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Abstract

Data selection has emerged as a core issue for large-scale visual-language model
pretraining (e.g., CLIP), particularly with noisy web-curated datasets. Three
main data selection approaches are: (1) leveraging external non-CLIP models to
aid data selection, (2) training new CLIP-style embedding models that are more
effective at selecting high-quality data than the original OpenAI CLIP model,
and (3) designing better metrics or strategies universally applicable to any CLIP
embedding without requiring specific model properties (e.g., CLIPScore is one
popular metric). While the first two approaches have been extensively studied,
the third remains under-explored. In this paper, we advance the third approach by
proposing two new methods. Firstly, instead of classical CLIP scores that only
consider the alignment between two modalities from a single sample, we introduce
negCLIPLoss, a method inspired by CLIP training loss that adds the alignment
between one sample and its contrastive pairs as an extra normalization term to
CLIPScore for better quality measurement. Secondly, when downstream tasks are
known, we propose a new norm-based metric, NormSim, to measure the similarity
between pretraining data and target data. We test our methods on the data selection
benchmark, DataComp [1]. Compared to the best baseline using only OpenAI’s
CLIP-L/14, our methods achieve a 5.3% improvement on ImageNet-1k and a 2.8%
improvement on 38 downstream evaluation tasks. Moreover, both negCLIPLoss
and NormSim are compatible with existing techniques. By combining our methods
with the current best methods DFN [2] and HYPE [3], we can boost average
performance on downstream tasks by 0.9%, achieving a new state-of-the-art on the
DataComp-medium benchmark2.

1 Introduction

Curating large-scale visual-language datasets from web-sourced data has become common for
pretraining multi-modal models. However, the quality of these web-curated data pairs remains
a critical bottleneck. Research has shown that the choice of dataset significantly impacts model
performance, irrespective of the models and training techniques employed [4–11], and this motivates
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the development of various data selection strategies. This paper focuses on optimizing subset selection
from a �xed data pool to train a CLIP model [4] that achieves superior performance on zero-shot
downstream tasks.

Classical methodsrely solely on OpenAI's (OAI) pretrained CLIP model(i.e., a teacher model) and
focus on better utilizing the embeddings. The most commonly used one is calculating CLIPScore,
which measures the cosine similarity between the visual and language embeddings of the CLIP
model for the same sample, to eliminate low-quality data with mismatches between text and image.
Other works also leverage heuristic distribution alignment techniques to select samples relevant to
downstream tasks, such as image-based �ltering [1]. These approaches are generally viewed as
providing only limited enhancements. However, we argue that the potential of those embeddings
has been heavily under-explored. This work seeks a universal method to better employ any given
embeddings, not only from OAI CLIP, but also from other CLIP-style models.

On the other hand, recent leading data �ltering methods, instead of focusing on improving embedding
utilization stategy itself, mainly follow the other two directions, both employing external resources.
They either (1) useexternal non-CLIP modelsthat aid in data selection, (2) or useexternal high-
quality multi-modal datato train abetter CLIP-style embedding modelthan the original OAI CLIP to
�lter out low-quality data. Speci�cally, in the �rst line of works, HYPE [3] leverages embeddings
from hyperbolic models instead of the classical Euclidean-based CLIP to measure how each data point
has semantically overlaps with other data points and �lters out data with low speci�city. T-MARS [12]
removes images where the text is the only feature correlated with the caption using FAST [13], an
off-the-shelf OCR text detection model. Devil [14] applies fasttext [15] to remove non-English texts
and use BLIP-2 [16] model for digit recognition to keep useful images with digits. The second
direction, represented by Data Filtering Network (DFN) [2], involves training a new CLIP-style
teacher model that uses high-quality datasets like HQITP-350M. Although the embeddings extracted
from this model perform worse than the OAI CLIP in downstream tasks, it is particularly good at
�ltering out low-quality data. Notably, some of these methods can be combined and indeed, merging
the selected data from DFN and HYPE achieves current state-of-art as shown in HYPE [3].

Previous works mainly focus on improving the CLIP embedding quality or utilizing an external model
to do �ltering but employ the CLIP embedding in a suboptimal way by only using classical methods
like CLIPScore. In contrast, in this work, we focus on improving the �ltering methods themselves
for any given CLIP embedding. We show that there are universal and more effective strategies for
utilizing any CLIP teacher model, regardless of its architecture (e.g., B/32 or L/14) or the dataset it
was trained on (e.g., OpenAI-WIT-400M or DFN's high-quality dataset). These strategies should
always be orthogonal to the use of any newly trained CLIP-style models like DFN and might also be
compatible with methods using external models like FAST and BLIP-2.

Our Contributions. We propose an alternative to CLIPScores that we callnegCLIPLossthat more
accurately characterizes data quality. We also introduce a new distribution metric we call the p-Norm
Similarity Score (NormSim) when knowledge about downstream tasks is available. Two major
observations directly inform our proposals:
• Firstly, we observe that classical methods measure the quality of a multi-modal sample by com-

puting the cosine similarity between its visual and language embeddings, believing that lower
similarity indicates that the text does not match its image part well. However, we �nd that some
less informative samples may have a systematic bias, which leads to higher CLIPScores. For
example, the language part containing the word "image" can result in higher similarity with any
visual part, even when the text does not accurately describe its image content. Our proposed
methodnegCLIPLoss, inspired by the standard CLIPLoss, normalizes the original CLIPScore by
the similarity between a sample and its contrastive pairs. For example, the high score caused by the
word "image" is typically consistent across its contrastive pairs, so our adjustment reduces this bias.
As we have highlighted, such replacement can be universally applied across different embedding
models. See Fig. 2 for illustrations.

• Secondly, if one has access to examples drawn from the same distribution as the target task, it
is natural to assume that this extra knowledge could be leveraged to inform the data �ltering
process. We propose theNormSim metric to measure the vision similarity between a training
samplex and the target task datasetX v

target 2 Rn � D de�ned askf v (X v
target)f v (xv )kp, where

f v : RD ! Rd is the vision encoder of teacher model so thatf v (X v
target) 2 Rn � d, f v (xv ) 2 Rd,

andf v (X v
target)f v (xv ) 2 Rn , andk � kp is thep norm; effective choices arep = 2 or 1 . Notably,

unlike previous ImagetNet-based �ltering [1], which tries to keep the training set as diverse as
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downstream tasks by clustering the training set and �nding the nearest neighbor group forevery
target sample, our method does not explicitly consider the diversity but select examples as long
as it is close toany target sample(i.e. select high NormSim score). Notably,negCLIPLossand
NormSim enjoy complementary effect in data selection. See Fig. 3.

To illustrate the effectiveness of our methods, we use a widely used benchmark DataComp [1] as
our primary method of evaluating the datasets created by our data �ltering methods. We show that,
by simply replacing the CLIPScores withnegCLIPLoss and utilizingNormSim we are able to
exceed the best OAI-CLIP(L/14)-based baseline by 5.3% on ImageNet-1k and 2.8% on average
across 38 downstream tasks, which is similar or even better than the performance achieved by many
external-resources-based methods. Notably, even if the target downstream tasks are not available,
using NormSim on a proxy downstream task constructed from the training set, calledNormSim2-D,
combined with negCLIPLoss, can also gain a 1.9% improvement on 38 downstream evaluation.

Moreover, the improvements achieved by our methods are not limited to OAI CLIP-based methods
but can also be obtained by combining our methods with advanced models that require external
resources.By merging the subset selected bynegCLIPLossandNormSimwith the subset selected
by current state-of-the-art method “HYPE[ DFN”, we can further improve it by 0.9% on both
ImageNet-1k and on average 38 downstream tasks. Besides, we can also achieve a 0.8% improvement
on average 38 tasks over "HYPE[ DFN" using only the data selected by DFN and our strategies.
More importantly, we demonstrate that negCLIPLoss, as a replacement for CLIPScore, can be applied
to any other embedding models like OAI-L/14, OAI-B/32, and DFN-B/32, universally boosting
performance from 0.4% to 3.0% on an average of 38 tasks. This result is not only technically
insightful for understanding the information available in embeddings but also practically signi�cant.
Compared to existing methods, our approach saves a signi�cant amount of computational time on
both reprocessing and new embedding retraining as shown in Table 5.

2 Problem Setup

Data Filtering on Multimodal Dataset. We are given a training datasetD train = f xv ; x l g, where
(xv ; x l ) 2 RD is the image-text (vision-language) training pair. For convenience, we will let
superscriptvl denote either modality so that, for example,xvl 2 xv ; x l . Our goal is to identify a
subsetS � D train that maximizes the zero-shot accuracy of the CLIP model on some downstream
tasks whenS is used to train the CLIP model.

CLIP score and embedding. Recent efforts, such as LAION [5] and DataComp [1], use Ope-
nAI's CLIP ViT-L/14 model [4] as a teacher model to obtain quality score. Here we denote
this vanilla CLIP model as�f vl . For any pairxvl , the model outputs a normalized unit-vector
�f vl (xvl ). If X vl := f xvl

1 ; : : : ; xvl
m g denotes a dataset containingm samples, then we de�ne

�f vl (X vl ) = [ �f vl (xvl
1 ); : : : ; �f vl (xvl

m )]> 2 Rm � d as the embedding matrix. The popular �ltering
metric “CLIPScore” is de�ned ash�f v (xv ); �f l (x l )i 2 [� 1; 1].

Dataset and model.Here we follow the pipeline of Datacomp [1] to standardize the training and
evaluation process. This is a testbed for dataset experiments aiming to open-source and further
improve the vanilla CLIP model and is widely adopted in previous data selection papers [17, 18, 12,
2, 19, 7]. We will give more details in Sec. 4.

3 Data Filtering Strategy

3.1 negCLIPLoss: A Better Metric than CLIPScore

In this section, we introduce a better and statistically interpretable quality metric called negCLIPLoss,
which directly replaces the common metric CLIPScore. Fig. 1 illustrates how negCLIPLoss works.
This new metric only requires negligible extra computational costs and no additional external data
collection costs. As the name suggested, this metric is inspired by the standard CLIP loss used in the
actual training process of the teacher CLIP model, which is de�ned as

`B � (xvl
i ) = �

1
2

"

log
exp( �f v (xv

i )> �f l (x l
i )=� )

P
j 2 B � exp( �f v (xv

i )> �f l (x l
j )=� )

+ log
exp( �f v (xv

i )> �f l (x l
i ))=�

P
j 2 B � exp( �f v (xv

j )> �f l (x l
i )=� )

#

(1)

HereB � is the random batch wherei -th sample belongs during a particular training step, and� is
the learnable temperate parameter. Notably, the teacher loss differs from CLIPScore primarily by a
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Figure 1: Illustration of negCLIPLoss. CLIPScore may underestimate (bottom left, where the data
quality is high but CLIPScore is low) or overestimate (bottom right, where the data quality is low
but CLIPScore is high) the quality of image-text pairs. However, this issue can be mitigated by
simply subtracting a normalization termR. negCLIPLoss employs the teacher model to calculate
the negative CLIP loss on training data and serves as a more accurate metric. Here, “Top X%”
denotes that the score represents the top X%high values within the entire dataset (i.e., the (100-X)%
percentile among all the values). For example, “R : Top 100%” means this data has almost the
smallestR among the whole dataset, which represents that it contains highly speci�c elements in
both images and texts.
normalization termR � as follows:

� � � `B � (xvl
i ) = �f v (xv

i )> �f l (x
l
i )| {z }

CLIPScore

�
�
2

"

log
X

j 2 B �

exp(
�f v (xv

i )> �f l (x l
j )

�
) + log

X

j 2 B �

exp(
�f v (xv

j )> �f l (x l
i )

�
)

#

| {z }
normalization termR �

In practice, since the training dataset of teacher CLIP models, like OAI-WIT400M [4], and the actual
batch divisionsB � is inaccessible, we randomly selectK batches from the student model's training
data and use the averaged results fromf Bk gK

i =1 to estimate the normalization termR � onB � :

negCLIPLoss(xvl
i ) := �

�
K

KX

k =1

`B k (xvl
i ) � CLIPScore(xvl

i ) � R � (2)

Here f Bk gK
i =1 are some batches randomly selected from the student model's training data and

x i 2 Bk ; 8k. We chooseK = 10 in our experiments, but any sample size larger than 5 is suf�ciently
stable for estimating the original CLIPLoss (Details in Appendix D.1). Besides, in Sec. 4.3.3 we also
show that the computational cost introduced byR remains negligible compared to other baselines.
The temperature� and batch sizejB � j can be directly obtained from the parameters of the pretrained
teacher model. More details of negCLIPLoss are in Appendix, including the concentration analysis of
R (Appendix A.1), pseudocode (Algorithm 1), and the ablation study of� andjB j (Appendix C.2).

Figure 2: Comparison of negCLIPLoss and
CLIPScore across different downsampling ra-
tios on DataComp-medium.

Motivation behind negCLIPLoss. Other existing
works also use loss-guided data selection, such as
LESS [20] in NLP, CoDis [21] in CV, and RHO [22]
in general data scheduling scenarios. However, it is
still unclear whether selecting based on teacher loss
is suitable for multi-modal contrastive learning. Here
we give an af�rmative answer as shown in Fig. 2,
where we can see negCLIPLoss performs better than
or on par with CLIPScore consistently.

To illustrate how teacher loss helps our selection, we
demonstrate that the normalization term provided by
negCLIPLoss is crucial for correcting the overestima-
tion or underestimation inherent in CLIPScore. A high normalization term implies that either the
image embedding, text embedding, or both can easily match multiple contrastive pairs beyond their
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Figure 3: Illustration of NormSim on DataComp.X target is the target prior data. “Top X%” denotes
that the score represents the top X% high values within the entire dataset. (a) Visualization of data
with different NormSim and negCLIPLoss. Here we useNormSim2(ImageNet-1k) as an example.
Although both Type 2 and Type 4 data have high negCLIPLoss and thus high quality, data with low
NormSim2 (Type 4) are more irrelevant to downstream tasks like ImageNet, VTAB, and MSCOCO.
For example, they contain many images dominated by OCR content and make little contribution to
improving downstream performance. (b) Illustration of a rough comparison of sampling data for
different �ltering methods. Using “negCLIPLoss\ NormSim” �ltering can balance the quality and
relevance to downstream tasks, thus increasing the proportion of Type 2 data. (Refer to Appendix E
for more visualization.)

corresponding counterparts. For example, in the bottom right of Fig. 1, the text containing “Image”
or “Photo” can be easily matched with any visual content. Similarly, the image of “verloopring” only
contains very simple features and can be matched with many words like “white”, “empty” or “circle”,
etc. Consequently, despite a high absolute CLIPScore, the relative negCLIPLoss within its batch can
be lower. In contrast, the bottom left features highly speci�c elements in both text and images, such
as "Islands Harbor," "American football", and "sheep at green". These elements are speci�c and less
likely to match with contrastive pairs, resulting in a higher relative negCLIPLoss.

3.2 NormSim: A New Training-Target Similarity Metric
Our proposed negCLIPLoss is a universal approach to improve �ltering performance by estimating
quality better, and it does not rely on any downstream task. Now, if we can access some knowledge
of the downstream tasks, we could further improve the performance by using a vision-onlyp-norm
similarity to target datametric to measure the relationship between each training sample and the
downstream target data. We will discuss the reason to use vision-only embedding later in this section.

Speci�cally, we assume access to the target set of downstream tasks and denote them asX target =
f x target;(1) ; : : : ; x target;(m ) g, where eachx target;( i ) 2 Rd is i.i.d.-sampled from the target downstream
distributionPtarget

3, but without overlapping with the test set. Then, for each training samplexvl and
the corresponding target setX target, the NormSim is de�ned as:

NormSimp (X target; x) := k �f v (X v
target) �f v (xv )kp =

0

@
X

x t 2 X target

�
�h�f v (xv

t ); �f v (xv )i
�
�p

1

A

1=p

(3)

We select the subsetS by choosing the samples with top-N highestNormSimscores. The choice of
the norm typep can be based on the data distribution and training process. In this paper, we consider
two instantiations ofp:

Whenp = 2 , our data selection method can be regarded as the following equation. It's equivalent to
selecting a subset that aligns with the principal components of the target set variance (Appendix C.6.1).

3Although out-of-distribution tasks like “WILDS” have distribution shift between training data and test data,
they still provides useful information of the test data.
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S = arg max
j S j = N

X

i 2 S

NormSim2(x t ; x i ); NormSim2(x t ; x i ) =

0

@
X

x t 2 X target

�
�
� �f v (xv

t )> �f v (xv )
�
�
�
2

1

A

1=2

(4)

Whenp = 1 , the distance metric can be regarded as an even more optimistic measure, such that
a training sample will be selected if it has high similarity toany target sample. Note that this is
different from nearest-neighbor-based method used in image-based �ltering [1], where they are trying
to �nd the nearest training sample ofevery target sample. In this case, it can be regarded as:

S = arg max
j S j = N

X

i 2 S

NormSim1 (x t ; x i ); NormSim1 (x t ; x i ) = max
x t 2 X target

�f v (xv
t )> �f v (xv

i ) (5)

In Appendix D.3, we also show that ourNormSim1 can outperform the nearest neighbor selection
on the downstream target tasks. Here, we show an example selected via theNormSim2(ImageNet-1k)
in Fig. 3, showing that this vision-target-aware method is complementary to the quality-based one.

Choice of Target Data.In the experiment parts, we try two kinds of target data: training data from
ImageNet-1k (1.3M) or training data from all 24 accessible downstream tasks (2.1M)4. We denote
them asNormSimp(IN-1k) andNormSimp(Target), respectively.

Necessity of using vision-only informationWe use only the visual informationxv instead of multi-
modal informationxvl for measuring similarity. This is because common crawled text often has
brief captions, making the OAI CLIP language embedding weaker than its visual embedding model
[1, 23–25]. Consequently, the language part cannot characterize the pre-training and downstream task
distribution as well as the visual part. This phenomenon is also observed in Gadre et al. [1], where
image-based �ltering (select data whose image embeddings are similar to that from ImageNet-1k)
outperforms text-based �ltering (select data whose captions contain words from ImageNet-21k).
More ablation studies are provided in Appendix D.4.

Generality of NormSim in choosing teacher model.Notably, since we just use image embeddings
in the NormSim metric, we believe it unnecessary to use CLIP model to obtain NormSim. Norm-
Sim can be a general metric for selecting target-related image/image-text data if any good image
representations are given, like the representations obtained from pretrained ResNet-50.

Theoretical justi�cation. Unlike many existing methods that force diversity by selecting training
samples around eachx target, our strategy maximizes similarity without directly considering data
diversity. For thep = 2 case, we demonstrate that maximizingNormSim2 is optimal under a
linear model�f v , as shown in Appendix A.2. Our theorem also provides error guarantees for noisy
embeddings and explains when vision-only embeddings outperform combined vision and language
embeddings. Recent work by Joshi et al. [26] provides a similar analysis but focuses on high-quality
data and cross-variance between images and texts. This approach is less effective than image-only
methods for �ltering noisy datasets, as discussed above.

Using proxy when downstreamX target is inaccessible.Surprisingly, we show that the 2-norm can
also be used when only the pre-training set is available. In this case, we construct a proxy “target” set
from the pre-training set itself. Speci�cally, letSi be the selected subset at stepi , then we treat the
currentSi as the proxy “target” set. To construct the next smaller set, we select the next data batch
Si +1 satisfyingarg maxSi +1 � Si

P
x 2 S NormSim2(Si ; x); until reaching an N size subset. We call

this approachNormSim2-D (Dynamic) and will specify the algorithm details in Appendix C.3.

4 Experimental Results
In this section, we evaluate the performance of negCLIPLoss and NormSim, aiming to address the
following questions:Q1: Given a �xed CLIP teacher model, can our methods more effectively utilize
CLIP embeddings for data �ltering?Q2: Are our methods applicable to diverse CLIP teacher models
with varying architectures or different pretrained datasets?Q3: How does our method compare to
other leading approaches that utilize external models or multimodal datasets? Additionally, could our
method be compatible with these methods and enhance their effectiveness?

4Here we only use the target data for data selection, instead of training on them. The target dataset is
signi�cantly smaller than pretraining set like DataComp-medium (128M) or external datasets like HQITP-350M
utilized by DFN [2].
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4.1 Setup

We adhere to the standardized training and evaluation protocols of the DataComp benchmark [1].
Training con�guration. We employ the medium-scale training con�guration of DataComp
(DataComp-medium). It provides a substantial dataset comprising 128 million low-quality, web-
curated image-text pairs to be �ltered. Once the data subset is obtained by some data �ltering strategy,
it will be used to train a �xed CLIP-B/32 model in a �xed training budget that allows the model to
pass 128 million data points an epoch. Therefore, smaller subsets will be repeated more frequently,
ensuring a fair comparison. We note that the size of the DataComp dataset becomes smaller over time
since some URLs of images become invalid5, and we only successfully downloaded about 110M data.
Therefore, the results of baselines on the leaderboard do not apply to our datasets, and we reproduce
all the top baselines on the leaderboard with their public UIDs of the selected data.

Evaluation. We measured the model performance on 38 downstream datasets including image
classi�cation and retrieval tasks followed by DataComp. The image classi�cation tasks contain
ImageNet-1k [27], ImageNet distribution shifts [28–31], 11 datasets from the Visual Task Adap-
tation Benchmark (VTAB) [32] and 3 datasets from WILDS [33, 34]. Retrieval datasets contain
Flickr30k [35], MSCOCO [36] and WinoGAViL [37].

Teacher model architecture.Our experiments utilize two architectures for OpenAI's CLIP teacher
models: ViT-L/14 and ViT-B/32. Additionally, we use the public version of DFN (DFN-P) proposed
by Fang et al. [2] as a teacher model, and its architecture is also ViT-B/32.

4.2 Baselines
We restate the three current research directions mentioned before based on how much external
resources are employed: (D1) using OAI CLIP alone while optimizing embedding employment
strategies, (D2) training and using a more advanced CLIP embedding model based on external data,
and (D3) utilizing non-CLIP external models to aid data selection. It is important to note that D2
and D3 may also incorporate strategies from D1. For example, CLIPScore (D1) has been used in
almost all the top methods. Therefore, we categorize baselines by the largest possible category they
encompass. According to the above categorization, we summarize the baselines we used in our
experiments as follows. Please refer to Fig. 4 and Appendix C.4 for more details.

D1: OAI CLIP embedding only. The learner can only access the pretraining dataset (like DataComp-
medium), the original OAI CLIP teacher model that is used to extract embeddings, and some target
data of the downstream tasks which is much smaller than the pretraining dataset (like ImageNet-1k).
In this category, we don't use any existing external non-CLIP models or any newly trained CLIP
model based on external multi-modal dataset. In detail, This category includes (1)CLIPScore [38],
which only uses CLIPScore for �ltering as we mentioned before. (2)Image-based �ltering [1],
which uses ImageNet-1K training data as the downstream target data for data �ltering. It applies
k-means clustering to theimageembeddings of training data and selects clusters closest to the
ImageNet-1K embeddings. Gadre et al. [1] also try to combine image-based �ltering and CLIPScore
together. (3)D2 Pruning [18], which represents the dataset as an undirected graph and selects the
data by combining dif�culty and diversity. They use the CLIP score to initialize their graph.

D2, D3: Accessible external model and multi-modal data.All the current top baselines enable the
learner to utilize external resources, either to train a better CLIP teacher model or to help �ltering
using existing models' properies. In detail, (1)DFN [2] trains another CLIP data �ltering network
via external high-quality data. Their currently public model (DFN-P) is trained on CC12M [39] +
CC3M [40] + SS15M [41], while the best DFN is trained on nonpublic HQITP-350M [2], which
is even larger than DataComp-medium. (2)HYPE [3] leverages hyperbolic embeddings (different
from CLIP embedding) and the concept of entailment cones to �lter out samples with meaningless
or underspeci�ed semantics, enhancing the speci�city of each sample. (3)HYPE [ DFN proposed
by [3] samples subset separately for each method and then merge them. This is the state-of-the-art
method on the DataComp benchmark for medium size. (4) Other methods includingT-MARS [12],
Devils [14], MLM [42], which leverage external models such as text detection model FAST [13],
BLIP-2 [16] and LLaVA-1.5 [43, 44] to heuristically select data. See details in Appendix C.4.

Cross-setting comparison.We make these separations for fair comparison. Intuitively, performance
should be ranked asD2, D3 > D1. However, our results show that cross-setting comparisons are
possible and our D1 methods can perform similar or even better than most of D3 methods.

5See https://github.com/mlfoundations/datacomp/issues/3. Similar issues are proposed byD2 pruning [18].
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Table 2: Results on DataComp-medium from methods that use only OpenAI's CLIP-L/14 model, i.e.,
all methods are from theD1 category. The “dataset size” represents the size of the subset obtained
from different approaches. NormSim(IN-1k) denotes using the training data of ImageNet-1k as the
target while NormSim(Target) represents using that of all 24 available downstream tasks. NormSim-D
refers to the methods that use an iteratively selected subset from the training set as the target proxy.

Filtering Strategy Dataset IN-1k IN Dist. Shift VTAB Retrieval Avg.
Size (1 task) (5) (11) (3) (38)

No �ltering [1] 110M 17.3 15.0 25.2 21.3 25.6
CLIPScore (20%) [38] 22M 25.4 22.7 31.8 22.0 31.0
CLIPScore (30%) [38] 33M 26.4 23.6 32.6 24.5 32.2
Image-based [1] 24M 25.5 21.9 30.4 24.6 29.9
CLIPScore (30%)\ Image-based [1] 11M 27.4 23.9 31.9 21.4 30.8
D2 Pruning [18] 22M 23.2 20.4 31.4 18.7 29.5

negCLIPLoss (20%) 22M 27.4 23.8 33.7 23.7 32.5
negCLIPLoss (30%) 33M 27.9 24.6 33.2 25.1 32.9

CLIPScore (30%)\ NormSim2-D 22M 28.3 25.0 34.5 22.7 32.9
negCLIPLoss (30%)\ NormSim2-D 22M 29.8 26.1 34.8 24.6 34.1

CLIPScore (30%)\ NormSim2(IN-1k) 22M 29.1 25.4 35.8 24.1 33.4
CLIPScore (30%)\ NormSim2(Target) 22M 28.9 25.1 32.7 23.6 32.5
CLIPScore (30%)\ NormSim1 (IN-1k) 22M 29.7 25.9 33.7 24.1 33.7
CLIPScore (30%)\ NormSim1 (Target) 22M 30.2 26.2 35.0 23.4 33.9

negCLIPLoss (30%)\ NormSim2(IN-1k) 22M 30.4 26.4 35.4 25.6 34.3
negCLIPLoss (30%)\ NormSim2(Target) 22M 30.6 26.2 35.2 25.5 33.9
negCLIPLoss (30%)\ NormSim1 (IN-1k) 22M 31.9 27.3 34.8 25.0 34.4
negCLIPLoss (30%)\ NormSim1 (Target) 22M 31.7 27.2 36.0 26.0 35.0

4.3 Main Results and Discussions

4.3.1 Comparision on D1 Category (Q1)

Table 1: Results on DataComp-medium from
the top methods that use only OpenAI's CLIP-
B/32 model or public version of DFN (DFN-P).
“NormSimB/32

1 ” represents using OAI CLIP-B/32
to calculate NormSim1 .

Strategy Size IN-1k VTAB Avg.

OAI CLIP-B/32

CLIPScore (30%) 33M 27.6 33.6 33.2
CLIPScore (20%) 22M 27.0 33.0 32.2

negCLIPLoss (30%) 33M 28.8 33.7 33.6
negCLIPLoss (20%) 22M 28.9 34.3 33.0

negCLIPLoss (30%) 22M 32.4 35.9 35.2\ NormSim1 (Target)

DFN-P

CLIPScore (30%) 33M 28.4 33.2 32.7
CLIPScore (20%) 22M 29.7 33.0 33.1
CLIPScore (17.5%) 19M 30.2 34.1 33.8
CLIPScore (15%) 16M 25.9 32.9 31.6

negCLIPLoss (30%) 33M 28.9 33.4 33.2
negCLIPLoss (20%) 22M 30.7 33.6 33.8
negCLIPLoss (17.5%) 19M 31.2 35.7 34.7
negCLIPLoss (15%) 16M 31.3 35.8 34.6

negCLIPLoss (30%) 22M 29.4 33.5 32.5\ NormSim1 (Target)
negCLIPLoss (17.5%) 16M 31.5 34.6 34.4\ NormSim1 (Target)
negCLIPLoss (17.5%) 16M 31.6 37.2 35.7
\ NormSimB/32

1 (Target)

In Table 2, we compare the D1 methods where
only the OAI CLIP model is allowed to be used.

Our Methods leverage OAI CLIP-L/14 better.
First, negCLIPLoss outperforms CLIPScore on
all metrics, regardless of whether it is used alone
or combined with other methods. These results
support our claim that negCLIPLoss can more
accurately estimate the data quality.

Second, even when target knowledge is unavail-
able, useNormSim2-D together with negCLI-
PLoss can still improve the �ltering performance
by 1.9% on average 38 downstream tasks.Third,
when target knowledge is available,NormSim2
andNormSim1 can improve �ltering more sig-
ni�cantly compared withNormSim2-D, andin
general,NormSim1 is the best choice. Espe-
cially, compared with the best baseline `CLIP-
Score (30%)', our best combination `negCLI-
PLoss\ NormSim1 (Target)' improves5.3%
onImageNet-1kand2.8% on average38 down-
stream tasks, respectively. Later in Table 3 we
will see that this result outperform all the D3
baselines except DFN[ HYPE. On the other
hand, when using ImageNet-1k as the target
data, the choice of norm has very little in�u-
ence.
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Table 3: Results of all D1&D2&D3 top methods on DataComp-medium. The results of MLM [42]
are from their paper, while all other baselines are reproduced on our downloaded dataset using their
of�cial UIDs. “Ours (20%)” refers to use “negCLIPLoss (30%)\ NormSim1 (Target)” to get 20%
of original data, while “Ours (10%)” denotes applying “negCLIPLoss (20%)\ NormSim1 (Target)”
to get 10%. And we use “*” to indicate the case where we choose the intersection of the data selected
by using OAI CLIP-B/32 and OAI CLIP-L/14 separately, which results in about 15M data for “Ours
(20%)*” and 7.4M data for “Ours (10%)*”.

Type Filtering Strategy Dataset IN-1k IN Dist. Shift VTAB Retrieval Avg.
Size (1) (5) (11) (3) (38)

D3 T-MARS [12] 22M 30.8 26.3 34.8 25.4 34.1
D3 Devil [14] 20M 31.0 26.7 35.9 24.7 34.5
D3 MLM [42] 38M 30.3 25.6 36.0 29.0 34.5
D3 HYPE [3] 10M 30.3 25.8 34.3 22.2 31.9
D2 DFN [2] 16M 36.0 30.1 36.2 27.0 35.4
D3 DFN [ HYPE [3] 20M 36.4 30.8 38.5 28.0 36.8

D1 Ours (20%) 22M 32.4 27.4 35.9 26.3 35.2
D3 DFN [ Ours (20%)* 23M 36.4 30.9 38.6 28.1 37.6
D3 DFN [ HYPE[ Ours (10%)* 22M 37.3 31.4 38.5 27.6 37.7

4.3.2 Try Other Teacher Models (Q2)

To evaluate whether our method applies to other CLIP teacher models, we replaced OAI CLIP-L/14
with OAI CLIP-B/32 and DFN-P as embedding models. We compare the best baseline “CLIPScore”
with our “negCLIPLoss” and best strategy “negCLIPLoss\ NormSim1 (Target)” as shown in Table 1
and Appendix D.2. Note that the original DFN paper selects a subset comprising 19.2M data points,
which accounts for approximately17:5% of our dataset and15%of their dataset, we incorporate
these sampling ratios into our comparison.

negCLIPLoss can be applied to different CLIP embedding models.Our proposed negCLIPLoss,
as a replacement of CLIPScore, not only leads to better performance compared to all the other
baselines using OAI CLIP-L/14 as shown in Table 2, but also achieves universal improvement on the
other two CLIP embedding models, OAI CLIP-B/32 and DFN-P as shown in Table 1. Our methods
can consistently outperform all downstream tasks for different �ltering ratios and models, like a
0.5%-5.4% increase on ImageNet-1k.

Embedding required by NormSim should have good downstream performance.When combining
negCLIPLoss withNormSim1 , OAI CLIP-B/32 and DFN-P exhibit completely different behaviors.
The former obtains results even better than those in Table 2, which uses OAI CLIP-L/14 as the
teacher model, while DFN-P achieves results even worse than using negCLIPLoss alone6. The
reason is that, unlike OAI CLIP-B/32, DFN-P is specially designed for data �lteringat the expense of
downstream task performance, as claimed by its authors. For example, the ImageNet-1k accuracy
for DFN-P, OAI CLIP-B/32, and OAI CLIP-L/14 are 45%, 63%, and 75%, respectively. This
indicates that the embeddings obtained from DFN on target data might be highly unreliable, leading
to inaccurate similarity calculations between training and target data. To support this, if we use
DFN-P to evaluate negCLIPLoss but utilize OAI CLIP-B/32 for calculating NormSim, as shown in
"negCLIPLoss (17.5%)\ NormSimB/32

1 (Target)", we can further improve the results compared to
using negCLIPLoss alone. Its average performance on 38 tasks is even higher than utilizing the best
DFN (trained on HQITP-350M) with CLIPScore, as shown in Table 3.

4.3.3 Comparison with D2 & D3 Categories (Q3)

In this part, we compare all the D2 & D3 baselines mentioned in Sec. 4.2 together with our best
strategy in Table 3. Here we reproduce all the baselines if their of�cial UIDs are available. For “A[
B” mentioned in Table 3, we follow the way of “HYPE[ DFN” in Kim et al. [3] to merge the data,
which generates the sampling subset separately for each method and then merge them. This will result
in oversampling the shared data, which is intuitively more important.7 We also show the best result

6see "negCLIPLoss (30%)\ NormSim1 (Target)" versus "negCLIPLoss (20%)/(30%)" and "negCLIPLoss
(17.5%)\ NormSim1 (Target)" versus "negCLIPLoss (17.5%)/(15%)"

7For the dataset size of “A[ B”, we count the number of the unique data in the dataset followed HYPE [3].
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we obtain by combining our method with DFN [2] and HYPE [3] on the full DataComp-medium
dataset in Table 4, where the baselines are from DataComp benchmark.

Table 4: Results of the top methods on the full
DataComp-medium dataset (128M data).

Strategy IN-1k Avg.

No �ltering 17.6 25.8
CLIPScore [38] 27.3 32.8
T-MARS [12] 33.0 36.1
Devils [14] 32.0 37.1
DFN [2] 37.1 37.3
DFN [ HYPE [3] 38.2 37.9

DFN [ Ours (20%) 37.5 38.6
DFN [ HYPE[ Ours (10%) 38.2 38.8

Our methods can outperform most of the D3
methods. In Table 3, we show that without us-
ing any external models or data, our best combina-
tion, i.e., using OAI CLIP-B/32 for “negCLIPLoss
(30%)\ NormSim1 (Target)” (Ours (20%)), still
outperforms all methods except DFN and “DFN
[ HYPE”. This answers the �rst part of Q3 and
further indicates that some external models may be
redundant since CLIP embeddings already contain
necessary information.
We can further improve the SOTA method.
In Table 3, we show that our model can further
boost the performance of the current SOTA method
“HYPE [ DFN” by 0.9% on both ImageNet-1k and
on average 38 downstream tasks, and close results can be achieved even without combining HYPE
which utilizes the external embedding model MERU [45]. And we update the SOTA performance of
the DataComp-medium (full dataset) benchmark as shown in Table 4. Here we use the data selected
by both OAI CLIP-B/32 and L/14, which we found is more robust than using one of them alone.
Our better results answer the second part of Q3, that is, our methods can be compatible with other
D2&D3 methods.

5 Conclusion and Limitation
In this paper, we introduce two metrics, negCLIPLoss and NormSim, to enhance data selection in
multimodal contrastive learning without relying on external resources. negCLIPLoss provides a
more accurate quality metric compared to the commonly used CLIPScore, while NormSim measures
the similarity between pretraining data and target data for known downstream tasks. Experiments
show that our methods achieve results that are competitive with or even better to approaches using
external models or datasets. Additionally, negCLIPLoss and NormSim are compatible with existing
top techniques, allowing us to achieve a new state-of-the-art by combining them.

A notable limitation of our study is the exclusion of larger pretraining datasets, such as the large and
xlarge scales of DataComp. However, DataComp-medium is the most commonly used benchmark for
data selection in CLIP pretraining, and our method has demonstrated both effectiveness (Table 2-3)
and ef�ciency (Table 5) on it. Future directions include exploring better ways to merge data selected
by different methods and incorporating our methods into data scheduling scenarios.
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A Theoretical Interpretation

A.1 Concentration of Normalization Term in negCLIPLoss

In this section, we construct a theorem using the concentration inequality to show that when the batch
size is suf�ciently large, the normalization termRB k obtained from actual batchBk can approximate
RB �

calculated using ground truth batchB � quite well. The details are as follows:

We assume that the pretraining datasetD is ndependent and identically distributed (i.i.d.) sampled
from some distributionP. Besides, to use pretraining data batch to approximate the ground truth
batch, one necessary condition is that their distribution is similar. Here for simplicity, we assume that
they are alsoi.i.d..

Assumption A.1. We assume that the ground-truth batch of dataB � used by the teacher model is
i.i.d. to the pretraining datasetD which is required to be �ltered.

For simplicity, we denotesij = �f v (xv
i )> �f l (x l

j ); i; j 2 B to be the cross-image-text similarities in
the batchB . Then the normalization term can be written as

R B
i =

�
2

2

4log(
X

j 2 B

exp(sij =� )) + log(
X

j 2 B

exp(sji =� ))

3

5

Heresij 2 [� 1; 1]. We will show thatR B
i = (1 + o(1)) � R B �

i for all i whenjB j is suf�ciently large,
which means that we can use the random batch to approximate the ground-truth batch.

Theorem A.1. If Assumption A.1 holds and the batch size satis�esjB j = jB � j, then we have
R B

i = �(log( jB j)) while jR B
i � R B �

i j = O( 1p
jB j

) for anyi 2 B \ B � .

Proof. Sincesij 2 [� 1; 1], It's obvious thatR B
i = �(log( jB j)) . Let � ij := exp( sij =� ) �

Ej [exp(sij =� )], then � ij is zero-mean. Note that since the data isi.i.d., so does� ij , and we
denote := Ej [� 2

ij ]. Note thatj� ij j � e1=� =: M , from Bernstein inequality we have
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A similar conclusion holds forB � . These result that with probability at least1 � � , we have

j
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4
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Thus we havej
P

j 2 B exp(sij

� )�
P

j 2 B � exp(sij

� )j � 2t(jB j; ; � ). Furthermore, for anyx1; x2 > 1,

it's easy to prove thatj log(x1) � log(x2)j � j x 1 � x 2 j
min( x 1 ;x 2 ) . Therefore, we havej log(

P
j 2 B exp(sij

� )) �

log(
P

j 2 B � exp(sij

� )) j . O( 1p
jB j

). Similar claims hold forjR B
i � R B �

i j.

A.2 Optimality of NormSim 2 Under Linear Assumption

In this section, we give a theoretical justi�cation on the NormSim metric whenp = 2 under the linear
model assumptions when low quality image and mismatched text has already been removed. In other
words, we mainly focus on the following strategy.

S = arg max
j S j = N

X

i 2 S

�f v (xv
i )>

0

@ 1
jX targetj

X

x t 2 X target

�f v (xv
t ) �f v (xv

t )>

1

A

| {z }
�� target_proxy

�f v (xv
i ) (6)
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A.2.1 Theoretical Setup

Training data. For anyx v ; x l 2 Rd observable image and text training pairs, we de�nezv ; z l to
be the corresponding latent vectors which contain all semantically pertinent information about our
tasks of interest. Similar to previous theoretical work [46], we assume each i.i.d pairzvl follows
zero-mean sub-gaussian distribution whose cross-covariance satis�es

Cov(zv ; z l ) = � train = diag(� 1; � 2; : : :); kzvl k = 1

and eachx vl is generated based on a linear model such that

x vl = G�
vl z

vl + � vl :

HereG�
vl 2 Od� r is the othonormal ground truth representation mapping from the latent vector space

to the input space, and� vl � N (0; I d) arei.i.d. random noise.

Also we denote the cross covariance of any �nite datasetS0 (e.g. the given train setD train) as� S0.

Test data. For any zero-shot downstream task, we assume it shares almost same data generation
process as the training set, except its the cross-covariance� target does not necessarily equal� train,
which necessitate the choice of�� target_proxy.

CLIP embedding model as teacher. Under the linear model assumption, we have a teacher model
�f vl = �Gvl , whose generated clip embedding can partially recover the ground truth hidden vectorzvl

with error.

Formally, we say teacher has� n
v error if for all possiblen budget subsetsS � D train,

1
jSj








X

x vl 2 S

�G>
v x v (x v )> �Gv �

X

x vl 2 S

zv (zv )>








�

� � n
v

where the same notation applies for the language modal. By the orthonormal assumption on the
ground truth matrixG�

vl , we see that�G>
v is aiming to inverting the map. In addition, we say the

teacher has� n
v� l cross modal error

1
jSj

k
X

x vl 2 S

�G>
v x v (x l )> �Gl �

X

x vl 2 S

zv (z l )> k� � � n
v� l

When all� n
v ; � n

l ; � n
v� l ! 0 asn ! 1 , then we say the teacher is strong for both modalities. But it

might also be possible that only one modal, for example, visual is strong. That is� n
v ! 0; � n

l ; � n
v� l �

� n
v .

Model and training. According to Lemma 4.1 in [46], using the CLIP loss to optimize the linear
model has approximately the same training dynamics as using the regularized linear loss. Therefore,
here we assume that we are learningGv ; Gl by maximizing the clip score gap between the contrastive
pairs, plus a regularizer,

min
G v ;G l

L �
S (Gv ; Gl ) := min

G v ;G l

P
i 2 S

P
j 2 S (sij � sii )

jSj(jSj � 1)
+

�
2

jSj
jSj � 1

kGv G>
l k2

F

wheresij := hG>
v x v

i ; G>
l x l

j i and� > 0 is some regularizer-relatedconstant. Note that this objective
maximizes self-similarity and minimizes similarity between disparate pairs. Note that this “loss” can
be negative, avoiding the trivial null solution of all zeros. We denote this training process from any
givenS asGvl = A � (S).

Goal and metric. Under the same principle as our training loss function, we measure the per-
formance of any learntGv ; Gl on some downstream task with distributionDtarget as test loss
L target(Gv ; Gl ) :=

Ex vl �D target

x vl
2 �D target

(hG>
v x v ; G>

l x l
2i � h G>

v x v ; G>
l x l i )
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This is inspired by the following classi�cation accuracy. Assume that the test data includingC class,
and the class distribution isC. For every classc, the training datax = ( x v ; x l ) satis�es distribution
Pc. We further assume the corresponding classi�cation templates aref x cgC

c=1 . Thus we de�ne
classi�cation accuracy as

AC(Gv ; Gl ) = Ec;c0�C�C [Ex i �P c 1[sic > s ic 0]]

Therefore our goal is to minimize its gap between the best hind-side subset, for any� , without budget
constraints,

� � (S) = L target(Ĝvl ) � min
S02 D train

L target(A � (S0)) ; Ĝvl = A � (S)

A.2.2 Generalization Guarantees

We now provide theoretical guarantees and postpone our proof into Appendix A.2.3.Firstly, we are
going to prove the intuition behind NormSim2score.

Lemma A.1 (Intuition behindNormSim2). With high probability at least1 � 1
jSjd , suppose the

hind-side best subset has at leastn number of samples, then we have

� � (S) =
1
�

max
S02 D train

(Tr (� target(� S0 � � S )))
| {z }

NormSim2 related term

+ O

 s
d log(djSj)

n
+

s
d log(djSj)

jSj

!

| {z }
noise

Proof sketch.¶ Under the assumption that bothzvl ; � vl is zero-mean, maximizing the clip score gap
is equivalent to maximizing the clip score of the same sample.

L target(Ĝv ; Ĝl ) := � Ex vl � D target
hĜ>

v x v ; Ĝ>
l x l i

· By minimizing the regularized training lossL �
S (Gv ; Gl ) using Eckart-Young-Mirsky Theorem, we

get a closed form solution of̂G as

Ĝv Ĝ>
l �

1
�

G�
v � S � (G�

l )> + noise depend onS

¸ Combining the result in· and¶ , we have

L target(Ĝvl ) � �
1
�

Tr (� target� S ) � noise depend onS

The same analysis can be applied onminS02 D train L target(A (S0)) as well. Rearranging these two
equations gives us the �nal result.

This lemma shows the the�( S) is depend on theNormSim2-related term and the noise term which
comes from� . Whenn and jSj is large enough, then theNormSim2-related term will become
dominant. This aligns with our practice experience that the �nal performance is less sensitive to the
small variation in the number of select data as long as that is suf�cient. Moreover, in some special
cases where test distribution has identity cross-variance, then sampling by choosing CLIP score might
be enough.

Now we are ready to give a proof on the choice of�� target and visual-only information. Speci�cally,
the strategy error mainly comes from (1). The unknown test distribution shift from training. (2). The
unobservable ground truth� S . To tackle error (1), we assume some prior knowledge on test by using
the proxy test variance�� target. To tackle the error (2), there are two possible solutions as shown below.
Based on the theoretical interpretation, we should choose different strategy based on the property of
the teacher embedding model.

Svision+language= arg max
S

Tr

0

@�� target(
X

x vl 2 S

�G>
v x v (x l )> �Gl )

1

A

Svision only = arg max
S

Tr

0

@�� target(
X

x vl 2 S

�G>
v x v (x v )> �Gv )

1

A
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Theorem A.2(Main). Under the assumption of Lemma A.1,

� � (S) � noise+
1
�

k �� target � � targetkk� S � � bestk�

+
1
�

(
� S

v� l (vision+language)

� S
v +

q
1 � 1

jSj

P
i 2 [S]hz

v ; z l i ) (vision only)

Firstly, it is evident that the greater the difference between�� targetand� target, the less improvement we
can expect. Moreover, in scenarios where� l is large (indicating lower accuracy in the language part)
while � v is small (indicating higher accuracy in the vision part), it may be advisable to opt for vision-

only embeddings. However, the learner should also consider the term
q

1 � 1
jSj

P
i 2 Shzv ; z l i , which

represents the alignment between the ground truth visual and language latent vectors, essentially
re�ecting the intrinsic quality of the data. If this term is already signi�cant, relying solely on vision
information as a proxy for language information could lead to suboptimal results.

A.2.3 Detailed proofs

Lemma A.2. Let
Ĝv ; Ĝl = arg min

G v ;G l 2 Rd � r
L (Gv ; Gl ) (7)

Then we have

Ĝv Ĝ>
l =

1
�

G�
v � S (G�

l )> + P1 + P2 + P3 + P4 (8)

where noise termsPi are de�ned in (12) , (13), (14) and (15).

Proof. Note thatsij = ( x l
j )> Gl G>

v x v
i = Tr( G>

v x v
i (x l

j )> Gl ), like the proof of Corollary B.1. in
[46], we have

L (Gv ; Gl ) =

P
i 2 S

P
j 2 S (sij � sii )

jSj(jSj � 1)
+

�
2

jSj
jSj � 1

kGv G>
l k2

F

=

P
i 2 S

P
j 2 S sij � j Sj

P
i 2 S sii

jSj(jSj � 1)
+

�
2

jSj
jSj � 1

kGv G>
l k2

F

= � Tr

 

G>
v

"
1

jSj � 1

X

i 2 S

x v
i (x l

i )
> �

jSj
jSj � 1

�x v ( �x l )>

#

Gl

!

+
�
2

jSj
jSj � 1

kGv G>
l k2

F

=: � Tr( G>
v � Gl ) +

�
2

jSj
jSj � 1

kGv G>
l k2

F

where�x vl := (
P

i 2 S x vl
i )=jSj. Then by the Eckart-Young-Mirsky Theorem (For example, Theorem

2.4.8 in Golub et al. [47]), we know that

arg min
G v 2 Rd � r ;G l 2 Rd � r

L (Gv ; Gl )

= arg max
G v 2 Rd � r ;G l 2 Rd � r

Tr( G>
v � Gl ) �

�
2

jSj
jSj � 1

kGv G>
l k2

F

= f (Gv ; Gl ) 2 Rd� r � Rd� r : Gv G>
l =

1
�

jSj � 1
jSj

SVDr (�) g (Eckart-Young-Mirsky Theorem)

where the notationSVDr (�) means choosing the �rstr components of the matrix� . Further note
that

� =
1

jSj � 1

X

i 2 S

x v
i (x l

i )
> �

jSj
jSj � 1

�x v ( �x l )> (9)

=: P0 + P1 + P2 + P3 + P4 (10)
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Here note that� S = 1
jSj

P
i 2 S zv

i (z l
i )

> , we havePi as follows:

P0 :=
jSj

jSj � 1
G�

v � � S � (G�
l )> (11)

P1 :=
1

jSj � 1
G�

v

X

i 2 S

zv
i (� l

i )
> (12)

P2 :=
1

jSj � 1

X

i 2 S

� v
i (z l

i )
> (G�

l )> (13)

P3 :=
1

jSj � 1

X

i 2 S

� (1)
i (� (2)

i )> (14)

P4 := �
jSj

jSj � 1
�x v ( �x l )> (15)

It's clear that the rank of the matrixP0 is no more thanr , soSVDr (P0) = P0. And for i 2 f 1; 2; 3; 4g,
Pi are noise terms withE[Pi ] = O.

Lemma A.3. For any �xedS, w.h.p1 � � the noise term can be upper bounded by
q

d log(1 =� )
jSj

Proof. To upper bound the P1 and P2, we have

k
X

i

zvl
i (� vl

i )> k2
� = Tr

0

@
X

i;j

� vl
i (zvl

i )> zvl
j � vl

j

1

A =
X

i;j

(zvl
i )> zvl

j (� vl
j )> � vl

i

Ek
X

i

zvl
i (� vl

i )> k2
� = E

"
X

i

(zvl
i )> zvl

i (� vl
i )> � vl

i

#

= jSjd

Regarding each(zvl
i )> zvl

j (� vl
j )> � vl

i as weakly dependent variable, then by using Bernstein inequality,
we have, with high probability1 � � ,

k
X

i

zvl
i (� vl

i )> k2
� � j Sjd +

q
djSj2� 2

� log(1=� ) � j Sjd
p

log(1=� )

So 1
jSj k

P
i zvl

i (� vl
i )> k� �

q
d log(1 =� )

jSj . Note thatk �x vl k .
q

log( jSjd)
jSj (like Proposition 2.5 in

Wainwright et al. [48]), it is easy to see that P3 ad P4 are the low order terms if� . 1
jSjd .

Lemma A.4 (Intuition behind VAS). With high probability1 � � , suppose the hind-side best subset
has at leastn number of samples, then we have

�( S) =
1
�

max
S02 D train

(Tr (� target(� S0 � � S ))) +

s
d log(1=� )

n
+

s
d log(1=� )

jSj

Proof. For any learntGv ; Gl based on datasetS, we have

L test(Gv ; Gl ) = Tr( G>
v Ex vl �D target[x

v (x l )> ]Gl )

= Tr( Ex vl �D target[x
v (x l )> ]Gl G>

v )

=
1
�

Tr
�
Ex vl �D target[x

v (x l )> ]G�
l � S (G�

v )> �
� Tr

�
Ex vl �D target[x

v (x l )> ]noiseS
�

=
1
�

Tr
�
(G�

v )> Ex vl �D target[x
v (x l )> ]G�

l � S
�

� Tr
�
Ex vl �D target[x

v (x l )> ]noiseS
�

= �
1
�

Tr (� target� S ) � Tr
�
Ex vl �D target[x

v (x l )> ]noiseS
�

19



Here the �rst equation comes from Theorem A.4 and the third equation comes from Lemma A.2.
Consequently, we have

� min
S02 D train

L test(A (S0)) = max
S02 D train

�
1
�

Tr (� target� S0) + Tr
�
Ex vl �D target[x

v (x l )> ]noiseS0

�
�

�
1
�

max
S02 D train

(Tr (� target� S0)) + kEx vl �D target[x
v (x l )> ]kknoiseS0k�

�
1
�

max
S02 D train

(Tr (� target� S0)) + O

 s
d log(1=� )

n

!

Therefore, we have the �nal result as

�( S) = L test(Ĝvl ) � min
S02 D train

L test(A (S0))

=
1
�

max
S02 D train

(Tr (� target(� S0 � � S ))) + O

 s
d log(1=� )

n
+

s
d log(1=� )

jSj

!

Theorem A.3(Main). Under the assumption of Lemma A.1, we have

�( S) � noise+ k�� target � � targetkk� S � � bestk�

+

(
� S

v� l (vision+language)�
� S

v +
q

1 � 1
jSj

P
i 2 [S]hz

v ; z l i )
�

(vision only)

Proof. Based on Lemma A.1, we will focus on the error cause from selecting subsetS, that is,
Tr � target� S . Since the exact� target is unknown, we assume the access to some proxy�� target instead.

Recall that, for anyS, we have ground-truth� S = Ez vl 2 Szv (z l )> . Unfortunately, this is not directly
observable by the learner. Instead, the learner is able to observe some proxy�� S based on the teacher
model �Gvl and therefore solving

arg max
S

Tr
� �� target�� S

�

and therefore, denote� best = arg maxS02 D train
Tr (� target� S0)

Tr (� target(� best � � S )) = Tr
� �� target(� best � �� S )

�
+ Tr

� �� target( �� S � � S )
�

+ Tr
�
(� target � �� target)(� best � � S )

�

� Tr
� �� target( �� S � � S )

�
+ Tr

�
(� target � �� target)(� best � � S )

�

� k � targetkk�� S � � Sk� + k�� target � � targetkk� S � � bestk�

where the �rst inequality is by the de�nition of�� S and the second inequality comes from holder's
inequality. Now the key is to upper boundk�� S � � Sk� based on our chosen strategy.

In option 1, we use the clip embedding from both visual and language modal. That is, choose
�� S =

P
x vl 2 S ( �Gv )> x v (x l )> �Gl . Then we have

k�� S � � Sk� �
1

jSj
k

X

x vl 2 S

( �Gv )> x v (x l )> �Gl �
X

x vl 2 S

zv (z l )> k� � � S
v� l

In option 2, we use the clip embedding from language model only. That is choose�� S =P
x vl 2 S

�G>
v x v (x v )> �Gv . Then, by de�nition of� S , we have

k�� S � � Sk� �
1

jSj
k

X

x vl 2 S

�G>
v x v (x v )> �Gv �

X

x vl 2 S

zv (zv )> k� +
1

jSj
k

X

x vl 2 S

zv (zv )> � � Sk�

� � S
v +

1
jSj

k
X

x vl 2 S

zv (zv )> � � Sk�
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Now to further bound the second term, we have

1
jSj

k
X

x vl 2 S

zv (zv )> � � Sk� �
1

jSj
kZ >

v k� kZv � Z l k�

=
1

jSj

q
Tr Zv Z >

v

q
Tr( Zv � Z l )> (Zv � Z l )

=
1

jSj

p
Tr( I n � n )

q
2 Tr

�
I n � n � Zv Z >

l

�

=
1

jSj

s
2jSj(jSj �

X

i 2 [S]

hzv ; z l i )

=

vu
u
t 1 �

1
jSj

X

i 2 [S]

hzv ; z l i )

Therefore, we �nish the proof.

Theorem A.4(A simpli�ed version of test loss). Under the assumption that bothzvl ; � vl is zero-mean,
maximizing the clip score gap is equivalent to maximize the clip score of the same sample.

L target(Gv ; Gl ) := � Ex vl �D targethG
>
v x v ; G>

l x l i

Proof. For anyx vl , we have

Ex 0
vl �D target(hG

>
v x v ; G>

l x 0
l i � h G>

v x v ; G>
l x l i )

= hG>
v x v ; G>

l Ex 0
vl �D target(x

0
l � x l )i

= �h G>
v x v ; G>

l x l i
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Figure 4: Illustration of different directions for data selection methods for multimodal contrastive
learning. Here we use four colors to denote the four main resources we can obtain: CLIP teacher
model, downstream target data (which is much smaller than the external multimodal dataset or
pretraining dataset), the external image-text dataset, and the external non-CLIP model.Direction 1
denotes the methods that only use the original OAI CLIP teacher model and the downstream target
data.Direction 2 represents the methods that use external datasets to train a new CLIP teacher model
for improving �ltering, like DFN [2]. Direction 3 denotes the methods that use external non-CLIP
model to select the data that may be heuristically helpful for downstream tasks, like image without too
much text or be more special. In general,D1 method using only CLIP embedding, like negCLIPLoss,
is orthogonal to D2. And both D1 and D2 can be combined with D3 to explore better �ltering results.
In the experiments part of the main paper (Sec. 4), we further show that our proposed D1 methods:
NormSim and negCLIPLoss, can outperform all the D3 baselines except the best method “HYPE[
DFN”. And we can achieve the new state-of-the-art by combining our methods with that method.

B Illstration of Different Directions for Data Selection in Multimodal
Contrastive Learning

We summarize our main idea of categorizing the current top data selection methods in Figure 4.

C Details of Experiments

C.1 Computation Cost

Our algorithm can signi�cantly reduce the computational cost compared to many existing works as
shown in Table 5. For example, when the CLIP embeddings are obtained (cost about 50 hours for
CLIP-B/32), both T-MARS [12] and MLM [42] still require more than 900 hours data pre-processing
time to extract the required information from 110M size dataset of DataComp-medium, while we only
need about 5 hours. On the other hand, DFN, although has a similar forward speed (i.e. preprocessing
time), requires retraining a new CLIP teacher model on the HQITP-350M, which is larger than
DataComp-medium.

We give some details in estimating the preprocessing time of other methods:

• ForT-MARS andD2 pruning, we run their of�cial code on DataComp-small (11M) data,
and simply scale the preprocessing time by 10 for DataComp-medium, given that the
preprocessing time for T-MARS is proportional to the size of the pretraining dataset, while
D2 pruning is no faster than linear.
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Table 5: Comparison of preprocessing time and external resources needed between our method and
other D3 category methods. We skip DFN since it's orthogonal to our negCLIPLoss method and we
can directly improve it as mentioned in Table 1. Here since all the baselines below except MLM
use a pretrained CLIP model, we only count the time that doesn't contain that for inferring CLIP
image/text embeddings (about 50 L40 hours for OAI CLIP-B/32), which is also adopted in DataComp
benchmark [1]. The external dataset corresponds to the external multimodal dataset used for training
or �netuning the external model. Notably, the preprocessing time for the following methods are all
approximately linearly proportional to the amount of un�ltered pretrained dataset.

Type Filtering Ext. Model Size of Preprocess Training Avg.Strategy Used Ext. Dataset Time Time

D1 D2 Pruning [18] NA NA >70 L40 h 65 L40 h 29.5
D3 T-MARS [12] FAST [13] NA 950 L40 h 65 L40 h 34.1
D3 MLM [42] LLaVA-1.5 [43, 44] 50k 1120 A100 h 65 L40 h 34.5
D3 Devil [14] fasttext [15], BLIP-2 [16] NA 510 A100 h 65 L40 h 34.5
D3 HYPE [3] MERU [45] 27M > 120 L40 h 65 L40 h 31.9

D1 Ours (20%) NA NA 5 L40 h 65 L40 h 35.2

• For MLM , we get the estimated time from their paper. They mention that they need 6.1
minutes to process 10k samples on A100, which results in 1120 A100 hours for our dataset
(110M). We need to mention that their estimation time of calculating CLIP embedding is
inaccurate and we can do it much faster than their claim using the DataComp pipeline.

• For Devil, it needs to run the k-means clustering algorithm from the faiss library on the
embedding space, which is estimated to cost 120 L40 hours on DataComp-medium. Using
BLIP-2 [16] to scan the whole dataset will need about 470 A100 hours from the experimental
details in [17]. From https://lambdalabs.com/gpu-benchmarks, we roughly assume that 120
L40 hours are at least comparable to 40 A100 hours for K-means clustering.

• For HYPE, they claim that MERU is as ef�cient as CLIP, but they still need at least 120
L40 hours for processing 110M data for their �nal score, since it uses the image embedding
clusters on DataComp-medium obtained from running k-means clustering algorithm.

C.2 Details of negCLIPLoss

We give the pseudocode of calculating negCLIPLoss in Algorithm 1, which is specially designed
for pytorch-style parallel matrix calculation. It can be fully accelerated and the computation cost
introduced by the normalization term is negligible compared with the training time or preprocessing
time of other top baselines as detailed in Table C.1.

In negCLIPLoss, we need to get the batch sizejB j and the value of the learnable temperature
parameter� at the �nal step of the teacher model pretraining stage. For OAI CLIP-L/14 and OAI
CLIP-B/32, these values are� = 0 :01andjB j = 32768.

We also have an ablation study about the temperature parameter and batch size chosen for CLIP
teacher models as shown in Table 6. We will see that in general, a larger batch size will result in
better performance, and� = 0 :01; b = 32768 is the best choice for both OAI CLIP-B/32 and DFN-P.
The reason for such a batch size is that a larger batch can contain more contrastive data pairs, which
is also supported by the concentration result of the normalization term proved in Appendix A.1,
and thus it can check the image-text matching between more different data. Therefore, we always
consider the largest batch size 32768 which can �t into a single 24G GPU in the CLIP forward pass,
which is also the OAI CLIP training batch size.

C.3 Details of NormSim2-D

In this section, we illustrate the details of ourNormSim2-D algorithm. The top-N selection method
is aiming to achieve the object:

S = arg max
j S j = N

X

i 2 S

�f v (xv
i )>

0

@ 1
jX targetj

X

x t 2 X target

�f v (xv
t ) �f v (xv

t )>

1

A �f v (xv
i ) (16)
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Table 6: Ablation study about the temperature parameters� and batch sizeb for CLIP teacher model.
The values obtained from the last training step of the teacher models are� = 0 :01; b = 32768 for
OAI CLIP-B/32, OAI CLIP-L/14, andb = 16384; � = 0 :07 for DFN-P. In the main paper, we use
b = 32768; � = 0 :01 for all three kinds of teacher models.

OAI CLIP-B/32 Size IN-1k IN Dist. Shift VTAB Retr. Avg.

CLIPScore (30%) [38] 33M 27.6 24.2 33.6 25.1 33.2

negCLIPLoss (30%)

b = 16384; � = 0 :01 33M 28.8 25.0 32.5 26.2 33.0
b = 16384; � = 0 :02 33M 28.6 24.8 33.3 25.3 33.1
b = 16384; � = 0 :07 33M 28.0 24.2 33.5 25.1 32.6
b = 32768; � = 0 :001 33M 16.0 13.9 25.1 19.4 24.4
b = 32768; � = 0 :005 33M 28.5 25.0 33.6 27.0 33.0
b = 32768; � = 0 :01 33M 28.8 25.1 33.7 26.6 33.6
b = 32768; � = 0 :02 33M 28.5 24.8 33.6 26.2 32.9
b = 32768; � = 0 :07 33M 28.2 24.5 32.8 25.2 32.7

negCLIPLoss (30%)\ NormSim1 (Target)

b = 16384; � = 0 :01 22M 32.4 27.4 34.5 26.1 34.7
b = 16384; � = 0 :02 22M 31.8 26.7 35.0 24.9 34.2
b = 16384; � = 0 :07 22M 31.0 26.3 35.0 25.5 33.9
b = 32768; � = 0 :005 22M 32.2 27.2 35.3 26.5 34.8
b = 32768; � = 0 :01 22M 32.4 27.4 35.9 26.3 35.2

DFN-P Size IN-1k IN Dist. Shift VTAB Retr. Avg.

negCLIPLoss

15%,b = 16384; � = 0 :07 16M 31.0 27.0 35.2 26.8 34.2
15%,b = 32768; � = 0 :01 16M 31.3 27.3 35.8 26.4 34.6
17.5%,b = 16384; � = 0 :07 19M 31.3 27.2 33.5 27.6 33.5
17.5%,b = 32768; � = 0 :01 19M 31.2 27.5 35.7 27.0 34.7

negCLIPLoss (17.5%)\ NormSimB/32
1 (Target)

b = 16384; � = 0 :07 16M 31.1 27.4 34.8 26.1 34.2
b = 32768; � = 0 :01 16M 31.6 27.3 37.2 25.5 35.7

when the actualX target is unknown. In practice, removing one data at a time is too slow. Therefore,
we remove a batch of data for every step. In detail, if the number of steps is� , and let �� test;i =

1
jSi j

P
j 2 Si

�f v (x v
j ) �f v (x v

j )> whereSi is the selected subset at stepi , then we will remove the data
satis�es the following equation step-by-step until reaching the �nal subset size:
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Then we can detail the algorithm process ofNormSim2-D in Algorithm 2. In general, the smaller
the step size, the better the results. But in experiments, we �nd that it's already enough to get good
results when� = 500.

C.4 Details of Related Works

We add some details about the baselines used in our paper as follows.

• Text-based �ltering. [1] proposes a text-based �ltering that tries to select the data that contains
caption overlapping with the class name from ImageNet-21K or ImageNet-1K.

• Image-based �ltering. [1] also proposes a heuristic way to sample the visual content overlaps
with ImageNet-1K classes. They �rst apply �ltering by language (only choose English caption by
fasttext [15]) and caption length (over two words and 5 characters). Then they cluster the image
embeddings from training data to 100K groups using Faiss [49], and keep the groups whose cluster
center is the nearest neighbor to at least one image embedding of ImageNet-1K image.
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Algorithm 1 negCLIPLoss

Inputs: image/text embeddings of the pretraining dataF vl = [ f �f vl (xvl
1 )g; : : : ; f �f vl (xvl

N )g]> 2
RN � d, batch sizeb, temperature parameter� , the number of times negCLIPLoss is random
K (= 10) .
Initialize negCLIPLoss arrayr = [0 ; : : : ; 0] 2 RN

for k = 1 to K do
Get a random batch divisionSk = f B1; : : : ; Bsg such thats = dN=be. EveryB i 2 Sk is the
index of a batch of data.
for j = 1 to s do

Get batch of embeddings in batchj : F vl
j = F vl [B j ] 2 Rb� d

Get the similarity matrix:E j = F v
j (F l

j )> 2 Rb� b

Get the CLIPScores:cj = diag(E j ) 2 Rb

De�ne Gj = exp( E j =� )
De�ne gv

j 2 Rb be the vector containing the sum of each row vector inGj (i.e., over image).
De�ne gl

j 2 Rb be the vector containing the sum of each column vector inGj (i.e., over text).
Get the negCLIPLoss:r [B j ] = cj � 0:5� � (log(gv

j ) + log( gv
j )) , here we use element-wise

operation.
end for

end for
Take the mean of each random division as output: negCLIPLoss= r =K

Algorithm 2 NormSim-D strategy

Inputs: image embeddings of the data after CLIP score �lteringf �f v (xv
i )gi 2 S , target sizeN ,

number of steps�
Initialize S0 = S; N0 = jSj
for t = 1 to � do

Size at stept : N t = N0 � t
� (N0 � N ).

Prior matrix: �� test;t � 1 =
P

j 2 St � 1
�f v (xv

j ) �f v (xv
j )>

Updated NormSim2-D for each samplei in St � 1:

NormSim2-D(x i ) = �f v (xv
i )> � �� test;t � 1 � �f v (xv

i )

ConstructSt such that it contains the data with highestNormSim2-D in St � 1 and satis�es
jSt j = N t .

end for

• D2 Pruning. [18] tries to represent the dataset as an undirected graph for coreset selection. They
assign the dif�culty for each example and use message passing to update the dif�culty score
incorporating the dif�culty of its neighboring examples, and �nally try to keep both diverse and
dif�cult subsets. For our experiments, we adhere to the default hyperparameters ofD2 on DataComp
as speci�ed in their of�cial codebase.

• T-MARS [12] uses a text detection model like FAST [13] to �lter out the data that only contain the
texts of caption in the image and don't have other useful image features.

• Devils [14] combines many ways for data �ltering. At the very �rst it �lter data based on
heuristic rules like text length, frequency of texts, and image size, and it also use CLIPScore
for cross-modality matchment. Then it adopts target distribution alignment methods similar to
image-based �ltering, but instead of using ImageNet-1k only, it uses 22 downstream tasks as the
target set. Further, it adopts external models fasttext [15] to remove non-English captions and
image-captioning model BLIP-2 [50] to select images with MNIST-style digits.

• MLM [42] prompts GPT-4V to construct instruction data including the image-text data, and use
it to �ne-tune a smaller vision-language model like LLaVA-1.5 [43, 44] into a �ltering network.
Nevertheless, the number of parameters of LLaVA-1.5 is still much larger than CLIP, and thus
LLaVA-1.5 has a much longer preprocessing time as mentioned in Table C.1.
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C.5 How to Choose Hyperparameters

The main hyper-parameters of our negCLIPLoss and NormSim are the target numbers for �ltering
(refer to Appendix C.2 for the setting of temperature and batch size), which is also the main concerns
for all the top baselines like DFN, MLM, and T-MARS. In the case of DataComp settings, noting that
all the top baselines in DataComp-medium benchmark keep the downsampling ratios ranging from
15% 30% to achieve the best results, we can set the sampling ratio as some previous baselines. Our
method with OAI CLIP teacher model �rst selects the data with the top 30% negCLIPLoss, and then
selects the top 66.7% NormSim scores to keep 20% of the original pool. We don't tune the target size
carefully here for fair comparison.

In more general cases, we can recommend sometraining-dataset-independentthresholds for Norm-
Sim, since the scores only depends on the normp and target data rather than other data in the pool.
We recommend to set the threshold as 0.7 forNormSim1 (Target) and 0.15 forNormSim2(IN-1k) in
general. On the other hand for negCLIPLoss, note that like NormSim, CLIPScore is also training-
dataset-independent, we recommend to �rst �nd the percentile of the data with CLIPScore=0.21, and
then downsample the dataset using CLIPLoss until that particular percentile.

Overall, �nding optimal �ltering ratio for data selection algorithm is always dif�cult and out of the
scope of this paper. From the paper about the scaling law for data �ltering [51], downsampling
size even depends on the computation budget. When you have more budget, you should sample
more data for learning. And thus another possible solution is to use their �tting formula to get some
recommended downsampling ratios.

At last, we also note thatin data selection problem, visualization is a simple but effective way for
tuning parameters or �nding downsampling ratios. People can �rst randomly select a small subset
(like 1000 data) on some pretraining data subset, and then calculate the target scores (CLIPScore,
negCLIPLoss, NormSim or any other metrics) on them, and �anlly visualize the data corresponding
to scores at different percentiles, like top 10%, 30%, 50% and 70% of the negCLIPLoss. In this
way, we can determine the threshold of �ltering directly by observating the data. We also give some
visualization examples of our methods in Appendix E, We believe this is an effective way to give
some guidance on how to roughly select the initial downsampling ratios.

C.6 Discussion of NormSim

C.6.1 How NormSim2 Connects to Selecting the Data in Principal Components.

For convenience, we letf (x t ) denote the image embedding of the target datax t 2 X T , andf (xs)
denotes the image embeddings of training dataxs 2 X S . Then the de�nition of NormSim on a data
xs is

NormSimp(X T ; xs) =

 
X

x t 2 X T

[f (x t )> f (xs)]p

! 1=p

(17)

Then whenp = 2 , we have
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Note that� = 1
jX T j

P
x t 2 X T

f (x t )f (x t )> is the variance matrix of the target image embeddings.
Then using NormSim2 for �ltering, we have

S = arg max
jSj= N

X

x s 2 X S

NormSim2(X T ; xs) (21)

NormSim2(X T ; xs) = f (xs)> � � � f (xs) (22)

= f (xs)> U � S � U> f (xs) (23)

=
rX

j =1

sj � [f (xs)> uj ]2 (24)

Here� = USU> is the eigen decoposition of� , whereS = diag(s1; : : : ; sr ) with s1 > : : : > s r

are the matrix of eigenvalues, andU = [ u1; : : : ; ur ] 2 Rd� r are the corresponding eigenvectors
(i.e., the principal component directions). Note that the column vectors ofU andf (xs) are all unit
vectors, (24) shows thatNormSim2 select the data that match with the principal components, i.e.,
eigen directionsuj with large eigen valuessj .

C.6.2 Why NormSim works well without explictly considering data diversity.

We answer this question by the following reasons:

• Many top baselines, such as DFN and T-MARS, also don't explicitly consider diversity, yet
they still provide good performance. Devil even shows that valuable data is worth sampling
multiple times, which they call “quality duplication”. Therefore, one important reason
why NormSim works well without explicitly considering diversity may be that when the
computing budget is limited, as in the DataComp benchmark, the model �rst needs to learn
the most useful and representative data, which should be similar to some target data.

• Moreover, we chose validation data from 24 downstream tasks ranging from ImageNet
to EuroSet, which may have covered a suf�ciently diverse range of target examples for
NormSim to calculate similarity. The diversity of the target data will consequently result in
the diversity of the selected subset. And this also implies the importance of selecting a good
target dataset.

• An additional reason may be that our proposed negCLIPLoss already implicitly selects more
diverse data, as shown in Figure 1 of the main paper. If some training data are diverse, they
will match less with other data and thus have a lower normalization term. This results in a
larger negCLIPLoss and a higher probability of being sampled.

D Additional Results

D.1 Stability Analysis of Batch Sampling Numbers in negCLIPLoss

We show that negCLIPLoss is not sensitive to the number of random select batchesK in Figure 5.

D.2 Universality of negCLIPLoss over Different Teacher Models

We show the complete results of applying our methods to different teacher models like OAI CLIP-B/32
and DFN-P in Table 7. Detail descriptions are in Sec. 4.

D.3 NormSim1 is Better than Nearest Neighbor Selection

We also try to use near-neighbor selection for aligning downstream distribution. Here, we calculate
the ranks of pretraining data for each target (the higher the rank, the higher the similarity), and then
for each pre-train data, we keep its highest rank. Finally, we select the data with the highest ranks as
the nearest neighbor selected subset.

In Table 8, we show that given the training data of 22 downstream tasks, ourNormSim1 can
outperform near neighbor selection under the same downsampling ratio. The reason may be that the
distribution between the target and pretraining set is not well aligned, so if you force the algorithm to
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Figure 5: Results of negCLIPLoss with a different number of batch samples (denoted asK ) on
DataComp-medium. Solid lines denote negCLIPLoss, while dashed lines denote CLIPScore. Here,
we use OAI CLIP-L/14 as the pretrained model. We can see that onceK � 5, negCLIPLoss
consistently outperforms CLIPScore across all subtask metrics. In the main paper, we setK = 10.

Table 7: Results on DataComp-medium from the top methods that use only OpenAI's CLIP-B/32
model or public version of DFN (DFN-P).

OAI CLIP-B/32 Dataset IN-1k IN Dist. Shift VTAB Retrieval Avg.
Size (1 sub-task) (5) (11) (3) (38)

CLIPScore (20%) 22M 27.0 23.8 33.0 22.9 32.2
CLIPScore (30%) 33M 27.6 24.2 33.6 25.1 33.2

negCLIPLoss (20%) 22M 28.9 24.8 34.3 24.3 33.0
negCLIPLoss (30%) 33M 28.8 25.1 33.7 26.6 33.6

negCLIPLoss (30%)\ NormSim1 (Target) 22M 32.4 27.4 35.9 26.3 35.2

DFN-P

CLIPScore (15%) 16M 25.9 23.3 32.9 21.9 31.6
CLIPScore (17.5%) 19M 30.2 26.8 34.1 26.5 33.8
CLIPScore (20%) 22M 29.7 26.8 33.0 27.0 33.1
CLIPScore (30%) 33M 28.4 24.7 33.2 26.8 32.7

negCLIPLoss (15%) 16M 31.3 27.3 35.8 26.4 34.6
negCLIPLoss (17.5%) 19M 31.2 27.5 35.7 27.0 34.7
negCLIPLoss (20%) 22M 30.7 27.4 33.6 27.5 33.8
negCLIPLoss (30%) 33M 28.9 25.5 33.4 27.3 33.2

negCLIPLoss (30%)\ NormSim1 (Target) 22M 29.4 23.6 33.5 24.2 32.5
negCLIPLoss (17.5%)\ NormSim1 (Target) 16M 31.5 26.4 34.6 25.4 34.4
negCLIPLoss (17.5%)\ NormSimB/32

1 (Target) 16M 31.6 27.3 37.2 25.5 35.7

�nd the nearest train data for each target, that train data may be sometimes random and not helpful.
On the other hand,NormSim1 will not select this kind of data. It will select the data whose best
similarity score exceeds some general threshold, rather than just consider ranks.

D.4 Vision-Only NormSim is Better than Using Both Vision and Language

In DataComp [1], they show that image-based �ltering is better than text-based �ltering. In our paper,
we also do an ablation study to support this. Due to the restriction of computation resources, we run
our NormSim2(IN-1k) andNormSim2-D on DataComp-small as an example. Since ImageNet-1k
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Table 8: Comparison betweenNormSim1 and nearest neighbor selection. We use OAI CLIP-L/14
as the teacher model and assume both methods have been intersected with negCLIPLoss (30%). The
size of the selected subset is 22M.

Filtering Strategy IN-1k VTAB Avg.

negCLIPLoss (30%) 27.9 33.2 32.9

Nearest Neibor Selection 31.5 34.9 34.0
NormSim1 (Target) 31.7 36.0 35.0

only has labels rather than long texts for describing images, we need to generate the caption before
calculatingNormSim2(IN-1k). We select 80 templates as the original CLIP paper [4], generate
prompts for each class, and take the mean of their embeddings as the representative text embedding
for images within that class.

The results are in Table 9. We can see that for both metrics, we have“image only” > “image � text”
> “text only” . We believe the reason forNormSim2(IN-1k) is that the images themselves can convey
signi�cantly more features than the text prompts generated by labels. ForNormSim2-D, it should be
related to the large amounts of low-quality captions in the web-curated dataset. And “image� text”
will also be in�uenced by the informativeness and the quality of captions. In short, for NormSim,
using vision-only embeddings is a best choice.

Table 9: Ablation Study on the NormSim and its variants on DataComp-small (11M). All experiments
�rst select 45% data based on the CLIP score, then use corresponding approaches to obtain 3.3M
data.“image” or “text” means using the variance of image or text embeddings to represent�� target, and
“image� text” means representing�� targetwith the cross-covariance of image and text embeddings.

Filtering Strategy \ CLIP score (45%) IN-1k IN Dist. Shift VTAB Retrieval Average

Random Sampling 4.2 4.9 17.2 11.6 15.6

NormSim (IN-1k, image) 5.2 5.5 19.0 12.2 17.4
NormSim (IN-1k, text) 3.9 4.2 16.3 11.3 14.9
NormSim (IN-1k, image� text) 4.3 4.9 17.5 11.8 15.9

NormSim-D (image) 4.7 5.4 19.7 11.7 17.3
NormSim-D (text) 3.5 4.1 16.7 11.1 15.4
NormSim-D (image� text) 3.6 4.2 18.4 11.1 15.8

E Additional Visualization

We further visualize8 more data with different negCLIPLoss in Figure 6, 7 and 8. And similar for
NormSim1 (Target) in Figure 9, 10 and 11.

8We usehttps://github.com/ypwang61/research_tools/blob/main/visualization2.py (Im-
ageCaptionVisualizer) for visualizing the dataset. We also recommend visualizing basic dataset statistics
by https://lst627.github.io/visdatacomp.github.io/ .
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Figure 6: Visualization of a small subset whose negCLIPLoss rank top 100% high in DataComp-
medium.
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Figure 7: Visualization of a small subset whose negCLIPLoss rank top 50% high in DataComp-
medium.
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Figure 8: Visualization of a small subset whose negCLIPLoss rank top 10% high in DataComp-
medium.
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