrices are indeed close to
each other. We consider two types of aggregations: The first type, called Algorithm C.2, simply treats
the matrices as vectors of dimension d2 and computes a DP-average of them using FriendlyCore
averaging (Fact B.26). The second type, called Algorithm C.3, is more similar to the aggregation
done by Singhal and Steinke [2021]. That is, sample reference points p1, . . . , pq and then aggregate
the kd dimensional points {(Πjp1, . . . ,Πjpq)}tj=1. The difference from Singhal and Steinke [2021]
is that we use FriendlyCore averaging (Fact B.26) which simplifies the construction.
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Algorithm C.1 (Algorithm EstSubspace).
Input: A dataset X = (x1, . . . , xn) ∈ (Sd)n.
Parameters: k, t.
Oracle: A DP algorithm Agg for aggregating projection matrices.
Operation:

1. Randomly split X into t subsets, each contains (at least) m = ⌊n/t⌋ rows.
Let X1, . . . , Xt be the resulting subsets.

2. For each j ∈ [t]: Compute the projection matrix Πj of the top-k rows subset of Xj .

3. Output Π̃ ∼ Agg(Π1, . . . ,Πt).

Algorithm C.2 (Algorithm Naive_Agg).
Input: A dataset Π⃗ = (Π1, . . . ,Πt) ∈ (Wd,k)

t.
Privacy parameters: ε, δ ≤ 1.
Utility parameter: ξ ∈ [0, 1].
Operation:

1. Compute Π̂ ∼ FC_Averageε,δ(Π⃗, ξ) (i.e., each Πj is treated like a vector in Rd2 ).

2. Output Π̃ = argminΠ∈Wd,k

∥∥∥Π− Π̂
∥∥∥
F

.

Algorithm C.3 (Algorithm SS_Agg).
Input: A dataset (Π1, . . . ,Πt) ∈ (Wd,k)

t.
Utility Parameters: k, q, ξ.
Privacy parameters: ε, δ ≤ 1.
Operation:

1. Sample p1, . . . , pq ∼ N (⃗0, Id×d) (i.i.d. samples from a standard spherical Gaussian).
2. For j ∈ [t], compute yj = (Πjp1, . . . ,Πjpq) ∈ Rqd, and let Y = (y1, . . . , yt).
3. Compute z = (z1, . . . , zqd) ∼ FC_Averageε,δ(Y, ξ) (z ∈ Rqd).

4. Let P̃ be the q × d matrix whose ith row (for i ∈ [q]) is (zd(i−1)+1, . . . , zdi) (which
estimates the projection of pi onto the top-k rows subspace of X).

5. Output the projection matrix Π̃ of the top-k rows subspace of P̃ .

C.1.1 Running Time

We analyze the running time of EstSubspace
SS_Aggk,q,ξ

k,t . Denote by T (n, d, k) the running time of
computing a projection matrix to the top-k row subspace of an n × d matrix. The running time
of Step 2 in EstSubspace is t · T (n/t, d, k). The running time of SS_Agg is O(dqtk) on Step 2,
O(dqt log t) on Step 3 (Fact B.26), and T (q, d, k) on Step 5. Overall it is t·T (n/t, d, k)+T (q, d, k)+

O(dqt(log t + k)). For both our weak and strong estimators (described next) we use n/t = Θ̃(k)

and q = Õ(k), and therefore we obtain that the total running time is n
m · T (m, d, k) + Õ(dkn) for

m = n/t = Θ̃(k).

C.1.2 Key Property

In order to claim that the (non-private) projection matrices are close to each other, we use the
following lemma which states that with high enough probability over a random subset, the top-k
projection matrix in the subset is close to the top-k projection matrix of the entire matrix.
Lemma C.4 (Restatement of Lemma 2.1). Let X = (x1, . . . , xn) ∈ (Sd)n with singular values
σ1 ≥ . . . ≥ σmin{n,d} ≥ 0 and σ2

k ≥ 0.01n/k. Let X′ ∈ (Sd)m be a uniformly random m-size
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subset of the rows of X (without replacement). Let Π and Π′ be the projection matrices to the
top-k rows subspace of X and X′, respectively. Then the following holds for γ1 = σk+1

σk
and

γ2 =

√∑min{n,d}
i=k+1 σ2

i

σk
:

1. If m ≥ max{800k ln
(
k
4β

)
, 2γ1n}, then Pr

[
∥Π−Π′∥ ≤ 4

√
2n
m · γ1

]
≥ 1− β/2.

2. If m ≥ 800k ln
(
k
4β

)
and β ≥ 4γ2

2 , then Pr
[
∥Π−Π′∥F ≤ 4

√
2
β · γ2

]
≥ 1− β.

Proof. We will prove each part of the lemma by applying Proposition B.12. In the following, let X =∑n
i=1 σiuiv

T
i be the SVD of X , and note that we can write X′ = (xi1 , . . . , xim) where {i1, . . . , im}

is a random subset of [n] (without replacement). Let Y = (y1, . . . , yn) =
∑k
i=1 σiuiv

T
i and let

Z = (z1, . . . , zn) =
∑min{n,d}
i=k+1 σiuiv

T
i , and note that Span{y1, . . . , yn} = Span{v1, . . . , vk} is

orthogonal to Span{z1, . . . , zn} = Span{vk+1, . . . , vmin{n,d}}. Furthermore, define the random
matrices Y′ = (yi1 , . . . , yim) and Z′ = (zi1 , . . . , zim) and note that X′ = Y′ + Z′.

First, by Proposition B.4 (applied on v1, . . . , vk) and the assumptions on m,σk, it holds by the union
bound that

Pr

[
σk(Y

′) ≥
√

m

2n
σk

]
≥ 1− β/2. (1)

In the following we assume that the event in Equation (1) occurs. We first prove Item 1. Note that
∥Z′∥ ≤ ∥Z∥ ≤ σk+1 ≤ γ1σk and that σk(Y′)2 ≥ m

2nσ
2
k ≥ 2γ2

1σ
2
k ≥ 2∥Z′∥2 (the second inequality

holds since m ≥ 4γ2
1n). By applying Proposition B.12(1) on X′,Y′,Z′ we conclude that

∥Π−Π′∥ ≤ 4 · ∥Z
′∥

σk(Y′)
≤ 4

√
2n

m
· γ1.

We next focus on proving Item 2. Note that ∥Z∥2F =
∑min{n,d}
i=k+1 σ2

i = γ2
2σ

2
k, and that E

[
∥Z′∥2F

]
=

m
n ∥Z∥

2
F = m

n · γ
2
2σ

2
k. Therefore by Markov’s inequality

Pr

[
∥Z′∥2F ≤

2m

βn
γ2
2σ

2
k

]
≥ 1− β/2. (2)

In the following we assume that the event in Equation (2) occurs. Note that σk(Y′)2 ≥ m
2nσ

2
k ≥

2m
βn γ

2
2σ

2
k ≥ 2∥Z′∥2 (the second inequality holds since β ≥ 4γ2

2 ). By applying Proposition B.12(2)
on X′,Y′,Z′ we conclude that

∥Π−Π′∥ ≤ 2
√
2 ·
∥Z′∥F
σk(Y′)

≤ 2
√
2 ·

√
2m
βn γ2σk√
m
2nσk

≤ 4

√
2

β
· γ2.

□

C.2 Weak Estimator

In this section, we prove Theorem 1.6, stated below.
Theorem C.5 (Restatement of Theorem 1.6). Let n, k, d ∈ N, λ > 0, ε, δ ∈ (0, 1] where
k ≤ min{n, d}. There exists an (k, λ, β = 0.9, γmax = Ω(min{ 1λ , 1}))-weak subspace estima-
tor M : (Sd)n × [0, 1]→ Rd×d with

n = O

(
k log k

(
log(1/δ)

ε
+

min{k
√
d, d}

√
log(1/δ)

λε

))
such that M(·, γ) is (ε, δ)-DP for every γ ∈ [0, 1].
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Theorem C.5 is an immediate corollary of the following Lemmas C.6 and C.7.

Lemma C.6. Let t = c1 ·
(

log(1/δ)
ε +

d
√

log(1/δ) log(20)

λε

)
(where c1 is the hidden constant in

Fact B.26). Then for any n ≥ 800k ln(25k) · t, the mechanism M : (Sd)n × [0, 1]→Wd,k defined

by M(X, γ) := EstSubspace
Naive_Aggε,δ,ξ=60γ

k,t (X) is an (k, λ, β = 0.9, γmax = 1
20 )-weak-subspace-

estimator.

Proof. Let X ∈ (Sd)n with

√∑min{n,d}
i=k+1 σi(X)2

σk(X)2 ≤ γ ≤ γmax and let Π ∈ Wd,k be the projection of

the top-k rows subspace of X . Consider a random execution of M(X). Let {Πj}tj=1, Π̂ be (random
variables of) the values of {Πj}tj=1, Π̂ in the execution, and let Π̃ be the output. By Lemma C.4(2)
(recall that γmax ≤ 1

20 ) and the union bound,

∀j ∈ [t] : Pr[∥Π−Πj∥ ≤ 60γ] ≥ 0.99, (3)

Let aj = 1{∥Π−Πj∥ ≤ 60γ} (indicator random variable) and let a =
∑t
j=1 aj . By Equation (3)

it holds that E[a] ≥ 0.99t, and recall that a ≤ t. It follows that

Pr[a ≥ 0.8t] ≥ E[a]− 0.8t · Pr[a < 0.8t]

t
≥ 0.99− 0.8(1− Pr[a ≥ 0.8t]) =⇒ Pr[a ≥ 0.8t] ≥ 0.95.

(4)

In the following we assume that the event a ≥ 0.8t occurs. Let J = {j ∈ [t] : aj = 1}. Note that our
choice of t satisfies

t ≥ c′ ·

(
log(1/δ)

ε
+

d
√
log(1/δ) log(100)(

λ
500

)
· ε

)
.

where c′ denotes the constant from Fact B.26. Therefore we conclude by Fact B.26 (FriendlyCore
averaging) that

Pr

[∥∥∥Π− Π̂
∥∥∥
F
≤ λγ

4

]
≥ 0.99.

The proof of the lemma now follows by Proposition B.16 since
∥∥∥Π− Π̃

∥∥∥
F
≤ 2
∥∥∥Π− Π̂

∥∥∥
F

. □

Lemma C.7. Let c1, c2, c3 be the constants from Facts B.14 to B.15 (respectively), and let

c be a large enough constant. Let t = c ·

 log(1/δ)
ε +

(√
k+

√
log

dk log(1/δ)
λε

)√
kd log(1/δ)

λε

,

η = c1 ·
(√

k +
√
ln(qt)

)
and q = c2 · k. Then for any n ≥ 800k ln(25k) · t, the mechanism

M : (Sd)n × [0, 1] → Wd,k defined by M(X, γ) := EstSubspace
SS_Aggε,δ,k,q,ξ=120η

√
kγ

k,t (X) is an
(k, λ, β = 0.9, γmax = Θ(min{ 1λ , 1}))-weak-subspace-estimator.

Proof. Let X ∈ (Sd)n with

√∑min{n,d}
i=k+1 σi(X)2

σk(X)2 ≤ γ ≤ γmax and let Π ∈ Wd,k

be the projection of the top-k rows subspace of X . Consider a random execution
of M(X). Let {Πj}tj=1, {pi}

q
i=1, {yj}tj=1, z, P̃ be (random variables of) the values of

{Πj}tj=1, {pi}
q
i=1, {yj}tj=1, z, P̃ in the execution, and let Π̃ be the output. As in the proof of

Lemma C.6, let a =
∑t
j=1 aj where aj = 1{∥Π−Πj∥ ≤ 60γ}. Then Equation (4) imples that

Pr[a ≥ 0.8t] ≥ 0.95.

In the following we assume that the event a ≥ 0.8t occurs. Let J = {j ∈ [t] : aj = 1}. By Fact B.14
and the definition of η we obtain that

Pr
[
∀i ∈ [q], j ∈ J : ∥(Π−Πj)pi∥2 ≤ 60ηγ

]
≥ 0.95,
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In the following we assume that the above event occurs. This yields that

∀i, j ∈ J : ∥yi − yj∥2 ≤ 120η
√
kγ = ξ.

Furthermore, by the definition of t and η (note that η depends on log(t)), it holds that

t ≥ c′ ·

 log(1/δ)

ε
+

√
dk log(1/δ)(
c3λ

1500η

)
· ε

,

where c′ denotes the constant from Fact B.26. Therefore we obtain by Fact B.26 (FriendlyCore
averaging) that

Pr

∥∥∥P− P̃
∥∥∥
F
≤ c3λ

√
kγ

12︸ ︷︷ ︸
α

 ≥ 0.99,

where P is the q × d matrix whose rows are Πp1, . . . ,Πpq . By Fact B.15 we have that

Pr
[
σk(P) ≥ c3

√
k
]
≥ 0.95,

and in the following we assume that the above event occurs (which in particular implies that
Span(PT ) = Span(Π)). Finally, since 2α ≤ σk(P) by assumption (and assuming γmax ≤ 6

c3λ
),

we conclude by Proposition B.13 that∥∥∥Π− Π̃
∥∥∥
F
≤ 2
√
2 · α

σk(P )− α
≤ λγ/2.

We therefore conclude the proof of the lemma by Proposition B.16.

□

C.3 Strong Estimator

In this section, we prove Theorem 1.7, stated below.

Theorem C.8 (Restatement of Theorem 1.7). Let n, k, d ∈ N, λ > 0, such that k ≤ min{n, d}.
There exists an (k, λ, β = 0.8, γmax)-weak subspace estimator M : (Sd)n × [0, 1]→ Rd×d with

γmax = Ω

min{ 1
λ
,

λ2ε2

λ2ε log(1/δ) +
(
k + log

(
dk log(1/δ)

λε

))
dk log(1/δ)

}


and

n = O

k log k

 log(1/δ)

ε
+

(
k + log

(
dk log(1/δ)

λε

))
dk log(1/δ)

λ2ε2


such that M(·, γ) is (ε, δ)-DP for every γ ∈ [0, 1].

Lemma C.9. Let c1, c2, c3 be the constants from Facts B.14 to B.15 (respectively), and let c be a large

enough constant. Let t = c ·
(

log(1/δ)
ε +

(k+log( dk log(1/δ)
λε ))dk log(1/δ)

λ2ε2

)
, η = c1 ·

(√
k +

√
ln(qt)

)
and q = c2 ·k. Then for any n ≥ 800k ln(25k) · t, the mechanism M : (Sd)n× [0, 1]→Wd,k defined

by M(X, γ) := EstSubspace
SS_Aggε,δ,k,q,ξ=8

√
2tkηγ

k,t (X) is an (k, λ, β = 0.8, γmax = min{ 1
2t ,

6
c3λ
})-

strong-subspace-estimator.

Proof. Fix X ∈ (Sd)n with σk+1(X)
σk(X) ≤ γ ≤ γmax and let Π ∈ Wd,k be the projection of the top-k

rows subspace of X . Consider a random execution of M(X). Let {Πj}tj=1, {pi}
q
i=1, {yj}tj=1, z, P̃
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be (random variables of) the values of {Πj}tj=1, {pi}
q
i=1, {yj}tj=1, z, P̃ in the execution, and let Π̃

be the output. By Lemma C.4(1) (recall that γmax ≤ 1
2t ) and the union bound,

∀j ∈ [t] : Pr
[
∥Π−Πj∥ ≤ 4

√
2tγ
]
≥ 0.99. (5)

Let aj = 1{∥Π−Πj∥ ≤ 4
√
2tγ} (indicator random variable) and let a =

∑t
j=1 aj . As in Equa-

tion (4), the above yields that

Pr[a ≥ 0.8t] ≥ 0.95. (6)

In the following we assume that the event a ≥ 0.8t occurs. Let J = {j ∈ [t] : aj = 1}. By Fact B.14
and the definition of η we obtain that

Pr
[
∀i ∈ [q], j ∈ J : ∥(Π−Πj)pi∥2 ≤ 4

√
2tηγ

]
≥ 0.95,

In the following we assume that the above event occurs. This yields that

∀i, j ∈ J : ∥yi − yj∥2 ≤ 8
√
2tkηγ = ξ.

Furthermore, by the definition of t and η, it holds that

t ≥ c′ ·

 log(1/δ)

ε
+

√
dk log(1/δ)(
c3λ

150η
√
t

)
· ε

,

where c′ denotes the constant from Fact B.26. Therefore we obtain by Fact B.26 (FriendlyCore
averaging) that

Pr

∥∥∥P− P̃
∥∥∥
F
≤ c3λ

√
kγ

12︸ ︷︷ ︸
α

 ≥ 0.99,

where P is the q × d matrix whose rows are Πp1, . . . ,Πpq . By Fact B.15 we have that

Pr
[
σk(P) ≥ c3

√
k
]
≥ 0.95,

and in the following we assume that the above event occurs (which in particular implies that
Span(PT ) = Span(Π)). Finally, since 2α ≤ σk(P) by assumption (and using γmax = 6

c3λ
),

we conclude by Proposition B.13 that∥∥∥Π− Π̃
∥∥∥
F
≤ 2
√
2 · α

σk(P )− α
≤ λγ/2.

We therefore conclude the proof of the lemma by Proposition B.16. □

D Lower Bounds

In this section, we prove our lower bounds. In Appendix D.1 we prove Theorem 1.8 (lower bound for
weak estimators) and in Appendix D.2 we prove Theorem 1.9 (lower bound for strong estimators).
Both lower bounds rely on the framework of Peter et al. [2024], described in Appendix B.8.5.

Throughout this section, recall that for d, k ∈ N we denote byWd,k the set of all d× d projection
matrices of rank k, and denote by Pd the set of all d× d permutation matrices.

D.1 Weak Estimators

Theorem D.1 (Restatement of Theorem 1.8). Let n, k, d ∈ N, λ ≥ 1, β ∈ (0, 1] such that d ≥ ck and
λ2 ≤ d

ck log k for large enough constant c > 0, and n is a multiple of k. If M : (Sd)n×[0, 1]→Wd,k is

a (k, λ, β, γmax = 1
106λ2 )-weak subspace estimator and M(·, γ) is

(
1, β

5nk

)
-DP for every γ ∈ [0, 1],

then n ≥ Ω

( √
kd/λ

log1.5( dk
λβ )

)
.
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Theorem 1.8 is an immediate corollary of Lemma B.34 (Framework for lower bounds) and the
following Lemma D.2.

Lemma D.2. Let n, k, d, λ, β and M as in Theorem D.1. Let α = 1
5·106λ2k , n0 = n/k, ℓ =

2 ·
⌈
1
4 (1− α)d

⌉
, d0 = d− 2ℓ, X = Sd, Z = [k]× (Pd)k and W =Wd,k. Let G : {−1, 1}n0×d0 ×

Z → Xn be Algorithm D.3, and let F : Z × W → [−1, 1]d0 be Algorithm D.4. Then the triplet
(M,F,G) is 0.8β

k -leaking (Definition B.33).

Note that by Lemmas D.2 and B.34, we obtain that n0 ≥ Ω
( √

d0
log1.5(d0/β)

)
, but since n0 = n/k and

d0 = Θ(αd) = Θ
(
d
λ2k

)
, the proof of Theorem D.1 follows. We next prove Lemma D.2.

Algorithm D.3 (Algorithm G).
Parameters: n0, n, d0, d, ℓ ∈ N.
Inputs: z = (s, (P1, . . . , Pk)) for s ∈ [k] and P1, . . . , Pk ∈ Pd, and a matrix X ∈ {−1, 1}n0×d0 .
Operation:

1. Sample A = (A1, . . . , Ak) ∼ D(n0, d0)
k, and set As = X .

2. For t ∈ [k], compute Bt = PAPn0,d0,ℓ(At, Pt) ∈ {−1, 1}n0×d (Definition B.35), and let
B ∈ {−1, 1}n×d be the vertical concatenation of B1, . . . , Bk.

3. Output Y = 1√
d
B ∈ (Sd)n.

Algorithm D.4 (Algorithm F).
Parameters: n0, n, d0, d, ℓ ∈ N.
Inputs: z = (s, (P1, . . . , Pk)) for s ∈ [k] and P1, . . . , Pk ∈ Pd, and a rank-k projection matrix
Π̃ ∈ W (which is the output of M(Y, γ = 1

1000λ ) ).
Operation:

1. Compute a vector u = (u1, . . . , ud) ∈ Span(Π̃ · PTs ) that maximizes
min{

∑d0+ℓ/2
j=d0+1 sign(u

j), −
∑d0+3ℓ/2
j=d0+ℓ+1 sign(u

j)}.
2. Output q = sign(u)1,...,d0 ∈ {−1, 1}d0 .

D.1.1 Proving Lemma D.2

In the following, we define random variables X ∼ D(n0, d0) (Definition B.30) and z =
(s, (P1, . . . ,Pk)) ← Z , and consider a random execution of AM,F,G(X) = F(z,M(G(X, z))).
Let B1, . . . ,Bk,B,Y be the values of B1, . . . , Bk ∈ {−1, 1}n0×d, B ∈ {−1, 1}n×d and
Y ∈ (Sd)n in the execution of G, and let Y1 = 1√

d
B1, . . . ,Yk = 1√

d
Bk (note that Y is

a vertical concatenation of Y1, . . . ,Yk). Let u be the value of u ∈ Sd in the execution of
F. For b ∈ {−1, 1} let Fb be the set of b-marked columns of Bs · PT

s (note that F1 includes
d0 + 1, . . . , d0 + ℓ and F−1 includes d0 + ℓ + 1, . . . , d). Let H1 = {d0 + 1, . . . , d0 + ℓ/2} ⊆ F1

andH−1 = {d0 + ℓ+ 1, . . . , d0 + 3ℓ/2} ⊆ F−1, and letH = H1 ∪H−1. For t ∈ [k], define

vt =
1√
2ℓ
· (0 . . . , 0︸ ︷︷ ︸

d0

, 1, . . . . . . . . . , 1︸ ︷︷ ︸
ℓ

,−1, . . . . . . . . . ,−1︸ ︷︷ ︸
ℓ

) ·Pt ∈ Sd (7)

The following claim holds under our assumption that λ2 ≤ d
ck log k for large enough constant c.

Claim D.5. Let γ = 1
1000λ . It holds that

Pr

[
n∑

i=k+1

σ2
i (Y) ≤ γ2 · σ2

k(Y)

]
≥ 0.9.
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Proof. Recall that d = d0 + 2ℓ and ℓ ≥ 1
2 (1− α)d for α = 1

5·106λ2k . First, note that

Pr[v1, . . . ,vk are linearly independent] ≥ 1−
(
2−2ℓ + 2−2ℓ+1 + . . .+ 2−2ℓ+(k−2)

)
≥ 0.99,

(8)

where the last inequality holds since ℓ ≈ d/2 ≥ c ·k/2 for large enough constant c > 0. Furthermore,
note that for every s, t ∈ [k], 2ℓ · ⟨vs,vt⟩ =

∑
j : sign(vj

s)=1 sign(v
j
t ) −

∑
j : sign(vj

s)=−1 sign(v
j
t )

where each sum has Hypergeometric distributionsHG2ℓ,0,ℓ (Definition B.5). Therefore by Fact B.6
and the union bound, it holds that

Pr

[
∀s, t ∈ [k] : |⟨vs,vt⟩| ≤ O

(√
log k

d

)]
≥ 0.99. (9)

(i.e., v1, . . . ,vk are almost orthogonal).

In the following, we assume that the events in Equations (8) and (9) occur. Using the Gram–Schmidt
process on v1, . . . ,vk, we obtain orthogonal basis u1, . . . ,uk to Span{v1, . . . ,vk} such that for

every t ∈ [k], ut = vt + λt−1vt−1 + wt, where |λt−1| ≤ O

(√
log k
d

)
and ∥wt∥2 ≤ O

(
log k
d

)
(holds by Proposition B.17). Recall that Y is a vertical concatenation of 1√

d
B1, . . . ,

1√
d
Bk and for

every t ∈ [k], the rows of Bt are all in

{−1, 1}d0 × (1, . . . , 1︸ ︷︷ ︸
ℓ

,−1, . . . ,−1︸ ︷︷ ︸
ℓ

) ·Pt = {−1, 1}d0 × (0, . . . . . . , 0︸ ︷︷ ︸
2ℓ

) ·Pt +

√
2ℓ

d
· vt

Therefore, we obtain that

∥Y · ut∥22 ≥ ∥Yt · ut∥22 (10)

≥

(
⟨
√

2ℓ

d
vt,ut⟩2 −

d0
d

)
· n0

≥

(
(1− α) ·

(
1−O

(
log k

d

))2

− α

)
· n0

≥ (1− 4α) · n0,

where the last inequality holds whenever α ≥ Θ(log k/d), which holds by the assumption on λ.
We therefore obtain that σ2

1(Y), . . . , σ2
k(Y) ≥ (1 − 4α) · n0 which yields that

∑n
i=k+1 σ

2
i (Y) ≤

n− k(1− 4α) · n0 = 4αn. Hence∑n
i=k+1 σ

2
i (Y)

σ2
k(Y)

≤ 4αn

(1− 4α) · nk
=

4αk

1− 4α
≤ 1

106λ2
= γ2, (11)

where the second inequality holds since α = 1
5·106λ2k .

□

The following claim holds under our assumption that d ≥ ck for large enough constant c > 0.
Claim D.6. It holds that

Pr
[
sign(u)[d]\H strongly-agrees with

(
BsP

T
s

)[d]\H] ≥ 0.8β

k
.

where “strongly-agrees" is according to Definition B.36.

Proof. In the following we assume that the 0.9 probability event in Claim D.5 occurs. Since M is
(k, λ, β, γmax = 1

1000λ )-subspace estimator, it follows from Equation (11) that w.p. β, the output Π̃
of M(Y) satisfy ∥∥∥Π̃ ·YT

∥∥∥2
F
≥
∥∥Π ·YT

∥∥2
F
− n

1000
, (12)
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where we denote by Π the projection matrix onto Span{v1, . . . ,vk} (defined in Equation (7)). In
the following, we assume that the event in (12) occurs. This yields that there must exists t ∈ [k] such
that ∥∥∥Π̃ ·YT

t

∥∥∥2
F
≥
∥∥Π ·YT

t

∥∥2
F
− n

1000k

≥ 2ℓ

d
· ∥vt∥22 ·

n

k
− n

1000k

≥ (0.999− α) · n
k

Since s (part of z) is chosen at random and does not change the distribution of Y (the input of the
mechanism), w.p. 1/k the above holds for t = s, i.e.,∥∥∥Π̃ ·YT

s

∥∥∥2
F
≥ (0.999− α) · n

k
. (13)

In the following we assume that the 1/k-probability event in Equation (13) occurs.

Recall that Bs =
√
d ·Ys, and let Π̃s = Π̃ ·PT

s and B′s = Bs ·PT
s . It follows that∥∥∥Π̃s · (B′s)T

∥∥∥2
F
= d ·

∥∥∥Π̃ ·YT
s

∥∥∥2
F
≥ (0.999− α) · dn

k
(14)

In the following, define

v = (v1, . . . ,vd) ∈ {−1, 0, 1}d where vj =


1 j ∈ F1

−1 j ∈ F−1
0 o.w.

. (15)

Note that each row i of B′s can be written as v+ ξi where ξi ∈ {−1, 0, 1}d0 × (0, . . . , 0︸ ︷︷ ︸
2ℓ

). This yields

that ∥∥∥Π̃s · vT
∥∥∥2
2
=

k

n
·
∥∥∥Π̃s · (B′s)T

∥∥∥2
F
− k

n

n/k∑
i=1

∥∥∥Π̃s · ξTi
∥∥∥2
2

≥ (0.999− α)d− d0 ≥ (0.999− 2α)d

Now, since

∥v∥22 = ⟨v,v⟩ = ⟨Π̃tv
T + (I − Π̃t)v

T , Π̃tv
T + (I − Π̃t)v

T ⟩ =
∥∥∥Π̃tv

T
∥∥∥2
2
+
∥∥∥(I − Π̃t)v

T
∥∥∥2
2
,

we conclude that for ṽT = Π̃tv
T ∈ Span(Π̃t):

∥v − ṽ∥22 = ∥v∥22 −
∥∥∥Π̃tv

T
∥∥∥2
2
≤ d− (0.999− 2α)d ≤ d

500
. (16)

We next define (I, η)-good vectors.

Definition D.7. We say that a vector w ∈ {−1, 1}d is (I, η)-good iff for (1 − η) fraction of the
indices j ∈ I it holds that sign(wj) = sign(vj) (for the v defined in Equation (15)).

We use the following trivial fact:

Observation D.8. If w is not (I, η)-good, then ∥w − v∥22 ≥ η|I|.
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Since for both b ∈ {−1, 1}, |Hb| ≥ 1
4 (1−α)d ≥ d/5 and ∥v − ṽ∥22 ≤

d
500 , Observation D.8 implies

that ṽ is (H1, η)-good and (H−1, η)-good for η = 1
100 . Therefore, the vector u (computed in F) is

also (H1, η)-good and (H−1, η)-good.

In the following, we use similar arguments to Dwork et al. [2014] for claiming that because u is good
on half of the padding location, then it should also be good on the rest of the marked locations.

From the point of view of the algorithm M (which does not know Ps), the locations in Hb are
indistinguishable from those in Fb \ Hb. Therefore, for any point that is not (Fb, 3η)-good, the
probability (taken over the random choice of Ps) that it is (Hb, 2η)-good is at most exp(−Ω(η2d)).
Now let N be an (η

√
d)-net of the

√
d-sphere in Span(Π̃s) (Definition B.9). Taking a union bound

over a exp(O(k log(1/η))) = exp(O(k)) points in N (Fact B.10), and recall that d ≥ ck for large
enough constant c, we conclude that except with probability exp(O(k)) · exp(−Ω(η2d)) ≤ 0.01,
any given vector in N that is (Hb, 2η)-good is also (Fb \ Hb, 4η)-good. Since u is (Hb, η)-good,
then its nearest net point u′ is (Hb, 2η)-good. Thus u′ is (Fb \ Hb, 4η)-good which implies that
u is (Fb \ Hb, 5η)-good except w.p. exp(−Ω(η2d)) ≤ 0.01. But by definition of v, it perfectly
agrees with the marked columns of Bs ·PT

s . Since 5γ < 0.1 the above implies that sign(u)Fb\Hb

strongly-agrees (Definition B.36) with the matrix
(
Bs ·PT

s

)Fb\Hb which implies that sign(u)[d]\Hb

strongly-agrees with the matrix
(
Bs ·PT

s

)[d]\Hb , as required.

□

We now ready to prove the final claim that concludes the proof of Lemma D.2.

Claim D.9. It holds that

Prr,r′←{0,1}m, X∼D
[
AMr,F,Gr′ (X) is strongly-correlated with X

]
≥ 0.8β

k
.

Proof. In the following we assume that the event from the statement of Claim D.6 occurs, and let
H = H1 ∪H−1. Define the permutation matrix P′ ∈ Pd0+ℓ that is obtained by removing the rows
H and the columns Ps(H) from Ps (i.e., P′ is the permutation induced by Ps between [d] \ H and
[d] \Ps(H)). Similarly, define the permutation matrix P

′ ∈ Pℓ that is obtained by removing the rows
H = [d] \ H and the columns Ps(H) from Ps (i.e., P

′
is the permutation induced by Ps betweenH

and Ps(H)). Note that P′ is distributed uniformly over Pd0+ℓ for any choice of P
′
. In the following,

let Π̃′ = Π̃[d]\H, q′ = sign(u)[d]\H ·P′, and B′ = B
[d]\H
s . By Claim D.6 it holds that

Pr[q′ strongly-agrees with B′] ≥ 0.8β

k
. (17)

But note that B′ = PAPn0,d0,ℓ/2(X,P′) and also note that q′ is just a function of Π̃′ and P′

(i.e., independent of P′) since it equals to sign(w)P
′
([d]\H) where w is the vector in Span(Π̃)

that maximizes min{
∑
j∈P′

(H1)
sign(wj), −

∑
j∈P′

(H−1)
sign(wj)}. Furthermore, note that

(q′ · (P′)T )1,...,d0 = q, where q is the final output of AM,F,G(X) = F(z,M(G(X, z))). Thus
by Lemma B.37 and Equation (17) we conclude that

Prr,r′←{0,1}m, X∼D
[
AMr,F,Gr′ (X) is strongly-correlated with X

]
≥ 0.8β

k
.

□

D.2 Strong Estimators

Theorem D.10 (Restatement of Theorem 1.9). Let n, k, d ∈ N, λ ≥ 1, β ∈ (0, 1] such that d ≥ ck
and λ2 ≤ d

c log k for large enough constant c > 0, and n is a multiple of k. If M : (Sd)n × [0, 1]→

Rd×d is an (k, λ, β, γmax = 1
106λ2 )-strong subspace estimator and M(·, γ) is

(
1, β

5nk

)
-DP for every

γ ∈ [0, 1], then n ≥ Ω

(
k
√
d/λ

log1.5( dk
λβ )
√

log(dk) log(2n/k)

)
.
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We prove Theorem D.10 using a similar technical lemma to Lemma D.2, but now since M is a strong
subspace estimator, we can use α = Θ̃

(
1
λ2

)
(rather than Θ

(
1
λ2k

)
as in Lemma D.2).

Lemma D.11. There exists large enough constant c > 0 such that the following holds: Let
n, k, d, λ, β and M as in Theorem D.10, let α = 1

c·log(dk) log(2n/k)·λ2 , n0 = n/k, ℓ = 2·
⌈
1
4 (1− α)d

⌉
,

d0 = d − 2ℓ, X = Sd, Z = [k] × (Pd)k and W = Wd,k. Let G : {−1, 1}n0×d0 × Z → Xn
be Algorithm D.3, and let F : Z ×W → [−1, 1]d0 be Algorithm D.4. Then the triplet (M,F,G) is
0.8β
k -leaking (Definition B.33).

By Lemmas D.11 and B.34, it holds that n0 ≥ Ω
( √

d0
log1.5(d0/β)

)
. The proof of Theorem D.10 now

follows since n0 = n/k and d0 ≈ αd for the α defined in the lemma.

D.2.1 Proving Lemma D.11

As in the proof of Lemma D.2, we define random variables X ∼ D(n0, d0) (Definition B.30) and
z = (s, (P1, . . . ,Pk))← Z , and consider a random execution of AM,F,G(X) = F(z,M(G(X, z))).
Let {At}, {Bt},Y be the values of {At}, {Bt}, Y ∈ (Sd)n in the execution of G, and recall that Y
is a vertical concatenation of Y1, . . . ,Yk where Yt =

1√
d
Bt.

The only difference from proving Lemma D.2 is to prove a different version of Claim D.5 that only
considers the gap between σk and σk+1 (which will meet the requirements of the strong estimator
M). Namely, is suffices to prove the following claim:
Claim D.12. It holds that

Pr[σk+1(Y) ≤ γ · σk(Y)] ≥ 0.9,

for γ = 1
1000λ .

Proof of Claim D.12. As in Equation (7), for t ∈ [k] we define

vt =
1√
2ℓ
· (0 . . . , 0︸ ︷︷ ︸

d0

, 1, . . . . . . . . . , 1︸ ︷︷ ︸
ℓ

,−1, . . . . . . . . . ,−1︸ ︷︷ ︸
ℓ

) ·Pt ∈ Sd (18)

Let E = Span{v1, . . . ,vk}. Note that by construction, {vt},E are independent of {At}.
Similarly to Equation (9) it holds that

Pr

[
∀s, t ∈ [k] : |⟨vs,vt⟩| ≤ O

(√
log k

d

)]
≥ 0.99. (19)

This yields (using similar steps as in the proof of Claim D.5) that w.p. 0.98, dim(E) = k and every
unit vector u ∈ E has ∥Yu∥22 ≥ (1− 4α)nk . This in particular implies that σ2

k(Y) ≥ (1− 4α)nk .

Our goal is to prove that w.p. 0.99 it also holds that σ2
k+1(Y) ≤ Õ(α)nk . Let Ē be the orthogonal

subspace to E. Our goal is reduced to showing that there exists a constant c such that

Pr
[
∀u ∈ Ē ∩ Sd : ∥Yu∥22 ≤ α · c log(k/α) log(2n/k) · n

k

]
≥ 0.99. (20)

Given that the event in Equation (20) holds we conclude that σ2
k+1(Y) ≤ α ·c log(k/α) log(2n/k)· nk

and hence
σ2
k+1(Y)

σ2
k(Y)

≤
α · c log(k/α) log(2n/k) · nk

(1− 4α) · nk
≤ 1

106λ2
= γ2,

where the last inequality holds by taking

α =
1

2 · 106 · c log(k/α) · log(2n/k) · λ2
.

32



Note that for every u ∈ Ē ∩ Sd is holds that

∥Yu∥22 =

k∑
t=1

∥Ytu∥22 =
1

d

k∑
t=1

∥Atu∥22,

where the last equality holds since u is orthogonal to v1, . . . ,vk. Therefore, we can prove Equa-
tion (20) by proving that there exists a constant c′ such that

∀u ∈ Sd : Pr

[
1

d
·
k∑
t=1

∥Atu∥22 > α · c′ log(k/α) log(2n/k) · n
k

]
≤ exp(−d ln(3k/α)− 10).

(21)

Given that Equation (21) holds, we prove the claim using a net argument. By taking an
exp(d ln(3k/α))-size

√
α/k-net of Sd (Fact B.10), Equation (20) follows by Equation (21) and the

union bound over all the net points, which concludes the proof of the claim.

In the following we focus on proving Equation (21). Fix a columns vector u ∈ Sd. Recall that
At ∼ D(n0, d0) (Definition B.30), and At is located in d0 random columns out of d, which are
the columns J = Pt([d0]). Let at,i ∈ {± 1√

d
}d0 be the ith row of At. By Definition B.30, the

coordinates of at,i are i.i.d. Bernoulli distribution over {−1, 1}, each takes 1 w.p. 1/2 and −1 w.p.
1/2. Therefore by Fact B.2 it holds that

∀ξ ≥ 0 : Pr
[
⟨ai,t, u⟩2 ≥ ξ

]
= EJ

[
Pr
[
⟨ai,t, uJ⟩2 ≥ ξ

]]
≤ EJ

[
2 exp

(
− dξ

2∥uJ∥22

)]

≤ 2 exp

− dξ

E
[
2∥uJ∥22

]
 ≤ 2 exp

(
− dξ

2α

)
,

where the first inequality holds by Fact B.2, the second one holds by Jensen’s inequality (and since
the function f(x) = e−1/x is concave), and the last one hold since E

[
∥uJ∥22

]
= d0

d ≤ α. By the
union bound over the n/k rows of At we obtain that

∀ξ ≥ 0 : Pr

[
∥Atw∥22 ≥

ξn

k

]
≤ 2n

k
· exp

(
− dξ

2α

)
,

or equivalently

∀ξ ≥ 0 : Pr
[
∥Ytu∥22 ≥ ξ

]
= Pr

[
∥Atw∥22 ≥ ξ

]
≤ 2n

k
· exp

(
− dk

2αn
· ξ
)
. (22)

In the following, let bt = ∥Ytu∥22, and define b′t = bt − E[bt], and µ = 2αn ln(2n/k)
dk . First, note

that

E[bt] =

∫ ∞
0

Pr[bt > ξ]dξ = µ+

∫ ∞
µ

Pr[bt > ξ]dξ

≤ µ+

∫ ∞
µ

2n

k
· exp

(
− dk

2αn
· ξ
)
dξ

= µ+

[
−2n

k
· 2αn
dk
· exp

(
− dk

2αn
· ξ
)]∞

µ︸ ︷︷ ︸
≤ 2αn

dk

≤ 2µ.
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In addition, it holds that

E

[
exp

(
|b′t|
8µ

)]
=

∫ ∞
0

Pr

[
exp

(
|b′t|
8µ

)
> ξ

]
dξ

≤ 3/2 +

∫ ∞
3/2

Pr[|b′t| > 8µ ln(ξ)]dξ

= 3/2 +

∫ ∞
3/2

(Pr[bt > 8µ ln(ξ) + E[bt]] + Pr[bt < −8µ ln(ξ) + E[bt]])dξ

≤ 3/2 +

∫ ∞
3/2

Pr[b′t > 8µ ln(ξ)] + Pr[bt < −8µ ln(3/2) + 2µ]︸ ︷︷ ︸
0

dξ

≤ 3/2 +

∫ ∞
3/2

2n

k
· exp

(
− dk

2αn
· 8µ ln(ξ)

)
dξ

= 3/2 +

∫ ∞
3/2

ξ−8dξ

≤ 2.

Namely, b′t is a Sub-Exponential random variable (Definition B.7) with ∥b′t∥ψ1
≤ 8µ. Since {b′t}

are independent, each has zero mean, we obtain by Fact B.8 that

∀ξ ≥ 0 : Pr

[
k∑
t=1

bt ≥ 2kµ+ ξ

]
≤ Pr

[
k∑
t=1

b′t ≥ ξ

]
≤ 2 exp

(
−Ω
(
min

(
ξ2

k64µ2
,

ξ

8µ

)))
.

We now take ξ = c · µd ln(k/α) ≥ cα · log(k/α) log(2n/k) · nk for large enough constant c. Recall
that by our assumption on d it holds that ξ ≥ 4kµ. Hence

Pr

[
k∑
t=1

∥Ytut∥22 ≥ ξ

]
≤ Pr

[
k∑
t=1

bt ≥ 2kµ+ ξ/2

]
≤ exp(−15d · ln(k/α)),
≤ exp(−d · ln(3k/α)− 10),

where the second inequality holds assuming that c is large enough. This concludes the proof of
Equation (21) and therefore the proof of the lemma. □

E Broader Impact

In this work we develop algorithms that maintain the differential privacy of the input points. When
the points represent individuals, our work helps to maintain the privacy of those individuals.
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paper’s contributions and scope?
Answer: [Yes]
Justification: Upper bounds, lower bounds, and experiments are provided in Appendices C
and D and Section 4 (respectively).
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• The answer NA means that the abstract and introduction do not include the claims
made in the paper.
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much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations in Section 5.
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• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
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• The authors should reflect on the scope of the claims made, e.g., if the approach was
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and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
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• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
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judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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• All the theorems, formulas, and proofs in the paper should be numbered and cross-
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• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: This information is disclosed in Section 4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: The Python code is provided in the supplementary material along with a
README file.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All the details are given in Section 4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We mentioned in Section 4 that we perform 30 repetitions for generating
each graph point which represents the trimmed average of values between the 0.1 and 0.9
quantiles.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

37

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We mentioned in Section 4 that all experiments were tested on a MacBook Pro
Laptop with 8-core Apple M1 CPU with 16GB RAM.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We only perform experiments on synthetic datasets that do not cause any harm.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Appendix E.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We mentioned in Section 4 that we use the Python implementation of Tsfa-
dia et al. [2022] that is publicly available in https://media.icml.cc/Conferences/
ICML2022/supplementary/tsfadia22a-supp.zip and we cite them as required.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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