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Abstract

Data selection has emerged as a core issue for large-scale visual-language model
pretraining (e.g., CLIP), particularly with noisy web-curated datasets. Three
main data selection approaches are: (1) leveraging external non-CLIP models to
aid data selection, (2) training new CLIP-style embedding models that are more
effective at selecting high-quality data than the original OpenAl CLIP model,
and (3) designing better metrics or strategies universally applicable to any CLIP
embedding without requiring specific model properties (e.g., CLIPScore is one
popular metric). While the first two approaches have been extensively studied,
the third remains under-explored. In this paper, we advance the third approach by
proposing two new methods. Firstly, instead of classical CLIP scores that only
consider the alignment between two modalities from a single sample, we introduce
negCLIPLoss, a method inspired by CLIP training loss that adds the alignment
between one sample and its contrastive pairs as an extra normalization term to
CLIPScore for better quality measurement. Secondly, when downstream tasks are
known, we propose a new norm-based metric, NormSim, to measure the similarity
between pretraining data and target data. We test our methods on the data selection
benchmark, DataComp [[1]]. Compared to the best baseline using only OpenAl’s
CLIP-L/14, our methods achieve a 5.3% improvement on ImageNet-1k and a 2.8%
improvement on 38 downstream evaluation tasks. Moreover, both negCLIPLoss
and NormSim are compatible with existing techniques. By combining our methods
with the current best methods DFN [2] and HYPE [3], we can boost average
performance on downstream tasks by 0.9%, achieving a new state-of-the-art on the
DataComp-medium benchmar

1 Introduction

Curating large-scale visual-language datasets from web-sourced data has become common for
pretraining multi-modal models. However, the quality of these web-curated data pairs remains
a critical bottleneck. Research has shown that the choice of dataset significantly impacts model
performance, irrespective of the models and training techniques employed [4H11]], and this motivates
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the development of various data selection strategies. This paper focuses on optimizing subset selection
from a xed data pool to train a CLIP moded] that achieves superior performance on zero-shot
downstream tasks.

Classical methodrely solely on OpenAl's (OAl) pretrained CLIP modek., a teacher model) and
focus on better utilizing the embeddings. The most commonly used one is calculating CLIPScore,
which measures the cosine similarity between the visual and language embeddings of the CLIP
model for the same sample, to eliminate low-quality data with mismatches between text and image.
Other works also leverage heuristic distribution alignment techniques to select samples relevant to
downstream tasks, such as image-based lIteritjg These approaches are generally viewed as
providing only limited enhancements. However, we argue that the potential of those embeddings
has been heavily under-explored. This work seeks a universal method to better employ any given
embeddings, not only from OAI CLIP, but also from other CLIP-style models.

On the other hand, recent leading data Itering methods, instead of focusing on improving embedding
utilization stategy itself, mainly follow the other two directions, both employing external resources.
They either (1) usexternal non-CLIP modelthat aid in data selection, (2) or usgternal high-
quality multi-modal datdo train abetter CLIP-style embedding modkhn the original OAI CLIP to

Iter out low-quality data. Speci cally, in the rst line of works, HYPEJ] leverages embeddings

from hyperbolic models instead of the classical Euclidean-based CLIP to measure how each data point
has semantically overlaps with other data points and Iters out data with low speci city. T-MARS |
removes images where the text is the only feature correlated with the caption using E2\3n[
off-the-shelf OCR text detection model. DeVll4] applies fasttextl5] to remove non-English texts

and use BLIP-216] model for digit recognition to keep useful images with digits. The second
direction, represented by Data Filtering Network (DFE]), involves training a new CLIP-style
teacher model that uses high-quality datasets like HQITP-350M. Although the embeddings extracted
from this model perform worse than the OAI CLIP in downstream tasks, it is particularly good at
Itering out low-quality data. Notably, some of these methods can be combined and indeed, merging
the selected data from DFN and HYPE achieves current state-of-art as shown in HYPE [3].

Previous works mainly focus on improving the CLIP embedding quality or utilizing an external model
to do ltering but employ the CLIP embedding in a suboptimal way by only using classical methods
like CLIPScore. In contrast, in this work, we focus on improving the Itering methods themselves
for any given CLIP embedding. We show that there are universal and more effective strategies for
utilizing any CLIP teacher model, regardless of its architecture (e.g., B/32 or L/14) or the dataset it
was trained on (e.g., OpenAl-WIT-400M or DFN's high-quality dataset). These strategies should
always be orthogonal to the use of any newly trained CLIP-style models like DFN and might also be
compatible with methods using external models like FAST and BLIP-2.

Our Contributions. We propose an alternative to CLIPScores that wersegiCLIPLossthat more
accurately characterizes data quality. We also introduce a new distribution metric we call the p-Norm
Similarity Score NormSim) when knowledge about downstream tasks is available. Two major
observations directly inform our proposals:

« Firstly, we observe that classical methods measure the quality of a multi-modal sample by com-
puting the cosine similarity between its visual and language embeddings, believing that lower
similarity indicates that the text does not match its image part well. However, we nd that some
less informative samples may have a systematic bias, which leads to higher CLIPScores. For
example, the language part containing the word "image" can result in higher similarity with any
visual part, even when the text does not accurately describe its image content. Our proposed
methodnegCLIPLoss inspired by the standard CLIPLoss, normalizes the original CLIPScore by
the similarity between a sample and its contrastive pairs. For example, the high score caused by the
word "image" is typically consistent across its contrastive pairs, so our adjustment reduces this bias.
As we have highlighted, such replacement can be universally applied across different embedding
models. See Fig. 2 for illustrations.

» Secondly, if one has access to examples drawn from the same distribution as the target task, it
is natural to assume that this extra knowledge could be leveraged to inform the data Itering
process. We propose tiNormSim metric to measure the vision similarity between a training
samplex and the target task dataséfye; 2 R" P de ned askfy (X {edfv(X¥)kp, where
fy :RP 1 R is the vision encoder of teacher model so thaX 35,4e) 2 R" ¢, f(x¥) 2 RY,
andf (X t‘grge,)fv(x") 2 R", andk kj is thep norm; effective choices afe= 2 or 1 . Notably,

unlike previous ImagetNet-based lIterind][ which tries to keep the training set as diverse as



downstream tasks by clustering the training set and nding the nearest neighbor greweifpr
target sampleour method does not explicitly consider the diversity but select examples as long
as it is close t@ny target samplé.e. select high NormSim score). NotabiegCLIPLossand
NormSim enjoy complementary effect in data selection. See Fig. 3.

To illustrate the effectiveness of our methods, we use a widely used benchmark Datallasp [

our primary method of evaluating the datasets created by our data Itering methods. We show that,
by simply replacing the CLIPScores wittegCLIPLoss and utilizingNormSim we are able to

exceed the best OAI-CLIP(L/14)-based baseline by 5.3% on ImageNet-1k and 2.8% on average
across 38 downstream tasks, which is similar or even better than the performance achieved by many
external-resources-based methods. Notably, even if the target downstream tasks are not available,
using NormSim on a proxy downstream task constructed from the training set, Naltet5im,-D,
combined with negCLIPLoss, can also gain a 1.9% improvement on 38 downstream evaluation.

Moreover, the improvements achieved by our methods are not limited to OAIl CLIP-based methods
but can also be obtained by combining our methods with advanced models that require external
resourcesBy merging the subset selectedrisgCLIPLossand NormSimwith the subset selected

by current state-of-the-art method “HYHE DFN”, we can further improve it by 0.9% on both
ImageNet-1k and on average 38 downstream tasks. Besides, we can also achieve a 0.8% improvement
on average 38 tasks over "HYRPEDFN" using only the data selected by DFN and our strategies.
More importantly, we demonstrate that negCLIPLoss, as a replacement for CLIPScore, can be applied
to any other embedding models like OAI-L/14, OAI-B/32, and DFN-B/32, universally boosting
performance from 0.4% to 3.0% on an average of 38 tasks. This result is not only technically
insightful for understanding the information available in embeddings but also practically signi cant.
Compared to existing methods, our approach saves a signi cant amount of computational time on
both reprocessing and new embedding retraining as shown in Table 5.

2 Problem Setup

Data Filtering on Multimodal Dataset. We are given a training datagt.qi, = fx";x'g, where
(x¥;x") 2 RP is the image-text (vision-language) training pair. For convenience, we will let
superscript/l denote either modality so that, for exampt&, 2 xV;x'. Our goal is to identify a
subsetS  Dyq4in that maximizes the zero-shot accuracy of the CLIP model on some downstream
tasks whers is used to train the CLIP model.

CLIP score and embedding. Recent efforts, such as LAIONS] and DataComp1J], use Ope-
nAl's CLIP ViT-L/14 model [4] as a teacher model to obtain quality score. Here we denote
this vanilla CLIP model a$,;. For any pairx"', the model outputs a normalized unit-vector
fu(x¥). If XV = fx¥';:::;x" g denotes a dataset containing samples, then we de ne

metric “CLIPScore” is de ned a$f , (x¥); fi(x")i2 [ 1;1].

Dataset and model.Here we follow the pipeline of Datacomf][to standardize the training and
evaluation process. This is a testbed for dataset experiments aiming to open-source and further
improve the vanilla CLIP model and is widely adopted in previous data selection pab&rk8[12,

2,19, 7]. We will give more details in Sec. 4.

3 Data Filtering Strategy

3.1 negCLIPLoss: A Better Metric than CLIPScore

In this section, we introduce a better and statistically interpretable quality metric called negCLIPLossS,
which directly replaces the common metric CLIPScore. Fig. 1 illustrates how negCLIPLoss works.
This new metric only requires negligible extra computational costs and no additional external data
collection costs. As the name suggested, this metric is inspired by the standard CLIP loss used in the
actual training process of the teacher CLIP model, which is de ned as

SN explfy (x!)” f1(x})= ) exp(fy (x)” f1(x1))=
My= = jogP
5 (x7) % j2B exp(fv(xy)> fi(x})=) j2B exp(fy (x})> f1(x))=)

2
HereB is the random batch whereh sample belongs during a particular training step, arsl
the learnable temperate parameter. Notably, the teacher loss differs from CLIPScore primarily by a
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Figure 1: lllustration of negCLIPLoss. CLIPScore may underestimate (bottom left, where the data
quality is high but CLIPScore is low) or overestimate (bottom right, where the data quality is low
but CLIPScore is high) the quality of image-text pairs. However, this issue can be mitigated by
simply subtracting a normalization teriR. negCLIPLoss employs the teacher model to calculate
the negative CLIP loss on training data and serves as a more accurate metric. Here, “Top X%”
denotes that the score represents the tophigh values within the entire dataset (i.e., the (100-X)%
percentile among all the values). For exampR, * Top 10098 means this data has almost the
smallestR among the whole dataset, which represents that it contains highly speci ¢ elements in
both images and texts.

normalization ternR as follows: |
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In practice, since the training dataset of teacher CLIP models, like OAI-WIT4@)NMpd the actual
batch divisiondB is inaccessible, we randomly seléCtbatches from the student model's training
data and use the averaged results ff@agl, to estimate the normalization tef onB :

X
negCLIPLoséx!" ) = < m (x')  CLIPScor¢x') R 2

k=1
HerefBygl, are some batches randomly selected from the student model's training data and
Xi 2 By; 8k. We choos& = 10 in our experiments, but any sample size larger than 5 is suf ciently
stable for estimating the original CLIPLoss (Details in Appendix D.1). Besides, in Sec. 4.3.3 we also
show that the computational cost introduceddyemains negligible compared to other baselines.
The temperature and batch siz€B j can be directly obtained from the parameters of the pretrained
teacher model. More details of negCLIPLoss are in Appendix, including the concentration analysis of
R (Appendix A.1), pseudocode (Algorithm 1), and the ablation studyafdjBj (Appendix C.2).

Motivation behind negCLIPLoss. Other existing
works also use loss-guided data selection, such as
LESS Q] in NLP, CoDis [21] in CV, and RHO p2]

in general data scheduling scenarios. However, it is
still unclear whether selecting based on teacher loss
is suitable for multi-modal contrastive learning. Here
we give an af rmative answer as shown in Fig. 2,
where we can see negCLIPLoss performs better than
or on par with CLIPScore consistently.

To illustrate how teacher loss helps our selection,
demonstrate that the normalization term provided
negCLIPLoss is crucial for correcting the overestima-
tion or underestimation inherent in CLIPScore. A high normalization term implies that either the

image embedding, text embedding, or both can easily match multiple contrastive pairs beyond their

IPScore across different downsampling ra-

jgure 2: Comparison of negCLIPLoss and
s on DataComp-medium.



Figure 3: lllustration of NormSim on DataComNargetis the target prior data. “Top X%” denotes

that the score represents the top X% high values within the entire dataset. (a) Visualization of data
with different NormSim and negCLIPLoss. Here we dE®mSim(ImageNet-1k) as an example.
Although both Type 2 and Type 4 data have high negCLIPLoss and thus high quality, data with low
NormSim, (Type 4) are more irrelevant to downstream tasks like ImageNet, VTAB, and MSCOCO.
For example, they contain many images dominated by OCR content and make little contribution to
improving downstream performance. (b) lllustration of a rough comparison of sampling data for
different Itering methods. UsingfiegCLIPLoss NormSini Itering can balance the quality and
relevance to downstream tasks, thus increasing the proportion of Type 2 data. (Refer to Appendix E
for more visualization.)

corresponding counterparts. For example, in the bottom right of Fig. 1, the text containing “Image”
or “Photo” can be easily matched with any visual content. Similarly, the image of “verloopring” only
contains very simple features and can be matched with many words like “white”, “empty” or “circle”,
etc. Consequently, despite a high absolute CLIPScore, the relative negCLIPLoss within its batch can
be lower. In contrast, the bottom left features highly speci ¢ elements in both text and images, such
as "Islands Harbor," "American football", and "sheep at green". These elements are speci ¢ and less
likely to match with contrastive pairs, resulting in a higher relative negCLIPLoss.

3.2 NormSim: A New Training-Target Similarity Metric

Our proposed negCLIPLoss is a universal approach to improve ltering performance by estimating
quality better, and it does not rely on any downstream task. Now, if we can access some knowledge
of the downstream tasks, we could further improve the performance by using a visiop~ooign
similarity to target datametric to measure the relationship between each training sample and the
downstream target data. We will discuss the reason to use vision-only embedding later in this section.

Speci cally, we assume access to the target set of downstream tasks and denote Xhgga as

distributionParget’, but without overlapping with the test set. Then, for each training sartpland
the corresponding target S€targes the NormSim is deged as:

1.5
X
NormSimp (X targei X) := kfy (Xtargedfv (X" )kp = @ o (xt); fu(x")i PA 3)

Xt 2 X target

We select the subs&t by choosing the samples with tdp-highestNormSimscores. The choice of
the norm typep can be based on the data distribution and training process. In this paper, we consider
two instantiations op:

Whenp = 2, our data selection method can be regarded as the following equation. It's equivalent to
selecting a subset that aligns with the principal components of the target set variance (Appendix C.6.1).

3Although out-of-distribution tasks like “WILDS” have distribution shift between training data and test data,
they still provides useful information of the test data.



0 1,
X X 2
S = arg max NormSimy(x:;Xi); NormSim(x¢;x;) = @ fu(xy) fu(x¥) A (4)
ISIEN 55 Xt 2 X target

Whenp = 1 , the distance metric can be regarded as an even more optimistic measure, such that
a training sample will be selected if it has high similarityatioy target sampleNote that this is
different from nearest-neighbor-based method used in image-based It&tingHere they are trying

to nd the nearest training sample efrery target sampldn this case, it can be regarded as:

X
S = arg max NormSimy (X¢;Xi); NormSim. (x¢;xi)= max fy(x{)” fy(x}) (5)
jSj=N i2s Xt 2 X target

In Appendix D.3, we also show that odMormSim, can outperform the nearest neighbor selection
on the downstream target tasks. Here, we show an example selectedNiarth8imy(ImageNet-1k)
in Fig. 3, showing that this vision-target-aware method is complementary to the quality-based one.

Choice of Target Data.In the experiment parts, we try two kinds of target data: training data from
ImageNet-1k (1.3M) or training data from all 24 accessible downstream tasks (2 \Wel)denote
them asNormSimp(IN-1k) andNormSimp(Target), respectively.

Necessity of using vision-only informationWe use only the visual informatioxt instead of multi-

modal informatiorx”' for measuring similarity. This is because common crawled text often has
brief captions, making the OAI CLIP language embedding weaker than its visual embedding model
[1, 23-25]. Consequently, the language part cannot characterize the pre-training and downstream task
distribution as well as the visual part. This phenomenon is also observed in Gadrdwehdre
image-based ltering (select data whose image embeddings are similar to that from ImageNet-1k)
outperforms text-based lItering (select data whose captions contain words from ImageNet-21k).
More ablation studies are provided in Appendix D.4.

Generality of NormSim in choosing teacher modelNotably, since we just use image embeddings

in the NormSim metric, we believe it unnecessary to use CLIP model to obtain NormSim. Norm-
Sim can be a general metric for selecting target-related image/image-text data if any good image
representations are given, like the representations obtained from pretrained ResNet-50.

Theoretical justi cation. Unlike many existing methods that force diversity by selecting training
samples around eachiyge; OUr strategy maximizes similarity without directly considering data
diversity. For thep = 2 case, we demonstrate that maximiziNgrmSim is optimal under a

linear modef,, as shown in Appendix A.2. Our theorem also provides error guarantees for noisy
embeddings and explains when vision-only embeddings outperform combined vision and language
embeddings. Recent work by Joshi et @6][provides a similar analysis but focuses on high-quality

data and cross-variance between images and texts. This approach is less effective than image-only
methods for Itering noisy datasets, as discussed above.

Using proxy when downstreamX iarget IS inaccessible Surprisingly, we show that the 2-norm can

also be used when only the pre-training set is available. In this case, we construct a proxy “target” set
from the pre-training set itself. Speci cally, I&; be the selected subset at stefhen we treat the
currentS; as the proxy “target’gset. To construct the next smaller set, we select the next data batch
Si+1 satisfyingargmaxs,,, s, ,»5 NormSimp(S;; x); until reaching an N size subset. We call

this approaciNormSim,-D (Dynamic) and will specify the algorithm details in Appendix C.3.

4 Experimental Results

In this section, we evaluate the performance of negCLIPLoss and NormSim, aiming to address the
following questionsQ1: Given a xed CLIP teacher model, can our methods more effectively utilize
CLIP embeddings for data Itering®2: Are our methods applicable to diverse CLIP teacher models
with varying architectures or different pretrained datas€8?How does our method compare to
other leading approaches that utilize external models or multimodal datasets? Additionally, could our
method be compatible with these methods and enhance their effectiveness?

“Here we only use the target data for data selection, instead of training on them. The target dataset is
signi cantly smaller than pretraining set like DataComp-medium (128M) or external datasets like HQITP-350M
utilized by DFN [2].



4.1 Setup

We adhere to the standardized training and evaluation protocols of the DataComp bendijmark [
Training con guration. We employ the medium-scale training con guration of DataComp
(DataComp-medium). It provides a substantial dataset comprising 128 million low-quality, web-
curated image-text pairs to be Itered. Once the data subset is obtained by some data Itering strategy,
it will be used to train a xed CLIP-B/32 model in a xed training budget that allows the model to
pass 128 million data points an epoch. Therefore, smaller subsets will be repeated more frequently,
ensuring a fair comparison. We note that the size of the DataComp dataset becomes smaller over time
since some URLs of images become invgliand we only successfully downloaded about 110M data.
Therefore, the results of baselines on the leaderboard do not apply to our datasets, and we reproduce
all the top baselines on the leaderboard with their public UIDs of the selected data.

Evaluation. We measured the model performance on 38 downstream datasets including image
classi cation and retrieval tasks followed by DataComp. The image classi cation tasks contain
ImageNet-1k 27], ImageNet distribution shifts28-31], 11 datasets from the Visual Task Adap-
tation Benchmark (VTAB) 32] and 3 datasets from WILDS3B, 34]. Retrieval datasets contain
Flickr30k [35], MSCOCO [36] and WinoGAViL [37].

Teacher model architecture.Our experiments utilize two architectures for OpenAl's CLIP teacher
models: ViT-L/14 and ViT-B/32. Additionally, we use the public version of DFN (DFN-P) proposed
by Fang et al. [2] as a teacher model, and its architecture is also ViT-B/32.

4.2 Baselines

We restate the three current research directions mentioned before based on how much external
resources are employed: (D1) using OAI CLIP alone while optimizing embedding employment
strategies, (D2) training and using a more advanced CLIP embedding model based on external data,
and (D3) utilizing non-CLIP external models to aid data selection. It is important to note that D2
and D3 may also incorporate strategies from D1. For example, CLIPScore (D1) has been used in
almost all the top methods. Therefore, we categorize baselines by the largest possible category they
encompass. According to the above categorization, we summarize the baselines we used in our
experiments as follows. Please refer to Fig. 4 and Appendix C.4 for more details.

D1: OAI CLIP embedding only. The learner can only access the pretraining dataset (like DataComp-
medium), the original OAI CLIP teacher model that is used to extract embeddings, and some target
data of the downstream tasks which is much smaller than the pretraining dataset (like ImageNet-1k).
In this category, we don't use any existing external non-CLIP models or any newly trained CLIP
model based on external multi-modal dataset. In detail, This category includekl@$core [38],

which only uses CLIPScore for ltering as we mentioned before. lif2dge-based lItering [1],

which uses ImageNet-1K training data as the downstream target data for data ltering. It applies
k-means clustering to thismageembeddings of training data and selects clusters closest to the
ImageNet-1K embeddings. Gadre et 4l.4lso try to combine image-based Itering and CLIPScore
together. (3)D? Pruning [18], which represents the dataset as an undirected graph and selects the
data by combining dif culty and diversity. They use the CLIP score to initialize their graph.

D2, D3: Accessible external model and multi-modal dataAll the current top baselines enable the
learner to utilize external resources, either to train a better CLIP teacher model or to help ltering
using existing models' properies. In detail, @FN [2] trains another CLIP data ltering network

via external high-quality data. Their currently public modeF{\-P) is trained on CC12M39] +

CC3M [4Q] + SS15M H|1], while the best DFN is trained on nonpublic HQITP-3508], jwhich

is even larger than DataComp-medium. KRYPE [3] leverages hyperbolic embeddings (different
from CLIP embedding) and the concept of entailment cones to Iter out samples with meaningless
or underspeci ed semantics, enhancing the speci city of each sampl&lBE [ DFN proposed

by [3] samples subset separately for each method and then merge them. This is the state-of-the-art
method on the DataComp benchmark for medium size. (4) Other methods incl4tMAGRS [12],
Devils[14], MLM [42], which leverage external models such as text detection model FART [
BLIP-2 [16] and LLaVA-1.5 [43, 44] to heuristically select data. See details in Appendix C.4.

Cross-setting comparison We make these separations for fair comparison. Intuitively, performance
should be ranked d32, D3> D1. However, our results show that cross-setting comparisons are
possible and our D1 methods can perform similar or even better than most of D3 methods.

5See https://github.com/mlifoundations/datacomp/issues/3. Similar issues are propb2eatbiying [18].



Table 2: Results on DataComp-medium from methods that use only OpenAl's CLIP-L/14 model, i.e.,
all methods are from thB1 category. The “dataset size” represents the size of the subset obtained
from different approaches. NormSim(IN-1k) denotes using the training data of ImageNet-1k as the
target while NormSim(Target) represents using that of all 24 available downstream tasks. NormSim-D
refers to the methods that use an iteratively selected subset from the training set as the target proxy.

Filtering Strategy Dataset IN-1k IN Dist. Shift VTAB Retrieval Avg.

Size (1task) (5) (11) (3) (38)
No ltering [1] 110M 17.3 15.0 25.2 21.3 25.6
CLIPScore (20%) [38] 22M 25.4 22.7 31.8 22.0 31.0
CLIPScore (30%) [38] 33M 26.4 23.6 32.6 245 32.2
Image-based [1] 24M 25.5 21.9 30.4 24.6 29.9
CLIPScore (30%) Image-based [1] 11M 27.4 23.9 31.9 21.4 308
D? Pruning [18] 22M 23.2 20.4 31.4 187 295
negCLIPLoss (20%) 22M 27.4 23.8 33.7 23.7 325
negCLIPLoss (30%) 33M 27.9 24.6 33.2 251 329
CLIPScore (30%) NormSim:-D 22M 28.3 25.0 345 22.7 329
negCLIPLoss (30%) NormSim-D 22M 29.8 26.1 34.8 24.6 34.1
CLIPScore (30%) NormSim (IN-1Kk) 22M 29.1 25.4 _35.8 24.1 334
CLIPScore (30%) NormSim (Target) 22M 28.9 25.1 32.7 23.6 325
CLIPScore (30%) NormSim (IN-1k) 22M 29.7 25.9 33.7 24.1 33.7
CLIPScore (30%) NormSim, (Target) 22M 30.2 26.2 35.0 23.4 33.9
negCLIPLoss (30%) NormSimy(IN-1k)  22M 30.4 26.4 354 256 343
negCLIPLoss (30%) NormSim (Target) 22M 30.6 26.2 35.2 255 33.9
negCLIPLoss (30%) NormSim, (IN-1k) 22M  31.9 27.3 34.8 250 344
negCLIPLoss (30%) NormSim (Target) 22M  31.7 27.2 36.0 26.0 35.0

4.3 Main Results and Discussions _
Table 1: Results on DataComp-medium from
o the top methods that use only OpenAl's CLIP-
4.3.1 Comparision on D1 Category (Q1)  B/32 model or public version of DFN (DFN-P).

“NormSint®?” represents using OAI CLIP-B/32

In Table 2, we compare the D1 methods whef8 calculate NormSim .
only the OAI CLIP model is allowed to be used: Strategy

Our Methods leverage OAIl CLIP-L/14 better.  oal CLIP-B/32

First, ne_gCLIPLoss outperforms _C_LIPScore O \pscore (30%) 33M 276 336 332
all metrics regardless of whether itis used alone | |pscore (20%) oM 270 330 322
or combined with other methods. These results .
support our claim that negCLIPLoss can more"€9CLIPLoss (30%)  33M  28.8 337  33.6

. . 0 . . .
accurately estimate the data quality. negCLIPLoss (20%)  22M 289 343 330

. .. hegCLIPLoss (30%)
Secongeven when target knowledge is unavail-\ Normsim (Targety 22M 324 359 352

able, useNormSimy-D together with negCLI-
PLoss can stillimprove the Itering performance PFN-P

Size IN-1k VTAB Avg.

by 1.9% on average 38 downstream tadksird,  CLIPScore (30%) 33M 284 332 327
when target knowledge is availabMormSiny  CLIPScore (20%) 22M 297 330 331
andNormSimy can improve ltering more sig- CLIPScore (17.5%) 19M 302 341 338
ni cantly compared withNormSimy-D, andin _CHIPScore (15%) 16M 259 329 316

general,NormSim is the best choiceEspe- negCLIPLoss (30%) 33M 289 334 332
cially, compared with the best baseline ‘CLIP-neggHEtOSS gg"’gg/) igm %22 g?éf; ?éig
Score (30%)', our best combination “negCLI-"¢9 0SS {17.570 : g
PLoss\ NormSim, (Target)' improves5.3% negCLIPLoss (15%) 16M 313 _35834.6
onimageNet-1kand2.8% on averag@8 down-  negCLIPLoss (30%) o\ 594 335 325
stream tasks respectively. Later in Table 3 we Ngrﬂ‘gl'_”l (Ti§g§3

will see that this result outperform all the D3 " OrmSir‘T’fSéaréet)") 16M
baselines except DFN HYPE. On the other peqc) iPLoss (17.5%)
hand, when using ImageNet-1k as the target nNormsinf®(Target) 31.6 372 357
data, the choice of norm has very little in u-
ence.

315 346 344




Table 3: Results of all D1&D2&D3 top methods on DataComp-medium. The results of MM [

are from their paper, while all other baselines are reproduced on our downloaded dataset using their
of cial UIDs. “Ours (20%)” refers to use “negCLIPLoss (30%)NormSim, (Target)” to get 20%

of original data, while “Ours (10%)” denotes applying “negCLIPLoss (209ormSim (Target)”

to get 10%. And we use “*” to indicate the case where we choose the intersection of the data selected
by using OAI CLIP-B/32 and OAI CLIP-L/14 separately, which results in about 15M data for “Ours
(20%)*” and 7.4M data for “Ours (10%)*".

Dataset IN-1k IN Dist. Shift VTAB Retrieval Avg.

Type Filtering Strategy Size 1) ) 11) 3) (38)
D3 T-MARS [12] 22M 30.8 26.3 34.8 254 34.1
D3 Devil [14] 20M 31.0 26.7 35.9 24.7 345
D3 MLM [42] 38M 30.3 25.6 36.0 29.0 345
D3 HYPE [3] 10M 30.3 25.8 34.3 22.2 31.9
D2 DFN [2] 16M 36.0 30.1 36.2 27.0 35.4
D3 DFN[ HYPE[3] 20M 36.4 30.8 385 28.0 36.8
D1 Ours (20%) 22M 324 27.4 35.9 26.3 35.2
D3 DFEN[ Ours (20%)* 23M 36.4 30.9 38.6 28.1 37.6
D3 DFN[ HYPE][ Ours (10%)* 22M 37.3 314 38.5 27.6 37.7

4.3.2 Try Other Teacher Models (Q2)

To evaluate whether our method applies to other CLIP teacher models, we replaced OAIl CLIP-L/14
with OAI CLIP-B/32 and DFN-P as embedding models. We compare the best baseline “CLIPScore”
with our “negCLIPLoss” and best strategy “negCLIPLbdsBlormSimy (Target)” as shown in Table 1

and Appendix D.2. Note that the original DFN paper selects a subset comprising 19.2M data points,
which accounts for approximatelyr:5% of our dataset ani5% of their dataset, we incorporate
these sampling ratios into our comparison.

negCLIPLoss can be applied to different CLIP embedding modelsOur proposed negCLIPLoss,

as a replacement of CLIPScore, not only leads to better performance compared to all the other
baselines using OAI CLIP-L/14 as shown in Table 2, but also achieves universal improvement on the
other two CLIP embedding models, OAI CLIP-B/32 and DFN-P as shown in Table 1. Our methods
can consistently outperform all downstream tasks for different Itering ratios and models, like a
0.5%-5.4% increase on ImageNet-1k.

Embedding required by NormSim should have good downstream performancéiVhen combining
negCLIPLoss witiNormSim, , OAI CLIP-B/32 and DFN-P exhibit completely different behaviors.
The former obtains results even better than those in Table 2, which uses OAI CLIP-L/14 as the
teacher model, while DFN-P achieves results even worse than using negCLIPLoSs dlbae
reason is that, unlike OAl CLIP-B/32, DFN-P is specially designed for data Iteginthe expense of
downstream task performanaes claimed by its authors. For example, the ImageNet-1k accuracy
for DFN-P, OAI CLIP-B/32, and OAIl CLIP-L/14 are 45%, 63%, and 75%, respectively. This
indicates that the embeddings obtained from DFN on target data might be highly unreliable, leading
to inaccurate similarity calculations between training and target data. To support this, if we use
DFN-P to evaluate negCLIPLoss but utilize OAI CLIP-B/32 for calculating NormSim, as shown in
"negCLIPLoss (17.5%) NormSinf/*2(Target)", we can further improve the results compared to
using negCLIPLoss alone. Its average performance on 38 tasks is even higher than utilizing the best
DFN (trained on HQITP-350M) with CLIPScore, as shown in Table 3.

4.3.3 Comparison with D2 & D3 Categories (Q3)

In this part, we compare all the D2 & D3 baselines mentioned in Sec. 4.2 together with our best
strategy in Table 3. Here we reproduce all the baselines if their of cial UIDs are available. Hor “A

B” mentioned in Table 3, we follow the way of “HYPE DFN” in Kim et al. [3] to merge the data,

which generates the sampling subset separately for each method and then merge them. This will result
in oversampling the shared data, which is intuitively more importakfe also show the best result

bsee "negCLIPLoss (30%) NormSim (Target)" versus "negCLIPLoss (20%)/(30%)" and "negCLIPLoss
(17.5%)\ NormSim, (Target)" versus "negCLIPLoss (17.5%)/(15%)"
"For the dataset size of [AB”, we count the number of the unique data in the dataset followed HYPE [3].



we obtain by combining our method with DFI¥][and HYPE [] on the full DataComp-medium
dataset in Table 4, where the baselines are from DataComp benchmark.

Our methods can outperform most of the D3
methods. In Table 3, we show that without us]—ab|e 4: Results of the top methods on the full
ing any external models or data, our best combirfaataComp-medium dataset (128M data).

tion, i.e., using OAI CLIP-B/32 for “negCLIPLoss

(30%)\ NormSim, (Target)” Ours (20%)), still €y IN-Ik  Avg.
outperforms all methods except DFN and “DFN No ltering 176 2538
[ HYPE”. This answers the rst part of Q3 and CLIPScore [38] 27.3 328
further indicates that some external models may bd-MARS [12] 330 36.1
redundant since CLIP embeddings already contailgev"S [14] 320 371
necessary information FN [2] 371 373
AN DFN[ HYPE [3] 382 379
We can further improve the SOTA method. DFN[ Ours (20%) 5 3886

In Table 3, we show that our model can further
boost the performance of the current SOTA methmPFN [ HYPE[ Ours (10%) 382 388

“HYPE [ DFN” by 0.9% on both ImageNet-1k and

on average 38 downstream tasks, and close results can be achieved even without combining HYPE
which utilizes the external embedding model MERLE[ And we update the SOTA performance of

the DataComp-medium (full dataset) benchmark as shown in Table 4. Here we use the data selected
by both OAI CLIP-B/32 and L/14, which we found is more robust than using one of them alone.
Our better results answer the second part of Q3, that is, our methods can be compatible with other
D2&D3 methods.

5 Conclusion and Limitation

In this paper, we introduce two metrics, negCLIPLoss and NormSim, to enhance data selection in
multimodal contrastive learning without relying on external resources. negCLIPLoss provides a
more accurate quality metric compared to the commonly used CLIPScore, while NormSim measures
the similarity between pretraining data and target data for known downstream tasks. Experiments
show that our methods achieve results that are competitive with or even better to approaches using
external models or datasets. Additionally, negCLIPLoss and NormSim are compatible with existing
top techniques, allowing us to achieve a new state-of-the-art by combining them.

A notable limitation of our study is the exclusion of larger pretraining datasets, such as the large and
xlarge scales of DataComp. However, DataComp-medium is the most commonly used benchmark for
data selection in CLIP pretraining, and our method has demonstrated both effectiveness (Table 2-3)
and ef ciency (Table 5) on it. Future directions include exploring better ways to merge data selected
by different methods and incorporating our methods into data scheduling scenarios.
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A Theoretical Interpretation

A.1 Concentration of Normalization Term in negCLIPLoss

In this section, we construct a theorem using the concentration inequality to show that when the batch
size is suf ciently large, the normalization terRP« obtained from actual batd, can approximate
R® calculated using ground truth batBh quite well. The details are as follows:

We assume that the pretraining datd3és ndependent and identically distributedd.) sampled

from some distributior?. Besides, to use pretraining data batch to approximate the ground truth
batch, one necessary condition is that their distribution is similar. Here for simplicity, we assume that
they are alsad.i.d..

Assumption A.1. We assume that the ground-truth batch of dataused by the teacher model is
i.i.d. to the pretraining datasdd which is required to be lItered.

For simplicity, we denots; = f\,(x}’)>f|(x} );i;j 2 B to be the cross-image-text similarities in
the batchB. Then the normalization term can be written as
2 3

X X
RP = §4|09( exp(sj = ) +log( exp(sj = ))°
i2B i2B

Heres; 2 [ 1;1]. We will show thatRP = (1+ o(1)) RE foralli whenjBj is suf ciently large,
which means that we can use the random batch to approximate the ground-truth batch.

Theorem A.1. If Assumption A.1 holds and the batch size satigeg = jB j, then we have
RB = (log( jBj)) whilejRE R B j= O(p%) foranyi 2 B\ B .

Proof. Sincesj 2 [ 1;1], It's obvious thatR® = (log( jBj)). Let j := exp(sj=)
E; [exp(sj = )], then j is zero-mean. Note that since the data.igl., so does j , and we
denote := E|[ ﬁ] Notethaf jj € = M, from Bernstein inequality we have
X %tZ
P(] il 0 2exp( ——=7—7)
i28 iBj + 3Mt

A similar conclusion holds foB . These result that with probability at ledst , we have
r
X 2 4 2 .
j i maxt2 jBj In(=);gM In(=)g=: t(iBj; ; ;M )
j2B
P « . P s < .
Thuswe havg ;,5 exp(=-) 28 eXp(R)j  2t(jBj; ; ). Furthermore, for anys; xz > 1,
it's easy to prove thgtlog(x1) log(x,)j -2t *2L_ Therefore, we haviog( i28 exp(Zh))

min( X1;X2) *

log(" ;.5 €xp(2-))j - O(Jp%).SimilarclaimshoIdfoiRiB R B

A.2 Optimality of NormSim , Under Linear Assumption

In this section, we give a theoretical justi cation on the NormSim metric when2 under the linear
model assumptions when low quality image and mismatched text has already been removed. In other
words, we mainly focus on the following strategy.

0 1
X
s=argmax  fu(x!)” @ POy ()7 A o (x)) (6)
ISIEN (o5 J A targed X2 X targst
| 2 }

target_proxy
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A.2.1 Theoretical Setup

Training data. For anyx¥;x' 2 RY observable image and text training pairs, we dezfez' to

be the corresponding latent vectors which contain all semantically pertinent information about our
tasks of interest. Similar to previous theoretical wotk|[ we assume each i.i.d pat' follows
zero-mean sub-gaussian distribution whose cross-covariance satis es

Cov(z";Z") = gan= diag 1; 2;::3); kz'k =1
and eachx"' is generated based on a linear model such that
XvI =G IZvI + vl .
v :
HereG,, 2 Oq4  is the othonormal ground truth representation mapping from the latent vector space
to the input space, and' N (O;14) arei.i.d. random noise.
Also we denote the cross covariance of any nite dat&Sde.qg. the given train s@yain) as  so.

Testdata. For any zero-shot downstream task, we assume it shares almost same data generation
process as the training set, except its the cross-covariaggg does not necessarily equagkain,

which necessitate the choice Ofarget_proxy

CLIP embedding model as teacher. Under the linear model assumption, we have a teacher model
fu = Gy, whose generated clip embedding can partially recover the ground truth hiddenactor
with error.

Formally, we say teacher ha error if for all possiblen budget subsetS  Dyain,

1 x >,V vy > X \ vy> n
S Gy x'(xV)” Gy z'(z") v
19 xVI 28 xvi2s

where the same notation applies for the language modal. By the orthonormal assumption on the
ground truth matrixG,,, we see thaGj is aiming to inverting the map. In addition, we say the
teacher has] | cross modal error

1 X X
gk G, x'(x')” G, z'@Z'yYk 0,
19] xV'2s xV'2S
Whenall J; '; 7, ! Oasn!1l ,thenwe say the teacher is strong for both modalities. But it
might also be possible that only one modal, for example, visual is strong. THat isO; ['; 7 |
n

IV

Model and training. According to Lemma 4.1 in46], using the CLIP loss to optimize the linear
model has approximately the same training dynamics as using the regularized linear loss. Therefore,
here we assume that we are learnig G, by maximizing the clip score gap between the contrastive
pairs, plus a regularizer,

P P
. . i i2s(Si  si) iSj
L . = i2S j2S + — k > k2
e ) 3jg] 1FovCI ke
wheresj := hG; xV; G/ x!i and > 0is some regularizer-relatenstant Note that this objective

maximizes self-similarity and minimizes similarity between disparate pairs. Note that this “loss” can
be negative, avoiding the trivial null solution of all zeros. We denote this training process from any
givenS asG,; = A (S).

Goal and metric. Under the same principle as our training loss function, we measure the per-
formance of any learnG,; G, on some downstream task with distributi®iage as test loss
L targe{ Gv: G1) =

Evl

X" D target

(NG, xV; Gy xbi h G x¥; G x'i)

vl
X5 D target
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This is inspired by the following classi cation accuracy. Assume that the test data inclGdatass,
and the class distribution {8 For every class, the training data = (x";x') satis es distribution
P.. We further assume the corresponding classi cation templatebxags, . Thus we de ne
classi cation accuracy as

AC(Gy;G)) = Eccocc [Ex. =] cl[sic > Sico]]

Therefore our goal is to minimize its gap between the best hind-side subset, foraitigout budget
constraints,

(S) = Ltarge(évl )

A.2.2 Generalization Guarantees

ol Ll (59:60= 4 )

We now provide theoretical guarantees and postpone our proof into Appendix Bitby, we are
going to prove the intuition behind NormSim;,score.

Lemma A.1 (Intuition behindNormSinp). With high probability at least 55, suppose the
hind-side best subset has at leastumber of samples, then we have
s s I

1 dlog(djSj dlog(djSj
(9)= T _max (T1( wgel s )+ O gﬁj 0 ?éjl j)

|— b — )

NormSim related term

noise

Proof sketch.] Under the assumption that batM' ; ; is zero-mean, maximizing the clip score gap
is equivalent to maximizing the clip score of the same sample.

Liarge(Gv; G1) = Eyu hGo xV; Gy x'i

By minimizing the regularized training lo$s; (Gy; G) using Eckart-Young-Mirsky Theorem, we
get a closed form solution @ as

D target

GGy }GV s (G,)” + noise depend o8

Combining the resultin and{ , we have

B

1 .
Ltarget(évl) =Tr( target s) nhoise depend 08

The same analysis can be appliedmimso; p ., L targe(A(SY) as well. Rearranging these two
equations gives us the nal result. O

This lemma shows the thé S) is depend on th&lormSim-related term and the noise term which
comes from . Whenn andjSj is large enough, then thdormSim-related term will become
dominant. This aligns with our practice experience that the nal performance is less sensitive to the
small variation in the number of select data as long as that is suf cient. Moreover, in some special
cases where test distribution has identity cross-variance, then sampling by choosing CLIP score might
be enough.

Now we are ready to give a proof on the choice of 1arget @and visual-only information. Speci cally,

the strategy error mainly comes from (1). The unknown test distribution shift from training. (2). The
unobservable ground truths. To tackle error (1), we assume some prior knowledge on test by using
the proxy test varianceage: TO tackle the error (2), there are two possible solutions as shown below.
Based on the theoretical interpretation, we should choose different strategy based on the property of
the teacher embedding model. 0 1

X
Svision+language: argmax Tr @ targe( G; XV(X|)> GI)A
S xV'2s
0 1
X
Suision only = arg gnax @ targel( G\j xY(x")” GV)A
xV'2S
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Theorem A.2(Main). Under the assumption of Lemma A.1,

. 1
(S) noise+ —K target targetkK s besK

1( S, q(vision+|ahnguage)

v+t 1 & i2gfeY;2'i)  (vision only)

Firstly, it is evident that the greater the difference betwegpetand targes the less improvement we
can expect. Moreover, in scenarios wheres large (indicating lower accuracy in the language part)
while  is small (indicating higher accuracy in the vision part), |&may be adwsable to opt for vision-

only embeddings. However, the learner should also consider the tdrm JSJ IZShz ;z'i, which

represents the alignment between the ground truth visual and language latent vectors, essentially
re ecting the intrinsic quality of the data. If this term is already signi cant, relying solely on vision
information as a proxy for language information could lead to suboptimal results.

A.2.3 Detailed proofs

Lemma A.2. Let
Gy;6 =arg min  L(G\:G) (7)
Gy;G|2Rd T

2

Then we have
1
GG = =G, s(G|)” + Pi+ P+ P+ Py 8)

where noise termB; are de ned in (12) , (13), (14) and (15).

Proof. Note thats; = (x )> GGy x! =Tr( G x V(x )> G)), like the proof of Corollary B.1. in
[46], we have
P P

i2s  j2s(Si  Si) + iSj

L(Gy;Gi) = S gis D 20 kGG K
_ i2s jjz;jgusjlf; i255ii+§jSJjSJ 1kaG|>l:j: |
= T G ijl 1zsxy(x:)> jsjij X' G +§JSJ]SJ KG, G k2
= TG G+ 2131181 kGG K

P
wherex V! = ( i25 xY)5jSj. Then by the Eckart-Young-Mirsky Theorem (For example, Theorem
2.4.8 in Golub et al. [47]), we know that

arg min L(Gyv;Gi)
Gy2Rd r;G|2Rd
= arg  max ™G G)) IS 6,67 k2
Gy2Rd ;G|2Rd * v 2iSj 1
1JSJ

f(Gy;G)2RY " RY'":G,G = SVD () g  (Eckart-Young-Mirsky Theorein

where the notatio®VD, () means choosing the rstcomponents of the matrix. Further note
that

_ 1 X s S vy
= S] 1iZSXi(Xi) ijilx (x%) 9)
=: PO+ P+ Py + P3+ P4 (10)
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P
Herenote that s = 5,5 2(2])”, we haveP; as follows:

i

< >
Po = 1G5 (G) (1)
o= L G, zV'( 1) (12)
1 .= = i i
JSJ 1 Vizsl I
poo= L vy 13)
2 -~ Qi i i |
S 1
1 .
R (14)
19 i2S
< >
P, = jSJj Jlx"(x') (15)

It's clear that the rank of the matrRg is no more tham, soSVD, (Pg) = Po. Andfori 2 f 1;2; 3; 4g,
P; are noise terms witk[P;] = O. O

q____
Lemma A.3. Forany xedS, w.h.pl the noise term can be upper bounded bﬁ%

Proof. To upper bound the P1 and P2, we have
0 1

X X X
KTy @ M@y A= @y gy Y

i isj iij
" #

X X
B 2 (M) KE=E T @) () Y = isid

i [
Regarding eactz')” 2! ( ')> ' as weakly dependent variable, then by using Bernstein inequality,
we have, with high probability

X qg — p
k  z'({")"K j sid+ diSj? 2log(1=) j Sjd log(1=)
[
L Py aeeas) hatioc K ORI (g iti -

So5k iz " —s7— - Note thatkx . =5 (like Proposition 2.5 in
Wainwright et al. [48]), it is easy to see that P3 ad P4 are the low order terms ﬁ O

Lemma A.4 (Intuition behind VAS) With high probabilityl ~ , suppose the hind-side best subset
has at leash number of samples, then we have
S s

1 dlog(1= dlog(1=
(9= ’sg‘&’,‘am(ﬁ( target( S0 s+ gﬂ( )+ JgS(J )

Proof. For any learnts, ; G, based on datas&, we have

Lies{Gy; G) = Tr( GC Ex, o m,ge‘[XV(XIY 1G)
= Tr( Eyx xV(x")1G/G,)

vi D target

L Ex X'(x")71G6, s(G,)” Tr Eyx [xV(x")” Jnoise;

vl D target vl D target

L (G,)” Ex X'(x")1G, s Tr Ex [xV(x")” Jnoise;

vl D targetl vl D target

1 .
*Tr( target S) Tr Ex [XV(XI)>]n0|333

vl D targetl
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Here the rst equation comes from Theorem A.4 and the third equation comes from Lemma A.2.
Consequently, we have

1
mm Ltesl(A(SO)) = maX —Tr( target so) +Tr Ex

traln

[x¥(x")” Jnoiseso

vl D targett

1 max (Tr( taget s0)) + KEx [xV(x")” Jkknoisesok

SOZD"am vl D target
s — 1
1 dlog(1=)
e (T( mger o)+ O
Therefore, we have the nal result as
(9= Ltesl(évl) SOanIiDr,],ainLtGSI(A(SO))
S S I
1 dlog(1= dlog(1=
= T me (7wl & o))+ 0 SO, CR3EE)
O
Theorem A.3(Main). Under the assumption of Lemma A.1, we have
( S) noise+ k target targetkk S besk
.\ (&|5|on+larl19uage)

vI
S+ 01 % i21sf2Y;2'1)  (vision only)

Proof. Based on Lemma A.1, we will focus on the error cause from selecting s8bskat is,
Tr taget s- Since the exact argetis unknown, we assume the access to some prexyerinstead.

Recall that, for any8, we have ground-truths = E,, 252" (z')” . Unfortunately, this is not directly
observable by the learner. Instead, the learner is able to observe some gro&ged on the teacher
modelG,, and therefore solving

argmaxTr  arget s
S

and therefore, denotepest= arg Maxgop .., 11 target s°)

Tr ( targe( best S)) =Tr targe( best S) +Tr targe( S S) +Tr ( target targeb ( best S)
Tr targe( S S ) +Tr ( target targea( best S )
k targekk S Sk + Kk target targekk S besk

where the rstinequality is by the de nition of s and the second inequality comes from holder's
inequality. Now the key is to upper boukd g sk based on our chosen strategy.

In optpn 1, we use the C|Ip embedding from both visual and language modal. That is, choose
S~ Xl 2s(Gv)> V(X )> G,. Then we have
1, X X
k(G x'(x) Gy 2y kS,
Xu 28 x2S

k k =
s s is

fp option 2, we use the clip embedding from language model only. That is chogse
xy 25 Ov X "(x")> Gy. Then, by de nition of s, we have

X > Vi(yV)> X zV(zY = X V(5 Vy\>
k s sk k Gy x'(x')" Gy zV(z¥)Y k + k z'(z") sk
J J Xy 2S Xyv 2S ] J Xv 2S
1 X
S+ —k z2Y(zY)Y> sk
]SJ Xy 2S
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Now to further bound the second term, we have

1, X s 1.
—k z'(z") sk jgjkz\,kkzv Z 1k

JSJ Xy 2S

1@ q

= j?] Trz,z; T(Zy 2Z))>(Zv Z))
1p_ "

= 5 Tr(ly n) 2Tr 1y o ZyZ7
1° X

= = 2Si(si hev;z'i)
ISi i2[s]
i X

=1 % ev:z'i)

150 i21s)
Therefore, we nish the proof. O

Theorem A.4(A simpli ed version of test loss) Under the assumption that bothy, ;  is zero-mean,
maximizing the clip score gap is equivalent to maximize the clip score of the same sample.

Ltarget(Gv;GI) = Ex I'G\>,XV;G|>X|i

vi D target

Proof. For anyx,,, we have
. 07 . H
Ex® D el PGy Xvi G X1 h Gy xy; G xii)
— > . > 0 H
= hGy xv; Gj Exo b el XTI X1

= h Gj xy; Gy xii
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Figure 4: lllustration of different directions for data selection methods for multimodal contrastive
learning. Here we use four colors to denote the four main resources we can obtain: CLIP teacher
model, downstream target data (which is much smaller than the external multimodal dataset or
pretraining dataset), the external image-text dataset, and the external non-CLIP Dicaigion 1
denotes the methods that only use the original OAl CLIP teacher model and the downstream target
data.Direction 2 represents the methods that use external datasets to train a new CLIP teacher model
for improving lItering, like DFN [2]. Direction 3 denotes the methods that use external non-CLIP
model to select the data that may be heuristically helpful for downstream tasks, like image without too
much text or be more special. In genefal, method using only CLIP embedding, like negCLIPLosS,

is orthogonal to D2. And both D1 and D2 can be combined with D3 to explore better ltering results.

In the experiments part of the main paper (Sec. 4), we further show that our proposed D1 methods:
NormSim and negCLIPLoss, can outperform all the D3 baselines except the best method fHYPE
DFN". And we can achieve the new state-of-the-art by combining our methods with that method.

B llistration of Different Directions for Data Selection in Multimodal
Contrastive Learning

We summarize our main idea of categorizing the current top data selection methods in Figure 4.

C Details of Experiments

C.1 Computation Cost

Our algorithm can signi cantly reduce the computational cost compared to many existing works as
shown in Table 5. For example, when the CLIP embeddings are obtained (cost about 50 hours for
CLIP-B/32), both T-MARS 12] and MLM [42] still require more than 900 hours data pre-processing
time to extract the required information from 110M size dataset of DataComp-medium, while we only
need about 5 hours. On the other hand, DFN, although has a similar forward speed (i.e. preprocessing
time), requires retraining a new CLIP teacher model on the HQITP-350M, which is larger than
DataComp-medium.

We give some details in estimating the preprocessing time of other methods:
« ForT-MARS andD? pruning, we run their of cial code on DataComp-small (11M) data,
and simply scale the preprocessing time by 10 for DataComp-medium, given that the

preprocessing time for T-MARS is proportional to the size of the pretraining dataset, while
D? pruning is no faster than linear.
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Table 5: Comparison of preprocessing time and external resources needed between our method and
other D3 category methods. We skip DFN since it's orthogonal to our negCLIPLoss method and we
can directly improve it as mentioned in Table 1. Here since all the baselines below except MLM
use a pretrained CLIP model, we only count the time that doesn't contain that for inferring CLIP
image/text embeddings (about 50 L40 hours for OAI CLIP-B/32), which is also adopted in DataComp
benchmark]]. The external dataset corresponds to the external multimodal dataset used for training
or netuning the external model. Notably, the preprocessing time for the following methods are all
approximately linearly proportional to the amount of un ltered pretrained dataset.

Tvoe Filtering Ext. Model Size of Preprocess  Training Av

yp Strategy Used Ext. Dataset Time Time )
D1 D? Pruning [18] NA NA >70L40h 65L40h 295
D3 T-MARS [12] FAST [13] NA 950 L40 h 65L40h 341
D3 MLM [42] LLaVA-1.5 [43, 44] 50k 1120 A100h 65L40h 34.5
D3 Devil [14] fasttext [15], BLIP-2 [16] NA 510 A100h 65L40h 345
D3 HYPE [3] MERU [45] 27M >120L40h 65L40h 31.9
D1 Ours (20%) NA NA 5L40h 65L40h 352

* For MLM , we get the estimated time from their paper. They mention that they need 6.1
minutes to process 10k samples on A100, which results in 1120 A100 hours for our dataset
(110M). We need to mention that their estimation time of calculating CLIP embedding is
inaccurate and we can do it much faster than their claim using the DataComp pipeline.

» For Devil, it needs to run the k-means clustering algorithm from the faiss library on the
embedding space, which is estimated to cost 120 L40 hours on DataComp-medium. Using
BLIP-2 [16] to scan the whole dataset will need about 470 A100 hours from the experimental
details in [L7]. From https://lambdalabs.com/gpu-benchmarks, we roughly assume that 120
L40 hours are at least comparable to 40 A100 hours for K-means clustering.

* ForHYPE, they claim that MERU is as ef cient as CLIP, but they still need at least 120
L40 hours for processing 110M data for their nal score, since it uses the image embedding
clusters on DataComp-medium obtained from running k-means clustering algorithm.

C.2 Details of negCLIPLoss

We give the pseudocode of calculating negCLIPLoss in Algorithm 1, which is specially designed
for pytorch-style parallel matrix calculation. It can be fully accelerated and the computation cost
introduced by the normalization term is negligible compared with the training time or preprocessing
time of other top baselines as detailed in Table C.1.

In negCLIPLoss, we need to get the batch §&¢ and the value of the learnable temperature
parameter atthe nal step of the teacher model pretraining stage. For OAI CLIP-L/14 and OAI
CLIP-B/32, these values are= 0:01andjBj = 32768.

We also have an ablation study about the temperature parameter and batch size chosen for CLIP
teacher models as shown in Table 6. We will see that in general, a larger batch size will result in
better performance, and= 0:01; b= 32768 s the best choice for both OAI CLIP-B/32 and DFN-P.

The reason for such a batch size is that a larger batch can contain more contrastive data pairs, which
is also supported by the concentration result of the normalization term proved in Appendix A.1,
and thus it can check the image-text matching between more different data. Therefore, we always
consider the largest batch size 32768 which can tinto a single 24G GPU in the CLIP forward pass,
which is also the OAI CLIP training batch size.

C.3 Details of NormSimy-D

In this section, we illustrate the details of ddormSim-D algorithm. The topN selection method
is aiming to achieve the object:
0 1

1 >
- - fu () fv (x{)” A fu(xi) (16)
JXtarge‘ Xt 2 X target

X
S = arg max fu(x}) @
ISIEN 1) g
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Table 6: Ablation study about the temperature parametarsd batch sizé for CLIP teacher model.
The values obtained from the last training step of the teacher models=a@201; b = 32768 for
OAI CLIP-B/32, OAI CLIP-L/14, andb= 16384; = 0:07 for DFN-P. In the main paper, we use
b=132768;, = 0:01for all three kinds of teacher models.

OAI CLIP-B/32 Size IN-1k IN Dist. Shift VTAB Retr. Avg.
CLIPScore (30%) [38] 33M  27.6 24.2 33.6 251 332
negCLIPLoss (30%)

b=16384; =0:01 33M 288 25.0 325 26.2 33.0
b=16384; =0:02 33M  28.6 24.8 33.3 253 331
b=16384; =0:07 33M  28.0 24.2 335 251 326
b=32768; =0:001 33M  16.0 13.9 25.1 194 244
b=32768; =0:005 33M 285 25.0 336 27.0 33.0
b=32768; =0:01 33M 288 25.1 337 26.6 336
b=32768; =0:02 33M 285 24.8 336 26.2 329
b=32768; =0:07 33M 282 24.5 32.8 252 327
negCLIPLoss (30%)\ NormSim; (Target)

b=16384; =0:01 22M 324 27.4 34.5 26.1 347
b=16384; =0:02 22M 318 26.7 35.0 249 342
b=16384; =0:07 22M 310 26.3 35.0 255 33.9
b=32768; =0:005 22M 322 27.2 353 265 3438
b=32768; =0:01 22M 324 27.4 359 26.3 352
DFN-P Size IN-1k IN Dist. Shift VTAB Retr. Avg.
negCLIPLoss

15%,b=16384; =0:07 16M  31.0 27.0 35.2 26.8 34.2
15%,b=32768; =0:01 16M 313 27.3 358 264 34.6
17.5%,b=16384; =0:07 19 313 27.2 335 276 335
17.5%,b=32768; =0:01 19  31.2 27.5 35.7 27.0 347
negCLIPLoss (17.5%)\ NormSim2®(Target)

b=16384; =0:07 16M  31.1 27.4 348 261 34.2
b=32768; =0:01 16M 31.6 27.3 372 255 357

when the actuaX argetis unknown. In practice, removing one data at a time is too slow. Therefore,
we remove a batch of data for every step. In detail, if the number of stepsaisd let ey =
1 i2s, f\,(x}’)f\,(x}’)> wheres; is the selected subset at siephen we will remove the data

satis es the following equation step-by-step until reaching the nal subset size:
" | "
. 1 X .
SinS. =arg mn f,(x\)T =— fux)Hfv(xy)”  fu(x)) ; 12f0;:::; 1g
X128 ISl 25

Then we can detail the algorithm process\mrmSim,-D in Algorithm 2. In general, the smaller
the step size, the better the results. But in experiments, we nd that it's already enough to get good
results when = 500.

C.4 Details of Related Works
We add some details about the baselines used in our paper as follows.

» Text-based ltering. [1] proposes a text-based ltering that tries to select the data that contains
caption overlapping with the class name from ImageNet-21K or ImageNet-1K.

» Image-based ltering. [1] also proposes a heuristic way to sample the visual content overlaps
with ImageNet-1K classes. They rst apply Itering by language (only choose English caption by
fasttext [L5]) and caption length (over two words and 5 characters). Then they cluster the image
embeddings from training data to 100K groups using F&Sk gnd keep the groups whose cluster
center is the nearest neighbor to at least one image embedding of ImageNet-1K image.
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Algorithm 1 negCLIPLoss

RN d batch sizeb, temperature parameter the number of times negCLIPLoss is random
K (=10).

index of a batch of data.
forj =1 tosdo
Get batch of embeddings in batghF" = F¥'[B;]2 R? ¢
Get the similarity matrixg; = F(F/)> 2 R P
Get the CLIPScoreg; = diagEj) 2 RP
De ne Gj = exp(E;=)
Dene g 2 RP be the vector containing the sum of each row vectds;jn(i.e., over image).
De ne gj' 2 RP be the vector containing the sum of each column vect@;irfi.e., over text).
Getthe negCLIPLoss:[Bj] = ¢; 0:5 (log(gy’) +log(g)')), here we use element-wise
operation.
end for
end for
Take the mean of each random division as output: negCLIP£ossK

Algorithm 2 NormSim-D strategy

Inputs: image embeddings of the data after CLIP score lterfrig(x})gi2s, target sizeN,
number of steps
Initialize Sp = S;Ng = jSj
fort=1to do
Size atstep: Ny = No Y(No N).
Prior matrix: st 1 = 25 . f\,(x}’)f\,(x}’)>
Updated NormSimD for each samplein S; 1:

NormSimp-D(xi) = fy(X/)”  testt 1 fu(X})
ConstructS; such that it contains the data with high&égirmSim,-D in S; ; and satis es

JStj = Ny.
end for

« D? Pruning. [18] tries to represent the dataset as an undirected graph for coreset selection. They
assign the dif culty for each example and use message passing to update the dif culty score
incorporating the dif culty of its neighboring examples, and nally try to keep both diverse and
dif cult subsets. For our experiments, we adhere to the default hyperparameBf®ofDataComp
as speci ed in their of cial codebase.

* T-MARS [12] uses a text detection model like FASTJ to Iter out the data that only contain the
texts of caption in the image and don't have other useful image features.

 Devils [14] combines many ways for data ltering. At the very rst it Iter data based on
heuristic rules like text length, frequency of texts, and image size, and it also use CLIPScore
for cross-modality matchment. Then it adopts target distribution alignment methods similar to
image-based lItering, but instead of using ImageNet-1k only, it uses 22 downstream tasks as the
target set. Further, it adopts external models fasttE3ttp remove non-English captions and
image-captioning model BLIP-2 [50] to select images with MNIST-style digits.

« MLM [42] prompts GPT-4V to construct instruction data including the image-text data, and use
itto ne-tune a smaller vision-language model like LLaVA-148[ 44] into a Itering network.
Nevertheless, the number of parameters of LLaVA-1.5 is still much larger than CLIP, and thus
LLaVA-1.5 has a much longer preprocessing time as mentioned in Table C.1.
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C.5 How to Choose Hyperparameters

The main hyper-parameters of our negCLIPLoss and NormSim are the target numbers for lItering
(refer to Appendix C.2 for the setting of temperature and batch size), which is also the main concerns
for all the top baselines like DFN, MLM, and T-MARS. In the case of DataComp settings, noting that

all the top baselines in DataComp-medium benchmark keep the downsampling ratios ranging from
15% 30% to achieve the best results, we can set the sampling ratio as some previous baselines. Our
method with OAI CLIP teacher model rst selects the data with the top 30% negCLIPLoss, and then
selects the top 66.7% NormSim scores to keep 20% of the original pool. We don't tune the target size
carefully here for fair comparison.

In more general cases, we can recommend doan@ng-dataset-independentthresholds for Norm-

Sim, since the scores only depends on the npand target data rather than other data in the pool.
We recommend to set the threshold as 0.™NormSim, (Target) and 0.15 foNormSim, (IN-1K) in
general. On the other hand for negCLIPLoss, note that like NormSim, CLIPScore is also training-
dataset-independent, we recommend to rst nd the percentile of the data with CLIPScore=0.21, and
then downsample the dataset using CLIPLoss until that particular percentile.

Overall, nding optimal ltering ratio for data selection algorithm is always dif cult and out of the
scope of this paper. From the paper about the scaling law for data Itebitjg downsampling

size even depends on the computation budget. When you have more budget, you should sample
more data for learning. And thus another possible solution is to use their tting formula to get some
recommended downsampling ratios.

At last, we also note thah data selection problem, visualization is a simple but effective way for
tuning parameters or nding downsampling ratio8eople can rst randomly select a small subset

(like 1000 data) on some pretraining data subset, and then calculate the target scores (CLIPScore,
negCLIPLoss, NormSim or any other metrics) on them, and anlly visualize the data corresponding

to scores at different percentiles, like top 10%, 30%, 50% and 70% of the negCLIPLoss. In this
way, we can determine the threshold of Itering directly by observating the data. We also give some
visualization examples of our methods in Appendix E, We believe this is an effective way to give
some guidance on how to roughly select the initial downsampling ratios.

C.6 Discussion of NormSim

C.6.1 How NormSinm, Connects to Selecting the Data in Principal Components.

For convenience, we Iét(x;) denote the image embedding of the target data X +, andf (xs)
denotes the image embeddings of training dat2 X s. Then the de nition of NormSim on a data
Xs IS

X P
NormSinm,(Xt;Xs) = [f (x¢)” f (xs)]P (17)
Xt2XT1
Then wherp = 2, we have
X -
NormSimp(Xt; Xs) = [f (xs)™ F (x)] [F (x¢)”  (xs)] (18)
Xt2XT
X -
= f(xs)” [f (x)f (x¢)7] f(Xs) (19)
" Xt2XT1 | #1:2
1 X
/ f(xs) v f (x)f (x¢)”  f(xs) (20)

Xt2XT1

26



Note that = ﬁ x2x, T (x)f (xt)” is the variance matrix of the target image embeddings.
Then using NormSimfor Itering, we have

X
S = arg max NormSimp (X 1;Xs) (22)
ISIEN S axs

NormSimy(X1;xs) = f(xs)™  f(Xs) (22)

=f(Xs)”U S U™ f(xq) (23)

=y [f(x)7yP (24)

i=1

Here = USU” is the eigen decoposition of, whereS = diag(s;;:::;sf) withs; >:::>s

are the matrix of eigenvalues, abd= [uy;:::;u,] 2 RY ' are the corresponding eigenvectors

(i.e., the principal component directions). Note that the column vectdgsasfdf (xs) are all unit
vectors, (24) shows th&tormSim, select the data that match with the principal components, i.e.,
eigen directions); with large eigen values; .

C.6.2 Why NormSim works well without explictly considering data diversity.
We answer this question by the following reasons:

» Many top baselines, such as DFN and T-MARS, also don't explicitly consider diversity, yet
they still provide good performance. Devil even shows that valuable data is worth sampling
multiple times, which they call “quality duplication”. Therefore, one important reason
why NormSim works well without explicitly considering diversity may be that when the
computing budget is limited, as in the DataComp benchmark, the model rst needs to learn
the most useful and representative data, which should be similar to some target data.

» Moreover, we chose validation data from 24 downstream tasks ranging from ImageNet
to EuroSet, which may have covered a suf ciently diverse range of target examples for
NormSim to calculate similarity. The diversity of the target data will consequently result in
the diversity of the selected subset. And this also implies the importance of selecting a good
target dataset.

An additional reason may be that our proposed negCLIPLoss already implicitly selects more
diverse data, as shown in Figure 1 of the main paper. If some training data are diverse, they
will match less with other data and thus have a lower normalization term. This results in a
larger negCLIPLoss and a higher probability of being sampled.

D Additional Results

D.1 Stability Analysis of Batch Sampling Numbers in negCLIPLoss

We show that negCLIPLoss is not sensitive to the number of random select bidtechésgure 5.

D.2 Universality of negCLIPLoss over Different Teacher Models

We show the complete results of applying our methods to different teacher models like OAI CLIP-B/32
and DFN-P in Table 7. Detail descriptions are in Sec. 4.

D.3 NormSim, is Better than Nearest Neighbor Selection

We also try to use near-neighbor selection for aligning downstream distribution. Here, we calculate

the ranks of pretraining data for each target (the higher the rank, the higher the similarity), and then

for each pre-train data, we keep its highest rank. Finally, we select the data with the highest ranks as
the nearest neighbor selected subset.

In Table 8, we show that given the training data of 22 downstream task\l@unSim can
outperform near neighbor selection under the same downsampling ratio. The reason may be that the
distribution between the target and pretraining set is not well aligned, so if you force the algorithm to
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Figure 5: Results of negCLIPLoss with a different number of batch samples (denotepas
DataComp-medium. Solid lines denote negCLIPLoss, while dashed lines denote CLIPScore. Here,
we use OAI CLIP-L/14 as the pretrained model. We can see that lénce 5, negCLIPLoss
consistently outperforms CLIPScore across all subtask metrics. In the main paperive 4€t.

Table 7: Results on DataComp-medium from the top methods that use only OpenAl's CLIP-B/32
model or public version of DFN (DFN-P).

Dataset IN-1k  IN Dist. Shift VTAB Retrieval Avg.
OAI CLIP-B/32 Size (1sub-task)  (5) 1) @ (39
CLIPScore (20%) 22M 27.0 23.8 33.0 229 322
CLIPScore (30%) 33M 27.6 24.2 33.6 251 332
negCLIPLoss (20%) 22M 28.9 24.8 34.3 243 33.0
negCLIPLoss (30%) 33M 28.8 25.1 337 26.6 33.6
negCLIPLoss (30%) NormSim, (Target) 22M 324 274 35.9 26.3 352
DFN-P
CLIPScore (15%) 16M 25.9 23.3 329 219 316
CLIPScore (17.5%) 19M 30.2 26.8 34.1 265 338
CLIPScore (20%) 22M 29.7 26.8 33.0 27.0 331
CLIPScore (30%) 33M 28.4 247 33.2 26.8 327
negCLIPLoss (15%) 16M 31.3 27.3 _ 358 264 346
negCLIPLoss (17.5%) 19M 31.2 27.5 35.7 27.0 347
negCLIPLoss (20%) 22M 30.7 _ 274 33.6 275 338
negCLIPLoss (30%) 33M 28.9 255 334 273 332
negCLIPLoss (30%) NormSim, (Target) 22M 29.4 23.6 33.5 242 325
negCLIPLoss (17.5%9) NormSim, (Target)  16M 315 26.4 34.6 254 344
negCLIPLoss (17.5%) NormSin§**(Target) 16M 31.6 27.3 372 255 357

nd the nearest train data for each target, that train data may be sometimes random and not helpful.
On the other handlormSim;, will not select this kind of data. It will select the data whose best
similarity score exceeds some general threshold, rather than just consider ranks.

D.4 Vision-Only NormSim is Better than Using Both Vision and Language
In DataComp 1], they show that image-based Itering is better than text-based ltering. In our paper,

we also do an ablation study to support this. Due to the restriction of computation resources, we run
our NormSinp(IN-1k) andNormSim-D on DataComp-small as an example. Since ImageNet-1k
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Table 8: Comparison betwed&ormSimy and nearest neighbor selection. We use OAI CLIP-L/14
as the teacher model and assume both methods have been intersected with negCLIPLoss (30%). The
size of the selected subset is 22M.

Filtering Strategy IN-1k  VTAB Avg.
negCLIPLoss (30%) 27.9 33.2 32.9
Nearest Neibor Selection  31.5 34.9 34.0
NormSim (Target) 31.7 36.0 35.0

only has labels rather than long texts for describing images, we need to generate the caption before
calculatingNormSim (IN-1k). We select 80 templates as the original CLIP pagérdenerate
prompts for each class, and take the mean of their embeddings as the representative text embedding
for images within that class.

The results are in Table 9. We can see that for both metrics, we‘lmage only” > “image  text”

> “text only” . We believe the reason fiformSiny (IN-1k) is that the images themselves can convey
signi cantly more features than the text prompts generated by labelN&onSinm,-D, it should be
related to the large amounts of low-quality captions in the web-curated dataset. And “intagg

will also be in uenced by the informativeness and the quality of captions. In short, for NormSim,
using vision-only embeddings is a best choice.

Table 9: Ablation Study on the NormSim and its variants on DataComp-small (11M). All experiments
rst select 45% data based on the CLIP score, then use corresponding approaches to obtain 3.3M
data.“image” or “text” means using the variance of image or text embeddings to represgntand

“‘image text” means representingagetWith the cross-covariance of image and text embeddings.

Filtering Strategy \ CLIP score (45%) IN-1k IN Dist. Shift VTAB Retrieval Average

Random Sampling 4.2 4.9 17.2 11.6 15.6
NormSim (IN-1k, image) 5.2 55 19.0 12.2 17.4
NormSim (IN-1Kk, text) 3.9 4.2 16.3 11.3 14.9
NormSim (IN-1k, image text) 4.3 4.9 175 118 15.9
NormSim-D (image) 4.7 54 19.7 11.7 17.3
NormSim-D (text) 35 4.1 16.7 11.1 15.4
NormSim-D (image text) 3.6 4.2 18.4 111 15.8

E Additional Visualization

We further visualiz& more data with different negCLIPLoss in Figure 6, 7 and 8. And similar for
NormSim, (Target) in Figure 9, 10 and 11.

8We usehttps://github.com/ypwang61/research_tools/blob/main/visualization2.py (Im-
ageCaptionVisualizer) for visualizing the dataset. We also recommend visualizing basic dataset statistics
by https://Ist627.github.io/visdatacomp.github.io/
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Figure 6: Visualization of a small subset whose negCLIPLoss rank top 100% high in DataComp-
medium.
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Figure 7: Visualization of a small subset whose negCLIPLoss rank top 50% high in DataComp-
medium.
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Figure 8: Visualization of a small subset whose negCLIPLoss rank top 10% high in DataComp-
medium.

32



	Introduction
	Problem Setup
	Data Filtering Strategy
	negCLIPLoss: A Better Metric than CLIPScore
	NormSim: A New Training-Target Similarity Metric

	Experimental Results
	Setup
	Baselines
	Main Results and Discussions
	Comparision on D1 Category (Q1)
	Try Other Teacher Models (Q2)
	Comparison with D2 & D3 Categories (Q3)


	Conclusion and Limitation
	Acknowledgement
	Theoretical Interpretation
	Concentration of Normalization Term in negCLIPLoss
	Optimality of NormSim2 Under Linear Assumption 
	Theoretical Setup
	Generalization Guarantees
	Detailed proofs


	Illstration of Different Directions for Data Selection in Multimodal Contrastive Learning
	Details of Experiments
	Computation Cost
	Details of negCLIPLoss
	Details of NormSim2-D
	Details of Related Works
	How to Choose Hyperparameters
	Discussion of NormSim
	How NormSim2 Connects to Selecting the Data in Principal Components.
	Why NormSim works well without explictly considering data diversity.


	Additional Results
	Stability Analysis of Batch Sampling Numbers in negCLIPLoss
	Universality of negCLIPLoss over Different Teacher Models
	NormSim is Better than Nearest Neighbor Selection
	Vision-Only NormSim is Better than Using Both Vision and Language

	Additional Visualization
	NeurIPS Paper Checklist

