Advances in Neural Information Processing Systems 37 (NeurIPS 2024)
Edited by: A. Globerson and L. Mackey and D. Belgrave and A. Fan and U. Paquet and J. Tomczak and C. Zhang
Main Conference Track
Datasets and Benchmarks Track
-
MicroAdam: Accurate Adaptive Optimization with Low Space Overhead and Provable Convergence Ionut-Vlad Modoranu, Mher Safaryan, Grigory Malinovsky, Eldar Kurtić, Thomas Robert, Peter Richtarik, Dan Alistarh
-
GITA: Graph to Visual and Textual Integration for Vision-Language Graph Reasoning Yanbin Wei, Shuai Fu, Weisen Jiang, Zejian Zhang, Zhixiong Zeng, Qi Wu, James Kwok, Yu Zhang
-
How does PDE order affect the convergence of PINNs? Chang hoon Song, Yesom Park, Myungjoo Kang
-
Fair Wasserstein Coresets Zikai Xiong, Niccolo Dalmasso, Shubham Sharma, Freddy Lecue, Daniele Magazzeni, Vamsi Potluru, Tucker Balch, Manuela Veloso
-
Improved Regret for Bandit Convex Optimization with Delayed Feedback Yuanyu Wan, Chang Yao, Mingli Song, Lijun Zhang
-
Enhancing Chess Reinforcement Learning with Graph Representation Tomas Rigaux, Hisashi Kashima
-
Mixtures of Experts for Audio-Visual Learning Ying Cheng, Yang Li, Junjie He, Rui Feng
-
Learning Place Cell Representations and Context-Dependent Remapping Markus Pettersen, Frederik Rogge, Mikkel Lepperød
-
Robust Sparse Regression with Non-Isotropic Designs Chih-Hung Liu, Gleb Novikov
-
Training-Free Adaptive Diffusion with Bounded Difference Approximation Strategy Hancheng Ye, Jiakang Yuan, Renqiu Xia, Xiangchao Yan, Tao Chen, Junchi Yan, Botian Shi, Bo Zhang
-
Chain of Preference Optimization: Improving Chain-of-Thought Reasoning in LLMs Xuan Zhang, Chao Du, Tianyu Pang, Qian Liu, Wei Gao, Min Lin
-
Decompose, Analyze and Rethink: Solving Intricate Problems with Human-like Reasoning Cycle Shangzi Xue, Zhenya Huang, Jiayu Liu, Xin Lin, Yuting Ning, Binbin Jin, Xin Li, Qi Liu
-
UQ-Guided Hyperparameter Optimization for Iterative Learners Jiesong Liu, Feng Zhang, Jiawei Guan, Xipeng Shen
-
Occupancy-based Policy Gradient: Estimation, Convergence, and Optimality Audrey Huang, Nan Jiang
-
TimeXer: Empowering Transformers for Time Series Forecasting with Exogenous Variables Yuxuan Wang, Haixu Wu, Jiaxiang Dong, Guo Qin, Haoran Zhang, Yong Liu, Yunzhong Qiu, Jianmin Wang, Mingsheng Long
-
DrivAerNet++: A Large-Scale Multimodal Car Dataset with Computational Fluid Dynamics Simulations and Deep Learning Benchmarks Mohamed Elrefaie, Florin Morar, Angela Dai, Faez Ahmed
-
DomainGallery: Few-shot Domain-driven Image Generation by Attribute-centric Finetuning Yuxuan Duan, Yan Hong, Bo Zhang, jun lan, Huijia Zhu, Weiqiang Wang, Jianfu Zhang, Li Niu, Liqing Zhang
-
Collaborative Cognitive Diagnosis with Disentangled Representation Learning for Learner Modeling Weibo Gao, Qi Liu, Linan Yue, Fangzhou Yao, Hao Wang, Yin Gu, zheng zhang
-
AutoManual: Constructing Instruction Manuals by LLM Agents via Interactive Environmental Learning Minghao Chen, Yihang Li, Yanting Yang, Shiyu Yu, Binbin Lin, Xiaofei He
-
Slot-VLM: Object-Event Slots for Video-Language Modeling Jiaqi Xu, Cuiling Lan, Wenxuan Xie, Xuejin Chen, Yan Lu
-
VASA-1: Lifelike Audio-Driven Talking Faces Generated in Real Time Sicheng Xu, Guojun Chen, Yu-Xiao Guo, Jiaolong Yang, Chong Li, Zhenyu Zang, Yizhong Zhang, Xin Tong, Baining Guo
-
Community Detection Guarantees using Embeddings Learned by Node2Vec Andrew Davison, S. Carlyle Morgan, Owen G. Ward
-
Physics-Informed Regularization for Domain-Agnostic Dynamical System Modeling Zijie Huang, Wanjia Zhao, Jingdong Gao, Ziniu Hu, Xiao Luo, Yadi Cao, Yuanzhou Chen, Yizhou Sun, Wei Wang
-
Improving Sparse Decomposition of Language Model Activations with Gated Sparse Autoencoders Senthooran Rajamanoharan, Arthur Conmy, Lewis Smith, Tom Lieberum, Vikrant Varma, Janos Kramar, Rohin Shah, Neel Nanda
-
Bench2Drive: Towards Multi-Ability Benchmarking of Closed-Loop End-To-End Autonomous Driving Xiaosong Jia, Zhenjie Yang, Qifeng Li, Zhiyuan Zhang, Junchi Yan
-
Deep Policy Gradient Methods Without Batch Updates, Target Networks, or Replay Buffers Gautham Vasan, Mohamed Elsayed, Seyed Alireza Azimi, Jiamin He, Fahim Shahriar, Colin Bellinger, Martha White, Rupam Mahmood
-
Towards Understanding How Transformers Learn In-context Through a Representation Learning Lens Ruifeng Ren, Yong Liu
-
FINALLY: fast and universal speech enhancement with studio-like quality Nicholas Babaev, Kirill Tamogashev, Azat Saginbaev, Ivan Shchekotov, Hanbin Bae, Hosang Sung, WonJun Lee, Hoon-Young Cho, Pavel Andreev
-
Learning from Teaching Regularization: Generalizable Correlations Should be Easy to Imitate Can Jin, Tong Che, Hongwu Peng, Yiyuan Li, Dimitris Metaxas, Marco Pavone
-
Prospective Representation Learning for Non-Exemplar Class-Incremental Learning Wuxuan Shi, Mang Ye
-
SPO: Sequential Monte Carlo Policy Optimisation Matthew Macfarlane, Edan Toledo, Donal Byrne, Paul Duckworth, Alexandre Laterre
-
Differentiable Modal Synthesis for Physical Modeling of Planar String Sound and Motion Simulation Jin Woo Lee, Jaehyun Park, Min Jun Choi, Kyogu Lee
-
FEDMEKI: A Benchmark for Scaling Medical Foundation Models via Federated Knowledge Injection Jiaqi Wang, Xiaochen Wang, Lingjuan Lyu, Jinghui Chen, Fenglong Ma
-
GTSinger: A Global Multi-Technique Singing Corpus with Realistic Music Scores for All Singing Tasks Yu Zhang, Changhao Pan, Wenxiang Guo, Ruiqi Li, Zhiyuan Zhu, Jialei Wang, Wenhao Xu, Jingyu Lu, Zhiqing Hong, Chuxin Wang, Lichao Zhang, Jinzheng He, Ziyue Jiang, Yuxin Chen, Chen Yang, Jiecheng Zhou, Xinyu Cheng, Zhou Zhao
-
Unified Lexical Representation for Interpretable Visual-Language Alignment Yifan Li, Yikai Wang, Yanwei Fu, Dongyu Ru, Zheng Zhang, Tong He
-
LLaNA: Large Language and NeRF Assistant Andrea Amaduzzi, Pierluigi Zama Ramirez, Giuseppe Lisanti, Samuele Salti, Luigi Di Stefano
-
DiTFastAttn: Attention Compression for Diffusion Transformer Models Zhihang Yuan, Hanling Zhang, Lu Pu, Xuefei Ning, Linfeng Zhang, Tianchen Zhao, Shengen Yan, Guohao Dai, Yu Wang
-
Open LLMs are Necessary for Current Private Adaptations and Outperform their Closed Alternatives Vincent Hanke, Tom Blanchard, Franziska Boenisch, Iyiola Olatunji, Michael Backes, Adam Dziedzic
-
SpelsNet: Surface Primitive Elements Segmentation by B-Rep Graph Structure Supervision Kseniya Cherenkova, Elona Dupont, Anis Kacem, Gleb Gusev, Djamila Aouada
-
KVQuant: Towards 10 Million Context Length LLM Inference with KV Cache Quantization Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh, Michael W. Mahoney, Sophia Shao, Kurt Keutzer, Amir Gholami
-
DiffPano: Scalable and Consistent Text to Panorama Generation with Spherical Epipolar-Aware Diffusion Weicai Ye, Chenhao Ji, Zheng Chen, Junyao Gao, Xiaoshui Huang, Song-Hai Zhang, Wanli Ouyang, Tong He, Cairong Zhao, Guofeng Zhang
-
Causal Contrastive Learning for Counterfactual Regression Over Time Mouad EL Bouchattaoui, Myriam Tami, BENOIT LEPETIT, Paul-Henry Cournède
-
Certified Robustness for Deep Equilibrium Models via Serialized Random Smoothing Weizhi Gao, Zhichao Hou, Han Xu, Xiaorui Liu
-
Causal vs. Anticausal merging of predictors Sergio Garrido Mejia, Patrick Blöbaum, Bernhard Schölkopf, Dominik Janzing
-
Sim2Real-Fire: A Multi-modal Simulation Dataset for Forecast and Backtracking of Real-world Forest Fire Yanzhi Li, Keqiu Li, LI GUOHUI, zumin wang, Chanqing Ji, Lubo Wang, Die Zuo, Qing Guo, Feng Zhang, Manyu Wang, Di Lin
-
SciInstruct: a Self-Reflective Instruction Annotated Dataset for Training Scientific Language Models Dan Zhang, Ziniu Hu, Sining Zhoubian, Zhengxiao Du, Kaiyu Yang, Zihan Wang, Yisong Yue, Yuxiao Dong, Jie Tang
-
HelpSteer 2: Open-source dataset for training top-performing reward models Zhilin Wang, Yi Dong, Olivier Delalleau, Jiaqi Zeng, Gerald Shen, Daniel Egert, Jimmy Zhang, Makesh Narsimhan Sreedhar, Oleksii Kuchaiev
-
Efficient Adversarial Training in LLMs with Continuous Attacks Sophie Xhonneux, Alessandro Sordoni, Stephan Günnemann, Gauthier Gidel, Leo Schwinn
-
Context and Geometry Aware Voxel Transformer for Semantic Scene Completion Zhu Yu, Runmin Zhang, Jiacheng Ying, Junchen Yu, Xiaohai Hu, Lun Luo, Si-Yuan Cao, Hui-liang Shen
-
MIDGArD: Modular Interpretable Diffusion over Graphs for Articulated Designs Quentin Leboutet, Nina Wiedemann, zhipeng cai, Michael Paulitsch, Kai Yuan
-
Provably Safe Neural Network Controllers via Differential Dynamic Logic Samuel Teuber, Stefan Mitsch, André Platzer
-
Learning Image Priors Through Patch-Based Diffusion Models for Solving Inverse Problems Jason Hu, Bowen Song, Xiaojian Xu, Liyue Shen, Jeffrey Fessler
-
Seek Commonality but Preserve Differences: Dissected Dynamics Modeling for Multi-modal Visual RL Yangru Huang, Peixi Peng, Yifan Zhao, Guangyao Chen, Yonghong Tian
-
Reciprocal Learning Julian Rodemann, Christoph Jansen, Georg Schollmeyer
-
D-LLM: A Token Adaptive Computing Resource Allocation Strategy for Large Language Models Yikun Jiang, Huanyu Wang, Lei Xie, Hanbin Zhao, zhang chao, Hui Qian, John C. S. Lui
-
Near-Optimal Distributionally Robust Reinforcement Learning with General $L_p$ Norms Pierre Clavier, Laixi Shi, Erwan Le Pennec, Eric Mazumdar, Adam Wierman, Matthieu Geist
-
AdaNovo: Towards Robust \emph{De Novo} Peptide Sequencing in Proteomics against Data Biases Jun Xia, Shaorong Chen, Jingbo Zhou, Shan Xiaojun, Wenjie Du, Zhangyang Gao, Cheng Tan, Bozhen Hu, Jiangbin Zheng, Stan Z. Li
-
MimicTalk: Mimicking a personalized and expressive 3D talking face in minutes Zhenhui Ye, Tianyun Zhong, Yi Ren, Ziyue Jiang, Jiawei Huang, Rongjie Huang, Jinglin Liu, Jinzheng He, Chen Zhang, Zehan Wang, Xize Cheng, Xiang Yin, Zhou Zhao
-
JiuZhang3.0: Efficiently Improving Mathematical Reasoning by Training Small Data Synthesis Models Kun Zhou, Beichen Zhang, jiapeng wang, Zhipeng Chen, Xin Zhao, Jing Sha, Zhichao Sheng, Shijin Wang, Ji-Rong Wen
-
Voila-A: Aligning Vision-Language Models with User's Gaze Attention Kun Yan, Zeyu Wang, Lei Ji, Yuntao Wang, Nan Duan, Shuai Ma
-
einspace: Searching for Neural Architectures from Fundamental Operations Linus Ericsson, Miguel Espinosa Minano, Chenhongyi Yang, Antreas Antoniou, Amos J. Storkey, Shay Cohen, Steven McDonagh, Elliot J. Crowley
-
Structured flexibility in recurrent neural networks via neuromodulation Julia Costacurta, Shaunak Bhandarkar, David Zoltowski, Scott Linderman
-
DU-Shapley: A Shapley Value Proxy for Efficient Dataset Valuation Felipe Garrido Lucero, Benjamin Heymann, Maxime Vono, Patrick Loiseau, Vianney Perchet
-
Enhancing Zero-Shot Vision Models by Label-Free Prompt Distribution Learning and Bias Correcting Xingyu Zhu, Beier Zhu, Yi Tan, Shuo Wang, Yanbin Hao, Hanwang Zhang
-
LibMOON: A Gradient-based MultiObjective OptimizatioN Library in PyTorch Xiaoyuan Zhang, Liang ZHAO, Yingying Yu, Xi Lin, Yifan Chen, Han Zhao, Qingfu Zhang
-
Diffusion PID: Interpreting Diffusion via Partial Information Decomposition Shaurya Dewan, Rushikesh Zawar, Prakanshul Saxena, Yingshan CHANG, Andrew Luo, Yonatan Bisk
-
Test-Time Dynamic Image Fusion Bing Cao, Yinan Xia, Yi Ding, Changqing Zhang, Qinghua Hu
-
An End-To-End Graph Attention Network Hashing for Cross-Modal Retrieval Huilong Jin, Yingxue Zhang, Lei Shi, Shuang Zhang, Feifei Kou, Jiapeng Yang, Chuangying Zhu, Jia Luo
-
Hamba: Single-view 3D Hand Reconstruction with Graph-guided Bi-Scanning Mamba Haoye Dong, Aviral Chharia, Wenbo Gou, Francisco Vicente Carrasco, Fernando D De la Torre
-
Omnigrasp: Grasping Diverse Objects with Simulated Humanoids Zhengyi Luo, Jinkun Cao, Sammy Christen, Alexander Winkler, Kris Kitani, Weipeng Xu
-
AlchemistCoder: Harmonizing and Eliciting Code Capability by Hindsight Tuning on Multi-source Data Zifan Song, Yudong Wang, Wenwei Zhang, Kuikun Liu, Chengqi Lyu, Demin Song, Qipeng Guo, Hang Yan, Dahua Lin, Kai Chen, Cairong Zhao
-
Gliding over the Pareto Front with Uniform Designs Xiaoyuan Zhang, Genghui Li, Xi Lin, Yichi Zhang, Yifan Chen, Qingfu Zhang
-
WildPPG: A Real-World PPG Dataset of Long Continuous Recordings Manuel Meier, Berken Utku Demirel, Christian Holz
-
SocialGPT: Prompting LLMs for Social Relation Reasoning via Greedy Segment Optimization Wanhua Li, Zibin Meng, Jiawei Zhou, Donglai Wei, Chuang Gan, Hanspeter Pfister
-
Online Learning of Delayed Choices Recep Yusuf Bekci
-
Overcoming Common Flaws in the Evaluation of Selective Classification Systems Jeremias Traub, Till Bungert, Carsten Lüth, Michael Baumgartner, Klaus Maier-Hein, Lena Maier-Hein, Paul Jaeger
-
Connecting Joint-Embedding Predictive Architecture with Contrastive Self-supervised Learning Shentong Mo, Peter Tong
-
Multi-Label Learning with Stronger Consistency Guarantees Anqi Mao, Mehryar Mohri, Yutao Zhong
-
Data Distribution Valuation Xinyi Xu, Shuaiqi Wang, Chuan Sheng Foo, Bryan Kian Hsiang Low, Giulia Fanti
-
AdjointDEIS: Efficient Gradients for Diffusion Models Zander W. Blasingame, Chen Liu
-
Using Unity to Help Solve Reinforcement Learning Connor Brennan, Andrew Williams, Omar G. Younis, Vedant Vyas, Daria Yasafova, Irina Rish
-
Differentially Private Equivalence Testing for Continuous Distributions and Applications Or Sheffet, Daniel Omer
-
Reinforcement Learning with Adaptive Regularization for Safe Control of Critical Systems Haozhe Tian, Homayoun Hamedmoghadam, Robert Shorten, Pietro Ferraro
-
BERTs are Generative In-Context Learners David Samuel
-
Faster Local Solvers for Graph Diffusion Equations Jiahe Bai, Baojian Zhou, Deqing Yang, Yanghua Xiao
-
Beyond Accuracy: Tracking more like Human via Visual Search Dailing Zhang, Shiyu Hu, Xiaokun Feng, Xuchen Li, wu meiqi, Jing Zhang, Kaiqi Huang
-
Credit Attribution and Stable Compression Roi Livni, Shay Moran, Kobbi Nissim, Chirag Pabbaraju
-
Mobile-Agent-v2: Mobile Device Operation Assistant with Effective Navigation via Multi-Agent Collaboration Junyang Wang, Haiyang Xu, Haitao Jia, Xi Zhang, Ming Yan, Weizhou Shen, Ji Zhang, Fei Huang, Jitao Sang
-
A Walsh Hadamard Derived Linear Vector Symbolic Architecture Mohammad Mahmudul Alam, Alexander Oberle, Edward Raff, Stella Biderman, Tim Oates, James Holt
-
Autonomous Agents for Collaborative Task under Information Asymmetry Wei Liu, Chenxi Wang, YiFei Wang, Zihao Xie, Rennai Qiu, Yufan Dang, Zhuoyun Du, Weize Chen, Cheng Yang, Chen Qian
-
Retrieval-Augmented Diffusion Models for Time Series Forecasting Jingwei Liu, Ling Yang, Hongyan Li, Shenda Hong
-
The Surprising Effectiveness of SP Voting with Partial Preferences Hadi Hosseini, Debmalya Mandal, Amrit Puhan
-
Flatten Anything: Unsupervised Neural Surface Parameterization Qijian Zhang, Junhui Hou, Wenping Wang, Ying He
-
BoNBoN Alignment for Large Language Models and the Sweetness of Best-of-n Sampling Lin Gui, Cristina Garbacea, Victor Veitch
-
ReMoDetect: Reward Models Recognize Aligned LLM's Generations Hyunseok Lee, Jihoon Tack, Jinwoo Shin
-
Analyzing & Reducing the Need for Learning Rate Warmup in GPT Training Atli Kosson, Bettina Messmer, Martin Jaggi
-
A Hitchhiker's Guide to Fine-Grained Face Forgery Detection Using Common Sense Reasoning Niki M Foteinopoulou, Enjie Ghorbel, Djamila Aouada
-
Meta-Reinforcement Learning with Universal Policy Adaptation: Provable Near-Optimality under All-task Optimum Comparator Siyuan Xu, Minghui Zhu
-
Mutual Information Estimation via Normalizing Flows Ivan Butakov, Aleksandr Tolmachev, Sofia Malanchuk, Anna Neopryatnaya, Alexey Frolov
-
UltraEdit: Instruction-based Fine-Grained Image Editing at Scale Haozhe Zhao, Xiaojian (Shawn) Ma, Liang Chen, Shuzheng Si, Rujie Wu, Kaikai An, Peiyu Yu, Minjia Zhang, Qing Li, Baobao Chang
-
CARE: a Benchmark Suite for the Classification and Retrieval of Enzymes Jason Yang, Ariane Mora, Shengchao Liu, Bruce Wittmann, Animashree Anandkumar, Frances Arnold, Yisong Yue
-
Few-Shot Adversarial Prompt Learning on Vision-Language Models Yiwei Zhou, Xiaobo Xia, Zhiwei Lin, Bo Han, Tongliang Liu
-
UniSDF: Unifying Neural Representations for High-Fidelity 3D Reconstruction of Complex Scenes with Reflections Fangjinhua Wang, Marie-Julie Rakotosaona, Michael Niemeyer, Richard Szeliski, Marc Pollefeys, Federico Tombari
-
Goal Reduction with Loop-Removal Accelerates RL and Models Human Brain Activity in Goal-Directed Learning Huzi Cheng, Joshua Brown
-
QBB: Quantization with Binary Bases for LLMs Adrian Bulat, Yassine Ouali, Georgios Tzimiropoulos
-
VRSBench: A Versatile Vision-Language Benchmark Dataset for Remote Sensing Image Understanding Xiang Li, Jian Ding, Mohamed Elhoseiny
-
Disentangling and mitigating the impact of task similarity for continual learning Naoki Hiratani
-
Warm-up Free Policy Optimization: Improved Regret in Linear Markov Decision Processes Asaf Cassel, Aviv Rosenberg
-
KV Cache is 1 Bit Per Channel: Efficient Large Language Model Inference with Coupled Quantization Tianyi Zhang, Jonah Yi, Zhaozhuo Xu, Anshumali Shrivastava
-
Unified Insights: Harnessing Multi-modal Data for Phenotype Imputation via View Decoupling Qiannan Zhang, Weishen Pan, Zilong Bai, Chang Su, Fei Wang
-
Optimal Private and Communication Constraint Distributed Goodness-of-Fit Testing for Discrete Distributions in the Large Sample Regime Lasse Vuursteen
-
Concentrate Attention: Towards Domain-Generalizable Prompt Optimization for Language Models Chengzhengxu Li, Xiaoming Liu, Zhaohan Zhang, Yichen Wang, Chen Liu, Yu Lan, Chao Shen
-
Training for Stable Explanation for Free Chao Chen, Chenghua Guo, Rufeng Chen, Guixiang Ma, Ming Zeng, Xiangwen Liao, Xi Zhang, Sihong Xie
-
NeuralSolver: Learning Algorithms For Consistent and Efficient Extrapolation Across General Tasks Bernardo Esteves, Miguel Vasco, Francisco S. Melo
-
SolarCube: An Integrative Benchmark Dataset Harnessing Satellite and In-situ Observations for Large-scale Solar Energy Forecasting Ruohan Li, Yiqun Xie, Xiaowei Jia, Dongdong Wang, Yanhua Li, Yingxue Zhang, Zhihao Wang, Zhili Li
-
Feint Behaviors and Strategies: Formalization, Implementation and Evaluation Junyu Liu, Xiangjun Peng
-
LT-Defense: Searching-free Backdoor Defense via Exploiting the Long-tailed Effect Yixiao Xu, Binxing Fang, Mohan Li, Keke Tang, Zhihong Tian
-
HyperLogic: Enhancing Diversity and Accuracy in Rule Learning with HyperNets Yang Yang, Wendi Ren, Shuang Li
-
CAT: Coordinating Anatomical-Textual Prompts for Multi-Organ and Tumor Segmentation Zhongzhen Huang, Yankai Jiang, Rongzhao Zhang, Shaoting Zhang, Xiaofan Zhang
-
Optimizing Automatic Differentiation with Deep Reinforcement Learning Jamie Lohoff, Emre Neftci
-
DiGRAF: Diffeomorphic Graph-Adaptive Activation Function Krishna Sri Ipsit Mantri, Xinzhi Wang, Carola-Bibiane Schönlieb, Bruno Ribeiro, Beatrice Bevilacqua, Moshe Eliasof
-
Fair Secretaries with Unfair Predictions Eric Balkanski, Will Ma, Andreas Maggiori
-
Shadowheart SGD: Distributed Asynchronous SGD with Optimal Time Complexity Under Arbitrary Computation and Communication Heterogeneity Alexander Tyurin, Marta Pozzi, Ivan Ilin, Peter Richtarik
-
Testably Learning Polynomial Threshold Functions Lucas Slot, Stefan Tiegel, Manuel Wiedmer
-
Flexible Context-Driven Sensory Processing in Dynamical Vision Models Lakshmi Narasimhan Govindarajan, Abhiram Iyer, Valmiki Kothare, Ila Fiete
-
Searching for Efficient Linear Layers over a Continuous Space of Structured Matrices Andres Potapczynski, Shikai Qiu, Marc Finzi, Christopher Ferri, Charlie Chen, Micah Goldblum, C. Bayan Bruss, Christopher M. De Sa, Andrew G. Wilson
-
Diffusion-Inspired Truncated Sampler for Text-Video Retrieval JIAMIAN WANG, Pichao WANG, Dongfang Liu, Qiang Guan, Sohail Dianat, MAJID RABBANI, Raghuveer Rao, Zhiqiang Tao
-
LiteVAE: Lightweight and Efficient Variational Autoencoders for Latent Diffusion Models Seyedmorteza Sadat, Jakob Buhmann, Derek Bradley, Otmar Hilliges, Romann M Weber
-
ROBIN: Robust and Invisible Watermarks for Diffusion Models with Adversarial Optimization Huayang Huang, Yu Wu, Qian Wang
-
A Decision-Language Model (DLM) for Dynamic Restless Multi-Armed Bandit Tasks in Public Health Nikhil Behari, Edwin Zhang, YUNFAN ZHAO, Aparna Taneja, Dheeraj Nagaraj, Milind Tambe
-
FUG: Feature-Universal Graph Contrastive Pre-training for Graphs with Diverse Node Features Jitao Zhao, Di Jin, Meng Ge, Lianze Shan, Xin Wang, Dongxiao He, Zhiyong Feng
-
ReGS: Reference-based Controllable Scene Stylization with Gaussian Splatting Yiqun Mei, Jiacong Xu, Vishal Patel
-
QueST: Self-Supervised Skill Abstractions for Learning Continuous Control Atharva Mete, Haotian Xue, Albert Wilcox, Yongxin Chen, Animesh Garg
-
DiffPhyCon: A Generative Approach to Control Complex Physical Systems Long Wei, Peiyan Hu, Ruiqi Feng, Haodong Feng, Yixuan Du, Tao Zhang, Rui Wang, Yue Wang, Zhi-Ming Ma, Tailin Wu
-
FlowTurbo: Towards Real-time Flow-Based Image Generation with Velocity Refiner Wenliang Zhao, Minglei Shi, Xumin Yu, Jie Zhou, Jiwen Lu
-
MADiff: Offline Multi-agent Learning with Diffusion Models Zhengbang Zhu, Minghuan Liu, Liyuan Mao, Bingyi Kang, Minkai Xu, Yong Yu, Stefano Ermon, Weinan Zhang
-
Polynomial-Time Computation of Exact $\Phi$-Equilibria in Polyhedral Games Gabriele Farina, Charilaos Pipis
-
Data Attribution for Text-to-Image Models by Unlearning Synthesized Images Sheng-Yu Wang, Aaron Hertzmann, Alexei Efros, Jun-Yan Zhu, Richard Zhang
-
CLIPCEIL: Domain Generalization through CLIP via Channel rEfinement and Image-text aLignment Xi Yu, Shinjae Yoo, Yuewei Lin
-
Verifiably Robust Conformal Prediction Linus Jeary, Tom Kuipers, Mehran Hosseini, Nicola Paoletti
-
Ordering-Based Causal Discovery for Linear and Nonlinear Relations Zhuopeng Xu, Yujie Li, Cheng Liu, Ning Gui
-
Revisiting Score Propagation in Graph Out-of-Distribution Detection Longfei Ma, Yiyou Sun, Kaize Ding, Zemin Liu, Fei Wu
-
Stochastic Amortization: A Unified Approach to Accelerate Feature and Data Attribution Ian Covert, Chanwoo Kim, Su-In Lee, James Y. Zou, Tatsunori B. Hashimoto
-
Explicit Eigenvalue Regularization Improves Sharpness-Aware Minimization Haocheng Luo, Tuan Truong, Tung Pham, Mehrtash Harandi, Dinh Phung, Trung Le
-
LAM3D: Large Image-Point Clouds Alignment Model for 3D Reconstruction from Single Image Ruikai Cui, Xibin Song, Weixuan Sun, Senbo Wang, Weizhe Liu, Shenzhou Chen, Taizhang Shang, YANG LI, Nick Barnes, Hongdong Li, Pan Ji
-
Weight decay induces low-rank attention layers Seijin Kobayashi, Yassir Akram, Johannes von Oswald
-
Association Pattern-aware Fusion for Biological Entity Relationship Prediction Lingxiang Jia, Yuchen Ying, Zunlei Feng, Zipeng Zhong, Shaolun Yao, Jiacong Hu, Mingjiang Duan, Xingen Wang, Jie Song, Mingli Song
-
TaskBench: Benchmarking Large Language Models for Task Automation Yongliang Shen, Kaitao Song, Xu Tan, Wenqi Zhang, Kan Ren, Siyu Yuan, Weiming Lu, Dongsheng Li, Yueting Zhuang
-
Star-Agents: Automatic Data Optimization with LLM Agents for Instruction Tuning Hang Zhou, Yehui Tang, Haochen Qin, Yujie Yang, Renren Jin, Deyi Xiong, Kai Han, Yunhe Wang
-
On Neural Networks as Infinite Tree-Structured Probabilistic Graphical Models Boyao Li, Alexander Thomson, houssam nassif, Matthew Engelhard, David Page
-
Sparse Bayesian Generative Modeling for Compressive Sensing Benedikt Böck, Sadaf Syed, Wolfgang Utschick
-
Generative Semi-supervised Graph Anomaly Detection Hezhe Qiao, Qingsong Wen, Xiaoli Li, Ee-peng Lim, Guansong Pang
-
Building on Efficient Foundations: Effective Training of LLMs with Structured Feedforward Layers Xiuying Wei, Skander Moalla, Razvan Pascanu, Caglar Gulcehre
-
Optimizing over Multiple Distributions under Generalized Quasar-Convexity Condition Ding Shihong, Long Yang, Luo Luo, Cong Fang
-
Topological Generalization Bounds for Discrete-Time Stochastic Optimization Algorithms Rayna Andreeva, Benjamin Dupuis, Rik Sarkar, Tolga Birdal, Umut Simsekli
-
Weak-to-Strong Search: Align Large Language Models via Searching over Small Language Models Zhanhui Zhou, Zhixuan Liu, Jie Liu, Zhichen Dong, Chao Yang, Yu Qiao
-
HORSE: Hierarchical Representation for Large-Scale Neural Subset Selection Binghui Xie, Yixuan Wang, Yongqiang Chen, Kaiwen Zhou, Yu Li, Wei Meng, James Cheng
-
Segment, Shuffle, and Stitch: A Simple Layer for Improving Time-Series Representations Shivam Grover, Amin Jalali, Ali Etemad
-
TARSS-Net: Temporal-Aware Radar Semantic Segmentation Network Youcheng Zhang, Liwen Zhang, ZijunHu , Pengcheng Pi, Teng Li, Yuanpei Chen, Shi Peng, Zhe Ma
-
ProEdit: Simple Progression is All You Need for High-Quality 3D Scene Editing Junkun Chen, Yu-Xiong Wang
-
FindingEmo: An Image Dataset for Emotion Recognition in the Wild Laurent Mertens, Elahe Yargholi, Hans Op de Beeck, Jan Van den Stock, Joost Vennekens
-
IRCAN: Mitigating Knowledge Conflicts in LLM Generation via Identifying and Reweighting Context-Aware Neurons Dan Shi, Renren Jin, Tianhao Shen, Weilong Dong, Xinwei Wu, Deyi Xiong
-
Utilizing Human Behavior Modeling to Manipulate Explanations in AI-Assisted Decision Making: The Good, the Bad, and the Scary Zhuoyan Li, Ming Yin
-
HairDiffusion: Vivid Multi-Colored Hair Editing via Latent Diffusion Yu Zeng, Yang Zhang, Liu Jiachen, Linlin Shen, Kaijun Deng, Weizhao He, Jinbao Wang
-
PV-Tuning: Beyond Straight-Through Estimation for Extreme LLM Compression Vladimir Malinovskii, Denis Mazur, Ivan Ilin, Denis Kuznedelev, Konstantin Burlachenko, Kai Yi, Dan Alistarh, Peter Richtarik
-
Feedback control guides credit assignment in recurrent neural networks Klara Kaleb, Barbara Feulner, Juan Gallego, Claudia Clopath
-
COLD: Causal reasOning in cLosed Daily activities Abhinav Joshi, areeb ahmad, Ashutosh Modi
-
SLED: Self Logits Evolution Decoding for Improving Factuality in Large Language Models Jianyi Zhang, Da-Cheng Juan, Cyrus Rashtchian, Chun-Sung Ferng, Heinrich Jiang, Yiran Chen
-
BackdoorAlign: Mitigating Fine-tuning based Jailbreak Attack with Backdoor Enhanced Safety Alignment Jiongxiao Wang, Jiazhao LI, Yiquan Li, Xiangyu Qi, Junjie Hu, Sharon Li, Patrick McDaniel, Muhao Chen, Bo Li, Chaowei Xiao
-
AGILE: A Novel Reinforcement Learning Framework of LLM Agents Feng Peiyuan, Yichen He, Guanhua Huang, Yuan Lin, Hanchong Zhang, Yuchen Zhang, Hang Li
-
SG-Nav: Online 3D Scene Graph Prompting for LLM-based Zero-shot Object Navigation Hang Yin, Xiuwei Xu, Zhenyu Wu, Jie Zhou, Jiwen Lu
-
Controlling Multiple Errors Simultaneously with a PAC-Bayes Bound Reuben Adams, John Shawe-Taylor, Benjamin Guedj
-
Can Graph Learning Improve Planning in LLM-based Agents? Xixi Wu, Yifei Shen, Caihua Shan, Kaitao Song, Siwei Wang, Bohang Zhang, Jiarui Feng, Hong Cheng, Wei Chen, Yun Xiong, Dongsheng Li
-
Fully Explicit Dynamic Gaussian Splatting Junoh Lee, Changyeon Won, Hyunjun Jung, Inhwan Bae, Hae-Gon Jeon
-
Graph Neural Networks and Arithmetic Circuits Timon Barlag, Vivian Holzapfel, Laura Strieker, Jonni Virtema, Heribert Vollmer
-
Self-Refining Diffusion Samplers: Enabling Parallelization via Parareal Iterations Nikil Selvam, Amil Merchant, Stefano Ermon
-
Can Learned Optimization Make Reinforcement Learning Less Difficult? Alexander D. Goldie, Chris Lu, Matthew T Jackson, Shimon Whiteson, Jakob Foerster
-
Kaleido Diffusion: Improving Conditional Diffusion Models with Autoregressive Latent Modeling Jiatao Gu, Ying Shen, Shuangfei Zhai, Yizhe Zhang, Navdeep Jaitly, Joshua Susskind
-
Schur Nets: exploiting local structure for equivariance in higher order graph neural networks QINGQI ZHANG, Ruize Xu, Risi Kondor
-
Visual Fourier Prompt Tuning Runjia Zeng, Cheng Han, Qifan Wang, Chunshu Wu, Tong Geng, Lifu Huangg, Ying Nian Wu, Dongfang Liu
-
Learning Representations for Hierarchies with Minimal Support Benjamin Rozonoyer, Michael Boratko, Dhruvesh Patel, Wenlong Zhao, Shib Dasgupta, Hung Le, Andrew McCallum
-
Continuous Partitioning for Graph-Based Semi-Supervised Learning Chester Holtz, Pengwen Chen, Zhengchao Wan, Chung-Kuan Cheng, Gal Mishne
-
Expressive Gaussian Human Avatars from Monocular RGB Video Hezhen Hu, Zhiwen Fan, Tianhao Wu, Yihan Xi, Seoyoung Lee, Georgios Pavlakos, Zhangyang "Atlas" Wang
-
Hardness of Learning Neural Networks under the Manifold Hypothesis Bobak Kiani, Jason Wang, Melanie Weber
-
TOPA: Extending Large Language Models for Video Understanding via Text-Only Pre-Alignment Wei Li, Hehe Fan, Yongkang Wong, Mohan S. Kankanhalli, Yi Yang
-
Multi-Label Open Set Recognition Yibo Wang, Jun-Yi Hang, Min-Ling Zhang
-
Med-Real2Sim: Non-Invasive Medical Digital Twins using Physics-Informed Self-Supervised Learning Keying Kuang, Frances Dean, Jack B. Jedlicki, David Ouyang, Anthony Philippakis, David Sontag, Ahmed M. Alaa
-
SuperVLAD: Compact and Robust Image Descriptors for Visual Place Recognition Feng Lu, Xinyao Zhang, Canming Ye, Shuting Dong, Lijun Zhang, Xiangyuan Lan, Chun Yuan
-
Towards Scalable and Stable Parallelization of Nonlinear RNNs Xavier Gonzalez, Andrew Warrington, Jimmy Smith, Scott Linderman
-
3D Gaussian Rendering Can Be Sparser: Efficient Rendering via Learned Fragment Pruning Zhifan Ye, Chenxi Wan, Chaojian Li, Jihoon Hong, Sixu Li, Leshu Li, Yongan Zhang, Yingyan (Celine) Lin
-
Trade-Offs of Diagonal Fisher Information Matrix Estimators Alexander Soen, Ke Sun
-
End-to-end Learnable Clustering for Intent Learning in Recommendation Yue Liu, Shihao Zhu, Jun Xia, YINGWEI MA, Jian Ma, Xinwang Liu, Shengju Yu, Kejun Zhang, Wenliang Zhong
-
LLMs as Zero-shot Graph Learners: Alignment of GNN Representations with LLM Token Embeddings Duo Wang, Yuan Zuo, Fengzhi Li, Junjie Wu
-
Exploiting Representation Curvature for Boundary Detection in Time Series Yooju Shin, Jaehyun Park, Susik Yoon, Hwanjun Song, Byung Suk Lee, Jae-Gil Lee
-
WorkArena++: Towards Compositional Planning and Reasoning-based Common Knowledge Work Tasks Léo Boisvert, Megh Thakkar, Maxime Gasse, Massimo Caccia, Thibault de Chezelles, Quentin Cappart, Nicolas Chapados, Alexandre Lacoste, Alexandre Drouin
-
KnowGPT: Knowledge Graph based Prompting for Large Language Models Qinggang Zhang, Junnan Dong, Hao Chen, Daochen Zha, Zailiang Yu, Xiao Huang
-
UDC: A Unified Neural Divide-and-Conquer Framework for Large-Scale Combinatorial Optimization Problems Zhi Zheng, Changliang Zhou, Tong Xialiang, Mingxuan Yuan, Zhenkun Wang
-
Eye-gaze Guided Multi-modal Alignment for Medical Representation Learning Chong Ma, Hanqi Jiang, Wenting Chen, Yiwei Li, Zihao Wu, Xiaowei Yu, Zhengliang Liu, Lei Guo, Dajiang Zhu, Tuo Zhang, Dinggang Shen, Tianming Liu, Xiang Li
-
Federated Ensemble-Directed Offline Reinforcement Learning Desik Rengarajan, Nitin Ragothaman, Dileep Kalathil, Srinivas Shakkottai
-
Linking In-context Learning in Transformers to Human Episodic Memory Ji-An Li, Corey Zhou, Marcus Benna, Marcelo G Mattar
-
Data-Efficient Operator Learning via Unsupervised Pretraining and In-Context Learning Wuyang Chen, Jialin Song, Pu Ren, Shashank Subramanian, Dmitriy Morozov, Michael W. Mahoney
-
IMAGPose: A Unified Conditional Framework for Pose-Guided Person Generation Fei Shen, Jinhui Tang
-
Supervised Kernel Thinning Albert Gong, Kyuseong Choi, Raaz Dwivedi
-
Cell ontology guided transcriptome foundation model XINYU YUAN, Zhihao Zhan, Zuobai Zhang, Manqi Zhou, Jianan Zhao, Boyu Han, Yue Li, Jian Tang
-
Weight Diffusion for Future: Learn to Generalize in Non-Stationary Environments Mixue Xie, Shuang Li, Binhui Xie, Chi Liu, Jian Liang, Zixun Sun, Ke Feng, Chengwei Zhu
-
Interpretable Lightweight Transformer via Unrolling of Learned Graph Smoothness Priors VIET HO TAM THUC DO, Parham Eftekhar, Seyed Alireza Hosseini, Gene Cheung, Philip Chou
-
Sketching for Distributed Deep Learning: A Sharper Analysis Mayank Shrivastava, Berivan Isik, Qiaobo Li, Sanmi Koyejo, Arindam Banerjee
-
Unified Covariate Adjustment for Causal Inference Yonghan Jung, Jin Tian, Elias Bareinboim
-
The High Line: Exact Risk and Learning Rate Curves of Stochastic Adaptive Learning Rate Algorithms Elizabeth Collins-Woodfin, Inbar Seroussi, Begoña García Malaxechebarría, Andrew W. Mackenzie, Elliot Paquette, Courtney Paquette
-
Exploring Adversarial Robustness of Deep State Space Models Biqing Qi, Yiang Luo, Junqi Gao, Pengfei Li, Kai Tian, Zhiyuan Ma, Bowen Zhou
-
DMC-VB: A Benchmark for Representation Learning for Control with Visual Distractors Joseph Ortiz, Antoine Dedieu, Wolfgang Lehrach, J Swaroop Guntupalli, Carter Wendelken, Ahmad Humayun, Sivaramakrishnan Swaminathan, Guangyao Zhou, Miguel Lazaro-Gredilla, Kevin P. Murphy
-
EASI: Evolutionary Adversarial Simulator Identification for Sim-to-Real Transfer Haoyu Dong, Huiqiao Fu, Wentao Xu, Zhehao Zhou, Chunlin Chen
-
BenchX: A Unified Benchmark Framework for Medical Vision-Language Pretraining on Chest X-Rays Yang Zhou, Tan Faith, Yanyu Xu, Sicong Leng, Xinxing Xu, Yong Liu, Rick Siow Mong Goh
-
On the Role of Information Structure in Reinforcement Learning for Partially-Observable Sequential Teams and Games Awni Altabaa, Zhuoran Yang
-
On $f$-Divergence Principled Domain Adaptation: An Improved Framework Ziqiao Wang, Yongyi Mao
-
LLM-based Skill Diffusion for Zero-shot Policy Adaptation Woo Kyung Kim, Youngseok Lee, Jooyoung Kim, Honguk Woo
-
TARP-VP: Towards Evaluation of Transferred Adversarial Robustness and Privacy on Label Mapping Visual Prompting Models Zhen Chen, Yi Zhang, Fu Wang, Xingyu Zhao, Xiaowei Huang, Wenjie Ruan
-
Learning diffusion at lightspeed Antonio Terpin, Nicolas Lanzetti, Martín Gadea, Florian Dorfler
-
One Token to Seg Them All: Language Instructed Reasoning Segmentation in Videos Zechen Bai, Tong He, Haiyang Mei, Pichao WANG, Ziteng Gao, Joya Chen, liulei , Zheng Zhang, Mike Zheng Shou
-
Rethinking Imbalance in Image Super-Resolution for Efficient Inference Wei Yu, Bowen Yang, Liu Qinglin, Jianing Li, Shengping Zhang, Xiangyang Ji
-
How Control Information Influences Multilingual Text Image Generation and Editing? Boqiang Zhang, Zuan Gao, Yadong Qu, Hongtao Xie
-
SplitNeRF: Split Sum Approximation Neural Field for Joint Geometry, Illumination, and Material Estimation Jesus Zarzar, Bernard Ghanem
-
Flexible task abstractions emerge in linear networks with fast and bounded units Kai Sandbrink, Jan Bauer, Alexandra Proca, Andrew Saxe, Christopher Summerfield, Ali Hummos
-
Adapting Diffusion Models for Improved Prompt Compliance and Controllable Image Synthesis Deepak Sridhar, Abhishek Peri, Rohith Rachala, Nuno Vasconcelos
-
On the Saturation Effects of Spectral Algorithms in Large Dimensions Weihao Lu, haobo Zhang, Yicheng Li, Qian Lin
-
Cross-Scale Self-Supervised Blind Image Deblurring via Implicit Neural Representation Tianjing Zhang, Yuhui Quan, Hui Ji
-
A Prompt-Based Knowledge Graph Foundation Model for Universal In-Context Reasoning Yuanning Cui, Zequn Sun, Wei Hu
-
Learning to be Smooth: An End-to-End Differentiable Particle Smoother Ali Younis, Erik Sudderth
-
Pard: Permutation-Invariant Autoregressive Diffusion for Graph Generation Lingxiao Zhao, Xueying Ding, Leman Akoglu
-
TabPedia: Towards Comprehensive Visual Table Understanding with Concept Synergy Weichao Zhao, Hao Feng, Qi Liu, Jingqun Tang, Binghong Wu, Lei Liao, Shu Wei, Yongjie Ye, Hao Liu, Wengang Zhou, Houqiang Li, Can Huang
-
HonestLLM: Toward an Honest and Helpful Large Language Model Gao Chujie, Siyuan Wu, Yue Huang, Dongping Chen, Qihui Zhang, Zhengyan Fu, Yao Wan, Lichao Sun, Xiangliang Zhang
-
MLLMGuard: A Multi-dimensional Safety Evaluation Suite for Multimodal Large Language Models Tianle Gu, Zeyang Zhou, Kexin Huang, Liang Dandan, Yixu Wang, Haiquan Zhao, Yuanqi Yao, xingge qiao, Keqing wang, Yujiu Yang, Yan Teng, Yu Qiao, Yingchun Wang
-
UrbanDataLayer: A Unified Data Pipeline for Urban Science Yiheng Wang, Tianyu Wang, YuYing Zhang, Hongji Zhang, Haoyu Zheng, Guanjie Zheng, Linghe Kong
-
Neural Isometries: Taming Transformations for Equivariant ML Thomas Mitchel, Michael J. Taylor, Vincent Sitzmann
-
You Only Cache Once: Decoder-Decoder Architectures for Language Models Yutao Sun, Li Dong, Yi Zhu, Shaohan Huang, Wenhui Wang, Shuming Ma, Quanlu Zhang, Jianyong Wang, Furu Wei
-
Locally Private and Robust Multi-Armed Bandits Xingyu Zhou, Komo(Wei) ZHANG
-
Understanding Information Storage and Transfer in Multi-Modal Large Language Models Samyadeep Basu, Martin Grayson, Cecily Morrison, Besmira Nushi, Soheil Feizi, Daniela Massiceti
-
Sharing Key Semantics in Transformer Makes Efficient Image Restoration Bin Ren, Yawei Li, Jingyun Liang, Rakesh Ranjan, Mengyuan Liu, Rita Cucchiara, Luc V Gool, Ming-Hsuan Yang, Nicu Sebe
-
Text-space Graph Foundation Models: Comprehensive Benchmarks and New Insights Zhikai Chen, Haitao Mao, Jingzhe Liu, Yu Song, Bingheng Li, Wei Jin, Bahare Fatemi, Anton Tsitsulin, Bryan Perozzi, Hui Liu, Jiliang Tang
-
Breaking Long-Tailed Learning Bottlenecks: A Controllable Paradigm with Hypernetwork-Generated Diverse Experts Zhe Zhao, HaiBin Wen, Zikang Wang, Pengkun Wang, Fanfu Wang, Song Lai, Qingfu Zhang, Yang Wang
-
Optimal Multiclass U-Calibration Error and Beyond Haipeng Luo, Spandan Senapati, Vatsal Sharan
-
Text2CAD: Generating Sequential CAD Designs from Beginner-to-Expert Level Text Prompts Mohammad Sadil Khan, Sankalp Sinha, Talha Uddin, Didier Stricker, Sk Aziz Ali, Muhammad Zeshan Afzal
-
MVGamba: Unify 3D Content Generation as State Space Sequence Modeling Xuanyu Yi, Zike Wu, Qiuhong Shen, Qingshan Xu, Pan Zhou, Joo-Hwee Lim, Shuicheng Yan, Xinchao Wang, Hanwang Zhang
-
Make Continual Learning Stronger via C-Flat Ang Bian, Wei Li, Hangjie Yuan, yu chengrong, Mang Wang, Zixiang Zhao, Aojun Lu, Pengliang Ji, Tao Feng
-
Limits of Transformer Language Models on Learning to Compose Algorithms Jonathan Thomm, Giacomo Camposampiero, Aleksandar Terzic, Michael Hersche, Bernhard Schölkopf, Abbas Rahimi
-
Stability and Generalization of Asynchronous SGD: Sharper Bounds Beyond Lipschitz and Smoothness Xiaoge Deng, Tao Sun, Shengwei Li, Dongsheng Li, Xicheng Lu
-
On the Identifiability of Hybrid Deep Generative Models: Meta-Learning as a Solution Yubo Ye, Maryam Tolou, Sumeet Vadhavkar, Xiajun Jiang, Huafeng Liu, Linwei Wang
-
MaskLLM: Learnable Semi-Structured Sparsity for Large Language Models Gongfan Fang, Hongxu Yin, Saurav Muralidharan, Greg Heinrich, Jeff Pool, Jan Kautz, Pavlo Molchanov, Xinchao Wang
-
Understanding the Gains from Repeated Self-Distillation Divyansh Pareek, Simon S. Du, Sewoong Oh
-
In-Context Learning State Vector with Inner and Momentum Optimization Dongfang Li, zhenyu liu, Xinshuo Hu, Zetian Sun, Baotian Hu, Min Zhang
-
DART-Math: Difficulty-Aware Rejection Tuning for Mathematical Problem-Solving Yuxuan Tong, Xiwen Zhang, Rui Wang, Ruidong Wu, Junxian He
-
CiteME: Can Language Models Accurately Cite Scientific Claims? Ori Press, Andreas Hochlehnert, Ameya Prabhu, Vishaal Udandarao, Ofir Press, Matthias Bethge
-
Visual Prompt Tuning in Null Space for Continual Learning Yue Lu, Shizhou Zhang, De Cheng, Yinghui Xing, Nannan Wang, PENG WANG, Yanning Zhang
-
The Unmet Promise of Synthetic Training Images: Using Retrieved Real Images Performs Better Scott Geng, Cheng-Yu Hsieh, Vivek Ramanujan, Matthew Wallingford, Chun-Liang Li, Pang Wei W. Koh, Ranjay Krishna
-
Reproducibility of predictive networks for mouse visual cortex Polina Turishcheva, Max Burg, Fabian Sinz, Alexander Ecker
-
Kraken: Inherently Parallel Transformers For Efficient Multi-Device Inference Rohan Baskar Prabhakar, Hengrui Zhang, David Wentzlaff
-
DeepDRK: Deep Dependency Regularized Knockoff for Feature Selection Hongyu Shen, Yici Yan, Zhizhen Jane Zhao
-
Incorporating Surrogate Gradient Norm to Improve Offline Optimization Techniques Cuong Dao, Phi Le Nguyen, Truong Thao Nguyen, Nghia Hoang
-
Revisiting Adversarial Patches for Designing Camera-Agnostic Attacks against Person Detection Hui Wei, Zhixiang Wang, Kewei Zhang, Jiaqi Hou, Yuanwei Liu, Hao Tang, Zheng Wang
-
Graph Diffusion Transformers for Multi-Conditional Molecular Generation Gang Liu, Jiaxin Xu, Tengfei Luo, Meng Jiang
-
WildGuard: Open One-stop Moderation Tools for Safety Risks, Jailbreaks, and Refusals of LLMs Seungju Han, Kavel Rao, Allyson Ettinger, Liwei Jiang, Bill Yuchen Lin, Nathan Lambert, Yejin Choi, Nouha Dziri
-
Reparameterization invariance in approximate Bayesian inference Hrittik Roy, Marco Miani, Carl Henrik Ek, Philipp Hennig, Marvin Pförtner, Lukas Tatzel, Søren Hauberg
-
Localized Adaptive Risk Control Matteo Zecchin, Osvaldo Simeone
-
Theoretical and Empirical Insights into the Origins of Degree Bias in Graph Neural Networks Arjun Subramonian, Jian Kang, Yizhou Sun
-
Federated Learning under Periodic Client Participation and Heterogeneous Data: A New Communication-Efficient Algorithm and Analysis Michael Crawshaw, Mingrui Liu
-
xMIL: Insightful Explanations for Multiple Instance Learning in Histopathology Julius Hense, Mina Jamshidi Idaji, Oliver Eberle, Thomas Schnake, Jonas Dippel, Laure Ciernik, Oliver Buchstab, Andreas Mock, Frederick Klauschen, Klaus-Robert Müller
-
Generalized Linear Bandits with Limited Adaptivity Ayush Sawarni, Nirjhar Das, Siddharth Barman, Gaurav Sinha
-
Image-aware Evaluation of Generated Medical Reports Gefen Dawidowicz, Elad Hirsch, Ayellet Tal
-
Large Language Models-guided Dynamic Adaptation for Temporal Knowledge Graph Reasoning Jiapu Wang, Sun Kai, LINHAO LUO, Wei Wei, Yongli Hu, Alan Wee-Chung Liew, Shirui Pan, Baocai Yin
-
An effective framework for estimating individualized treatment rules Joowon Lee, Jared Huling, Guanhua Chen
-
A Simple and Adaptive Learning Rate for FTRL in Online Learning with Minimax Regret of $\Theta(T^{2/3})$ and its Application to Best-of-Both-Worlds Taira Tsuchiya, Shinji Ito
-
Rethinking Fourier Transform from A Basis Functions Perspective for Long-term Time Series Forecasting Runze Yang, Longbing Cao, JIE YANG, li jianxun
-
Beyond Primal-Dual Methods in Bandits with Stochastic and Adversarial Constraints Martino Bernasconi, Matteo Castiglioni, Andrea Celli, Federico Fusco
-
Rethinking Model-based, Policy-based, and Value-based Reinforcement Learning via the Lens of Representation Complexity Guhao Feng, Han Zhong
-
Visual CoT: Advancing Multi-Modal Language Models with a Comprehensive Dataset and Benchmark for Chain-of-Thought Reasoning Hao Shao, Shengju Qian, Han Xiao, Guanglu Song, ZHUOFAN ZONG, Letian Wang, Yu Liu, Hongsheng Li
-
Invisible Image Watermarks Are Provably Removable Using Generative AI Xuandong Zhao, Kexun Zhang, Zihao Su, Saastha Vasan, Ilya Grishchenko, Christopher Kruegel, Giovanni Vigna, Yu-Xiang Wang, Lei Li
-
Stochastic Optimization Schemes for Performative Prediction with Nonconvex Loss Qiang LI, Hoi-To Wai
-
MMDU: A Multi-Turn Multi-Image Dialog Understanding Benchmark and Instruction-Tuning Dataset for LVLMs Ziyu Liu, Tao Chu, Yuhang Zang, Xilin Wei, Xiaoyi Dong, Pan Zhang, Zijian Liang, Yuanjun Xiong, Yu Qiao, Dahua Lin, Jiaqi Wang
-
SDP4Bit: Toward 4-bit Communication Quantization in Sharded Data Parallelism for LLM Training Jinda Jia, Cong Xie, Hanlin Lu, Daoce Wang, Hao Feng, Chengming Zhang, Baixi Sun, Haibin Lin, Zhi Zhang, Xin Liu, Dingwen Tao
-
How Does Message Passing Improve Collaborative Filtering? Mingxuan Ju, William Shiao, Zhichun Guo, Yanfang Ye, Yozen Liu, Neil Shah, Tong Zhao
-
An Adaptive Approach for Infinitely Many-armed Bandits under Generalized Rotting Constraints Jung-hun Kim, Milan Vojnovic, Se-Young Yun
-
Near-Optimal Streaming Heavy-Tailed Statistical Estimation with Clipped SGD Aniket Das, Dheeraj Nagaraj, Soumyabrata Pal, Arun Suggala, Prateek Varshney
-
Kernel Language Entropy: Fine-grained Uncertainty Quantification for LLMs from Semantic Similarities Alexander Nikitin, Jannik Kossen, Yarin Gal, Pekka Marttinen
-
Fine Tuning Out-of-Vocabulary Item Recommendation with User Sequence Imagination Ruochen Liu, Hao Chen, Yuanchen Bei, Qijie Shen, Fangwei Zhong, Senzhang Wang, Jianxin Wang
-
Data Mixture Inference Attack: BPE Tokenizers Reveal Training Data Compositions Jonathan Hayase, Alisa Liu, Yejin Choi, Sewoong Oh, Noah A. Smith
-
Improving Deep Learning Optimization through Constrained Parameter Regularization Jörg Franke, Michael Hefenbrock, Gregor Koehler, Frank Hutter
-
A generalized neural tangent kernel for surrogate gradient learning Luke Eilers, Raoul-Martin Memmesheimer, Sven Goedeke
-
Soft Prompt Threats: Attacking Safety Alignment and Unlearning in Open-Source LLMs through the Embedding Space Leo Schwinn, David Dobre, Sophie Xhonneux, Gauthier Gidel, Stephan Günnemann
-
AlphaPruning: Using Heavy-Tailed Self Regularization Theory for Improved Layer-wise Pruning of Large Language Models Haiquan Lu, Yefan Zhou, Shiwei Liu, Zhangyang "Atlas" Wang, Michael W. Mahoney, Yaoqing Yang
-
Towards Open-Vocabulary Semantic Segmentation Without Semantic Labels Heeseong Shin, Chaehyun Kim, Sunghwan Hong, Seokju Cho, Anurag Arnab, Paul Hongsuck Seo, Seungryong Kim
-
Sample Efficient Bayesian Learning of Causal Graphs from Interventions Zihan Zhou, Muhammad Qasim Elahi, Murat Kocaoglu
-
StreamFlow: Streamlined Multi-Frame Optical Flow Estimation for Video Sequences SHANGKUN SUN, Jiaming Liu, Huaxia Li, Guoqing Liu, Thomas Li, Wei Gao
-
Unlocking Tokens as Data Points for Generalization Bounds on Larger Language Models Sanae Lotfi, Yilun Kuang, Marc Finzi, Brandon Amos, Micah Goldblum, Andrew G. Wilson
-
VLKEB: A Large Vision-Language Model Knowledge Editing Benchmark Han Huang, Haitian Zhong, Tao Yu, Qiang Liu, Shu Wu, Liang Wang, Tieniu Tan
-
A Unified Principle of Pessimism for Offline Reinforcement Learning under Model Mismatch Yue Wang, Zhongchang Sun, Shaofeng Zou
-
Overcoming Brittleness in Pareto-Optimal Learning Augmented Algorithms Alex Elenter, Spyros Angelopoulos, Christoph Dürr, Yanni LEFKI
-
GraphMETRO: Mitigating Complex Graph Distribution Shifts via Mixture of Aligned Experts Shirley Wu, Kaidi Cao, Bruno Ribeiro, James Y. Zou, Jure Leskovec
-
CHASE: Learning Convex Hull Adaptive Shift for Skeleton-based Multi-Entity Action Recognition Yuhang Wen, Mengyuan Liu, Songtao Wu, Beichen Ding
-
Continual Counting with Gradual Privacy Expiration Joel Daniel Andersson, Monika Henzinger, Rasmus Pagh, Teresa Steiner, Jalaj Upadhyay
-
Clustering then Propagation: Select Better Anchors for Knowledge Graph Embedding KE LIANG, Yue Liu, Hao Li, Lingyuan Meng, Suyuan Liu, Siwei Wang, sihang zhou, Xinwang Liu
-
LoFiT: Localized Fine-tuning on LLM Representations Fangcong Yin, Xi Ye, Greg Durrett
-
Look, Listen, and Answer: Overcoming Biases for Audio-Visual Question Answering Jie Ma, Min Hu, Pinghui Wang, Wangchun Sun, Lingyun Song, Hongbin Pei, Jun Liu, Youtian Du
-
Meta 3D AssetGen: Text-to-Mesh Generation with High-Quality Geometry, Texture, and PBR Materials Yawar Siddiqui, Tom Monnier, Filippos Kokkinos, Mahendra Kariya, Yanir Kleiman, Emilien Garreau, Oran Gafni, Natalia Neverova, Andrea Vedaldi, Roman Shapovalov, David Novotny
-
HydraLoRA: An Asymmetric LoRA Architecture for Efficient Fine-Tuning Chunlin Tian, Zhan Shi, Zhijiang Guo, Li Li, Cheng-Zhong Xu
-
Graph Diffusion Policy Optimization Yijing Liu, Chao Du, Tianyu Pang, Chongxuan LI, Min Lin, Wei Chen
-
UKnow: A Unified Knowledge Protocol with Multimodal Knowledge Graph Datasets for Reasoning and Vision-Language Pre-Training Biao Gong, Shuai Tan, Yutong Feng, Xiaoying Xie, Yuyuan Li, Chaochao Chen, Kecheng Zheng, Yujun Shen, Deli Zhao
-
Understanding Representation of Deep Equilibrium Models from Neural Collapse Perspective Haixiang Sun, Ye Shi
-
PrivAuditor: Benchmarking Data Protection Vulnerabilities in LLM Adaptation Techniques Derui Zhu, Dingfan Chen, Xiongfei Wu, Jiahui Geng, Zhuo Li, Jens Grossklags, Lei Ma
-
A Retrospective on the Robot Air Hockey Challenge: Benchmarking Robust, Reliable, and Safe Learning Techniques for Real-world Robotics Puze Liu, Jonas Günster, Niklas Funk, Simon Gröger, Dong Chen, Haitham Bou Ammar, Julius Jankowski, Ante Marić, Sylvain Calinon, Andrej Orsula, Miguel Olivares, Hongyi Zhou, Rudolf Lioutikov, Gerhard Neumann, Amarildo Likmeta, Amirhossein Zhalehmehrabi, Thomas Bonenfant, Marcello Restelli, Davide Tateo, Ziyuan Liu, Jan R. Peters
-
A Recipe for Charge Density Prediction Xiang Fu, Andrew Rosen, Kyle Bystrom, Rui Wang, Albert Musaelian, Boris Kozinsky, Tess Smidt, Tommi Jaakkola
-
Deep Graph Mating Yongcheng Jing, Seok-Hee Hong, Dacheng Tao
-
LIVE: Learnable In-Context Vector for Visual Question Answering Yingzhe Peng, chenduo hao, Xinting Hu, Jiawei Peng, Xin Geng, Xu Yang
-
Online Relational Inference for Evolving Multi-agent Interacting Systems Beomseok Kang, Priyabrata Saha, Sudarshan Sharma, Biswadeep Chakraborty, Saibal Mukhopadhyay
-
Open-Book Neural Algorithmic Reasoning Hefei Li, Peng Chao, Chenyang Xu, Zhengfeng Yang
-
Classification Diffusion Models: Revitalizing Density Ratio Estimation Shahar Yadin, Noam Elata, Tomer Michaeli
-
Text-Infused Attention and Foreground-Aware Modeling for Zero-Shot Temporal Action Detection Yearang Lee, Ho-Joong Kim, Seong-Whan Lee
-
Online Budgeted Matching with General Bids Jianyi Yang, Pengfei Li, Adam Wierman, Shaolei Ren
-
Marginal Causal Flows for Validation and Inference Daniel de Vassimon Manela, Laura Battaglia, Robin Evans
-
CRAYM: Neural Field Optimization via Camera RAY Matching Liqiang Lin, Wenpeng Wu, Chi-Wing Fu, Hao Zhang, Hui Huang
-
The Road Less Scheduled Aaron Defazio, Xingyu Yang, Ahmed Khaled, Konstantin Mishchenko, Harsh Mehta, Ashok Cutkosky
-
Resource-Aware Federated Self-Supervised Learning with Global Class Representations Mingyi Li, Xiao Zhang, Qi Wang, Tengfei LIU, Ruofan Wu, Weiqiang Wang, Fuzhen Zhuang, Hui Xiong, Dongxiao Yu
-
Spiking Transformer with Experts Mixture Zhaokun Zhou, Yijie Lu, Yanhao Jia, Kaiwei Che, Jun Niu, Liwei Huang, Xinyu Shi, Yuesheng Zhu, Guoqi Li, Zhaofei Yu, Li Yuan
-
Semantic Routing via Autoregressive Modeling Eric Zhao, Pranjal Awasthi, Zhengdao Chen, Sreenivas Gollapudi, Daniel Delling
-
DiscoveryWorld: A Virtual Environment for Developing and Evaluating Automated Scientific Discovery Agents Peter Jansen, Marc-Alexandre Côté, Tushar Khot, Erin Bransom, Bhavana Dalvi Mishra, Bodhisattwa Prasad Majumder, Oyvind Tafjord, Peter Clark
-
TSDS: Data Selection for Task-Specific Model Finetuning Zifan Liu, Amin Karbasi, Theodoros Rekatsinas
-
Fully Unconstrained Online Learning Ashok Cutkosky, Zak Mhammedi
-
Masked Hard-Attention Transformers Recognize Exactly the Star-Free Languages Andy Yang, David Chiang, Dana Angluin
-
CosAE: Learnable Fourier Series for Image Restoration Sifei Liu, Shalini De Mello, Jan Kautz
-
Exactly Minimax-Optimal Locally Differentially Private Sampling Hyun-Young Park, Shahab Asoodeh, Si-Hyeon Lee
-
Exploring Context Window of Large Language Models via Decomposed Positional Vectors Zican Dong, Junyi Li, Xin Men, Xin Zhao, Bingning Wang, Zhen Tian, weipeng chen, Ji-Rong Wen
-
Spectral Graph Pruning Against Over-Squashing and Over-Smoothing Adarsh Jamadandi, Celia Rubio-Madrigal, Rebekka Burkholz
-
Fairness in Social Influence Maximization via Optimal Transport Shubham Chowdhary, Giulia De Pasquale, Nicolas Lanzetti, Ana-Andreea Stoica, Florian Dorfler
-
ECLipsE: Efficient Compositional Lipschitz Constant Estimation for Deep Neural Networks Yuezhu Xu, S Sivaranjani
-
FairJob: A Real-World Dataset for Fairness in Online Systems Mariia Vladimirova, Federico Pavone, Eustache Diemert
-
CRAG - Comprehensive RAG Benchmark Xiao Yang, Kai Sun, Hao Xin, Yushi Sun, Nikita Bhalla, Xiangsen Chen, Sajal Choudhary, Rongze Gui, Ziran Jiang, Ziyu Jiang, Lingkun Kong, Brian Moran, Jiaqi Wang, Yifan Xu, An Yan, Chenyu Yang, Eting Yuan, Hanwen Zha, Nan Tang, Lei Chen, Nicolas Scheffer, Yue Liu, Nirav Shah, Rakesh Wanga, Anuj Kumar, Scott Yih, Xin Dong
-
Stacking Your Transformers: A Closer Look at Model Growth for Efficient LLM Pre-Training Wenyu Du, Tongxu Luo, Zihan Qiu, Zeyu Huang, Yikang Shen, Reynold Cheng, Yike Guo, Jie Fu
-
Annealed Multiple Choice Learning: Overcoming limitations of Winner-takes-all with annealing David Perera, Victor Letzelter, Theo Mariotte, Adrien Cortes, Mickael Chen, Slim Essid, Gaël Richard
-
Are Multiple Instance Learning Algorithms Learnable for Instances? Jaeseok Jang, HYUK-YOON KWON
-
Layer-Adaptive State Pruning for Deep State Space Models Minseon Gwak, Seongrok Moon, Joohwan Ko, PooGyeon Park
-
Score-based 3D molecule generation with neural fields Matthieu Kirchmeyer, Pedro O. O. Pinheiro, Saeed Saremi
-
PertEval: Unveiling Real Knowledge Capacity of LLMs with Knowledge-Invariant Perturbations Jiatong Li, Renjun Hu, Kunzhe Huang, Yan Zhuang, Qi Liu, Mengxiao Zhu, Xing Shi, Wei Lin
-
On Sparse Canonical Correlation Analysis Yongchun Li, Santanu Dey, Weijun Xie
-
A Pairwise Pseudo-likelihood Approach for Matrix Completion with Informative Missingness Jiangyuan Li, Jiayi Wang, Raymond K. W. Wong, Kwun Chuen Gary Chan
-
Toward Global Convergence of Gradient EM for Over-Paramterized Gaussian Mixture Models Weihang Xu, Maryam Fazel, Simon S. Du
-
Conditioning non-linear and infinite-dimensional diffusion processes Elizabeth L. Baker, Gefan Yang, Michael Severinsen, Christy Hipsley, Stefan Sommer
-
On Convergence of Adam for Stochastic Optimization under Relaxed Assumptions Yusu Hong, Junhong Lin
-
Quantum algorithm for large-scale market equilibrium computation Po-Wei Huang, Patrick Rebentrost
-
Adversarially Robust Dense-Sparse Tradeoffs via Heavy-Hitters David Woodruff, Samson Zhou
-
I Don't Know: Explicit Modeling of Uncertainty with an [IDK] Token Roi Cohen, Konstantin Dobler, Eden Biran, Gerard de Melo
-
Scaling Continuous Latent Variable Models as Probabilistic Integral Circuits Gennaro Gala, Cassio P. de Campos, Antonio Vergari, Erik Quaeghebeur
-
What do Graph Neural Networks learn? Insights from Tropical Geometry Tuan Anh Pham, Vikas Garg
-
Understanding the Expressivity and Trainability of Fourier Neural Operator: A Mean-Field Perspective Takeshi Koshizuka, Masahiro Fujisawa, Yusuke Tanaka, Issei Sato
-
Selective Attention: Enhancing Transformer through Principled Context Control Xuechen Zhang, Xiangyu Chang, Mingchen Li, Amit Roy-Chowdhury, Jiasi Chen, Samet Oymak
-
Differentially Private Stochastic Gradient Descent with Fixed-Size Minibatches: Tighter RDP Guarantees with or without Replacement Jeremiah Birrell, Reza Ebrahimi, Rouzbeh Behnia, Jason Pacheco
-
A Simple and Optimal Approach for Universal Online Learning with Gradient Variations Yu-Hu Yan, Peng Zhao, Zhi-Hua Zhou
-
LESS: Label-Efficient and Single-Stage Referring 3D Segmentation Xuexun Liu, Xiaoxu Xu, Jinlong Li, Qiudan Zhang, Xu Wang, Nicu Sebe, Lin Ma
-
Optimal Algorithms for Augmented Testing of Discrete Distributions Maryam Aliakbarpour, Piotr Indyk, Ronitt Rubinfeld, Sandeep Silwal
-
Personalized Instance-based Navigation Toward User-Specific Objects in Realistic Environments Luca Barsellotti, Roberto Bigazzi, Marcella Cornia, Lorenzo Baraldi, Rita Cucchiara
-
Mind the Gap Between Prototypes and Images in Cross-domain Finetuning Hongduan Tian, Feng Liu, Zhanke Zhou, Tongliang Liu, Chengqi Zhang, Bo Han
-
Robust Reinforcement Learning with General Utility Ziyi Chen, Yan Wen, Zhengmian Hu, Heng Huang
-
Addressing Bias in Online Selection with Limited Budget of Comparisons Ziyad Benomar, Evgenii Chzhen, Nicolas Schreuder, Vianney Perchet
-
MonoMAE: Enhancing Monocular 3D Detection through Depth-Aware Masked Autoencoders Xueying Jiang, Sheng Jin, Xiaoqin Zhang, Ling Shao, Shijian Lu
-
Measuring Goal-Directedness Matt MacDermott, James Fox, Francesco Belardinelli, Tom Everitt
-
Long-Range Feedback Spiking Network Captures Dynamic and Static Representations of the Visual Cortex under Movie Stimuli Liwei Huang, Zhengyu Ma, Liutao Yu, Huihui Zhou, Yonghong Tian
-
Typicalness-Aware Learning for Failure Detection Yijun Liu, Jiequan Cui, Zhuotao Tian, Senqiao Yang, Qingdong He, Xiaoling Wang, Jingyong Su
-
CVQA: Culturally-diverse Multilingual Visual Question Answering Benchmark David Romero, Chenyang Lyu, Haryo Wibowo, Santiago Góngora, Aishik Mandal, Sukannya Purkayastha, Jesus-German Ortiz-Barajas, Emilio Cueva, Jinheon Baek, Soyeong Jeong, Injy Hamed, Yong Zheng-Xin, Zheng Wei Lim, Paula Silva, Jocelyn Dunstan, Mélanie Jouitteau, David LE MEUR, Joan Nwatu, Ganzorig Batnasan, Munkh-Erdene Otgonbold, Munkhjargal Gochoo, Guido Ivetta, Luciana Benotti, Laura Alonso Alemany, Hernán Maina, Jiahui Geng, Tiago Timponi Torrent, Frederico Belcavello, Marcelo Viridiano, Jan Christian Blaise Cruz, Dan John Velasco, Oana Ignat, Zara Burzo, Chenxi Whitehouse, Artem Abzaliev, Teresa Clifford, Gráinne Caulfield, Teresa Lynn, Christian Salamea-Palacios, Vladimir Araujo, Yova Kementchedjhieva, Mihail Mihaylov, Israel Azime, Henok Ademtew, Bontu Balcha, Naome A. Etori, David Adelani, Rada Mihalcea, Atnafu Lambebo Tonja, Maria Cabrera, Gisela Vallejo, Holy Lovenia, Ruochen Zhang, Marcos Estecha-Garitagoitia, Mario Rodríguez-Cantelar, Toqeer Ehsan, Rendi Chevi, Muhammad Adilazuarda, Ryandito Diandaru, Samuel Cahyawijaya, Fajri Koto, Tatsuki Kuribayashi, Haiyue Song, Aditya Khandavally, Thanmay Jayakumar, Raj Dabre, Mohamed Imam, Kumaranage Nagasinghe, Alina Dragonetti, Luis Fernando D'Haro, Niyomugisha Olivier, Jay Gala, Pranjal Chitale, Fauzan Farooqui, Thamar Solorio, Alham Aji
-
EffiBench: Benchmarking the Efficiency of Automatically Generated Code Dong HUANG, Yuhao QING, Weiyi Shang, Heming Cui, Jie Zhang
-
PutnamBench: Evaluating Neural Theorem-Provers on the Putnam Mathematical Competition George Tsoukalas, Jasper Lee, John Jennings, Jimmy Xin, Michelle Ding, Michael Jennings, Amitayush Thakur, Swarat Chaudhuri
-
Episodic Future Thinking Mechanism for Multi-agent Reinforcement Learning Dongsu Lee, Minhae Kwon
-
Slot State Space Models Jindong Jiang, Fei Deng, Gautam Singh, Minseung Lee, Sungjin Ahn
-
Incorporating Test-Time Optimization into Training with Dual Networks for Human Mesh Recovery Yongwei Nie, Mingxian Fan, Chengjiang Long, Qing Zhang, Jian Zhu, Xuemiao Xu
-
On the Identifiability of Poisson Branching Structural Causal Model Using Probability Generating Function Yu Xiang, Jie Qiao, Zefeng Liang, Zihuai Zeng, Ruichu Cai, Zhifeng Hao
-
AsEP: Benchmarking Deep Learning Methods for Antibody-specific Epitope Prediction ChuNan Liu, Lilian Denzler, Yihong Chen, Andrew Martin, Brooks Paige
-
Variational Flow Matching for Graph Generation Floor Eijkelboom, Grigory Bartosh, Christian Andersson Naesseth, Max Welling, Jan-Willem van de Meent
-
A Gradient Accumulation Method for Dense Retriever under Memory Constraint Jaehee Kim, Yukyung Lee, Pilsung Kang
-
Road Network Representation Learning with the Third Law of Geography Haicang Zhou, Weiming Huang, Yile Chen, Tiantian He, Gao Cong, Yew Soon Ong
-
HyperPrism: An Adaptive Non-linear Aggregation Framework for Distributed Machine Learning over Non-IID Data and Time-varying Communication Links Haizhou Du, Yijian Chen, Ryan Yang, Yuchen Li, Linghe Kong
-
A Versatile Diffusion Transformer with Mixture of Noise Levels for Audiovisual Generation Gwanghyun Kim, Alonso Martinez, Yu-Chuan Su, Brendan Jou, Jose Lezama, Agrim Gupta, Lijun Yu, Lu Jiang, Aren Jansen, Jacob Walker, Krishna Somandepalli
-
GarmentLab: A Unified Simulation and Benchmark for Garment Manipulation Haoran Lu, Ruihai Wu, Yitong Li, Sijie Li, Ziyu Zhu, Chuanruo Ning, Yan Zhao, Longzan Luo, Yuanpei Chen, Hao Dong
-
Interpretable Generalized Additive Models for Datasets with Missing Values Hayden McTavish, Jon Donnelly, Margo Seltzer, Cynthia Rudin
-
Kangaroo: Lossless Self-Speculative Decoding for Accelerating LLMs via Double Early Exiting Fangcheng Liu, Yehui Tang, Zhenhua Liu, Yunsheng Ni, Duyu Tang, Kai Han, Yunhe Wang
-
Identifying Selections for Unsupervised Subtask Discovery Yiwen Qiu, Yujia Zheng, Kun Zhang
-
Bandits with Preference Feedback: A Stackelberg Game Perspective Barna Pásztor, Parnian Kassraie, Andreas Krause
-
DMesh: A Differentiable Mesh Representation Sanghyun Son, Matheus Gadelha, Yang Zhou, Zexiang Xu, Ming Lin, Yi Zhou
-
UniTox: Leveraging LLMs to Curate a Unified Dataset of Drug-Induced Toxicity from FDA Labels Jacob Silberg, Kyle Swanson, Elana Simon, Angela Zhang, Zaniar Ghazizadeh, Scott Ogden, Hisham Hamadeh, James Y. Zou
-
MoE Jetpack: From Dense Checkpoints to Adaptive Mixture of Experts for Vision Tasks Xingkui Zhu, Yiran Guan, Dingkang Liang, Yuchao Chen, Yuliang Liu, Xiang Bai
-
Differentially Private Graph Diffusion with Applications in Personalized PageRanks Rongzhe Wei, Eli Chien, Pan Li
-
MMM-RS: A Multi-modal, Multi-GSD, Multi-scene Remote Sensing Dataset and Benchmark for Text-to-Image Generation jialin luo, Yuanzhi Wang, Ziqi Gu, Yide Qiu, Shuaizhen Yao, Fuyun Wang, Chunyan Xu, Wenhua Zhang, Dan Wang, Zhen Cui
-
Exploring Structured Semantic Priors Underlying Diffusion Score for Test-time Adaptation Mingjia Li, Shuang Li, Tongrui Su, Longhui Yuan, Jian Liang, Wei Li
-
Action Imitation in Common Action Space for Customized Action Image Synthesis wang lin, Jingyuan Chen, Jiaxin Shi, Zirun Guo, Yichen Zhu, Zehan Wang, Tao Jin, Zhou Zhao, Fei Wu, Shuicheng Yan, Hanwang Zhang
-
PhoCoLens: Photorealistic and Consistent Reconstruction in Lensless Imaging Xin Cai, Zhiyuan You, Hailong Zhang, Jinwei Gu, Wentao Liu, Tianfan Xue
-
The Importance of Online Data: Understanding Preference Fine-tuning via Coverage Yuda Song, Gokul Swamy, Aarti Singh, J. Bagnell, Wen Sun
-
LiveScene: Language Embedding Interactive Radiance Fields for Physical Scene Control and Rendering Delin Qu, Qizhi Chen, Pingrui Zhang, Xianqiang Gao, Bin Zhao, Zhigang Wang, Dong Wang, Xuelong Li
-
What makes unlearning hard and what to do about it KAIRAN ZHAO, Meghdad Kurmanji, George-Octavian Bărbulescu, Eleni Triantafillou, Peter Triantafillou
-
The Power of Resets in Online Reinforcement Learning Zak Mhammedi, Dylan J Foster, Alexander Rakhlin
-
Gaussian Approximation and Multiplier Bootstrap for Polyak-Ruppert Averaged Linear Stochastic Approximation with Applications to TD Learning Sergey Samsonov, Eric Moulines, Qi-Man Shao, Zhuo-Song Zhang, Alexey Naumov
-
DigiRL: Training In-The-Wild Device-Control Agents with Autonomous Reinforcement Learning Hao Bai, Yifei Zhou, Jiayi Pan, Mert Cemri, Alane Suhr, Sergey Levine, Aviral Kumar
-
Invertible Consistency Distillation for Text-Guided Image Editing in Around 7 Steps Nikita Starodubcev, Mikhail Khoroshikh, Artem Babenko, Dmitry Baranchuk
-
Distributionally Robust Reinforcement Learning with Interactive Data Collection: Fundamental Hardness and Near-Optimal Algorithms Miao Lu, Han Zhong, Tong Zhang, Jose Blanchet
-
Reversing the Forget-Retain Objectives: An Efficient LLM Unlearning Framework from Logit Difference Jiabao Ji, Yujian Liu, Yang Zhang, Gaowen Liu, Ramana Kompella, Sijia Liu, Shiyu Chang
-
Scaling the Codebook Size of VQ-GAN to 100,000 with a Utilization Rate of 99% Lei Zhu, Fangyun Wei, Yanye Lu, Dong Chen
-
Representation Noising: A Defence Mechanism Against Harmful Finetuning Domenic Rosati, Jan Wehner, Kai Williams, Lukasz Bartoszcze, Robie Gonzales, carsten maple, Subhabrata Majumdar, Hassan Sajjad, Frank Rudzicz
-
Towards Calibrated Robust Fine-Tuning of Vision-Language Models Changdae Oh, Hyesu Lim, Mijoo Kim, Dongyoon Han, Sangdoo Yun, Jaegul Choo, Alexander Hauptmann, Zhi-Qi Cheng, Kyungwoo Song
-
Towards Safe Concept Transfer of Multi-Modal Diffusion via Causal Representation Editing Peiran Dong, Bingjie WANG, Song Guo, Junxiao Wang, Jie ZHANG, Zicong Hong
-
Variational Distillation of Diffusion Policies into Mixture of Experts Hongyi Zhou, Denis Blessing, Ge Li, Onur Celik, Xiaogang Jia, Gerhard Neumann, Rudolf Lioutikov
-
Handling Learnwares from Heterogeneous Feature Spaces with Explicit Label Exploitation Peng Tan, Hai-Tian Liu, Zhi-Hao Tan, Zhi-Hua Zhou
-
ROIDICE: Offline Return on Investment Maximization for Efficient Decision Making Woosung Kim, Hayeong Lee, Jongmin Lee, Byung-Jun Lee
-
Generalization Bound and Learning Methods for Data-Driven Projections in Linear Programming Shinsaku Sakaue, Taihei Oki
-
CV-VAE: A Compatible Video VAE for Latent Generative Video Models Sijie Zhao, Yong Zhang, Xiaodong Cun, Shaoshu Yang, Muyao Niu, Xiaoyu Li, Wenbo HU, Ying Shan
-
Historical Test-time Prompt Tuning for Vision Foundation Models Jingyi Zhang, Jiaxing Huang, Xiaoqin Zhang, Ling Shao, Shijian Lu
-
Non-asymptotic Analysis of Biased Adaptive Stochastic Approximation Sobihan Surendran, Adeline Fermanian, Antoine Godichon-Baggioni, Sylvain Le Corff
-
Regret Minimization in Stackelberg Games with Side Information Keegan Harris, Steven Z. Wu, Maria-Florina F. Balcan
-
Navigating the Effect of Parametrization for Dimensionality Reduction Haiyang Huang, Yingfan Wang, Cynthia Rudin
-
DrivingDojo Dataset: Advancing Interactive and Knowledge-Enriched Driving World Model Yuqi Wang, Ke Cheng, Jiawei He, Qitai Wang, Hengchen Dai, Yuntao Chen, Fei Xia, ZHAO-XIANG ZHANG
-
Peri-midFormer: Periodic Pyramid Transformer for Time Series Analysis Qiang Wu, Gechang Yao, Zhixi Feng, Yang Shuyuan
-
QKFormer: Hierarchical Spiking Transformer using Q-K Attention chenlin zhou, Han Zhang, Zhaokun Zhou, Liutao Yu, Liwei Huang, Xiaopeng Fan, Li Yuan, Zhengyu Ma, Huihui Zhou, Yonghong Tian
-
DapperFL: Domain Adaptive Federated Learning with Model Fusion Pruning for Edge Devices Yongzhe Jia, Xuyun Zhang, Hongsheng Hu, Kim-Kwang Raymond Choo, Lianyong Qi, Xiaolong Xu, Amin Beheshti, Wanchun Dou
-
Policy-shaped prediction: avoiding distractions in model-based reinforcement learning Miles Hutson, Isaac Kauvar, Nick Haber
-
Fundamental Convergence Analysis of Sharpness-Aware Minimization Pham Khanh, Hoang-Chau Luong, Boris Mordukhovich, Dat Tran
-
Honor Among Bandits: No-Regret Learning for Online Fair Division Ariel D. Procaccia, Ben Schiffer, Shirley Zhang
-
BLURD: Benchmarking and Learning using a Unified Rendering and Diffusion Model Boris Repasky, Ehsan Abbasnejad, Anthony Dick
-
Learning to grok: Emergence of in-context learning and skill composition in modular arithmetic tasks Tianyu He, Darshil Doshi, Aritra Das, Andrey Gromov
-
Zero-Shot Event-Intensity Asymmetric Stereo via Visual Prompting from Image Domain Hanyue Lou, Jinxiu (Sherry) Liang, Minggui Teng, Bin Fan, Yong Xu, Boxin Shi
-
Towards Comprehensive Detection of Chinese Harmful Memes Junyu Lu, Bo Xu, Xiaokun Zhang, Hongbo Wang, Haohao Zhu, Dongyu Zhang, Liang Yang, Hongfei Lin
-
On improved Conditioning Mechanisms and Pre-training Strategies for Diffusion Models Tariq Berrada Ifriqi, Pietro Astolfi, Melissa Hall, Reyhane Askari Hemmat, Yohann Benchetrit, Marton Havasi, Matthew Muckley, Karteek Alahari, Adriana Romero-Soriano, Jakob Verbeek, Michal Drozdzal
-
$\texttt{Model-GLUE}$: Democratized LLM Scaling for A Large Model Zoo in the Wild Xinyu Zhao, Guoheng Sun, Ruisi Cai, Yukun Zhou, Pingzhi Li, Peihao Wang, Bowen Tan, Yexiao He, Li Chen, Yi Liang, Beidi Chen, Binhang Yuan, Hongyi Wang, Ang Li, Zhangyang "Atlas" Wang, Tianlong Chen
-
A Full-duplex Speech Dialogue Scheme Based On Large Language Model Peng Wang, Songshuo Lu, Yaohua Tang, Sijie Yan, Wei Xia, Yuanjun Xiong
-
MultiPull: Detailing Signed Distance Functions by Pulling Multi-Level Queries at Multi-Step Takeshi Noda, Chao Chen, Weiqi Zhang, Xinhai Liu, Yu-Shen Liu, Zhizhong Han
-
Learning Cooperative Trajectory Representations for Motion Forecasting Hongzhi Ruan, Haibao Yu, Wenxian Yang, Siqi Fan, Zaiqing Nie
-
eXponential FAmily Dynamical Systems (XFADS): Large-scale nonlinear Gaussian state-space modeling Matthew Dowling, Yuan Zhao, Memming Park
-
AROMA: Preserving Spatial Structure for Latent PDE Modeling with Local Neural Fields Louis Serrano, Thomas X Wang, Etienne Le Naour, Jean-Noël Vittaut, Patrick Gallinari
-
Parameter Efficient Adaptation for Image Restoration with Heterogeneous Mixture-of-Experts Hang Guo, Tao Dai, Yuanchao Bai, Bin Chen, Xudong Ren, Zexuan Zhu, Shu-Tao Xia
-
DiffCut: Catalyzing Zero-Shot Semantic Segmentation with Diffusion Features and Recursive Normalized Cut Paul Couairon, Mustafa Shukor, Jean-Emmanuel HAUGEARD, Matthieu Cord, Nicolas THOME
-
BitDelta: Your Fine-Tune May Only Be Worth One Bit James Liu, Guangxuan Xiao, Kai Li, Jason D. Lee, Song Han, Tri Dao, Tianle Cai
-
LION: Linear Group RNN for 3D Object Detection in Point Clouds Zhe Liu, Jinghua Hou, Xinyu Wang, Xiaoqing Ye, Jingdong Wang, Hengshuang Zhao, Xiang Bai
-
$SE(3)$ Equivariant Ray Embeddings for Implicit Multi-View Depth Estimation Yinshuang Xu, Dian Chen, Katherine Liu, Sergey Zakharov, Rareș Ambruș, Kostas Daniilidis, Vitor Guizilini
-
Fast and Memory-Efficient Video Diffusion Using Streamlined Inference Zheng Zhan, Yushu Wu, Yifan Gong, Zichong Meng, Zhenglun Kong, Changdi Yang, Geng Yuan, Pu Zhao, Wei Niu, Yanzhi Wang
-
Sparse High Rank Adapters Kartikeya Bhardwaj, Nilesh Pandey, Sweta Priyadarshi, Viswanath Ganapathy, Shreya Kadambi, Rafael Esteves, Shubhankar Borse, Paul Whatmough, Risheek Garrepalli, Mart van Baalen, Harris Teague, Markus Nagel
-
Beyond Aesthetics: Cultural Competence in Text-to-Image Models Nithish Kannen Senthilkumar, Arif Ahmad, Marco Andreetto, Vinodkumar Prabhakaran, Utsav Prabhu, Adji Bousso Dieng, Pushpak Bhattacharyya, Shachi Dave
-
Pretraining with Random Noise for Fast and Robust Learning without Weight Transport Jeonghwan Cheon, Sang Wan Lee, Se-Bum Paik
-
High-Resolution Image Harmonization with Adaptive-Interval Color Transformation Quanling Meng, Liu Qinglin, Zonglin Li, Xiangyuan Lan, Shengping Zhang, Liqiang Nie
-
Pseudo-Siamese Blind-spot Transformers for Self-Supervised Real-World Denoising Yuhui Quan, Tianxiang Zheng, Hui Ji
-
Expected Probabilistic Hierarchies Marcel Kollovieh, Bertrand Charpentier, Daniel Zügner, Stephan Günnemann
-
Video Token Merging for Long Video Understanding Seon-Ho Lee, Jue Wang, Zhikang Zhang, David Fan, Xinyu Li
-
Alignment at Pre-training! Towards Native Alignment for Arabic LLMs Juhao Liang, Zhenyang Cai, Jianqing Zhu, Huang Huang, Kewei Zong, Bang An, Mosen Alharthi, Juncai He, Lian Zhang, Haizhou Li, Benyou Wang, Jinchao Xu
-
FSP-Laplace: Function-Space Priors for the Laplace Approximation in Bayesian Deep Learning Tristan Cinquin, Marvin Pförtner, Vincent Fortuin, Philipp Hennig, Robert Bamler
-
SCAFFLSA: Taming Heterogeneity in Federated Linear Stochastic Approximation and TD Learning Paul Mangold, Sergey Samsonov, Safwan Labbi, Ilya Levin, REDA ALAMI, Alexey Naumov, Eric Moulines
-
Sequential Probability Assignment with Contexts: Minimax Regret, Contextual Shtarkov Sums, and Contextual Normalized Maximum Likelihood Ziyi Liu, Idan Attias, Dan Roy
-
Functional Bilevel Optimization for Machine Learning Ieva Petrulionytė, Julien Mairal, Michael Arbel
-
Emergence of heavy tails in homogenized stochastic gradient descent Zhezhe Jiao, Martin Keller-Ressel
-
Initialization is Critical to Whether Transformers Fit Composite Functions by Reasoning or Memorizing Zhongwang Zhang, Pengxiao Lin, Zhiwei Wang, Yaoyu Zhang, Zhi-Qin Xu
-
Learning Interaction-aware 3D Gaussian Splatting for One-shot Hand Avatars Xuan Huang, Hanhui Li, Wanquan Liu, Xiaodan Liang, Yiqiang Yan, Yuhao Cheng, CHENQIANG GAO
-
Learning-Augmented Dynamic Submodular Maximization Arpit Agarwal, Eric Balkanski
-
IF-Font: Ideographic Description Sequence-Following Font Generation Xinping Chen, Xiao Ke, Wenzhong Guo
-
DataComp-LM: In search of the next generation of training sets for language models Jeffrey Li, Alex Fang, Georgios Smyrnis, Maor Ivgi, Matt Jordan, Samir Yitzhak Gadre, Hritik Bansal, Etash Guha, Sedrick Scott Keh, Kushal Arora, Saurabh Garg, Rui Xin, Niklas Muennighoff, Reinhard Heckel, Jean Mercat, Mayee Chen, Suchin Gururangan, Mitchell Wortsman, Alon Albalak, Yonatan Bitton, Marianna Nezhurina, Amro Abbas, Cheng-Yu Hsieh, Dhruba Ghosh, Josh Gardner, Maciej Kilian, Hanlin Zhang, Rulin Shao, Sarah Pratt, Sunny Sanyal, Gabriel Ilharco, Giannis Daras, Kalyani Marathe, Aaron Gokaslan, Jieyu Zhang, Khyathi Chandu, Thao Nguyen, Igor Vasiljevic, Sham Kakade, Shuran Song, Sujay Sanghavi, Fartash Faghri, Sewoong Oh, Luke Zettlemoyer, Kyle Lo, Alaaeldin El-Nouby, Hadi Pouransari, Alexander Toshev, Stephanie Wang, Dirk Groeneveld, Luca Soldaini, Pang Wei W. Koh, Jenia Jitsev, Thomas Kollar, Alex Dimakis, Yair Carmon, Achal Dave, Ludwig Schmidt, Vaishaal Shankar
-
Pretrained Optimization Model for Zero-Shot Black Box Optimization Xiaobin Li, Kai Wu, yujian li, Xiaoyu Zhang, Handing Wang, Jing Liu
-
Leveraging Visual Tokens for Extended Text Contexts in Multi-Modal Learning Alex Jinpeng Wang, Linjie Li, Yiqi Lin, Min Li, Lijuan Wang, Mike Zheng Shou
-
Boundary Decomposition for Nadir Objective Vector Estimation Ruihao Zheng, Zhenkun Wang
-
Recurrent Reinforcement Learning with Memoroids Steven Morad, Chris Lu, Ryan Kortvelesy, Stephan Liwicki, Jakob Foerster, Amanda Prorok
-
Image Copy Detection for Diffusion Models Wenhao Wang, Yifan Sun, Zhentao Tan, Yi Yang
-
Federated Fine-tuning of Large Language Models under Heterogeneous Tasks and Client Resources Jiamu Bai, Daoyuan Chen, Bingchen Qian, Liuyi Yao, Yaliang Li
-
Interaction-Force Transport Gradient Flows Egor Gladin, Pavel Dvurechenskii, Alexander Mielke, Jia-Jie Zhu
-
TreeVI: Reparameterizable Tree-structured Variational Inference for Instance-level Correlation Capturing Junxi Xiao, Qinliang Su
-
Optimal Parallelization of Boosting Arthur da Cunha, Mikael Møller Høgsgaard, Kasper Green Larsen
-
ProgressGym: Alignment with a Millennium of Moral Progress Tianyi (Alex) Qiu, Yang Zhang, Xuchuan Huang, Jasmine Li, Jiaming Ji, Yaodong Yang
-
Catastrophic Goodhart: regularizing RLHF with KL divergence does not mitigate heavy-tailed reward misspecification Thomas Kwa, Drake Thomas, Adrià Garriga-Alonso
-
Segmenting Watermarked Texts From Language Models Xingchi Li, Guanxun Li, Xianyang Zhang
-
Data-Efficient Learning with Neural Programs Alaia Solko-Breslin, Seewon Choi, Ziyang Li, Neelay Velingker, Rajeev Alur, Mayur Naik, Eric Wong
-
Language Models as Hierarchy Encoders Yuan He, Moy Yuan, Jiaoyan Chen, Ian Horrocks
-
Unconditional stability of a recurrent neural circuit implementing divisive normalization Shivang Rawat, David Heeger, Stefano Martiniani
-
G2D: From Global to Dense Radiography Representation Learning via Vision-Language Pre-training Che Liu, Cheng Ouyang, Sibo Cheng, Anand Shah, Wenjia Bai, Rossella Arcucci
-
On the Role of Attention Masks and LayerNorm in Transformers Xinyi Wu, Amir Ajorlou, Yifei Wang, Stefanie Jegelka, Ali Jadbabaie
-
Directional Smoothness and Gradient Methods: Convergence and Adaptivity Aaron Mishkin, Ahmed Khaled, Yuanhao Wang, Aaron Defazio, Robert Gower
-
OVT-B: A New Large-Scale Benchmark for Open-Vocabulary Multi-Object Tracking Haiji Liang, Ruize Han
-
The Implicit Bias of Heterogeneity towards Invariance: A Study of Multi-Environment Matrix Sensing Yang Xu, Yihong Gu, Cong Fang
-
MemVLT: Vision-Language Tracking with Adaptive Memory-based Prompts Xiaokun Feng, Xuchen Li, Shiyu Hu, Dailing Zhang, wu meiqi, Jing Zhang, Xiaotang Chen, Kaiqi Huang
-
Towards Universal Mesh Movement Networks Mingrui Zhang, Chunyang Wang, Stephan C. Kramer, Joseph G Wallwork, Siyi Li, Jiancheng Liu, Xiang Chen, Matthew Piggott
-
Natural Counterfactuals With Necessary Backtracking GUANG-YUAN HAO, Jiji Zhang, Biwei Huang, Hao Wang, Kun Zhang
-
BLAST: Block-Level Adaptive Structured Matrices for Efficient Deep Neural Network Inference Changwoo Lee, Soo Min Kwon, Qing Qu, Hun-Seok Kim
-
CLIPLoss and Norm-Based Data Selection Methods for Multimodal Contrastive Learning Yiping Wang, Yifang Chen, Wendan Yan, Alex Fang, Wenjing Zhou, Kevin G. Jamieson, Simon S. Du
-
ReLIZO: Sample Reusable Linear Interpolation-based Zeroth-order Optimization Xiaoxing Wang, Xiaohan Qin, Xiaokang Yang, Junchi Yan
-
Entity Alignment with Noisy Annotations from Large Language Models Shengyuan Chen, Qinggang Zhang, Junnan Dong, Wen Hua, Qing Li, Xiao Huang
-
How Diffusion Models Learn to Factorize and Compose Qiyao Liang, Ziming Liu, Mitchell Ostrow, Ila Fiete
-
Learning to Mitigate Externalities: the Coase Theorem with Hindsight Rationality Antoine Scheid, Aymeric Capitaine, Etienne Boursier, Eric Moulines, Michael Jordan, Alain Durmus
-
Touchstone Benchmark: Are We on the Right Way for Evaluating AI Algorithms for Medical Segmentation? Pedro R. A. S. Bassi, Wenxuan Li, Yucheng Tang, Fabian Isensee, Zifu Wang, Jieneng Chen, Yu-Cheng Chou, Yannick Kirchhoff, Maximilian R. Rokuss, Ziyan Huang, Jin Ye, Junjun He, Tassilo Wald, Constantin Ulrich, Michael Baumgartner, Saikat Roy, Klaus Maier-Hein, Paul Jaeger, Yiwen Ye, Yutong Xie, Jianpeng Zhang, Ziyang Chen, Yong Xia, Zhaohu Xing, Lei Zhu, Yousef Sadegheih, Afshin Bozorgpour, Pratibha Kumari, Reza Azad, Dorit Merhof, Pengcheng Shi, Ting Ma, Yuxin Du, Fan BAI, Tiejun Huang, Bo Zhao, Haonan Wang, Xiaomeng Li, Hanxue Gu, Haoyu Dong, Jichen Yang, Maciej Mazurowski, Saumya Gupta, Linshan Wu, Jia-Xin Zhuang, Hao CHEN, Holger Roth, Daguang Xu, Matthew Blaschko, Sergio Decherchi, Andrea Cavalli, Alan L. Yuille, Zongwei Zhou
-
Lower Bounds of Uniform Stability in Gradient-Based Bilevel Algorithms for Hyperparameter Optimization Rongzhen Wang, Chenyu Zheng, Guoqiang Wu, Xu Min, Xiaolu Zhang, Jun Zhou, Chongxuan LI
-
Improving self-training under distribution shifts via anchored confidence with theoretical guarantees Taejong Joo, Diego Klabjan
-
4Diffusion: Multi-view Video Diffusion Model for 4D Generation Haiyu Zhang, Xinyuan Chen, Yaohui WANG, Xihui Liu, Yunhong Wang, Yu Qiao
-
How do Large Language Models Handle Multilingualism? Yiran Zhao, Wenxuan Zhang, Guizhen Chen, Kenji Kawaguchi, Lidong Bing
-
Improving Deep Reinforcement Learning by Reducing the Chain Effect of Value and Policy Churn Hongyao Tang, Glen Berseth
-
Benchmarking LLMs via Uncertainty Quantification Fanghua Ye, Mingming Yang, Jianhui Pang, Longyue Wang, Derek Wong, Emine Yilmaz, Shuming Shi, Zhaopeng Tu
-
No Train, all Gain: Self-Supervised Gradients Improve Deep Frozen Representations Walter Simoncini, Andrei Bursuc, Spyridon Gidaris, Yuki Asano
-
ChatQA: Surpassing GPT-4 on Conversational QA and RAG Zihan Liu, Wei Ping, Rajarshi Roy, Peng Xu, Chankyu Lee, Mohammad Shoeybi, Bryan Catanzaro
-
Improving Linear System Solvers for Hyperparameter Optimisation in Iterative Gaussian Processes Jihao Andreas Lin, Shreyas Padhy, Bruno Mlodozeniec, Javier Antorán, José Miguel Hernández-Lobato
-
Coevolving with the Other You: Fine-Tuning LLM with Sequential Cooperative Multi-Agent Reinforcement Learning Hao Ma, Tianyi Hu, Zhiqiang Pu, Liu Boyin, Xiaolin Ai, Yanyan Liang, Min Chen
-
FT-AED: Benchmark Dataset for Early Freeway Traffic Anomalous Event Detection Austin Coursey, Junyi Ji, Marcos Quinones Grueiro, William Barbour, Yuhang Zhang, Tyler Derr, Gautam Biswas, Daniel Work
-
CoBo: Collaborative Learning via Bilevel Optimization Diba Hashemi, Lie He, Martin Jaggi
-
FasMe: Fast and Sample-efficient Meta Estimator for Precision Matrix Learning in Small Sample Settings Xiao Tan, Yiqin Wang, Yangyang Shen, Dian Shen, Meng Wang, Peibo Duan, Beilun Wang
-
HYSYNTH: Context-Free LLM Approximation for Guiding Program Synthesis Shraddha Barke, Emmanuel Anaya Gonzalez, Saketh Ram Kasibatla, Taylor Berg-Kirkpatrick, Nadia Polikarpova
-
MTGS: A Novel Framework for Multi-Person Temporal Gaze Following and Social Gaze Prediction Anshul Gupta, Samy Tafasca, Arya Farkhondeh, Pierre Vuillecard, Jean-marc Odobez
-
Can Large Language Model Agents Simulate Human Trust Behavior? Chengxing Xie, Canyu Chen, Feiran Jia, Ziyu Ye, Shiyang Lai, Kai Shu, Jindong Gu, Adel Bibi, Ziniu Hu, David Jurgens, James Evans, Philip Torr, Bernard Ghanem, Guohao Li
-
Enhancing Multiple Dimensions of Trustworthiness in LLMs via Sparse Activation Control Yuxin Xiao, Wan Chaoqun, Yonggang Zhang, Wenxiao Wang, Binbin Lin, Xiaofei He, Xu Shen, Jieping Ye
-
EEVR: A Dataset of Paired Physiological Signals and Textual Descriptions for Joint Emotion Representation Learning Pragya Singh, Ritvik Budhiraja, Ankush Gupta, Anshul Goswami, Mohan Kumar, Pushpendra Singh
-
Evaluating Large Vision-and-Language Models on Children's Mathematical Olympiads Anoop Cherian, Kuan-Chuan Peng, Suhas Lohit, Joanna Matthiesen, Kevin Smith, Josh Tenenbaum
-
Stress-Testing Long-Context Language Models with Lifelong ICL and Task Haystack Xiaoyue Xu, Qinyuan Ye, Xiang Ren
-
Observational Scaling Laws and the Predictability of Langauge Model Performance Yangjun Ruan, Chris J. Maddison, Tatsunori B. Hashimoto
-
Embedding-Aligned Language Models Guy Tennenholtz, Yinlam Chow, Chih-wei Hsu, Lior Shani, Yi Liang, Craig Boutilier
-
How to Boost Any Loss Function Richard Nock, Yishay Mansour
-
Pearls from Pebbles: Improved Confidence Functions for Auto-labeling Harit Vishwakarma, Yi Chen, Sui Jiet Tay, Satya Sai Srinath Namburi, Frederic Sala, Ramya Korlakai Vinayak
-
SHMT: Self-supervised Hierarchical Makeup Transfer via Latent Diffusion Models Zhaoyang Sun, Shengwu Xiong, Yaxiong Chen, Fei Du, Weihua Chen, Fan Wang, Yi Rong
-
Mixture of Link Predictors on Graphs Li Ma, Haoyu Han, Juanhui Li, Harry Shomer, Hui Liu, Xiaofeng Gao, Jiliang Tang
-
No Regrets: Investigating and Improving Regret Approximations for Curriculum Discovery Alexander Rutherford, Michael Beukman, Timon Willi, Bruno Lacerda, Nick Hawes, Jakob Foerster
-
Automated Efficient Estimation using Monte Carlo Efficient Influence Functions Raj Agrawal, Sam Witty, Andy Zane, Elias Bingham
-
AR-Pro: Counterfactual Explanations for Anomaly Repair with Formal Properties Xiayan Ji, Anton Xue, Eric Wong, Oleg Sokolsky, Insup Lee
-
Stability and Generalization of Adversarial Training for Shallow Neural Networks with Smooth Activation Kaibo Zhang, Yunjuan Wang, Raman Arora
-
DPIC: Decoupling Prompt and Intrinsic Characteristics for LLM Generated Text Detection XIAO YU, Yuang Qi, Kejiang Chen, Guoqiang Chen, Xi Yang, Pengyuan Zhu, Xiuwei Shang, Weiming Zhang, Nenghai Yu
-
Melting Pot Contest: Charting the Future of Generalized Cooperative Intelligence Rakshit Trivedi, Akbir Khan, Jesse Clifton, Lewis Hammond, Edgar Duenez-Guzman, Dipam Chakraborty, John Agapiou, Jayd Matyas, Sasha Vezhnevets, Barna Pásztor, Yunke Ao, Omar G. Younis, Jiawei Huang, Benjamin Swain, Haoyuan Qin, Deng, Ziwei Deng, Utku Erdoğanaras, Yue Zhao, Marko Tesic, Natasha Jaques, Jakob Foerster, Vincent Conitzer, José Hernández-Orallo, Dylan Hadfield-Menell, Joel Z. Leibo
-
Collaborative Video Diffusion: Consistent Multi-video Generation with Camera Control Zhengfei Kuang, Shengqu Cai, Hao He, Yinghao Xu, Hongsheng Li, Leonidas J. Guibas, Gordon Wetzstein
-
Text to Blind Motion Hee Jae Kim, Kathakoli Sengupta, Masaki Kuribayashi, Hernisa Kacorri, Eshed Ohn-Bar
-
Cryptographic Hardness of Score Estimation Min Jae Song
-
The Secretary Problem with Predicted Additive Gap Alexander Braun, Sherry Sarkar
-
SpecExec: Massively Parallel Speculative Decoding For Interactive LLM Inference on Consumer Devices Ruslan Svirschevski, Avner May, Zhuoming Chen, Beidi Chen, Zhihao Jia, Max Ryabinin
-
From Unstructured Data to In-Context Learning: Exploring What Tasks Can Be Learned and When Kevin Christian Wibisono, Yixin Wang
-
Are Large-scale Soft Labels Necessary for Large-scale Dataset Distillation? Lingao Xiao, Yang He
-
Linear Uncertainty Quantification of Graphical Model Inference Chenghua Guo, Han Yu, Jiaxin Liu, Chao Chen, Qi Li, Sihong Xie, Xi Zhang
-
4+3 Phases of Compute-Optimal Neural Scaling Laws Elliot Paquette, Courtney Paquette, Lechao Xiao, Jeffrey Pennington
-
Learning Mixtures of Unknown Causal Interventions Abhinav Kumar, Kirankumar Shiragur, Caroline Uhler
-
On the Noise Robustness of In-Context Learning for Text Generation hongfu gao, Feipeng Zhang, Wenyu Jiang, Jun Shu, Feng Zheng, Hongxin Wei
-
Mercury: A Code Efficiency Benchmark for Code Large Language Models Mingzhe Du, Anh Tuan Luu, Bin Ji, Qian Liu, See-Kiong Ng
-
LVD-2M: A Long-take Video Dataset with Temporally Dense Captions Tianwei Xiong, Yuqing Wang, Daquan Zhou, Zhijie Lin, Jiashi Feng, Xihui Liu
-
Implicit Regularization of Decentralized Gradient Descent for Sparse Regression Tongle Wu, Ying Sun
-
Loki: Low-rank Keys for Efficient Sparse Attention Prajwal Singhania, Siddharth Singh, Shwai He, Soheil Feizi, Abhinav Bhatele
-
VB-LoRA: Extreme Parameter Efficient Fine-Tuning with Vector Banks Yang Li, Shaobo Han, Jonathan Shihao Ji
-
ST$_k$: A Scalable Module for Solving Top-k Problems Hanchen Xia, Weidong Liu, Xiaojun Mao
-
Non-geodesically-convex optimization in the Wasserstein space Hoang Phuc Hau Luu, Hanlin Yu, Bernardo Williams, Petrus Mikkola, Marcelo Hartmann, Kai Puolamäki, Arto Klami
-
Non-asymptotic Global Convergence Analysis of BFGS with the Armijo-Wolfe Line Search Qiujiang Jin, Ruichen Jiang, Aryan Mokhtari
-
Enhancing Preference-based Linear Bandits via Human Response Time Shen Li, Yuyang Zhang, Zhaolin Ren, Claire Liang, Na Li, Julie A Shah
-
Zero-Shot Reinforcement Learning from Low Quality Data Scott Jeen, Tom Bewley, Jonathan Cullen
-
Ordered Momentum for Asynchronous SGD Chang-Wei Shi, Yi-Rui Yang, Wu-Jun Li
-
GlotCC: An Open Broad-Coverage CommonCrawl Corpus and Pipeline for Minority Languages Amir Hossein Kargaran, François Yvon, Hinrich Schuetze
-
Real-Time Recurrent Learning using Trace Units in Reinforcement Learning Esraa Elelimy, Adam White, Michael Bowling, Martha White
-
NaturalBench: Evaluating Vision-Language Models on Natural Adversarial Samples Baiqi Li, Zhiqiu Lin, Wenxuan Peng, Jean de Dieu Nyandwi, Daniel Jiang, Zixian Ma, Simran Khanuja, Ranjay Krishna, Graham Neubig, Deva Ramanan
-
Abstract Reward Processes: Leveraging State Abstraction for Consistent Off-Policy Evaluation Shreyas Chaudhari, Ameet Deshpande, Bruno C. da Silva, Philip S. Thomas
-
Automating Dataset Updates Towards Reliable and Timely Evaluation of Large Language Models Jiahao Ying, Yixin Cao, Yushi Bai, QIANRU SUN, Bo Wang, Wei Tang, Zhaojun Ding, Yizhe Yang, Xuanjing Huang, Shuicheng Yan
-
A Globally Optimal Portfolio for m-Sparse Sharpe Ratio Maximization Yizun Lin, Zhao-Rong Lai, Cheng Li
-
SafeSora: Towards Safety Alignment of Text2Video Generation via a Human Preference Dataset Juntao Dai, Tianle Chen, Xuyao Wang, Ziran Yang, Taiye Chen, Jiaming Ji, Yaodong Yang
-
Supra-Laplacian Encoding for Transformer on Dynamic Graphs Yannis Karmim, Marc Lafon, Raphael Fournier-S'niehotta, Nicolas THOME
-
Enhancing Efficiency of Safe Reinforcement Learning via Sample Manipulation Shangding Gu, Laixi Shi, Yuhao Ding, Alois Knoll, Costas J Spanos, Adam Wierman, Ming Jin
-
Incremental Learning of Retrievable Skills For Efficient Continual Task Adaptation Daehee Lee, Minjong Yoo, Woo Kyung Kim, Wonje Choi, Honguk Woo
-
Preference-based Pure Exploration Apurv Shukla, Debabrota Basu
-
Policy Optimization for Robust Average Reward MDPs Zhongchang Sun, Sihong He, Fei Miao, Shaofeng Zou
-
Beyond Euclidean: Dual-Space Representation Learning for Weakly Supervised Video Violence Detection Jiaxu Leng, Zhanjie Wu, Mingpi Tan, Yiran Liu, Ji Gan, Haosheng Chen, Xinbo Gao
-
Learning Discrete Latent Variable Structures with Tensor Rank Conditions Zhengming Chen, Ruichu Cai, Feng Xie, Jie Qiao, Anpeng Wu, Zijian Li, Zhifeng Hao, Kun Zhang
-
The Map Equation Goes Neural: Mapping Network Flows with Graph Neural Networks Christopher Blöcker, Chester Tan, Ingo Scholtes
-
Locating What You Need: Towards Adapting Diffusion Models to OOD Concepts In-the-Wild Jianan Yang, Chenchao Gao, Zhiqing Xiao, Junbo Zhao, Sai Wu, Gang Chen, Haobo Wang
-
ESPACE: Dimensionality Reduction of Activations for Model Compression Charbel Sakr, Brucek Khailany
-
Toxicity Detection for Free Zhanhao Hu, Julien Piet, Geng Zhao, Jiantao Jiao, David Wagner
-
PERIA: Perceive, Reason, Imagine, Act via Holistic Language and Vision Planning for Manipulation Fei Ni, Jianye Hao, Shiguang Wu, Longxin Kou, Yifu Yuan, Zibin Dong, Jinyi Liu, MingZhi Li, Yuzheng Zhuang, YAN ZHENG
-
CLIPAway: Harmonizing focused embeddings for removing objects via diffusion models Yiğit Ekin, Ahmet Burak Yildirim, Erdem Eren Çağlar, Aykut Erdem, Erkut Erdem, Aysegul Dundar
-
Banded Square Root Matrix Factorization for Differentially Private Model Training Kalinin Nikita, Christoph H. Lampert
-
Bayesian-guided Label Mapping for Visual Reprogramming Chengyi Cai, Zesheng Ye, Lei Feng, Jianzhong Qi, Feng Liu
-
Visual Anchors Are Strong Information Aggregators For Multimodal Large Language Model Haogeng Liu, Quanzeng You, Xiaotian Han, Yongfei Liu, Huaibo Huang, Ran He, Hongxia Yang
-
Combining Observational Data and Language for Species Range Estimation Max Hamilton, Christian Lange, Elijah Cole, Alexander Shepard, Samuel Heinrich, Oisin Mac Aodha, Grant Van Horn, Subhransu Maji
-
From an Image to a Scene: Learning to Imagine the World from a Million 360° Videos Matthew Wallingford, Anand Bhattad, Aditya Kusupati, Vivek Ramanujan, Matt Deitke, Aniruddha Kembhavi, Roozbeh Mottaghi, Wei-Chiu Ma, Ali Farhadi
-
Multiview Scene Graph Juexiao Zhang, Gao Zhu, Sihang Li, Xinhao Liu, Haorui Song, Xinran Tang, Chen Feng
-
Fixed Confidence Best Arm Identification in the Bayesian Setting Kyoungseok Jang, Junpei Komiyama, Kazutoshi Yamazaki
-
Mars: Situated Inductive Reasoning in an Open-World Environment Xiaojuan Tang, Jiaqi Li, Yitao Liang, Song-Chun Zhu, Muhan Zhang, Zilong Zheng
-
Fairness-Aware Estimation of Graphical Models Zhuoping Zhou, Davoud Ataee Tarzanagh, Bojian Hou, Qi Long, Li Shen
-
Addressing Spatial-Temporal Heterogeneity: General Mixed Time Series Analysis via Latent Continuity Recovery and Alignment Jiawei Chen, 春晖 赵
-
Recursive PAC-Bayes: A Frequentist Approach to Sequential Prior Updates with No Information Loss Yi-Shan Wu, Yijie Zhang, Badr-Eddine Cherief-Abdellatif, Yevgeny Seldin
-
SUGARCREPE++ Dataset: Vision-Language Model Sensitivity to Semantic and Lexical Alterations Sri Harsha Dumpala, Aman Jaiswal, Chandramouli Shama Sastry, Evangelos Milios, Sageev Oore, Hassan Sajjad
-
Towards Learning Group-Equivariant Features for Domain Adaptive 3D Detection Sangyun Shin, Yuhang He, Madhu Vankadari, Ta-Ying Cheng, Qian Xie, Andrew Markham, Niki Trigoni
-
Beyond Efficiency: Molecular Data Pruning for Enhanced Generalization Dingshuo Chen, Zhixun Li, Yuyan Ni, Guibin Zhang, Ding Wang, Qiang Liu, Shu Wu, Jeffrey Yu, Liang Wang
-
Shopping MMLU: A Massive Multi-Task Online Shopping Benchmark for Large Language Models Yilun Jin, Zheng Li, Chenwei Zhang, Tianyu Cao, Yifan Gao, Pratik Jayarao, Mao Li, Xin Liu, Ritesh Sarkhel, Xianfeng Tang, Haodong Wang, Zhengyang Wang, Wenju Xu, Jingfeng Yang, Qingyu Yin, Xian Li, Priyanka Nigam, Yi Xu, Kai Chen, Qiang Yang, Meng Jiang, Bing Yin
-
FedAvP: Augment Local Data via Shared Policy in Federated Learning Minui Hong, Junhyeog Yun, Insu Jeon, Gunhee Kim
-
The Representation Landscape of Few-Shot Learning and Fine-Tuning in Large Language Models Diego Doimo, Alessandro Serra, Alessio Ansuini, Alberto Cazzaniga
-
Interpret Your Decision: Logical Reasoning Regularization for Generalization in Visual Classification Zhaorui Tan, Xi Yang, Qiufeng Wang, Anh Nguyen, Kaizhu Huang
-
Curriculum Fine-tuning of Vision Foundation Model for Medical Image Classification Under Label Noise Yeonguk Yu, Minhwan Ko, Sungho Shin, Kangmin Kim, Kyoobin Lee
-
Inferring stochastic low-rank recurrent neural networks from neural data Matthijs Pals, A Erdem Sağtekin, Felix Pei, Manuel Gloeckler, Jakob H Macke
-
Cardinality-Aware Set Prediction and Top-$k$ Classification Corinna Cortes, Anqi Mao, Christopher Mohri, Mehryar Mohri, Yutao Zhong
-
In-Context Learning of a Linear Transformer Block: Benefits of the MLP Component and One-Step GD Initialization Ruiqi Zhang, Jingfeng Wu, Peter Bartlett
-
Learning 3D Equivariant Implicit Function with Patch-Level Pose-Invariant Representation Xin Hu, Xiaole Tang, Ruixuan Yu, Jian Sun
-
Communication Efficient Distributed Training with Distributed Lion Bo Liu, Lemeng Wu, Lizhang Chen, Kaizhao Liang, Jiaxu Zhu, Chen Liang, Raghuraman Krishnamoorthi, Qiang Liu
-
Fairness and Efficiency in Online Class Matching MohammadTaghi Hajiaghayi, Shayan Jahan, Mohammad Sharifi, Suho Shin, Max Springer
-
Ad Auctions for LLMs via Retrieval Augmented Generation MohammadTaghi Hajiaghayi, Sébastien Lahaie, Keivan Rezaei, Suho Shin
-
ReVideo: Remake a Video with Motion and Content Control Chong Mou, Mingdeng Cao, Xintao Wang, Zhaoyang Zhang, Ying Shan, Jian Zhang
-
Finding Transformer Circuits With Edge Pruning Adithya Bhaskar, Alexander Wettig, Dan Friedman, Danqi Chen
-
DenseFusion-1M: Merging Vision Experts for Comprehensive Multimodal Perception Xiaotong Li, Fan Zhang, Haiwen Diao, Yueze Wang, Xinlong Wang, LINGYU DUAN
-
Globally Convergent Variational Inference Declan McNamara, Jackson Loper, Jeffrey Regier
-
Auditing Local Explanations is Hard Robi Bhattacharjee, Ulrike Luxburg
-
HumanVLA: Towards Vision-Language Directed Object Rearrangement by Physical Humanoid Xinyu Xu, Yizheng Zhang, Yong-Lu Li, Lei Han, Cewu Lu
-
Efficient Reinforcement Learning by Discovering Neural Pathways Samin Yeasar Arnob, Riyasat Ohib, Sergey Plis, Amy Zhang, Alessandro Sordoni, Doina Precup
-
SciFIBench: Benchmarking Large Multimodal Models for Scientific Figure Interpretation Jonathan Roberts, Kai Han, Neil Houlsby, Samuel Albanie
-
MeMo: Meaningful, Modular Controllers via Noise Injection Megan Tjandrasuwita, Jie Xu, Armando Solar-Lezama, Wojciech Matusik
-
FERERO: A Flexible Framework for Preference-Guided Multi-Objective Learning Lisha Chen, A Saif, Yanning Shen, Tianyi Chen
-
RGMDT: Return-Gap-Minimizing Decision Tree Extraction in Non-Euclidean Metric Space Jingdi Chen, Hanhan Zhou, Yongsheng Mei, Carlee Joe-Wong, Gina C. Adam, Nathaniel Bastian, Tian Lan
-
WaterMax: breaking the LLM watermark detectability-robustness-quality trade-off Eva Giboulot, Teddy Furon
-
Gene-Gene Relationship Modeling Based on Genetic Evidence for Single-Cell RNA-Seq Data Imputation Daeho Um, Ji Won Yoon, Seong Jin Ahn, Yunha Yeo
-
Suppress Content Shift: Better Diffusion Features via Off-the-Shelf Generation Techniques Benyuan Meng, Qianqian Xu, Zitai Wang, Zhiyong Yang, Xiaochun Cao, Qingming Huang
-
Policy Learning from Tutorial Books via Understanding, Rehearsing and Introspecting Xiong-Hui Chen, Ziyan Wang, Yali Du, Shengyi Jiang, Meng Fang, Yang Yu, Jun Wang
-
Image Reconstruction Via Autoencoding Sequential Deep Image Prior Ismail Alkhouri, Shijun Liang, Evan Bell, Qing Qu, Rongrong Wang, Saiprasad Ravishankar
-
Invariant subspaces and PCA in nearly matrix multiplication time Aleksandros Sobczyk, Marko Mladenovic, Mathieu Luisier
-
Boosting Graph Pooling with Persistent Homology Chaolong Ying, Xinjian Zhao, Tianshu Yu
-
OpenGaussian: Towards Point-Level 3D Gaussian-based Open Vocabulary Understanding Yanmin Wu, Jiarui Meng, Haijie LI, Chenming Wu, Yahao Shi, Xinhua Cheng, Chen Zhao, Haocheng Feng, Errui Ding, Jingdong Wang, Jian Zhang
-
Proportional Fairness in Non-Centroid Clustering Ioannis Caragiannis, Evi Micha, Nisarg Shah
-
PaGoDA: Progressive Growing of a One-Step Generator from a Low-Resolution Diffusion Teacher Dongjun Kim, Chieh-Hsin Lai, Wei-Hsiang Liao, Yuhta Takida, Naoki Murata, Toshimitsu Uesaka, Yuki Mitsufuji, Stefano Ermon
-
OlympicArena: Benchmarking Multi-discipline Cognitive Reasoning for Superintelligent AI Zhen Huang, Zengzhi Wang, Shijie Xia, Xuefeng Li, Haoyang Zou, Ruijie Xu, Run-Ze Fan, Lyumanshan Ye, Ethan Chern, Yixin Ye, Yikai Zhang, Yuqing Yang, Ting Wu, Binjie Wang, Shichao Sun, Yang Xiao, Yiyuan Li, Fan Zhou, Steffi Chern, Yiwei Qin, Yan Ma, Jiadi Su, Yixiu Liu, Yuxiang Zheng, Shaoting Zhang, Dahua Lin, Yu Qiao, Pengfei Liu
-
Interpretable Concept-Based Memory Reasoning David Debot, Pietro Barbiero, Francesco Giannini, Gabriele Ciravegna, Michelangelo Diligenti, Giuseppe Marra
-
Make-An-Agent: A Generalizable Policy Network Generator with Behavior-Prompted Diffusion Yongyuan Liang, Tingqiang Xu, Kaizhe Hu, Guangqi Jiang, Furong Huang, Huazhe Xu
-
Evaluating the design space of diffusion-based generative models Yuqing Wang, Ye He, Molei Tao
-
SOI: Scaling Down Computational Complexity by Estimating Partial States of the Model Grzegorz Stefański, Paweł Daniluk, Artur Szumaczuk, Jakub Tkaczuk
-
Robust Neural Contextual Bandit against Adversarial Corruptions Yunzhe Qi, Yikun Ban, Arindam Banerjee, Jingrui He
-
An Expectation-Maximization Algorithm for Training Clean Diffusion Models from Corrupted Observations Weimin Bai, Yifei Wang, Wenzheng Chen, He Sun
-
ShareGPT4Video: Improving Video Understanding and Generation with Better Captions Lin Chen, Xilin Wei, Jinsong Li, Xiaoyi Dong, Pan Zhang, Yuhang Zang, Zehui Chen, Haodong Duan, lin bin, Zhenyu Tang, Li Yuan, Yu Qiao, Dahua Lin, Feng Zhao, Jiaqi Wang
-
Beyond Slow Signs in High-fidelity Model Extraction Hanna Foerster, Robert Mullins, I Shumailov, Jamie Hayes
-
FUGAL: Feature-fortified Unrestricted Graph Alignment Aditya Bommakanti, Harshith Vonteri, Konstantinos Skitsas, Sayan Ranu, Davide Mottin, Panagiotis Karras
-
Revisiting Few-Shot Object Detection with Vision-Language Models Anish Madan, Neehar Peri, Shu Kong, Deva Ramanan
-
Progressive Entropic Optimal Transport Solvers Parnian Kassraie, Aram-Alexandre Pooladian, Michal Klein, James Thornton, Jonathan Niles-Weed, Marco Cuturi
-
Optimizing the coalition gain in Online Auctions with Greedy Structured Bandits Dorian Baudry, Hugo Richard, Maria Cherifa, Vianney Perchet, Clément Calauzènes
-
DEFT: Efficient Fine-tuning of Diffusion Models by Learning the Generalised $h$-transform Alexander Denker, Francisco Vargas, Shreyas Padhy, Kieran Didi, Simon Mathis, Riccardo Barbano, Vincent Dutordoir, Emile Mathieu, Urszula Julia Komorowska, Pietro Lió
-
LookHere: Vision Transformers with Directed Attention Generalize and Extrapolate Anthony Fuller, Daniel Kyrollos, Yousef Yassin, James Green
-
Achieving Near-Optimal Convergence for Distributed Minimax Optimization with Adaptive Stepsizes Yan Huang, Xiang Li, Yipeng Shen, Niao He, Jinming Xu
-
Metacognitive Capabilities of LLMs: An Exploration in Mathematical Problem Solving Aniket Didolkar, Anirudh Goyal, Nan Rosemary Ke, Siyuan Guo, Michal Valko, Timothy Lillicrap, Danilo Jimenez Rezende, Yoshua Bengio, Michael C. Mozer, Sanjeev Arora
-
Complete Graphical Criterion for Sequential Covariate Adjustment in Causal Inference Yonghan Jung, Min Woo Park, Sanghack Lee
-
RETR: Multi-View Radar Detection Transformer for Indoor Perception Ryoma Yataka, Adriano Cardace, Perry Wang, Petros Boufounos, Ryuhei Takahashi
-
On the Scalability of GNNs for Molecular Graphs Maciej Sypetkowski, Frederik Wenkel, Farimah Poursafaei, Nia Dickson, Karush Suri, Philip Fradkin, Dominique Beaini
-
Improving Viewpoint-Independent Object-Centric Representations through Active Viewpoint Selection Yinxuan Huang, Chengmin Gao, Bin Li, Xiangyang Xue
-
Aggregating Quantitative Relative Judgments: From Social Choice to Ranking Prediction Yixuan Xu, Hanrui Zhang, Yu Cheng, Vincent Conitzer
-
Task Me Anything Jieyu Zhang, Weikai Huang, Zixian Ma, Oscar Michel, Dong He, Tanmay Gupta, Wei-Chiu Ma, Ali Farhadi, Aniruddha Kembhavi, Ranjay Krishna
-
Vision Foundation Model Enables Generalizable Object Pose Estimation Kai Chen, Yiyao Ma, Xingyu Lin, Stephen James, Jianshu Zhou, Yun-Hui Liu, Pieter Abbeel, DOU QI
-
Curvature Clues: Decoding Deep Learning Privacy with Input Loss Curvature Deepak Ravikumar, Efstathia Soufleri, Kaushik Roy
-
Exploring Fixed Point in Image Editing: Theoretical Support and Convergence Optimization Chen Hang, Zhe Ma, Haoming Chen, Xuwei Fang, Vincent Xie, Faming Fang, Guixu Zhang, Hongbin Wang
-
MambaTalk: Efficient Holistic Gesture Synthesis with Selective State Space Models Zunnan Xu, Yukang Lin, Haonan Han, Sicheng Yang, Ronghui Li, Yachao Zhang, Xiu Li
-
Efficient Streaming Algorithms for Graphlet Sampling Yann Bourreau, Marco Bressan, T-H. Hubert Chan, Qipeng Kuang, Mauro Sozio
-
HumanVid: Demystifying Training Data for Camera-controllable Human Image Animation Zhenzhi Wang, Yixuan Li, Yanhong Zeng, Youqing Fang, Yuwei Guo, Wenran Liu, Jing Tan, Kai Chen, Tianfan Xue, Bo Dai, Dahua Lin
-
Semi-Supervised Sparse Gaussian Classification: Provable Benefits of Unlabeled Data Eyar Azar, Boaz Nadler
-
DropBP: Accelerating Fine-Tuning of Large Language Models by Dropping Backward Propagation Sunghyeon Woo, Baeseong Park, Byeongwook Kim, Minjung Jo, Se Jung Kwon, Dongsuk Jeon, Dongsoo Lee
-
Grounding Multimodal Large Language Models in Actions Andrew Szot, Bogdan Mazoure, Harsh Agrawal, R Devon Hjelm, Zsolt Kira, Alexander Toshev
-
Optimal Algorithms for Learning Partitions with Faulty Oracles Adela DePavia, Olga Medrano Martin del Campo, Erasmo Tani
-
MemoryFormer : Minimize Transformer Computation by Removing Fully-Connected Layers Ning Ding, Yehui Tang, Haochen Qin, Zhenli Zhou, Chao Xu, Lin Li, Kai Han, Liao Heng, Yunhe Wang
-
LCGen: Mining in Low-Certainty Generation for View-consistent Text-to-3D Zeng Tao, Tong Yang, Junxiong Lin, Xinji Mai, Haoran Wang, Beining Wang, Enyu Zhou, Yan Wang, Wenqiang Zhang
-
Learning and Transferring Sparse Contextual Bigrams with Linear Transformers Yunwei Ren, Zixuan Wang, Jason D. Lee
-
Predictor-Corrector Enhanced Transformers with Exponential Moving Average Coefficient Learning Bei Li, Tong Zheng, Rui Wang, Jiahao Liu, 清妍 郭, Junliang Guo, Xu Tan, Tong Xiao, JingBo Zhu, Jingang Wang, Xunliang Cai
-
Public-data Assisted Private Stochastic Optimization: Power and Limitations Enayat Ullah, Michael Menart, Raef Bassily, Cristóbal Guzmán, Raman Arora
-
Globally Q-linear Gauss-Newton Method for Overparameterized Non-convex Matrix Sensing Xixi Jia, Fangchen FENG, Deyu Meng, Defeng Sun
-
Implicit Curriculum in Procgen Made Explicit Zhenxiong Tan, Kaixin Wang, Xinchao Wang
-
Easy Regional Contrastive Learning of Expressive Fashion Representations Daiqing Qi, Handong Zhao, Sheng Li
-
Gradient Methods for Online DR-Submodular Maximization with Stochastic Long-Term Constraints Guanyu Nie, Vaneet Aggarwal, Christopher Quinn
-
Needle In A Multimodal Haystack Weiyun Wang, Shuibo Zhang, Yiming Ren, Yuchen Duan, Tiantong Li, Shuo Liu, Mengkang Hu, Zhe Chen, Kaipeng Zhang, Lewei Lu, Xizhou Zhu, Ping Luo, Yu Qiao, Jifeng Dai, Wenqi Shao, Wenhai Wang
-
A benchmark for prediction of transcriptomic responses to chemical perturbations across cell types Artur Szałata, Andrew Benz, Robrecht Cannoodt, Mauricio Cortes, Jason Fong, Sunil Kuppasani, Richard Lieberman, Tianyu Liu, Javier Mas-Rosario, Rico Meinl, Jalil Nourisa, Jared Tumiel, Tin M. Tunjic, Mengbo Wang, Noah Weber, Hongyu Zhao, Benedict Anchang, Fabian Theis, Malte Luecken, Daniel Burkhardt
-
General Articulated Objects Manipulation in Real Images via Part-Aware Diffusion Process ZHOU FANG, Yong-Lu Li, Lixin Yang, Cewu Lu
-
Edit Distance Robust Watermarks via Indexing Pseudorandom Codes Noah Golowich, Ankur Moitra
-
Nesterov acceleration despite very noisy gradients Kanan Gupta, Jonathan W. Siegel, Stephan Wojtowytsch
-
DiffAug: A Diffuse-and-Denoise Augmentation for Training Robust Classifiers Chandramouli Shama Sastry, Sri Harsha Dumpala, Sageev Oore
-
Attractor Memory for Long-Term Time Series Forecasting: A Chaos Perspective Jiaxi Hu, Yuehong HU, Wei Chen, Ming Jin, Shirui Pan, Qingsong Wen, Yuxuan Liang
-
Active Learning with LLMs for Partially Observed and Cost-Aware Scenarios Nicolás Astorga, Tennison Liu, Nabeel Seedat, Mihaela van der Schaar
-
Local Superior Soups: A Catalyst for Model Merging in Cross-Silo Federated Learning Minghui Chen, Meirui Jiang, Xin Zhang, DOU QI, Zehua Wang, Xiaoxiao Li
-
Boosting the Transferability of Adversarial Attack on Vision Transformer with Adaptive Token Tuning Di Ming, Peng Ren, Yunlong Wang, Xin Feng
-
Maia-2: A Unified Model for Human-AI Alignment in Chess Zhenwei Tang, Difan Jiao, Reid McIlroy-Young, Jon Kleinberg, Siddhartha Sen, Ashton Anderson
-
Derivative-enhanced Deep Operator Network Yuan Qiu, Nolan Bridges, Peng Chen
-
No-Regret Bandit Exploration based on Soft Tree Ensemble Model Shogo Iwazaki, Shinya Suzumura
-
A Unified Debiasing Approach for Vision-Language Models across Modalities and Tasks Hoin Jung, Taeuk Jang, Xiaoqian Wang
-
Bridging semantics and pragmatics in information-theoretic emergent communication Eleonora Gualdoni, Mycal Tucker, Roger Levy, Noga Zaslavsky
-
Watermarking Makes Language Models Radioactive Tom Sander, Pierre Fernandez, Alain Durmus, Matthijs Douze, Teddy Furon
-
Approximation-Aware Bayesian Optimization Natalie Maus, Kyurae Kim, David Eriksson, Geoff Pleiss, John P. Cunningham, Jacob Gardner
-
Differential Privacy in Scalable General Kernel Learning via $K$-means Nystr{\"o}m Random Features Bonwoo Lee, Jeongyoun Ahn, Cheolwoo Park
-
Taming Generative Diffusion Prior for Universal Blind Image Restoration Siwei Tu, Weidong Yang, Ben Fei
-
Discrete Dictionary-based Decomposition Layer for Structured Representation Learning Taewon Park, Hyun-Chul Kim, Minho Lee
-
ChronoMagic-Bench: A Benchmark for Metamorphic Evaluation of Text-to-Time-lapse Video Generation Shenghai Yuan, Jinfa Huang, Yongqi Xu, YaoYang Liu, Shaofeng Zhang, Yujun Shi, Rui-Jie Zhu, Xinhua Cheng, Jiebo Luo, Li Yuan
-
WildGaussians: 3D Gaussian Splatting In the Wild Jonas Kulhanek, Songyou Peng, Zuzana Kukelova, Marc Pollefeys, Torsten Sattler
-
What If the Input is Expanded in OOD Detection? Boxuan Zhang, Jianing Zhu, Zengmao Wang, Tongliang Liu, Bo Du, Bo Han
-
RelBench: A Benchmark for Deep Learning on Relational Databases Joshua Robinson, Rishabh Ranjan, Weihua Hu, Kexin Huang, Jiaqi Han, Alejandro Dobles, Matthias Fey, Jan Eric Lenssen, Yiwen Yuan, Zecheng Zhang, Xinwei He, Jure Leskovec
-
PageRank Bandits for Link Prediction Yikun Ban, Jiaru Zou, Zihao Li, Yunzhe Qi, Dongqi Fu, Jian Kang, Hanghang Tong, Jingrui He
-
DreamMesh4D: Video-to-4D Generation with Sparse-Controlled Gaussian-Mesh Hybrid Representation Zhiqi Li, Yiming Chen, Peidong Liu
-
Spatio-Temporal Interactive Learning for Efficient Image Reconstruction of Spiking Cameras Bin Fan, Jiaoyang Yin, Yuchao Dai, Chao Xu, Tiejun Huang, Boxin Shi
-
Acceleration Exists! Optimization Problems When Oracle Can Only Compare Objective Function Values Aleksandr Lobanov, Alexander Gasnikov, Andrey Krasnov
-
Towards the Transferability of Rewards Recovered via Regularized Inverse Reinforcement Learning Andreas Schlaginhaufen, Maryam Kamgarpour
-
OneActor: Consistent Subject Generation via Cluster-Conditioned Guidance Jiahao Wang, Caixia Yan, Haonan Lin, Weizhan Zhang, Mengmeng Wang, Tieliang Gong, Guang Dai, Hao Sun
-
Injecting Undetectable Backdoors in Obfuscated Neural Networks and Language Models Alkis Kalavasis, Amin Karbasi, Argyris Oikonomou, Katerina Sotiraki, Grigoris Velegkas, Manolis Zampetakis
-
Nimbus: Secure and Efficient Two-Party Inference for Transformers Zhengyi Li, Kang Yang, Jin Tan, Wen-jie Lu, Haoqi Wu, Xiao Wang, Yu Yu, Derun Zhao, Yancheng Zheng, Minyi Guo, Jingwen Leng
-
SureMap: Simultaneous mean estimation for single-task and multi-task disaggregated evaluation Misha Khodak, Lester Mackey, Alexandra Chouldechova, Miro Dudik
-
Is Function Similarity Over-Engineered? Building a Benchmark Rebecca Saul, Chang Liu, Noah Fleischmann, Richard Zak, Kristopher Micinski, Edward Raff, James Holt
-
FUSE: Fast Unified Simulation and Estimation for PDEs Levi Lingsch, Dana Grund, Siddhartha Mishra, Georgios Kissas
-
The Collusion of Memory and Nonlinearity in Stochastic Approximation With Constant Stepsize Dongyan Lucy Huo, Yixuan Zhang, Yudong Chen, Qiaomin Xie
-
BetterBench: Assessing AI Benchmarks, Uncovering Issues, and Establishing Best Practices Anka Reuel-Lamparth, Amelia Hardy, Chandler Smith, Max Lamparth, Malcolm Hardy, Mykel J Kochenderfer
-
Interventionally Consistent Surrogates for Complex Simulation Models Joel Dyer, Nicholas Bishop, Yorgos Felekis, Fabio Massimo Zennaro, Anisoara Calinescu, Theodoros Damoulas, Michael Wooldridge
-
PEACE: A Dataset of Pharmaceutical Care for Cancer Pain Analgesia Evaluation and Medication Decision Yutao Dou, Huimin Yu, Wei Li, Jingyang Li, Fei Xia, Jian Xiao
-
Depth Anything V2 Lihe Yang, Bingyi Kang, Zilong Huang, Zhen Zhao, Xiaogang Xu, Jiashi Feng, Hengshuang Zhao
-
Transferring disentangled representations: bridging the gap between synthetic and real images Jacopo Dapueto, Nicoletta Noceti, Francesca Odone
-
Absorb & Escape: Overcoming Single Model Limitations in Generating Heterogeneous Genomic Sequences Zehui Li, Yuhao Ni, Guoxuan Xia, William Beardall, Akashaditya Das, Guy-Bart Stan, Yiren Zhao
-
Can We Leave Deepfake Data Behind in Training Deepfake Detector? Jikang Cheng, Zhiyuan Yan, Ying Zhang, Yuhao Luo, Zhongyuan Wang, Chen Li
-
RAGChecker: A Fine-grained Framework for Diagnosing Retrieval-Augmented Generation Dongyu Ru, Lin Qiu, Xiangkun Hu, Tianhang Zhang, Peng Shi, Shuaichen Chang, Cheng Jiayang, Cunxiang Wang, Shichao Sun, Huanyu Li, Zizhao Zhang, Binjie Wang, Jiarong Jiang, Tong He, Zhiguo Wang, Pengfei Liu, Yue Zhang, Zheng Zhang
-
UNION: Unsupervised 3D Object Detection using Object Appearance-based Pseudo-Classes Ted Lentsch, Holger Caesar, Dariu Gavrila
-
Adaptive Variance Reduction for Stochastic Optimization under Weaker Assumptions Wei Jiang, Sifan Yang, Yibo Wang, Lijun Zhang
-
Kaleidoscope: Learnable Masks for Heterogeneous Multi-agent Reinforcement Learning Xinran Li, Ling Pan, Jun Zhang
-
SeafloorAI: A Large-scale Vision-Language Dataset for Seafloor Geological Survey Kien Nguyen, Fengchun Qiao, Arthur Trembanis, Xi Peng
-
Multimodal Task Vectors Enable Many-Shot Multimodal In-Context Learning Brandon Huang, Chancharik Mitra, Leonid Karlinsky, Assaf Arbelle, Trevor Darrell, Roei Herzig
-
Quadratic Quantum Variational Monte Carlo Baiyu Su, Qiang Liu
-
Lorentz-Equivariant Geometric Algebra Transformers for High-Energy Physics Jonas Spinner, Victor Breso, Pim de Haan, Tilman Plehn, Jesse Thaler, Johann Brehmer
-
Rethinking the Power of Timestamps for Robust Time Series Forecasting: A Global-Local Fusion Perspective Chengsen Wang, Qi Qi, Jingyu Wang, Haifeng Sun, Zirui Zhuang, Jinming Wu, Jianxin Liao
-
Position Coupling: Improving Length Generalization of Arithmetic Transformers Using Task Structure Hanseul Cho, Jaeyoung Cha, Pranjal Awasthi, Srinadh Bhojanapalli, Anupam Gupta, Chulhee Yun
-
Advancing Fine-Grained Classification by Structure and Subject Preserving Augmentation Eyal Michaeli, Ohad Fried
-
RCDN: Towards Robust Camera-Insensitivity Collaborative Perception via Dynamic Feature-based 3D Neural Modeling Tianhang Wang, Fan Lu, Zehan Zheng, Zhijun Li, Guang Chen, changjun jiang
-
TFG: Unified Training-Free Guidance for Diffusion Models Haotian Ye, Haowei Lin, Jiaqi Han, Minkai Xu, Sheng Liu, Yitao Liang, Jianzhu Ma, James Y. Zou, Stefano Ermon
-
Rethinking Weight Decay for Robust Fine-Tuning of Foundation Models Junjiao Tian, Chengyue Huang, Zsolt Kira
-
Is Your HD Map Constructor Reliable under Sensor Corruptions? Xiaoshuai Hao, Mengchuan Wei, Yifan Yang, Haimei Zhao, Hui Zhang, Yi ZHOU, Qiang Wang, Weiming Li, Lingdong Kong, Jing Zhang
-
Efficient multi-prompt evaluation of LLMs Felipe Maia Polo, Ronald Xu, Lucas Weber, Mírian Silva, Onkar Bhardwaj, Leshem Choshen, Allysson de Oliveira, Yuekai Sun, Mikhail Yurochkin
-
FLoRA: Federated Fine-Tuning Large Language Models with Heterogeneous Low-Rank Adaptations Ziyao Wang, Zheyu Shen, Yexiao He, Guoheng Sun, Hongyi Wang, Lingjuan Lyu, Ang Li
-
Learning the Expected Core of Strictly Convex Stochastic Cooperative Games Phuong Nam Tran, The Anh Ta, shuqing shi, Debmalya Mandal, Yali Du, Long Tran-Thanh
-
ParallelEdits: Efficient Multi-Aspect Text-Driven Image Editing with Attention Grouping Mingzhen Huang, Jialing Cai, Shan Jia, Vishnu Lokhande, Siwei Lyu
-
Looks Too Good To Be True: An Information-Theoretic Analysis of Hallucinations in Generative Restoration Models Regev Cohen, Idan Kligvasser, Ehud Rivlin, Daniel Freedman
-
Implicit Optimization Bias of Next-token Prediction in Linear Models Christos Thrampoulidis
-
Not so griddy: Internal representations of RNNs path integrating more than one agent William Redman, Francisco Acosta, Santiago Acosta-Mendoza, Nina Miolane
-
Out-Of-Distribution Detection with Diversification (Provably) Haiyun Yao, Zongbo Han, Huazhu Fu, Xi Peng, Qinghua Hu, Changqing Zhang
-
Breaking Determinism: Fuzzy Modeling of Sequential Recommendation Using Discrete State Space Diffusion Model Wenjia Xie, Hao Wang, Luankang Zhang, Rui Zhou, Defu Lian, Enhong Chen
-
QVAE-Mole: The Quantum VAE with Spherical Latent Variable Learning for 3-D Molecule Generation Huaijin Wu, Xinyu Ye, Junchi Yan
-
Sample Complexity Reduction via Policy Difference Estimation in Tabular Reinforcement Learning Adhyyan Narang, Andrew Wagenmaker, Lillian Ratliff, Kevin G. Jamieson
-
Decision Mamba: A Multi-Grained State Space Model with Self-Evolution Regularization for Offline RL Qi Lv, Xiang Deng, Gongwei Chen, MICHAEL YU WANG, Liqiang Nie
-
Distribution Learning with Valid Outputs Beyond the Worst-Case Nicholas Rittler, Kamalika Chaudhuri
-
FairQueue: Rethinking Prompt Learning for Fair Text-to-Image Generation Christopher Teo, Milad Abdollahzadeh, Xinda Ma, Ngai-Man (Man) Cheung
-
ConMe: Rethinking Evaluation of Compositional Reasoning for Modern VLMs Irene Huang, Wei Lin, Muhammad Jehanzeb Mirza, Jacob Hansen, Sivan Doveh, Victor Butoi, Roei Herzig, Assaf Arbelle, Hilde Kuehne, Trevor Darrell, Chuang Gan, Aude Oliva, Rogerio Feris, Leonid Karlinsky
-
SnapKV: LLM Knows What You are Looking for Before Generation Yuhong Li, Yingbing Huang, Bowen Yang, Bharat Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle Cai, Patrick Lewis, Deming Chen
-
Boosting the Potential of Large Language Models with an Intelligent Information Assistant Yujia Zhou, Zheng Liu, Zhicheng Dou
-
Parallel Backpropagation for Shared-Feature Visualization Alexander Lappe, Anna Bognár, Ghazaleh Ghamkahri Nejad, Albert Mukovskiy, Lucas Martini, Martin Giese, Rufin Vogels
-
A two-scale Complexity Measure for Deep Learning Models Massimiliano Datres, Gian Leonardi, Alessio Figalli, David Sutter
-
Communication-Efficient Federated Group Distributionally Robust Optimization Zhishuai Guo, Tianbao Yang
-
On Differentially Private U Statistics Kamalika Chaudhuri, Po-Ling Loh, Shourya Pandey, Purnamrita Sarkar
-
Sketched Lanczos uncertainty score: a low-memory summary of the Fisher information Marco Miani, Lorenzo Beretta, Søren Hauberg
-
Unified Generative and Discriminative Training for Multi-modal Large Language Models Wei Chow, Juncheng Li, Qifan Yu, Kaihang Pan, Hao Fei, Zhiqi Ge, Shuaiyang , Siliang Tang, Hanwang Zhang, QIANRU SUN
-
Why Do We Need Weight Decay in Modern Deep Learning? Francesco D'Angelo, Maksym Andriushchenko, Aditya Vardhan Varre, Nicolas Flammarion
-
Efficient LLM Jailbreak via Adaptive Dense-to-sparse Constrained Optimization Kai Hu, Weichen Yu, Yining Li, Tianjun Yao, Xiang Li, Wenhe Liu, Lijun Yu, Zhiqiang Shen, Kai Chen, Matt Fredrikson
-
On conditional diffusion models for PDE simulations Aliaksandra Shysheya, Cristiana Diaconu, Federico Bergamin, Paris Perdikaris, José Miguel Hernández-Lobato, Richard Turner, Emile Mathieu
-
Detecting Brittle Decisions for Free: Leveraging Margin Consistency in Deep Robust Classifiers JONAS NGNAWE, Sabyasachi Sahoo, Yann Pequignot, Frederic Precioso, Christian Gagné
-
Generalizing Weather Forecast to Fine-grained Temporal Scales via Physics-AI Hybrid Modeling Wanghan Xu, Fenghua Ling, zhangwenlong , Tao Han, Hao Chen, Wanli Ouyang, LEI BAI
-
Cross-Modality Perturbation Synergy Attack for Person Re-identification Yunpeng Gong, Zhun Zhong, Yansong Qu, Zhiming Luo, Rongrong Ji, Min JIANG
-
NeuroBOLT: Resting-state EEG-to-fMRI Synthesis with Multi-dimensional Feature Mapping Yamin Li, Ange Lou, Ziyuan Xu, Shengchao Zhang, Shiyu Wang, Dario Englot, Soheil Kolouri, Daniel Moyer, Roza Bayrak, Catie Chang
-
Fast Last-Iterate Convergence of Learning in Games Requires Forgetful Algorithms Yang Cai, Gabriele Farina, Julien Grand-Clément, Christian Kroer, Chung-Wei Lee, Haipeng Luo, Weiqiang Zheng
-
Coherent 3D Scene Diffusion From a Single RGB Image Manuel Dahnert, Angela Dai, Norman Müller, Matthias Niessner
-
DeepStack: Deeply Stacking Visual Tokens is Surprisingly Simple and Effective for LMMs Lingchen Meng, Jianwei Yang, Rui Tian, Xiyang Dai, Zuxuan Wu, Jianfeng Gao, Yu-Gang Jiang
-
Neuro-Symbolic Data Generation for Math Reasoning Zenan Li, Zhi Zhou, Yuan Yao, Xian Zhang, Yu-Feng Li, Chun Cao, Fan Yang, Xiaoxing Ma
-
Consistency Diffusion Bridge Models Guande He, Kaiwen Zheng, Jianfei Chen, Fan Bao, Jun Zhu
-
Dense Associative Memory Through the Lens of Random Features Benjamin Hoover, Duen Horng Chau, Hendrik Strobelt, Parikshit Ram, Dmitry Krotov
-
A Simple yet Universal Framework for Depth Completion Jin-Hwi Park, Hae-Gon Jeon
-
Identifying Equivalent Training Dynamics William Redman, Juan Bello-Rivas, Maria Fonoberova, Ryan Mohr, Yannis Kevrekidis, Igor Mezic
-
DRACO: A Denoising-Reconstruction Autoencoder for Cryo-EM YingJun Shen, Haizhao Dai, Qihe Chen, Yan Zeng, Jiakai Zhang, Yuan Pei, Jingyi Yu
-
Human-Object Interaction Detection Collaborated with Large Relation-driven Diffusion Models Liulei Li, Wenguan Wang, Yi Yang
-
Ensemble sampling for linear bandits: small ensembles suffice David Janz, Alexander Litvak, Csaba Szepesvari
-
A Unifying Post-Processing Framework for Multi-Objective Learn-to-Defer Problems Mohammad-Amin Charusaie, Samira Samadi
-
Cross-Care: Assessing the Healthcare Implications of Pre-training Data on Language Model Bias Shan Chen, Jack Gallifant, Mingye Gao, Pedro Moreira, Nikolaj Munch, Ajay Muthukkumar, Arvind Rajan, Jaya Kolluri, Amelia Fiske, Janna Hastings, Hugo Aerts, Brian Anthony, Leo Anthony Celi, William La Cava, Danielle Bitterman
-
If You Want to Be Robust, Be Wary of Initialization Sofiane ENNADIR, Johannes Lutzeyer, Michalis Vazirgiannis, El Houcine Bergou
-
Is Score Matching Suitable for Estimating Point Processes? Haoqun Cao, Zizhuo Meng, Tianjun Ke, Feng Zhou
-
Is Knowledge Power? On the (Im)possibility of Learning from Strategic Interactions Nivasini Ananthakrishnan, Nika Haghtalab, Chara Podimata, Kunhe Yang
-
Data Free Backdoor Attacks Bochuan Cao, Jinyuan Jia, Chuxuan Hu, Wenbo Guo, Zhen Xiang, Jinghui Chen, Bo Li, Dawn Song
-
Vision Model Pre-training on Interleaved Image-Text Data via Latent Compression Learning CHENYU YANG, Xizhou Zhu, Jinguo Zhu, Weijie Su, Junjie Wang, Xuan Dong, Wenhai Wang, Bin Li, Jie Zhou, Yu Qiao, Jifeng Dai
-
Linear Causal Bandits: Unknown Graph and Soft Interventions Zirui Yan, Ali Tajer
-
The Implicit Bias of Adam on Separable Data Chenyang Zhang, Difan Zou, Yuan Cao
-
Be like a Goldfish, Don't Memorize! Mitigating Memorization in Generative LLMs Abhimanyu Hans, John Kirchenbauer, Yuxin Wen, Neel Jain, Hamid Kazemi, Prajwal Singhania, Siddharth Singh, Gowthami Somepalli, Jonas Geiping, Abhinav Bhatele, Tom Goldstein
-
SIRIUS : Contexual Sparisty with Correction for Efficient LLMs Yang Zhou, Zhuoming Chen, Zhaozhuo Xu, Victoria Lin, Beidi Chen
-
Diffusion Forcing: Next-token Prediction Meets Full-Sequence Diffusion Boyuan Chen, Diego Martí Monsó, Yilun Du, Max Simchowitz, Russ Tedrake, Vincent Sitzmann
-
MiSO: Optimizing brain stimulation to create neural activity states Yuki Minai, Joana Soldado-Magraner, Matthew Smith, Byron M Yu
-
Ferrari: Federated Feature Unlearning via Optimizing Feature Sensitivity Hanlin Gu, WinKent Ong, Chee Seng Chan, Lixin Fan
-
Uncertainty of Thoughts: Uncertainty-Aware Planning Enhances Information Seeking in LLMs Zhiyuan Hu, Chumin Liu, Xidong Feng, Yilun Zhao, See-Kiong Ng, Anh Tuan Luu, Junxian He, Pang Wei W. Koh, Bryan Hooi
-
Causal Discovery from Event Sequences by Local Cause-Effect Attribution Joscha Cüppers, Sascha Xu, Ahmed Musa, Jilles Vreeken
-
RepLiQA: A Question-Answering Dataset for Benchmarking LLMs on Unseen Reference Content Joao Monteiro, Pierre-André Noël, Étienne Marcotte, Sai Rajeswar Mudumba, Valentina Zantedeschi, David Vazquez, Nicolas Chapados, Chris Pal, Perouz Taslakian
-
Corruption-Robust Linear Bandits: Minimax Optimality and Gap-Dependent Misspecification Haolin Liu, Artin Tajdini, Andrew Wagenmaker, Chen-Yu Wei
-
Structured Matrix Basis for Multivariate Time Series Forecasting with Interpretable Dynamics Xiaodan Chen, Xiucheng Li, Xinyang Chen, Zhijun Li
-
PAC-Bayes-Chernoff bounds for unbounded losses Ioar Casado Telletxea, Luis Antonio Ortega Andrés, Aritz Pérez, Andres Masegosa
-
Transcoders find interpretable LLM feature circuits Jacob Dunefsky, Philippe Chlenski, Neel Nanda
-
SymILO: A Symmetry-Aware Learning Framework for Integer Linear Optimization Qian Chen, Tianjian Zhang, Linxin Yang, Qingyu Han, Akang Wang, Ruoyu Sun, Xiaodong Luo, Tsung-Hui Chang
-
Bias in Motion: Theoretical Insights into the Dynamics of Bias in SGD Training Anchit Jain, Rozhin Nobahari, Aristide Baratin, Stefano Sarao Mannelli
-
Long-range Brain Graph Transformer Shuo Yu, Shan Jin, Ming Li, Tabinda Sarwar, Feng Xia
-
One-to-Multiple: A Progressive Style Transfer Unsupervised Domain-Adaptive Framework for Kidney Tumor Segmentation Kai Hu, JinHao Li, Yuan Zhang, Xiongjun Ye, Xieping Gao
-
CLIP in Mirror: Disentangling text from visual images through reflection Tiancheng Wang, Yuguang Yang, Linlin Yang, Shaohui Lin, Juan Zhang, Guodong Guo, Baochang Zhang
-
Grammar-Aligned Decoding Kanghee Park, Jiayu Wang, Taylor Berg-Kirkpatrick, Nadia Polikarpova, Loris D'Antoni
-
Controlled maximal variability along with reliable performance in recurrent neural networks Chiara Mastrogiuseppe, Ruben Moreno Bote
-
Maximum Entropy Inverse Reinforcement Learning of Diffusion Models with Energy-Based Models Sangwoong Yoon, Himchan Hwang, Dohyun Kwon, Yung-Kyun Noh, Frank Park
-
Global Rewards in Restless Multi-Armed Bandits Naveen Raman, Zheyuan Shi, Fei Fang
-
A Comprehensive Analysis on the Learning Curve in Kernel Ridge Regression Tin Sum Cheng, Aurelien Lucchi, Anastasis Kratsios, David Belius
-
Statistical Efficiency of Distributional Temporal Difference Learning Yang Peng, Liangyu Zhang, Zhihua Zhang
-
Faster Repeated Evasion Attacks in Tree Ensembles Lorenzo Cascioli, Laurens Devos, Ondrej Kuzelka, Jesse Davis
-
DiPEx: Dispersing Prompt Expansion for Class-Agnostic Object Detection Jia S Lim, Zhuoxiao Chen, Zhi Chen, Mahsa Baktashmotlagh, Xin Yu, Zi Huang, Yadan Luo
-
ShiftAddLLM: Accelerating Pretrained LLMs via Post-Training Multiplication-Less Reparameterization Haoran You, Yipin Guo, Yichao Fu, Wei Zhou, Huihong Shi, Xiaofan Zhang, Souvik Kundu, Amir Yazdanbakhsh, Yingyan (Celine) Lin
-
Take A Shortcut Back: Mitigating the Gradient Vanishing for Training Spiking Neural Networks Yufei Guo, Yuanpei Chen, Zecheng Hao, Weihang Peng, Zhou Jie, Yuhan Zhang, Xiaode Liu, Zhe Ma
-
Pedestrian-Centric 3D Pre-collision Pose and Shape Estimation from Dashcam Perspective MeiJun Wang, Yu Meng, Zhongwei Qiu, Chao Zheng, Yan Xu, Pengxiaorui , Jian Gao
-
Aligning Diffusion Models by Optimizing Human Utility Shufan Li, Konstantinos Kallidromitis, Akash Gokul, Yusuke Kato, Kazuki Kozuka
-
BAdam: A Memory Efficient Full Parameter Optimization Method for Large Language Models Qijun Luo, Hengxu Yu, Xiao Li
-
Shaving Weights with Occam's Razor: Bayesian Sparsification for Neural Networks using the Marginal Likelihood Rayen Dhahri, Alexander Immer, Bertrand Charpentier, Stephan Günnemann, Vincent Fortuin
-
First-Order Minimax Bilevel Optimization Yifan Yang, Zhaofeng Si, Siwei Lyu, Kaiyi Ji
-
Sample Complexity of Algorithm Selection Using Neural Networks and Its Applications to Branch-and-Cut Hongyu Cheng, Sammy Khalife, Barbara Fiedorowicz, Amitabh Basu
-
LexEval: A Comprehensive Chinese Legal Benchmark for Evaluating Large Language Models Haitao Li, You Chen, Qingyao Ai, Yueyue WU, Ruizhe Zhang, Yiqun LIU
-
A Simple Image Segmentation Framework via In-Context Examples Yang Liu, Chenchen Jing, Hengtao Li, Muzhi Zhu, Hao Chen, Xinlong Wang, Chunhua Shen
-
Pre-trained Large Language Models Use Fourier Features to Compute Addition Tianyi Zhou, Deqing Fu, Vatsal Sharan, Robin Jia
-
Universal Physics Transformers: A Framework For Efficiently Scaling Neural Operators Benedikt Alkin, Andreas Fürst, Simon Schmid, Lukas Gruber, Markus Holzleitner, Johannes Brandstetter
-
ReMAP: Neural Model Reprogramming with Network Inversion and Retrieval-Augmented Mapping for Adaptive Motion Forecasting Sharmita Dey, Sarath Ravindran Nair
-
Cross-video Identity Correlating for Person Re-identification Pre-training Jialong Zuo, Ying Nie, Hanyu Zhou, Huaxin Zhang, Haoyu Wang, Tianyu Guo, Nong Sang, Changxin Gao
-
Cloud Object Detector Adaptation by Integrating Different Source Knowledge Shuaifeng Li, Mao Ye, Lihua Zhou, Nianxin Li, Siying Xiao, Song Tang, Xiatian Zhu
-
DETAIL: Task DEmonsTration Attribution for Interpretable In-context Learning Zijian Zhou, Xiaoqiang Lin, Xinyi Xu, Alok Prakash, Daniela Rus, Bryan Kian Hsiang Low
-
Mirror and Preconditioned Gradient Descent in Wasserstein Space Clément Bonet, Théo Uscidda, Adam David, Pierre-Cyril Aubin-Frankowski, Anna Korba
-
Retrieval-Retro: Retrieval-based Inorganic Retrosynthesis with Expert Knowledge Heewoong Noh, Namkyeong Lee, Gyoung S. Na, Chanyoung Park
-
Kernel-Based Function Approximation for Average Reward Reinforcement Learning: An Optimist No-Regret Algorithm Sattar Vakili, Julia Olkhovskaya
-
MathPile: A Billion-Token-Scale Pretraining Corpus for Math Zengzhi Wang, Xuefeng Li, Rui Xia, Pengfei Liu
-
Generative Fractional Diffusion Models Gabriel Nobis, Maximilian Springenberg, Marco Aversa, Michael Detzel, Rembert Daems, Roderick Murray-Smith, Shinichi Nakajima, Sebastian Lapuschkin, Stefano Ermon, Tolga Birdal, Manfred Opper, Christoph Knochenhauer, Luis Oala, Wojciech Samek
-
Least Squares Regression Can Exhibit Under-Parameterized Double Descent Xinyue Li, Rishi Sonthalia
-
AWT: Transferring Vision-Language Models via Augmentation, Weighting, and Transportation Yuhan Zhu, Yuyang Ji, Zhiyu Zhao, Gangshan Wu, Limin Wang
-
Decentralized Noncooperative Games with Coupled Decision-Dependent Distributions Wenjing YAN, Xuanyu Cao
-
Geometric Trajectory Diffusion Models Jiaqi Han, Minkai Xu, Aaron Lou, Haotian Ye, Stefano Ermon
-
GoMatching: A Simple Baseline for Video Text Spotting via Long and Short Term Matching Haibin He, Maoyuan Ye, Jing Zhang, Juhua Liu, Bo Du, Dacheng Tao
-
Multi-Scale VMamba: Hierarchy in Hierarchy Visual State Space Model Yuheng Shi, Minjing Dong, Chang Xu
-
AdanCA: Neural Cellular Automata As Adaptors For More Robust Vision Transformer Yitao Xu, Tong Zhang, Sabine Süsstrunk
-
PhyRecon: Physically Plausible Neural Scene Reconstruction Junfeng Ni, Yixin Chen, Bohan Jing, Nan Jiang, Bin Wang, Bo Dai, Puhao Li, Yixin Zhu, Song-Chun Zhu, Siyuan Huang
-
Understanding the Expressive Power and Mechanisms of Transformer for Sequence Modeling Mingze Wang, Weinan E
-
A Combinatorial Algorithm for the Semi-Discrete Optimal Transport Problem Pankaj Agarwal, Sharath Raghvendra, Pouyan Shirzadian, Keegan Yao
-
Archaeoscape: Bringing Aerial Laser Scanning Archaeology to the Deep Learning Era Yohann PERRON, Vladyslav Sydorov, Adam P. Wijker, Damian Evans, Christophe Pottier, Loic Landrieu
-
Learning 1D Causal Visual Representation with De-focus Attention Networks Tao Chenxin, Xizhou Zhu, Shiqian Su, Lewei Lu, Changyao Tian, Xuan Luo, Gao Huang, Hongsheng Li, Yu Qiao, Jie Zhou, Jifeng Dai
-
Nonlinear dynamics of localization in neural receptive fields Leon Lufkin, Andrew Saxe, Erin Grant
-
Learning-Augmented Approximation Algorithms for Maximum Cut and Related Problems Vincent Cohen-Addad, Tommaso d’Orsi, Anupam Gupta, Euiwoong Lee, Debmalya Panigrahi
-
AvaTaR: Optimizing LLM Agents for Tool Usage via Contrastive Reasoning Shirley Wu, Shiyu Zhao, Qian Huang, Kexin Huang, Michihiro Yasunaga, Kaidi Cao, Vassilis Ioannidis, Karthik Subbian, Jure Leskovec, James Y. Zou
-
Score Distillation via Reparametrized DDIM Artem Lukoianov, Haitz Sáez de Ocáriz Borde, Kristjan Greenewald, Vitor Guizilini, Timur Bagautdinov, Vincent Sitzmann, Justin M. Solomon
-
UltraMedical: Building Specialized Generalists in Biomedicine Kaiyan Zhang, Sihang Zeng, Ermo Hua, Ning Ding, Zhang-Ren Chen, Zhiyuan Ma, Haoxin Li, Ganqu Cui, Biqing Qi, Xuekai Zhu, Xingtai Lv, Hu Jinfang, Zhiyuan Liu, Bowen Zhou
-
Smoke and Mirrors in Causal Downstream Tasks Riccardo Cadei, Lukas Lindorfer, Sylvia Cremer, Cordelia Schmid, Francesco Locatello
-
Newton Losses: Using Curvature Information for Learning with Differentiable Algorithms Felix Petersen, Christian Borgelt, Tobias Sutter, Hilde Kuehne, Oliver Deussen, Stefano Ermon
-
Capturing the denoising effect of PCA via compression ratio Chandra Sekhar Mukherjee, Nikhil Deorkar, Jiapeng Zhang
-
Automated Multi-level Preference for MLLMs Mengxi Zhang, Wenhao Wu, Yu Lu, YuXin Song, KANG RONG, Huanjin Yao, Jianbo Zhao, Fanglong Liu, Haocheng Feng, Jingdong Wang, Yifan Sun
-
What Matters in Graph Class Incremental Learning? An Information Preservation Perspective Jialu Li, Yu Wang, Pengfei Zhu, Wanyu Lin, Qinghua Hu
-
LINGOLY: A Benchmark of Olympiad-Level Linguistic Reasoning Puzzles in Low Resource and Extinct Languages Andrew M. Bean, Simi Hellsten, Harry Mayne, Jabez Magomere, Ethan Chi, Ryan Chi, Scott Hale, Hannah Rose Kirk
-
Are High-Degree Representations Really Unnecessary in Equivariant Graph Neural Networks? Jiacheng Cen, Anyi Li, Ning Lin, Yuxiang Ren, Zihe Wang, Wenbing Huang
-
Improving Decision Sparsity Yiyang Sun, Tong Wang, Cynthia Rudin
-
Cluster-Learngene: Inheriting Adaptive Clusters for Vision Transformers Qiufeng Wang, Xu Yang, Fu Feng, Jingq Wang, Xin Geng
-
Multi-Instance Partial-Label Learning with Margin Adjustment Wei Tang, Yin-Fang Yang, Zhaofei Wang, Weijia Zhang, Min-Ling Zhang
-
Geometric Exploitation for Indoor Panoramic Semantic Segmentation Duc Cao Dinh, Seok Joon Kim, Kyusung Cho
-
Unified Gradient-Based Machine Unlearning with Remain Geometry Enhancement Zhehao Huang, Xinwen Cheng, JingHao Zheng, Haoran Wang, Zhengbao He, Tao Li, Xiaolin Huang
-
ReactZyme: A Benchmark for Enzyme-Reaction Prediction Chenqing Hua, Bozitao Zhong, Sitao Luan, Liang Hong, Guy Wolf, Doina Precup, Shuangjia Zheng
-
Policy Mirror Descent with Lookahead Kimon Protopapas, Anas Barakat
-
Generalization of Hamiltonian algorithms Andreas Maurer
-
Stochastic Optimization Algorithms for Instrumental Variable Regression with Streaming Data Xuxing Chen, Abhishek Roy, Yifan Hu, Krishnakumar Balasubramanian
-
Constrained Diffusion Models via Dual Training Shervin Khalafi, Dongsheng Ding, Alejandro Ribeiro
-
Better by default: Strong pre-tuned MLPs and boosted trees on tabular data David Holzmüller, Leo Grinsztajn, Ingo Steinwart
-
DAPE: Data-Adaptive Positional Encoding for Length Extrapolation Chuanyang Zheng, Yihang Gao, Han Shi, Minbin Huang, Jingyao Li, Jing Xiong, Xiaozhe Ren, Michael Ng, Xin Jiang, Zhenguo Li, Yu Li
-
LLM-ESR: Large Language Models Enhancement for Long-tailed Sequential Recommendation Qidong Liu, Xian Wu, Yejing Wang, Zijian Zhang, Feng Tian, Yefeng Zheng, Xiangyu Zhao
-
Achieving Tractable Minimax Optimal Regret in Average Reward MDPs Victor Boone, Zihan Zhang
-
Universality of AdaGrad Stepsizes for Stochastic Optimization: Inexact Oracle, Acceleration and Variance Reduction Anton Rodomanov, Xiaowen Jiang, Sebastian U. Stich
-
When LLM Meets DRL: Advancing Jailbreaking Efficiency via DRL-guided Search Xuan Chen, Yuzhou Nie, Wenbo Guo, Xiangyu Zhang
-
Diffusion-based Layer-wise Semantic Reconstruction for Unsupervised Out-of-Distribution Detection Ying Yang, De Cheng, Chaowei Fang, Yubiao Wang, Changzhe Jiao, Lechao Cheng, Nannan Wang, Xinbo Gao
-
Fast samplers for Inverse Problems in Iterative Refinement models Kushagra Pandey, Ruihan Yang, Stephan Mandt
-
Advancing Spiking Neural Networks for Sequential Modeling with Central Pattern Generators Changze Lv, Dongqi Han, Yansen Wang, Xiaoqing Zheng, Xuanjing Huang, Dongsheng Li
-
Evaluating the World Model Implicit in a Generative Model Keyon Vafa, Justin Chen, Ashesh Rambachan, Jon Kleinberg, Sendhil Mullainathan
-
Contextual Linear Optimization with Bandit Feedback Yichun Hu, Nathan Kallus, Xiaojie Mao, Yanchen Wu
-
A Surprisingly Simple Approach to Generalized Few-Shot Semantic Segmentation Tomoya Sakai, Haoxiang Qiu, Takayuki Katsuki, Daiki Kimura, Takayuki Osogami, Tadanobu Inoue
-
Towards Open Respiratory Acoustic Foundation Models: Pretraining and Benchmarking Yuwei Zhang, Tong Xia, Jing Han, Yu Wu, Georgios Rizos, Yang Liu, Mohammed Mosuily, J Ch, Cecilia Mascolo
-
Are We on the Right Way for Evaluating Large Vision-Language Models? Lin Chen, Jinsong Li, Xiaoyi Dong, Pan Zhang, Yuhang Zang, Zehui Chen, Haodong Duan, Jiaqi Wang, Yu Qiao, Dahua Lin, Feng Zhao
-
On the Benefits of Public Representations for Private Transfer Learning under Distribution Shift Pratiksha Thaker, Amrith Setlur, Steven Z. Wu, Virginia Smith
-
Reparameterized Multi-Resolution Convolutions for Long Sequence Modelling Jake Cunningham, Giorgio Giannone, Mingtian Zhang, Marc Deisenroth
-
Streaming Bayes GFlowNets Tiago Silva, Daniel Augusto de Souza, Diego Mesquita
-
Inverse Factorized Soft Q-Learning for Cooperative Multi-agent Imitation Learning The Viet Bui, Tien Mai, Thanh Nguyen
-
Learning from Pattern Completion: Self-supervised Controllable Generation Zhiqiang Chen, Guofan Fan, Jinying Gao, Lei Ma, Bo Lei, Tiejun Huang, Shan Yu
-
4DBInfer: A 4D Benchmarking Toolbox for Graph-Centric Predictive Modeling on RDBs Minjie Wang, Quan Gan, David Wipf, Zheng Zhang, Christos Faloutsos, Weinan Zhang, Muhan Zhang, Zhenkun Cai, Jiahang Li, Zunyao Mao, Yakun Song, Jianheng Tang, Yanlin Zhang, Guang Yang, Chuan Lei, Xiao Qin, Ning Li, Han Zhang, Yanbo Wang, Zizhao Zhang
-
Diffeomorphic interpolation for efficient persistence-based topological optimization Mathieu Carrière, Marc Theveneau, Théo Lacombe
-
A theoretical case-study of Scalable Oversight in Hierarchical Reinforcement Learning Tom Yan, Zachary Lipton
-
Exploring Low-Dimensional Subspace in Diffusion Models for Controllable Image Editing Siyi Chen, Huijie Zhang, Minzhe Guo, Yifu Lu, Peng Wang, Qing Qu
-
Efficiency for Free: Ideal Data Are Transportable Representations PENG SUN, Yi Jiang, Tao Lin
-
Text2NKG: Fine-Grained N-ary Relation Extraction for N-ary relational Knowledge Graph Construction Haoran Luo, Haihong E, Yuhao Yang, Tianyu Yao, Yikai Guo, Zichen Tang, Wentai Zhang, Shiyao Peng, Kaiyang Wan, Meina Song, Wei Lin, Yifan Zhu, Anh Tuan Luu
-
MambaLLIE: Implicit Retinex-Aware Low Light Enhancement with Global-then-Local State Space Jiangwei Weng, Zhiqiang Yan, Ying Tai, Jianjun Qian, Jian Yang, Jun Li
-
On Softmax Direct Preference Optimization for Recommendation Yuxin Chen, Junfei Tan, An Zhang, Zhengyi Yang, Leheng Sheng, Enzhi Zhang, Xiang Wang, Tat-Seng Chua
-
First-Explore, then Exploit: Meta-Learning to Solve Hard Exploration-Exploitation Trade-Offs Ben Norman, Jeff Clune
-
GenRL: Multimodal-foundation world models for generalization in embodied agents Pietro Mazzaglia, Tim Verbelen, Bart Dhoedt, Aaron C. Courville, Sai Rajeswar Mudumba
-
Quantifying and Optimizing Global Faithfulness in Persona-driven Role-playing Letian Peng, Jingbo Shang
-
Learning Truncated Causal History Model for Video Restoration Amirhosein Ghasemabadi, Muhammad Janjua, Mohammad Salameh, Di Niu
-
UDPM: Upsampling Diffusion Probabilistic Models Shady Abu-Hussein, Raja Giryes
-
Rethinking Inverse Reinforcement Learning: from Data Alignment to Task Alignment Weichao Zhou, Wenchao Li
-
AlphaMath Almost Zero: Process Supervision without Process Guoxin Chen, Minpeng Liao, Chengxi Li, Kai Fan
-
Optimal deep learning of holomorphic operators between Banach spaces Ben Adcock, Nick Dexter, Sebastian Moraga Scheuermann
-
Multi-Agent Imitation Learning: Value is Easy, Regret is Hard Jingwu Tang, Gokul Swamy, Fei Fang, Steven Z. Wu
-
Constrained Adaptive Attack: Effective Adversarial Attack Against Deep Neural Networks for Tabular Data Thibault Simonetto, Salah GHAMIZI, Maxime Cordy
-
How Far Can Transformers Reason? The Globality Barrier and Inductive Scratchpad Emmanuel Abbe, Samy Bengio, Aryo Lotfi, Colin Sandon, Omid Saremi
-
FineCLIP: Self-distilled Region-based CLIP for Better Fine-grained Understanding Dong Jing, Xiaolong He, Yutian Luo, Nanyi Fei, guoxing Yang, Wei Wei, Huiwen Zhao, Zhiwu Lu
-
Generative Forests Richard Nock, Mathieu Guillame-Bert
-
Scalable DBSCAN with Random Projections HaoChuan Xu, Ninh Pham
-
Near-Optimal Distributed Minimax Optimization under the Second-Order Similarity Qihao Zhou, Haishan Ye, Luo Luo
-
M$^3$GPT: An Advanced Multimodal, Multitask Framework for Motion Comprehension and Generation Mingshuang Luo, RuiBing Hou, Zhuo Li, Hong Chang, Zimo Liu, Yaowei Wang, Shiguang Shan
-
From Transparent to Opaque: Rethinking Neural Implicit Surfaces with $\alpha$-NeuS Haoran Zhang, Junkai Deng, Xuhui Chen, Fei Hou, Wencheng Wang, Hong Qin, Chen Qian, Ying He
-
Test Where Decisions Matter: Importance-driven Testing for Deep Reinforcement Learning Stefan Pranger, Hana Chockler, Martin Tappler, Bettina Könighofer
-
Don't Look Twice: Faster Video Transformers with Run-Length Tokenization Rohan Choudhury, Guanglei Zhu, Sihan Liu, Koichiro Niinuma, Kris Kitani, László Jeni
-
Value-Based Deep Multi-Agent Reinforcement Learning with Dynamic Sparse Training Pihe Hu, Shaolong Li, Zhuoran Li, Ling Pan, Longbo Huang
-
Rethinking Memory and Communication Costs for Efficient Data Parallel Training of Large Language Models Hanxiao Zhang, Lin JU, Chan Wu, Jinjing Huang, Youshao Xiao, Zhenglei Zhou, Zhiming fan, Zhaoxin Huan, Siyuan Li, Fanzhuang Meng, Lei Liang, Xiaolu Zhang, Jun Zhou
-
GTBench: Uncovering the Strategic Reasoning Capabilities of LLMs via Game-Theoretic Evaluations Jinhao Duan, Renming Zhang, James Diffenderfer, Bhavya Kailkhura, Lichao Sun, Elias Stengel-Eskin, Mohit Bansal, Tianlong Chen, Kaidi Xu
-
DMNet: Self-comparison Driven Model for Subject-independent Seizure Detection Shihao Tu, Linfeng Cao, Daoze Zhang, Junru Chen, Lvbin Ma, Yin Zhang, YANG YANG
-
OmniTokenizer: A Joint Image-Video Tokenizer for Visual Generation Junke Wang, Yi Jiang, Zehuan Yuan, BINGYUE PENG, Zuxuan Wu, Yu-Gang Jiang
-
Perplexity-aware Correction for Robust Alignment with Noisy Preferences Keyi Kong, Xilie Xu, Di Wang, Jingfeng ZHANG, Mohan S. Kankanhalli
-
The Empirical Impact of Neural Parameter Symmetries, or Lack Thereof Derek Lim, Theo Putterman, Robin Walters, Haggai Maron, Stefanie Jegelka
-
Probabilistic Graph Rewiring via Virtual Nodes Chendi Qian, Andrei Manolache, Christopher Morris, Mathias Niepert
-
FuseFL: One-Shot Federated Learning through the Lens of Causality with Progressive Model Fusion Zhenheng Tang, Yonggang Zhang, Peijie Dong, Yiu-ming Cheung, Amelie Zhou, Bo Han, Xiaowen Chu
-
RL-GPT: Integrating Reinforcement Learning and Code-as-policy Shaoteng Liu, Haoqi Yuan, Minda Hu, Yanwei Li, Yukang Chen, Shu Liu, Zongqing Lu, Jiaya Jia
-
A Layer-Wise Natural Gradient Optimizer for Training Deep Neural Networks Xiaolei Liu, Shaoshuai Li, Kaixin Gao, Binfeng Wang
-
Multi-Chain Graphs of Graphs: A New Approach to Analyzing Blockchain Datasets Bingqiao Luo, Zhen Zhang, Qian Wang, Bingsheng He
-
Toward Robust Incomplete Multimodal Sentiment Analysis via Hierarchical Representation Learning Mingcheng Li, Dingkang Yang, Yang Liu, Shunli Wang, Jiawei Chen, Shuaibing Wang, Jinjie Wei, Yue Jiang, Qingyao Xu, Xiaolu Hou, Mingyang Sun, Ziyun Qian, Dongliang Kou, Lihua Zhang
-
Statistical Estimation in the Spiked Tensor Model via the Quantum Approximate Optimization Algorithm Leo Zhou, Joao Basso, Song Mei
-
MoEUT: Mixture-of-Experts Universal Transformers Robert Csordas, Kazuki Irie, Jürgen Schmidhuber, Christopher Potts, Christopher D Manning
-
Visual Perception by Large Language Model’s Weights Feipeng Ma, Hongwei Xue, Yizhou Zhou, Guangting Wang, Fengyun Rao, Shilin Yan, Yueyi Zhang, Siying Wu, Mike Zheng Shou, Xiaoyan Sun
-
Stabilize the Latent Space for Image Autoregressive Modeling: A Unified Perspective Yongxin Zhu, Bocheng Li, Hang Zhang, Xin Li, Linli Xu, Lidong Bing
-
ReXTime: A Benchmark Suite for Reasoning-Across-Time in Videos JR-JEN CHEN, Yu-Chien Liao, Hsi-Che Lin, Yu-Chu Yu, Yen-Chun Chen, Frank Wang
-
$C^2M^3$: Cycle-Consistent Multi-Model Merging Donato Crisostomi, Marco Fumero, Daniele Baieri, Florian Bernard, Emanuele Rodolà
-
NAVSIM: Data-Driven Non-Reactive Autonomous Vehicle Simulation and Benchmarking Daniel Dauner, Marcel Hallgarten, Tianyu Li, Xinshuo Weng, Zhiyu Huang, Zetong Yang, Hongyang Li, Igor Gilitschenski, Boris Ivanovic, Marco Pavone, Andreas Geiger, Kashyap Chitta
-
LaKD: Length-agnostic Knowledge Distillation for Trajectory Prediction with Any Length Observations Yuhang Li, Changsheng Li, Ruilin Lv, Rongqing Li, Ye Yuan, Guoren Wang
-
Stochastic Optimal Control for Diffusion Bridges in Function Spaces Byoungwoo Park, Jungwon Choi, Sungbin Lim, Juho Lee
-
Enhancing LLM Reasoning via Vision-Augmented Prompting Ziyang Xiao, Dongxiang Zhang, Xiongwei Han, Xiaojin Fu, Wing Yin YU, Tao Zhong, Sai Wu, Yuan Wang, Jianwei Yin, Gang Chen
-
MLLM-CompBench: A Comparative Reasoning Benchmark for Multimodal LLMs Jihyung Kil, Zheda Mai, Justin Lee, Arpita Chowdhury, Zihe Wang, Kerrie Cheng, Lemeng Wang, Ye Liu, Wei-Lun (Harry) Chao
-
LongVideoBench: A Benchmark for Long-context Interleaved Video-Language Understanding Haoning Wu, DONGXU LI, Bei Chen, Junnan Li
-
MediQ: Question-Asking LLMs and a Benchmark for Reliable Interactive Clinical Reasoning Stella Li, Vidhisha Balachandran, Shangbin Feng, Jonathan Ilgen, Emma Pierson, Pang Wei W. Koh, Yulia Tsvetkov
-
QUEST: Quadruple Multimodal Contrastive Learning with Constraints and Self-Penalization Qi Song, Tianxiang Gong, Shiqi Gao, Haoyi Zhou, Jianxin Li
-
AV-GS: Learning Material and Geometry Aware Priors for Novel View Acoustic Synthesis Swapnil Bhosale, Haosen Yang, Diptesh Kanojia, Jiankang Deng, Xiatian Zhu
-
Multi-LLM Debate: Framework, Principals, and Interventions Andrew Estornell, Yang Liu
-
MomentumSMoE: Integrating Momentum into Sparse Mixture of Experts Rachel S.Y. Teo, Tan Nguyen
-
Addressing Asynchronicity in Clinical Multimodal Fusion via Individualized Chest X-ray Generation Wenfang Yao, Chen Liu, Kejing Yin, William Cheung, Jing Qin
-
Not All Tokens Are What You Need for Pretraining Zhenghao Lin, Zhibin Gou, Yeyun Gong, Xiao Liu, yelong shen, Ruochen Xu, Chen Lin, Yujiu Yang, Jian Jiao, Nan Duan, Weizhu Chen
-
A2PO: Towards Effective Offline Reinforcement Learning from an Advantage-aware Perspective Yunpeng Qing, Shunyu Liu, Jingyuan Cong, Kaixuan Chen, Yihe Zhou, Mingli Song
-
LAVIB: A Large-scale Video Interpolation Benchmark Alex Stergiou
-
Chain of Thoughtlessness? An Analysis of CoT in Planning Kaya Stechly, Karthik Valmeekam, Subbarao Kambhampati
-
Face2QR: A Unified Framework for Aesthetic, Face-Preserving, and Scannable QR Code Generation Xuehao Cui, Guangyang Wu, Zhenghao Gan, Guangtao Zhai, Xiaohong Liu
-
A Critical Evaluation of AI Feedback for Aligning Large Language Models Archit Sharma, Sedrick Scott Keh, Eric Mitchell, Chelsea Finn, Kushal Arora, Thomas Kollar
-
MSPE: Multi-Scale Patch Embedding Prompts Vision Transformers to Any Resolution Wenzhuo Liu, Fei Zhu, Shijie Ma, Cheng-lin Liu
-
Global Convergence in Training Large-Scale Transformers Cheng Gao, Yuan Cao, Zihao Li, Yihan He, Mengdi Wang, Han Liu, Jason Klusowski, Jianqing Fan
-
Constrained Sampling with Primal-Dual Langevin Monte Carlo Luiz Chamon, Mohammad Reza Karimi Jaghargh, Anna Korba
-
Scalable Neural Network Verification with Branch-and-bound Inferred Cutting Planes Duo Zhou, Christopher Brix, Grani A. Hanasusanto, Huan Zhang
-
MoLE: Enhancing Human-centric Text-to-image Diffusion via Mixture of Low-rank Experts Jie Zhu, Yixiong Chen, Mingyu Ding, Ping Luo, Leye Wang, Jingdong Wang
-
DF40: Toward Next-Generation Deepfake Detection Zhiyuan Yan, Taiping Yao, Shen Chen, Yandan Zhao, Xinghe Fu, Junwei Zhu, Donghao Luo, Chengjie Wang, Shouhong Ding, Yunsheng Wu, Li Yuan
-
Hamiltonian Monte Carlo Inference of Marginalized Linear Mixed-Effects Models Jinlin Lai, Justin Domke, Daniel R. Sheldon
-
C-GAIL: Stabilizing Generative Adversarial Imitation Learning with Control Theory Tianjiao Luo, Tim Pearce, Huayu Chen, Jianfei Chen, Jun Zhu
-
VideoTetris: Towards Compositional Text-to-Video Generation Ye Tian, Ling Yang, Haotian Yang, Yuan Gao, Yufan Deng, Xintao Wang, Zhaochen Yu, Xin Tao, Pengfei Wan, Di ZHANG, Bin CUI
-
Kermut: Composite kernel regression for protein variant effects Peter Mørch Groth, Mads Kerrn, Lars Olsen, Jesper Salomon, Wouter Boomsma
-
Self-Taught Recognizer: Toward Unsupervised Adaptation for Speech Foundation Models Yuchen Hu, CHEN CHEN, Chao-Han Yang, Chengwei Qin, Pin-Yu Chen, Eng-Siong Chng, Chao Zhang
-
HOPE: Shape Matching Via Aligning Different K-hop Neighbourhoods Barakeel Fanseu Kamhoua, Huamin Qu
-
SubgDiff: A Subgraph Diffusion Model to Improve Molecular Representation Learning JIYING ZHANG, Zijing Liu, Yu Wang, Bin Feng, Yu Li
-
Non-parametric classification via expand-and-sparsify representation Kaushik Sinha
-
Adversarially Robust Decision Transformer Xiaohang Tang, Afonso Marques, Parameswaran Kamalaruban, Ilija Bogunovic
-
Protecting Your LLMs with Information Bottleneck Zichuan Liu, Zefan Wang, Linjie Xu, Jinyu Wang, Lei Song, Tianchun Wang, Chunlin Chen, Wei Cheng, Jiang Bian
-
ActAnywhere: Subject-Aware Video Background Generation Boxiao Pan, Zhan Xu, Chun-Hao Huang, Krishna Kumar Singh, Yang Zhou, Leonidas J. Guibas, Jimei Yang
-
Time-Reversal Provides Unsupervised Feedback to LLMs Yerram Varun, Rahul Madhavan, Sravanti Addepalli, Arun Suggala, Karthikeyan Shanmugam, Prateek Jain
-
UQE: A Query Engine for Unstructured Databases Hanjun Dai, Bethany Wang, Xingchen Wan, Bo Dai, Sherry Yang, Azade Nova, Pengcheng Yin, Mangpo Phothilimthana, Charles Sutton, Dale Schuurmans
-
Tactile DreamFusion: Exploiting Tactile Sensing for 3D Generation Ruihan Gao, Kangle Deng, Gengshan Yang, Wenzhen Yuan, Jun-Yan Zhu
-
Hints-In-Browser: Benchmarking Language Models for Programming Feedback Generation Nachiket Kotalwar, Alkis Gotovos, Adish Singla
-
Model Fusion through Bayesian Optimization in Language Model Fine-Tuning Chaeyun Jang, Hyungi Lee, Jungtaek Kim, Juho Lee
-
Mind the Graph When Balancing Data for Fairness or Robustness Jessica Schrouff, Alexis Bellot, Amal Rannen-Triki, Alan Malek, Isabela Albuquerque, Arthur Gretton, Alexander D'Amour, Silvia Chiappa
-
RAGraph: A General Retrieval-Augmented Graph Learning Framework Xinke Jiang, Rihong Qiu, Yongxin Xu, WentaoZhang , Yichen Zhu, Ruizhe Zhang, Yuchen Fang, Chu Xu, Junfeng Zhao, Yasha Wang
-
On Giant's Shoulders: Effortless Weak to Strong by Dynamic Logits Fusion Chenghao Fan, Zhenyi Lu, Wei Wei, Jie Tian, Xiaoye Qu, Dangyang Chen, Yu Cheng
-
Measuring Dejavu Memorization Efficiently Narine Kokhlikyan, Bargav Jayaraman, Florian Bordes, Chuan Guo, Kamalika Chaudhuri
-
Weight for Robustness: A Comprehensive Approach towards Optimal Fault-Tolerant Asynchronous ML Tehila Dahan, Kfir Y. Levy
-
Re-assembling the past: The RePAIR dataset and benchmark for real world 2D and 3D puzzle solving Theodore Tsesmelis, Luca Palmieri, Marina Khoroshiltseva, Adeela Islam, Gur Elkin, Ofir I Shahar, Gianluca Scarpellini, Stefano Fiorini, Yaniv Ohayon, Nadav Alali, Sinem Aslan, Pietro Morerio, Sebastiano Vascon, Elena gravina, Maria Napolitano, Giuseppe Scarpati, Gabriel zuchtriegel, Alexandra Spühler, Michel Fuchs, Stuart James, Ohad Ben-Shahar, Marcello Pelillo, Alessio Del Bue
-
Heavy-Tailed Class Imbalance and Why Adam Outperforms Gradient Descent on Language Models Frederik Kunstner, Alan Milligan, Robin Yadav, Mark Schmidt, Alberto Bietti
-
Using Time-Aware Graph Neural Networks to Predict Temporal Centralities in Dynamic Graphs Franziska Heeg, Ingo Scholtes
-
Fast T2T: Optimization Consistency Speeds Up Diffusion-Based Training-to-Testing Solving for Combinatorial Optimization Yang Li, Jinpei Guo, Runzhong Wang, Hongyuan Zha, Junchi Yan
-
Combining Statistical Depth and Fermat Distance for Uncertainty Quantification Hai Vy Nguyen, Fabrice Gamboa, Reda CHHAIBI, Sixin Zhang, Serge Gratton, Thierry Giaccone
-
Learning Human-like Representations to Enable Learning Human Values Andrea Wynn, Ilia Sucholutsky, Tom Griffiths
-
Implicit Regularization Paths of Weighted Neural Representations Jin-Hong Du, Pratik Patil
-
Identifying and Solving Conditional Image Leakage in Image-to-Video Diffusion Model Min Zhao, Hongzhou Zhu, Chendong Xiang, Kaiwen Zheng, Chongxuan LI, Jun Zhu
-
MV2Cyl: Reconstructing 3D Extrusion Cylinders from Multi-View Images Eunji Hong, Minh Hieu Nguyen, Mikaela Angelina Uy, Minhyuk Sung
-
Hierarchical and Density-based Causal Clustering Kwangho Kim, Jisu Kim, Larry Wasserman, Edward Kennedy
-
How to Use Diffusion Priors under Sparse Views? Qisen Wang, Yifan Zhao, Jiawei Ma, Jia Li
-
Exponential Quantum Communication Advantage in Distributed Inference and Learning Dar Gilboa, Hagay Michaeli, Daniel Soudry, Jarrod McClean
-
Towards Efficient and Optimal Covariance-Adaptive Algorithms for Combinatorial Semi-Bandits Julien Zhou, Pierre Gaillard, Thibaud Rahier, Houssam Zenati, Julyan Arbel
-
Zero-to-Hero: Enhancing Zero-Shot Novel View Synthesis via Attention Map Filtering Ido Sobol, Chenfeng Xu, Or Litany
-
PrefPaint: Aligning Image Inpainting Diffusion Model with Human Preference Kendong Liu, Zhiyu Zhu, Chuanhao Li, Hui LIU, Huanqiang Zeng, Junhui Hou
-
Federated Learning from Vision-Language Foundation Models: Theoretical Analysis and Method Bikang Pan, Wei Huang, Ye Shi
-
SciCode: A Research Coding Benchmark Curated by Scientists Minyang Tian, Luyu Gao, Shizhuo Zhang, Xinan Chen, Cunwei Fan, Xuefei Guo, Roland Haas, Pan Ji, Kittithat Krongchon, Yao Li, Shengyan Liu, Di Luo, Yutao Ma, HAO TONG, Kha Trinh, Chenyu Tian, Zihan Wang, Bohao Wu, Shengzhu Yin, Minhui Zhu, Kilian Lieret, Yanxin Lu, Genglin Liu, Yufeng Du, Tianhua Tao, Ofir Press, Jamie Callan, Eliu Huerta, Hao Peng
-
Binarized Diffusion Model for Image Super-Resolution Zheng Chen, Haotong Qin, Yong Guo, Xiongfei Su, Xin Yuan, Linghe Kong, Yulun Zhang
-
Micro-Bench: A Microscopy Benchmark for Vision-Language Understanding Alejandro Lozano, Jeffrey Nirschl, James Burgess, Sanket Rajan Gupte, Yuhui Zhang, Alyssa Unell, Serena Yeung
-
Delving into the Reversal Curse: How Far Can Large Language Models Generalize? Zhengkai Lin, Zhihang Fu, Kai Liu, Liang Xie, Binbin Lin, Wenxiao Wang, Deng Cai, Yue Wu, Jieping Ye
-
Language Without Borders: A Dataset and Benchmark for Code-Switching Lip Reading Xueyi Zhang, Mingrui Lao, Peng Zhao, Jun Tang, Yanming Guo, Siqi Cai, Xianghu Yue, Haizhou Li
-
On the Parameter Identifiability of Partially Observed Linear Causal Models Xinshuai Dong, Ignavier Ng, Biwei Huang, Yuewen Sun, Songyao Jin, Roberto Legaspi, Peter Spirtes, Kun Zhang
-
Accelerating Transformers with Spectrum-Preserving Token Merging Chau Tran, Duy M. H. Nguyen, Manh-Duy Nguyen, TrungTin Nguyen, Ngan Le, Pengtao Xie, Daniel Sonntag, James Y. Zou, Binh Nguyen, Mathias Niepert
-
The FineWeb Datasets: Decanting the Web for the Finest Text Data at Scale Guilherme Penedo, Hynek Kydlíček, Loubna Ben allal, Anton Lozhkov, Margaret Mitchell, Colin A. Raffel, Leandro Von Werra, Thomas Wolf
-
Should We Really Edit Language Models? On the Evaluation of Edited Language Models Qi Li, Xiang Liu, Zhenheng Tang, Peijie Dong, Zeyu Li, Xinglin Pan, Xiaowen Chu
-
Model-free Low-Rank Reinforcement Learning via Leveraged Entry-wise Matrix Estimation Stefan Stojanovic, Yassir Jedra, Alexandre Proutiere
-
Seeing the Image: Prioritizing Visual Correlation by Contrastive Alignment Xin Xiao, Bohong Wu, Jiacong Wang, Chunyuan Li, zhou Xun, Haoyuan Guo
-
Solving Minimum-Cost Reach Avoid using Reinforcement Learning Oswin So, Cheng Ge, Chuchu Fan
-
Toward a Well-Calibrated Discrimination via Survival Outcome-Aware Contrastive Learning Dongjoon Lee, Hyeryn Park, Changhee Lee
-
Image Understanding Makes for A Good Tokenizer for Image Generation Luting Wang, Yang Zhao, Zijian Zhang, Jiashi Feng, Si Liu, Bingyi Kang
-
Inverse M-Kernels for Linear Universal Approximators of Non-Negative Functions Hideaki Kim
-
Delta-CoMe: Training-Free Delta-Compression with Mixed-Precision for Large Language Models Bowen Ping, Shuo Wang, Hanqing Wang, Xu Han, Yuzhuang Xu, Yukun Yan, Yun Chen, Baobao Chang, Zhiyuan Liu, Maosong Sun
-
Towards Combating Frequency Simplicity-biased Learning for Domain Generalization Xilin He, Jingyu Hu, Qinliang Lin, Cheng Luo, Weicheng Xie, Siyang Song, Muhammad Haris Khan, Linlin Shen
-
Generated and Pseudo Content guided Prototype Refinement for Few-shot Point Cloud Segmentation Lili Wei, Congyan Lang, Ziyi Chen, Tao Wang, Yidong Li, Jun Liu
-
Learning an Actionable Discrete Diffusion Policy via Large-Scale Actionless Video Pre-Training Haoran He, Chenjia Bai, Ling Pan, Weinan Zhang, Bin Zhao, Xuelong Li
-
Estimating the Hallucination Rate of Generative AI Andrew Jesson, Nicolas Beltran Velez, Quentin Chu, Sweta Karlekar, Jannik Kossen, Yarin Gal, John P. Cunningham, David Blei
-
Do causal predictors generalize better to new domains? Vivian Nastl, Moritz Hardt
-
Computation-Aware Gaussian Processes: Model Selection And Linear-Time Inference Jonathan Wenger, Kaiwen Wu, Philipp Hennig, Jacob Gardner, Geoff Pleiss, John P. Cunningham
-
Frequency Adaptive Normalization For Non-stationary Time Series Forecasting Weiwei Ye, Songgaojun Deng, Qiaosha Zou, Ning Gui
-
Towards Human-AI Complementarity with Prediction Sets Giovanni De Toni, Nastaran Okati, Suhas Thejaswi, Eleni Straitouri, Manuel Rodriguez
-
Evidence of Learned Look-Ahead in a Chess-Playing Neural Network Erik Jenner, Shreyas Kapur, Vasil Georgiev, Cameron Allen, Scott Emmons, Stuart J Russell
-
Universal Online Convex Optimization with $1$ Projection per Round Wenhao Yang, Yibo Wang, Peng Zhao, Lijun Zhang
-
Towards Croppable Implicit Neural Representations Maor Ashkenazi, Eran Treister
-
EPIC: Effective Prompting for Imbalanced-Class Data Synthesis in Tabular Data Classification via Large Language Models Jinhee Kim, Taesung Kim, Jaegul Choo
-
Fit for our purpose, not yours: Benchmark for a low-resource, Indigenous language Suzanne Duncan, Gianna Leoni, Lee Steven, Keoni K Mahelona, Peter Lucas K Jones
-
On Statistical Rates and Provably Efficient Criteria of Latent Diffusion Transformers (DiTs) Jerry Yao-Chieh Hu, Weimin Wu, Zhuoru Li, Sophia Pi, Zhao Song, Han Liu
-
Beyond Redundancy: Information-aware Unsupervised Multiplex Graph Structure Learning Zhixiang Shen, Shuo Wang, Zhao Kang
-
Active learning of neural population dynamics using two-photon holographic optogenetics Andrew Wagenmaker, Lu Mi, Marton Rozsa, Matthew Bull, Karel Svoboda, Kayvon Daie, Matthew Golub, Kevin G. Jamieson
-
DARNet: Dual Attention Refinement Network with Spatiotemporal Construction for Auditory Attention Detection Sheng Yan, Cunhang Fan, Hongyu Zhang, Xiaoke Yang, Jianhua Tao, Zhao Lv
-
High-dimensional (Group) Adversarial Training in Linear Regression Yiling Xie, Xiaoming Huo
-
Enhancing Robustness of Graph Neural Networks on Social Media with Explainable Inverse Reinforcement Learning Yuefei Lyu, Chaozhuo Li, Sihong Xie, Xi Zhang
-
Interpretable Mesomorphic Networks for Tabular Data Arlind Kadra, Sebastian Pineda Arango, Josif Grabocka
-
Transformers to SSMs: Distilling Quadratic Knowledge to Subquadratic Models Aviv Bick, Kevin Li, Eric Xing, J. Zico Kolter, Albert Gu
-
GameTraversalBenchmark: Evaluating Planning Abilities Of Large Language Models Through Traversing 2D Game Maps Muhammad Umair Nasir, Steven James, Julian Togelius
-
Wings: Learning Multimodal LLMs without Text-only Forgetting Yi-Kai Zhang, Shiyin Lu, Yang Li, YanQing Ma, Qingguo Chen, Zhao Xu, Weihua Luo, Kaifu Zhang, De-Chuan Zhan, Han-Jia Ye
-
Predicting the Performance of Foundation Models via Agreement-on-the-Line Rahul Saxena, Taeyoun Kim, Aman Mehra, Christina Baek, J. Zico Kolter, Aditi Raghunathan
-
Exact Gradients for Stochastic Spiking Neural Networks Driven by Rough Signals Christian Holberg, Cristopher Salvi
-
Quantum Deep Equilibrium Models Philipp Schleich, Marta Skreta, Lasse Kristensen, Rodrigo Vargas-Hernandez, Alan Aspuru-Guzik
-
EfficientCAPER: An End-to-End Framework for Fast and Robust Category-Level Articulated Object Pose Estimation Xinyi Yu, Haonan Jiang, Li Zhang, Lin Yuanbo Wu, Linlin Ou, Liu Liu
-
FiVA: Fine-grained Visual Attribute Dataset for Text-to-Image Diffusion Models Tong Wu, Yinghao Xu, Ryan Po, Mengchen Zhang, Guandao Yang, Jiaqi Wang, Ziwei Liu, Dahua Lin, Gordon Wetzstein
-
$\epsilon$-Softmax: Approximating One-Hot Vectors for Mitigating Label Noise Jialiang Wang, Xiong Zhou, Deming Zhai, Junjun Jiang, Xiangyang Ji, Xianming Liu
-
Replicable Uniformity Testing Sihan Liu, Christopher Ye
-
E.T. Bench: Towards Open-Ended Event-Level Video-Language Understanding Ye Liu, Zongyang Ma, Zhongang Qi, Yang Wu, Ying Shan, Chang Chen
-
Dual Prototype Evolving for Test-Time Generalization of Vision-Language Models Ce Zhang, Simon Stepputtis, Katia Sycara, Yaqi Xie
-
Low Degree Hardness for Broadcasting on Trees Han Huang, Elchanan Mossel
-
Bag of Tricks: Benchmarking of Jailbreak Attacks on LLMs Zhao Xu, Fan LIU, Hao Liu
-
Latent Learning Progress Drives Autonomous Goal Selection in Human Reinforcement Learning Gaia Molinaro, Cédric Colas, Pierre-Yves Oudeyer, Anne Collins
-
The tree autoencoder model, with application to hierarchical data visualization Miguel A. Carreira-Perpinan, Kuat Gazizov
-
Neural Network Reparametrization for Accelerated Optimization in Molecular Simulations Nima Dehmamy, Csaba Both, Jeet Mohapatra, Subhro Das, Tommi Jaakkola
-
Large Language Models' Expert-level Global History Knowledge Benchmark (HiST-LLM) Jakob Hauser, Dániel Kondor, Jenny Reddish, Majid Benam, Enrico Cioni, Federica Villa, James Bennett, Daniel Hoyer, Pieter Francois, Peter Turchin, R. Maria del Rio-Chanona
-
Your Diffusion Model is Secretly a Noise Classifier and Benefits from Contrastive Training Yunshu Wu, Yingtao Luo, Xianghao Kong, Vagelis Papalexakis, Greg Ver Steeg
-
Distribution Guidance Network for Weakly Supervised Point Cloud Semantic Segmentation Zhiyi Pan, Wei Gao, Shan Liu, Ge Li
-
Stabilizing Linear Passive-Aggressive Online Learning with Weighted Reservoir Sampling Skyler Wu, Fred Lu, Edward Raff, James Holt
-
Separation and Bias of Deep Equilibrium Models on Expressivity and Learning Dynamics Zhoutong Wu, Yimu Zhang, Cong Fang, Zhouchen Lin
-
MatrixNet: Learning over symmetry groups using learned group representations Lucas Laird, Circe Hsu, Asilata Bapat, Robin Walters
-
Statistical and Geometrical properties of the Kernel Kullback-Leibler divergence Anna Korba, Francis Bach, Clémentine CHAZAL
-
Masked Pre-training Enables Universal Zero-shot Denoiser Xiaoxiao Ma, Zhixiang Wei, Yi Jin, Pengyang Ling, Tianle Liu, Ben Wang, Junkang Dai, Huaian Chen
-
Adaptive Image Quality Assessment via Teaching Large Multimodal Model to Compare Hanwei Zhu, Haoning Wu, Yixuan Li, Zicheng Zhang, Baoliang Chen, Lingyu Zhu, Yuming Fang, Guangtao Zhai, Weisi Lin, Shiqi Wang
-
Fast Best-of-N Decoding via Speculative Rejection Hanshi Sun, Momin Haider, Ruiqi Zhang, Huitao Yang, Jiahao Qiu, Ming Yin, Mengdi Wang, Peter Bartlett, Andrea Zanette
-
PointMamba: A Simple State Space Model for Point Cloud Analysis Dingkang Liang, Xin Zhou, Wei Xu, Xingkui Zhu, Zhikang Zou, Xiaoqing Ye, Xiao Tan, Xiang Bai
-
Distributional regression: CRPS-error bounds for model fitting, model selection and convex aggregation Dombry Clement, Ahmed Zaoui
-
Non-convolutional graph neural networks. Yuanqing Wang, Kyunghyun Cho
-
TripletCLIP: Improving Compositional Reasoning of CLIP via Synthetic Vision-Language Negatives Maitreya Patel, Naga Sai Abhiram Kusumba, Sheng Cheng, Changhoon Kim, Tejas Gokhale, Chitta Baral, 'YZ' Yezhou Yang
-
Where does In-context Learning Happen in Large Language Models? Suzanna Sia, David Mueller, Kevin Duh
-
Fine-grained Control of Generative Data Augmentation in IoT Sensing Tianshi Wang, Qikai Yang, Ruijie Wang, Dachun Sun, Jinyang Li, Yizhuo Chen, Yigong Hu, Chaoqi Yang, Tomoyoshi Kimura, Denizhan Kara, Tarek Abdelzaher
-
A Systematic Review of NeurIPS Dataset Management Practices Yiwei Wu, Leah Ajmani, Shayne Longpre, Hanlin Li
-
Geodesic Optimization for Predictive Shift Adaptation on EEG data Apolline Mellot, Antoine Collas, Sylvain Chevallier, Alex Gramfort, Denis A. Engemann
-
Improved Few-Shot Jailbreaking Can Circumvent Aligned Language Models and Their Defenses Xiaosen Zheng @ SMU, Tianyu Pang, Chao Du, Qian Liu, Jing Jiang, Min Lin
-
Stylus: Automatic Adapter Selection for Diffusion Models Michael Luo, Justin Wong, Brandon Trabucco, Yanping Huang, Joseph E. Gonzalez, zhifeng Chen, Ruslan Salakhutdinov, Ion Stoica
-
The Surprising Ineffectiveness of Pre-Trained Visual Representations for Model-Based Reinforcement Learning Moritz Schneider, Robert Krug, Narunas Vaskevicius, Luigi Palmieri, Joschka Boedecker
-
DiMSUM: Diffusion Mamba - A Scalable and Unified Spatial-Frequency Method for Image Generation Hao Phung, Quan Dao, Trung Dao, Viet Hoang Phan, Dimitris Metaxas, Anh Tran
-
Graph-based Uncertainty Metrics for Long-form Language Model Generations Mingjian Jiang, Yangjun Ruan, Prasanna Sattigeri, Salim Roukos, Tatsunori B. Hashimoto
-
Sequence-Augmented SE(3)-Flow Matching For Conditional Protein Generation Guillaume Huguet, James Vuckovic, Kilian FATRAS, Eric Thibodeau-Laufer, Pablo Lemos, Riashat Islam, Chenghao Liu, Jarrid Rector-Brooks, Tara Akhound-Sadegh, Michael Bronstein, Alexander Tong, Joey Bose
-
GaussianMarker: Uncertainty-Aware Copyright Protection of 3D Gaussian Splatting Xiufeng Huang, Ruiqi Li, Yiu-ming Cheung, Ka Chun Cheung, Simon See, Renjie Wan
-
Warm-starting Push-Relabel Sami Davies, Sergei Vassilvitskii, Yuyan Wang
-
Latent Neural Operator for Solving Forward and Inverse PDE Problems Tian Wang, Chuang Wang
-
Dense Connector for MLLMs Huanjin Yao, Wenhao Wu, Taojiannan Yang, YuXin Song, Mengxi Zhang, Haocheng Feng, Yifan Sun, Zhiheng Li, Wanli Ouyang, Jingdong Wang
-
Learning to compute Gröbner bases Hiroshi Kera, Yuki Ishihara, Yuta Kambe, Tristan Vaccon, Kazuhiro Yokoyama
-
Linearly Decomposing and Recomposing Vision Transformers for Diverse-Scale Models Shuxia Lin, Miaosen Zhang, Ruiming Chen, Xu Yang, Qiufeng Wang, Xin Geng
-
Adaptive Depth Networks with Skippable Sub-Paths Woochul Kang, HYUNGSEOP LEE
-
Bridge the Points: Graph-based Few-shot Segment Anything Semantically Anqi Zhang, Guangyu Gao, Jianbo Jiao, Chi Liu, Yunchao Wei
-
DiffNorm: Self-Supervised Normalization for Non-autoregressive Speech-to-speech Translation Weiting Tan, Jingyu Zhang, Lingfeng Shen, Daniel Khashabi, Philipp Koehn
-
Neural Persistence Dynamics Sebastian Zeng, Florian Graf, Martin Uray, Stefan Huber, Roland Kwitt
-
Ada-MSHyper: Adaptive Multi-Scale Hypergraph Transformer for Time Series Forecasting Zongjiang Shang, Ling Chen, Binqing Wu, Dongliang Cui
-
Pseudo-Private Data Guided Model Inversion Attacks Xiong Peng, Bo Han, Feng Liu, Tongliang Liu, Mingyuan Zhou
-
Cluster-wise Graph Transformer with Dual-granularity Kernelized Attention Siyuan Huang, Yunchong Song, Jiayue Zhou, Zhouhan Lin
-
ClashEval: Quantifying the tug-of-war between an LLM’s internal prior and external evidence Kevin Wu, Eric Wu, James Y. Zou
-
MedSafetyBench: Evaluating and Improving the Medical Safety of Large Language Models Tessa Han, Aounon Kumar, Chirag Agarwal, Himabindu Lakkaraju
-
Span-Based Optimal Sample Complexity for Weakly Communicating and General Average Reward MDPs Matthew Zurek, Yudong Chen
-
Learning Spatially-Aware Language and Audio Embeddings Bhavika Devnani, Skyler Seto, Zakaria Aldeneh, Alessandro Toso, Elena Menyaylenko, Barry-John Theobald, Jonathan Sheaffer, Miguel Sarabia
-
A Neural Network Approach for Efficiently Answering Most Probable Explanation Queries in Probabilistic Models Shivvrat Arya, Tahrima Rahman, Vibhav Gogate
-
RefDrop: Controllable Consistency in Image or Video Generation via Reference Feature Guidance Jiaojiao Fan, Haotian Xue, Qinsheng Zhang, Yongxin Chen
-
Deep Equilibrium Algorithmic Reasoning Dobrik Georgiev, Joseph Wilson, Davide Buffelli, Pietro Lió
-
Disentangling the Roles of Distinct Cell Classes with Cell-Type Dynamical Systems Aditi Jha, Diksha Gupta, Carlos Brody, Jonathan W. Pillow
-
MG-Net: Learn to Customize QAOA with Circuit Depth Awareness Yang Qian, Xinbiao Wang, Yuxuan Du, Yong Luo, Dacheng Tao
-
Provable Acceleration of Nesterov's Accelerated Gradient for Asymmetric Matrix Factorization and Linear Neural Networks Zhenghao Xu, Yuqing Wang, Tuo Zhao, Rachel Ward, Molei Tao
-
S-STE: Continuous Pruning Function for Efficient 2:4 Sparse Pre-training Yuezhou Hu, Jun Zhu, Jianfei Chen
-
Rethinking Score Distillation as a Bridge Between Image Distributions David McAllister, Songwei Ge, Jia-Bin Huang, David Jacobs, Alexei Efros, Aleksander Holynski, Angjoo Kanazawa
-
Modeling Latent Neural Dynamics with Gaussian Process Switching Linear Dynamical Systems Amber Hu, David Zoltowski, Aditya Nair, David Anderson, Lea Duncker, Scott Linderman
-
Sparse maximal update parameterization: A holistic approach to sparse training dynamics Nolan Dey, Shane Bergsma, Joel Hestness
-
AHA: Human-Assisted Out-of-Distribution Generalization and Detection Haoyue Bai, Jifan Zhang, Robert Nowak
-
Efficient Sign-Based Optimization: Accelerating Convergence via Variance Reduction Wei Jiang, Sifan Yang, Wenhao Yang, Lijun Zhang
-
DynaMo: In-Domain Dynamics Pretraining for Visuo-Motor Control Zichen Cui, Hengkai Pan, Aadhithya Iyer, Siddhant Haldar, Lerrel Pinto
-
Predicting Ground State Properties: Constant Sample Complexity and Deep Learning Algorithms Marc Wanner, Laura Lewis, Chiranjib Bhattacharyya, Devdatt Dubhashi, Alexandru Gheorghiu
-
Spiking Graph Neural Network on Riemannian Manifolds Li Sun, Zhenhao Huang, Qiqi Wan, Hao Peng, Philip S Yu
-
Vector Quantization Prompting for Continual Learning Li Jiao, Qiuxia LAI, YU LI, Qiang Xu
-
BertaQA: How Much Do Language Models Know About Local Culture? Julen Etxaniz, Gorka Azkune, Aitor Soroa, Oier Lacalle, Mikel Artetxe
-
Stylebreeder: Exploring and Democratizing Artistic Styles through Text-to-Image Models Matthew Zheng, Enis Simsar, Hidir Yesiltepe, Federico Tombari, Joel Simon, Pinar Yanardag Delul
-
Contextual Multinomial Logit Bandits with General Value Functions Mengxiao Zhang, Haipeng Luo
-
MindMerger: Efficiently Boosting LLM Reasoning in non-English Languages Zixian Huang, Wenhao Zhu, Gong Cheng, Lei Li, Fei Yuan
-
LLM-Check: Investigating Detection of Hallucinations in Large Language Models Gaurang Sriramanan, Siddhant Bharti, Vinu Sankar Sadasivan, Shoumik Saha, Priyatham Kattakinda, Soheil Feizi
-
Shaping the distribution of neural responses with interneurons in a recurrent circuit model David Lipshutz, Eero Simoncelli
-
Safe and Efficient: A Primal-Dual Method for Offline Convex CMDPs under Partial Data Coverage Haobo Zhang, Xiyue Peng, Honghao Wei, Xin Liu
-
OpenDebateEvidence: A Massive-Scale Argument Mining and Summarization Dataset Allen Roush, Yusuf Shabazz, Arvind Balaji, Peter Zhang, Stefano Mezza, Markus Zhang, Sanjay Basu, Sriram Vishwanath, Ravid Shwartz-Ziv
-
Accelerating Blockwise Parallel Language Models with Draft Refinement Taehyeon Kim, Ananda Theertha Suresh, Kishore Papineni, Michael D Riley, Sanjiv Kumar, Adrian Benton
-
MotionBooth: Motion-Aware Customized Text-to-Video Generation Jianzong Wu, Xiangtai Li, Yanhong Zeng, Jiangning Zhang, Qianyu Zhou, Yining Li, Yunhai Tong, Kai Chen
-
Neural Pose Representation Learning for Generating and Transferring Non-Rigid Object Poses Seungwoo Yoo, Juil Koo, Kyeongmin Yeo, Minhyuk Sung
-
Energy-based Epistemic Uncertainty for Graph Neural Networks Dominik Fuchsgruber, Tom Wollschläger, Stephan Günnemann
-
Bridge the Modality and Capability Gaps in Vision-Language Model Selection Chao Yi, Yuhang He, De-Chuan Zhan, Han-Jia Ye
-
MetaAligner: Towards Generalizable Multi-Objective Alignment of Language Models Kailai Yang, Zhiwei Liu, Qianqian Xie, Jimin Huang, Tianlin Zhang, Sophia Ananiadou
-
DOGS: Distributed-Oriented Gaussian Splatting for Large-Scale 3D Reconstruction Via Gaussian Consensus Yu Chen, Gim Hee Lee
-
Blind Image Restoration via Fast Diffusion Inversion Hamadi Chihaoui, Abdelhak Lemkhenter, Paolo Favaro
-
Web-Scale Visual Entity Recognition: An LLM-Driven Data Approach Mathilde Caron, Alireza Fathi, Cordelia Schmid, Ahmet Iscen
-
FedSSP: Federated Graph Learning with Spectral Knowledge and Personalized Preference Zihan Tan, Guancheng Wan, Wenke Huang, Mang Ye
-
Kronecker-Factored Approximate Curvature for Physics-Informed Neural Networks Felix Dangel, Johannes Müller, Marius Zeinhofer
-
SpeedLoader: An I/O efficient scheme for heterogeneous and distributed LLM operation Yiqi Zhang, Yang You
-
CoSy: Evaluating Textual Explanations of Neurons Laura Kopf, Philine L Bommer, Anna Hedström, Sebastian Lapuschkin, Marina Höhne, Kirill Bykov
-
Multistable Shape from Shading Emerges from Patch Diffusion Xinran Han, Todd Zickler, Ko Nishino
-
Exploring Behavior-Relevant and Disentangled Neural Dynamics with Generative Diffusion Models Yule Wang, Chengrui Li, Weihan Li, Anqi Wu
-
OpenMathInstruct-1: A 1.8 Million Math Instruction Tuning Dataset Shubham Toshniwal, Ivan Moshkov, Sean Narenthiran, Daria Gitman, Fei Jia, Igor Gitman
-
TACT: Advancing Complex Aggregative Reasoning with Information Extraction Tools Avi Caciularu, Alon Jacovi, Eyal Ben-David, Sasha Goldshtein, Tal Schuster, Jonathan Herzig, Gal Elidan, Amir Globerson
-
Bidirectional Recurrence for Cardiac Motion Tracking with Gaussian Process Latent Coding Jiewen Yang, Yiqun Lin, Bin Pu, Xiaomeng Li
-
Algebraic Positional Encodings Konstantinos Kogkalidis, Jean-Philippe Bernardy, Vikas Garg
-
What is my quantum computer good for? Quantum capability learning with physics-aware neural networks Daniel Hothem, Ashe Miller, Timothy Proctor
-
Rule Extrapolation in Language Modeling: A Study of Compositional Generalization on OOD Prompts Anna Mészáros, Szilvia Ujváry, Wieland Brendel, Patrik Reizinger, Ferenc Huszar
-
Byzantine Robustness and Partial Participation Can Be Achieved at Once: Just Clip Gradient Differences Grigory Malinovsky, Peter Richtarik, Samuel Horváth, Eduard Gorbunov
-
Is Your LiDAR Placement Optimized for 3D Scene Understanding? Ye Li, Lingdong Kong, Hanjiang Hu, Xiaohao Xu, Xiaonan Huang
-
3-in-1: 2D Rotary Adaptation for Efficient Finetuning, Efficient Batching and Composability Baohao Liao, Christof Monz
-
Bridging OOD Detection and Generalization: A Graph-Theoretic View Han Wang, Sharon Li
-
Localize, Understand, Collaborate: Semantic-Aware Dragging via Intention Reasoner Xing Cui, Peipei Li, Zekun Li, Xuannan Liu, Yueying Zou, Zhaofeng He
-
FashionR2R: Texture-preserving Rendered-to-Real Image Translation with Diffusion Models Rui Hu, Qian He, Gaofeng He, Jiedong Zhuang, Huang Chen, Huafeng Liu, Huamin Wang
-
Preference Alignment with Flow Matching Minu Kim, Yongsik Lee, Sehyeok Kang, Jihwan Oh, Song Chong, Se-Young Yun
-
Mean-Field Langevin Dynamics for Signed Measures via a Bilevel Approach Guillaume Wang, Alireza Mousavi-Hosseini, Lénaïc Chizat
-
Advection Augmented Convolutional Neural Networks Niloufar Zakariaei, Siddharth Rout, Eldad Haber, Moshe Eliasof
-
Extensive-Form Game Solving via Blackwell Approachability on Treeplexes Darshan Chakrabarti, Julien Grand-Clément, Christian Kroer
-
Quantum Algorithms for Non-smooth Non-convex Optimization Chengchang Liu, Chaowen Guan, Jianhao He, John C. S. Lui
-
Automatic Outlier Rectification via Optimal Transport Jose Blanchet, Jiajin Li, Markus Pelger, Greg Zanotti
-
Topological obstruction to the training of shallow ReLU neural networks Marco Nurisso, Pierrick Leroy, Francesco Vaccarino
-
AdaSociety: An Adaptive Environment with Social Structures for Multi-Agent Decision-Making Yizhe Huang, Xingbo Wang, Hao Liu, Fanqi Kong, Aoyang Qin, Min Tang, Xiaoxi Wang, Song-Chun Zhu, Mingjie Bi, Siyuan Qi, Xue Feng
-
Single Image Unlearning: Efficient Machine Unlearning in Multimodal Large Language Models Jiaqi Li, Qianshan Wei, Chuanyi Zhang, Guilin Qi, Miaozeng Du, Yongrui Chen, Sheng Bi, Fan Liu
-
FlexMol: A Flexible Toolkit for Benchmarking Molecular Relational Learning Sizhe Liu, Jun Xia, Lecheng Zhang, Yuchen Liu, Yue Liu, Wenjie Du, Zhangyang Gao, Bozhen Hu, Cheng Tan, hongxin xiang, Stan Z. Li
-
Mining and Transferring Feature-Geometry Coherence for Unsupervised Point Cloud Registration KeZheng Xiong, Haoen Xiang, Qingshan Xu, Chenglu Wen, Siqi Shen, Jonathan Jun LI, Cheng Wang
-
Improving robustness to corruptions with multiplicative weight perturbations Quoc Trung Trinh, Markus Heinonen, Luigi Acerbi, Samuel Kaski
-
LeDex: Training LLMs to Better Self-Debug and Explain Code Nan Jiang, Xiaopeng Li, Shiqi Wang, Qiang Zhou, Soneya Hossain, Baishakhi Ray, Varun Kumar, Xiaofei Ma, Anoop Deoras
-
Guiding Neural Collapse: Optimising Towards the Nearest Simplex Equiangular Tight Frame Evan Markou, Thalaiyasingam Ajanthan, Stephen Gould
-
Time-Constrained Robust MDPs Adil Zouitine, David Bertoin, Pierre Clavier, Matthieu Geist, Emmanuel Rachelson
-
CemiFace: Center-based Semi-hard Synthetic Face Generation for Face Recognition Zhonglin Sun, Siyang Song, Ioannis Patras, Georgios Tzimiropoulos
-
Randomized Strategic Facility Location with Predictions Eric Balkanski, Vasilis Gkatzelis, Golnoosh Shahkarami
-
OccamLLM: Fast and Exact Language Model Arithmetic in a Single Step Owen Dugan, Donato Jiménez-Benetó, Charlotte Loh, Zhuo Chen, Rumen Dangovski, Marin Soljacic
-
ProSST: Protein Language Modeling with Quantized Structure and Disentangled Attention Mingchen Li, Yang Tan, Xinzhu Ma, Bozitao Zhong, Huiqun Yu, Ziyi Zhou, Wanli Ouyang, Bingxin Zhou, Pan Tan, Liang Hong
-
The Dormant Neuron Phenomenon in Multi-Agent Reinforcement Learning Value Factorization Haoyuan Qin, Chennan Ma, Deng, Zhengzhu Liu, Songzhu Mei, Xinwang Liu, Cheng Wang, Siqi Shen
-
NewTerm: Benchmarking Real-Time New Terms for Large Language Models with Annual Updates Hexuan Deng, Wenxiang Jiao, Xuebo Liu, Min Zhang, Zhaopeng Tu
-
STimage-1K4M: A histopathology image-gene expression dataset for spatial transcriptomics Jiawen Chen, Muqing Zhou, Wenrong Wu, Jinwei Zhang, Yun Li, Didong Li
-
Infinite Limits of Multi-head Transformer Dynamics Blake Bordelon, Hamza Chaudhry, Cengiz Pehlevan
-
WeiPer: OOD Detection using Weight Perturbations of Class Projections Maximilian Granz, Manuel Heurich, Tim Landgraf
-
On the Impacts of the Random Initialization in the Neural Tangent Kernel Theory Guhan Chen, Yicheng Li, Qian Lin
-
Boundary Matters: A Bi-Level Active Finetuning Method Han Lu, Yichen Xie, Xiaokang Yang, Junchi Yan
-
Implicitly Guided Design with PropEn: Match your Data to Follow the Gradient Nataša Tagasovska, Vladimir Gligorijevic, Kyunghyun Cho, Andreas Loukas
-
Separations in the Representational Capabilities of Transformers and Recurrent Architectures Satwik Bhattamishra, Michael Hahn, Phil Blunsom, Varun Kanade
-
Multistep Distillation of Diffusion Models via Moment Matching Tim Salimans, Thomas Mensink, Jonathan Heek, Emiel Hoogeboom
-
AUC Maximization under Positive Distribution Shift Atsutoshi Kumagai, Tomoharu Iwata, Hiroshi Takahashi, Taishi Nishiyama, Yasuhiro Fujiwara
-
NaRCan: Natural Refined Canonical Image with Integration of Diffusion Prior for Video Editing Ting-Hsuan Chen, Jie Wen Chan, Hau-Shiang Shiu, Shih-Han Yen, Changhan Yeh, Yu-Lun Liu
-
Dataset Decomposition: Faster LLM Training with Variable Sequence Length Curriculum Hadi Pouransari, Chun-Liang Li, Jen-Hao Chang, Pavan Kumar Anasosalu Vasu, Cem Koc, Vaishaal Shankar, Oncel Tuzel
-
Provably Robust Score-Based Diffusion Posterior Sampling for Plug-and-Play Image Reconstruction Xingyu Xu, Yuejie Chi
-
Mobility-LLM: Learning Visiting Intentions and Travel Preference from Human Mobility Data with Large Language Models Letian Gong, Yan Lin, zxy, Yiwen Lu, Xuedi Han, Yichen Liu, Shengnan Guo, Youfang Lin, Huaiyu Wan
-
Probabilistic Conformal Distillation for Enhancing Missing Modality Robustness Mengxi Chen, Fei Zhang, Zihua Zhao, Jiangchao Yao, Ya Zhang, Yanfeng Wang
-
Causal discovery with endogenous context variables Wiebke Günther, Oana-Iuliana Popescu, Martin Rabel, Urmi Ninad, Andreas Gerhardus, Jakob Runge
-
BIOSCAN-5M: A Multimodal Dataset for Insect Biodiversity Zahra Gharaee, Scott C. Lowe, ZeMing Gong, Pablo Millan Arias, Nicholas Pellegrino, Austin T. Wang, Joakim Bruslund Haurum, Iuliia Eyriay, Lila Kari, Dirk Steinke, Graham W. Taylor, Paul Fieguth, Angel Chang
-
Medformer: A Multi-Granularity Patching Transformer for Medical Time-Series Classification Yihe Wang, Nan Huang, Taida Li, Yujun Yan, Xiang Zhang
-
A Phase Transition between Positional and Semantic Learning in a Solvable Model of Dot-Product Attention Hugo Cui, Freya Behrens, Florent Krzakala, Lenka Zdeborová
-
Learning to Reason via Program Generation, Emulation, and Search Nathaniel Weir, Muhammad Khalifa, Linlu Qiu, Orion Weller, Peter Clark
-
Mutli-Armed Bandits with Network Interference Abhineet Agarwal, Anish Agarwal, Lorenzo Masoero, Justin Whitehouse
-
Bayesian Nonparametrics Meets Data-Driven Distributionally Robust Optimization Nicola Bariletto, Nhat Ho
-
On the Ability of Developers' Training Data Preservation of Learnware Hao-Yi Lei, Zhi-Hao Tan, Zhi-Hua Zhou
-
Learning the Optimal Policy for Balancing Short-Term and Long-Term Rewards Qinwei Yang, Xueqing Liu, Yan Zeng, Ruocheng Guo, Yang Liu, Peng Wu
-
Interpreting Learned Feedback Patterns in Large Language Models Luke Marks, Amir Abdullah, Clement Neo, Rauno Arike, David Krueger, Philip Torr, Fazl Barez
-
What Makes CLIP More Robust to Long-Tailed Pre-Training Data? A Controlled Study for Transferable Insights Xin Wen, Bingchen Zhao, Yilun Chen, Jiangmiao Pang, Xiaojuan Qi
-
Unpacking DPO and PPO: Disentangling Best Practices for Learning from Preference Feedback Hamish Ivison, Yizhong Wang, Jiacheng Liu, Zeqiu Wu, Valentina Pyatkin, Nathan Lambert, Noah A. Smith, Yejin Choi, Hanna Hajishirzi
-
Benign overfitting in leaky ReLU networks with moderate input dimension Kedar Karhadkar, Erin George, Michael Murray, Guido F. Montufar, Deanna Needell
-
On the Computational Complexity of Private High-dimensional Model Selection Saptarshi Roy, Zehua Wang, Ambuj Tewari
-
SpGesture: Source-Free Domain-adaptive sEMG-based Gesture Recognition with Jaccard Attentive Spiking Neural Network Weiyu Guo, Ying Sun, Yijie Xu, Ziyue Qiao, Yongkui Yang, Hui Xiong
-
Defensive Unlearning with Adversarial Training for Robust Concept Erasure in Diffusion Models Yimeng Zhang, Xin Chen, Jinghan Jia, Yihua Zhang, Chongyu Fan, Jiancheng Liu, Mingyi Hong, Ke Ding, Sijia Liu
-
PuLID: Pure and Lightning ID Customization via Contrastive Alignment Zinan Guo, Yanze Wu, Chen Zhuowei, Lang chen, Peng Zhang, Qian HE
-
MINT-1T: Scaling Open-Source Multimodal Data by 10x: A Multimodal Dataset with One Trillion Tokens Anas Awadalla, Le Xue, Oscar Lo, Manli Shu, Hannah Lee, Etash Guha, Sheng Shen, Mohamed Awadalla, Silvio Savarese, Caiming Xiong, Ran Xu, Yejin Choi, Ludwig Schmidt
-
Almost-Linear RNNs Yield Highly Interpretable Symbolic Codes in Dynamical Systems Reconstruction Manuel Brenner, Christoph Jürgen Hemmer, Zahra Monfared, Daniel Durstewitz
-
$\nabla^2$DFT: A Universal Quantum Chemistry Dataset of Drug-Like Molecules and a Benchmark for Neural Network Potentials Kuzma Khrabrov, Anton Ber, Artem Tsypin, Konstantin Ushenin, Egor Rumiantsev, Alexander Telepov, Dmitry Protasov, Ilya Shenbin, Anton Alekseev, Mikhail Shirokikh, Sergey Nikolenko, Elena Tutubalina, Artur Kadurin
-
D2R2: Diffusion-based Representation with Random Distance Matching for Tabular Few-shot Learning Ruoxue Liu, Linjiajie Fang, Wenjia Wang, Bingyi Jing
-
Dataset and Lessons Learned from the 2024 SaTML LLM Capture-the-Flag Competition Edoardo Debenedetti, Javier Rando, Daniel Paleka, Silaghi Florin, Dragos Albastroiu, Niv Cohen, Yuval Lemberg, Reshmi Ghosh, Rui Wen, Ahmed Salem, Giovanni Cherubin, Santiago Zanella-Beguelin, Robin Schmid, Victor Klemm, Takahiro Miki, Chenhao Li, Stefan Kraft, Mario Fritz, Florian Tramer, Sahar Abdelnabi, Lea Schönherr
-
Learning Discrete Concepts in Latent Hierarchical Models Lingjing Kong, Guangyi Chen, Biwei Huang, Eric Xing, Yuejie Chi, Kun Zhang
-
StackEval: Benchmarking LLMs in Coding Assistance Nidhish Shah, Zulkuf Genc, Dogu Araci
-
Scaling White-Box Transformers for Vision Jinrui Yang, Xianhang Li, Druv Pai, Yuyin Zhou, Yi Ma, Yaodong Yu, Cihang Xie
-
Bridging Gaps: Federated Multi-View Clustering in Heterogeneous Hybrid Views Xinyue Chen, Yazhou Ren, Jie Xu, Fangfei Lin, Xiaorong Pu, Yang Yang
-
Robust and Faster Zeroth-Order Minimax Optimization: Complexity and Applications Weixin An, Yuanyuan Liu, Fanhua Shang, Hongying Liu
-
Generalization Error Bounds for Two-stage Recommender Systems with Tree Structure Jin Zhang, Ze Liu, Defu Lian, Enhong Chen
-
Group Robust Preference Optimization in Reward-free RLHF Shyam Sundhar Ramesh, Yifan Hu, Iason Chaimalas, Viraj Mehta, Pier Giuseppe Sessa, Haitham Bou Ammar, Ilija Bogunovic
-
Polyhedral Complex Derivation from Piecewise Trilinear Networks Jin-Hwa Kim
-
Differentiable Quantum Computing for Large-scale Linear Control Connor Clayton, Jiaqi Leng, Gengzhi Yang, Yi-Ling Qiao, Ming Lin, Xiaodi Wu
-
TopoFR: A Closer Look at Topology Alignment on Face Recognition Jun Dan, Yang Liu, Jiankang Deng, Haoyu Xie, Siyuan Li, Baigui Sun, Shan Luo
-
Fair Online Bilateral Trade François Bachoc, Nicolò Cesa-Bianchi, Tom Cesari, Roberto Colomboni
-
Towards Exact Gradient-based Training on Analog In-memory Computing Zhaoxian Wu, Tayfun Gokmen, Malte Rasch, Tianyi Chen
-
Fast Tree-Field Integrators: From Low Displacement Rank to Topological Transformers Krzysztof M Choromanski, Arijit Sehanobish, Somnath Basu Roy Chowdhury, Han Lin, Kumar Avinava Dubey, Tamas Sarlos, Snigdha Chaturvedi
-
Barely Random Algorithms and Collective Metrical Task Systems Romain Cosson, Laurent Massoulié
-
Aligning Large Language Models with Representation Editing: A Control Perspective Lingkai Kong, Haorui Wang, Wenhao Mu, Yuanqi Du, Yuchen Zhuang, Yifei Zhou, Yue Song, Rongzhi Zhang, Kai Wang, Chao Zhang
-
Adjust Pearson's $r$ to Measure Arbitrary Monotone Dependence Xinbo Ai
-
Disentangling Interpretable Factors with Supervised Independent Subspace Principal Component Analysis Jiayu Su, David A Knowles, Raúl Rabadán
-
Why the Metric Backbone Preserves Community Structure Maximilien Dreveton, Charbel Chucri, Matthias Grossglauser, Patrick Thiran
-
Unified Graph Augmentations for Generalized Contrastive Learning on Graphs Jiaming Zhuo, Yintong Lu, Hui Ning, Kun Fu, bingxin niu, Dongxiao He, Chuan Wang, Yuanfang Guo, Zhen Wang, Xiaochun Cao, Liang Yang
-
MSAGPT: Neural Prompting Protein Structure Prediction via MSA Generative Pre-Training Bo Chen, Zhilei Bei, Xingyi Cheng, Pan Li, Jie Tang, Le Song
-
DiffGS: Functional Gaussian Splatting Diffusion Junsheng Zhou, Weiqi Zhang, Yu-Shen Liu
-
Towards Editing Time Series Baoyu Jing, Shuqi Gu, Tianyu Chen, Zhiyu Yang, Dongsheng Li, Jingrui He, Kan Ren
-
ALPS: Improved Optimization for Highly Sparse One-Shot Pruning for Large Language Models Xiang Meng, Kayhan Behdin, Haoyue Wang, Rahul Mazumder
-
From Linear to Linearizable Optimization: A Novel Framework with Applications to Stationary and Non-stationary DR-submodular Optimization Mohammad Pedramfar, Vaneet Aggarwal
-
Plan-on-Graph: Self-Correcting Adaptive Planning of Large Language Model on Knowledge Graphs Liyi Chen, Panrong Tong, Zhongming Jin, Ying Sun, Jieping Ye, Hui Xiong
-
Efficient Sketches for Training Data Attribution and Studying the Loss Landscape Andrea Schioppa
-
To Learn or Not to Learn, That is the Question — A Feature-Task Dual Learning Model of Perceptual Learning Xiao Liu, Muyang Lyu, Cong Yu, Si Wu
-
Efficient Temporal Action Segmentation via Boundary-aware Query Voting Peiyao Wang, Yuewei Lin, Erik Blasch, jie wei, Haibin Ling
-
Beyond task diversity: provable representation transfer for sequential multitask linear bandits Thang Duong, Zhi Wang, Chicheng Zhang
-
WindsorML: High-Fidelity Computational Fluid Dynamics Dataset For Automotive Aerodynamics Neil Ashton, Jordan Angel, Aditya Ghate, Gaetan Kenway, Man Long Wong, Cetin Kiris, Astrid Walle, Danielle Maddix, Gary Page
-
Time Makes Space: Emergence of Place Fields in Networks Encoding Temporally Continuous Sensory Experiences Zhaoze Wang, Ronald Di Tullio, Spencer Rooke, Vijay Balasubramanian
-
Gradient-Variation Online Learning under Generalized Smoothness Yan-Feng Xie, Peng Zhao, Zhi-Hua Zhou
-
GC-Bench: An Open and Unified Benchmark for Graph Condensation Qingyun Sun, Ziying Chen, Beining Yang, Cheng Ji, Xingcheng Fu, Sheng Zhou, Hao Peng, Jianxin Li, Philip S Yu
-
Learnability Matters: Active Learning for Video Captioning Yiqian Zhang, Buyu Liu, Jun Bao, Qiang Huang, Min Zhang, Jun Yu
-
Soft ascent-descent as a stable and flexible alternative to flooding Matthew Holland, Kosuke Nakatani
-
RanDumb: Random Representations Outperform Online Continually Learned Representations Ameya Prabhu, Shiven Sinha, Ponnurangam Kumaraguru, Philip Torr, Ozan Sener, Puneet Dokania
-
Randomized Truthful Auctions with Learning Agents Gagan Aggarwal, Anupam Gupta, Andres Perlroth, Grigoris Velegkas
-
Learning Action and Reasoning-Centric Image Editing from Videos and Simulation Benno Krojer, Dheeraj Vattikonda, Luis Lara, Varun Jampani, Eva Portelance, Chris Pal, Siva Reddy
-
ContactField: Implicit Field Representation for Multi-Person Interaction Geometry Hansol Lee, Tackgeun You, Hansoo Park, Woohyeon Shim, Sanghyeon Kim, Hwasup Lim
-
Kuro Siwo: 33 billion $m^2$ under the water. A global multi-temporal satellite dataset for rapid flood mapping Nikolaos Ioannis Bountos, Maria Sdraka, Angelos Zavras, Andreas Karavias, Ilektra Karasante, Themistocles Herekakis, Angeliki Thanasou, Dimitrios Michail, Ioannis Papoutsis
-
Active Perception for Grasp Detection via Neural Graspness Field Haoxiang Ma, Modi Shi, Boyang Gao, Di Huang
-
NoisyGL: A Comprehensive Benchmark for Graph Neural Networks under Label Noise Zhonghao Wang, Danyu Sun, Sheng Zhou, Haobo Wang, Jiapei Fan, Longtao Huang, Jiajun Bu
-
A Bayesian Approach to Data Point Selection XINNUO XU, Minyoung Kim, Royson Lee, Brais Martinez, Timothy Hospedales
-
Bayesian Optimization of Functions over Node Subsets in Graphs Huidong Liang, Xingchen Wan, Xiaowen Dong
-
ClevrSkills: Compositional Language And Visual Reasoning in Robotics Sanjay Haresh, Daniel Dijkman, Apratim Bhattacharyya, Roland Memisevic
-
Mission Impossible: A Statistical Perspective on Jailbreaking LLMs Jingtong Su, Julia Kempe, Karen Ullrich
-
A Geometric View of Data Complexity: Efficient Local Intrinsic Dimension Estimation with Diffusion Models Hamid Kamkari, Brendan Ross, Rasa Hosseinzadeh, Jesse Cresswell, Gabriel Loaiza-Ganem
-
Simplifying Latent Dynamics with Softly State-Invariant World Models Tankred Saanum, Peter Dayan, Eric Schulz
-
When is Multicalibration Post-Processing Necessary? Dutch Hansen, Siddartha Devic, Preetum Nakkiran, Vatsal Sharan
-
Learning Multimodal Behaviors from Scratch with Diffusion Policy Gradient Steven Li, Rickmer Krohn, Tao Chen, Anurag Ajay, Pulkit Agrawal, Georgia Chalvatzaki
-
Attack-Resilient Image Watermarking Using Stable Diffusion Lijun Zhang, Xiao Liu, Antoni Martin, Cindy Bearfield, Yuriy Brun, Hui Guan
-
Activating Self-Attention for Multi-Scene Absolute Pose Regression Miso Lee, Jihwan Kim, Jae-Pil Heo
-
SELMA: Learning and Merging Skill-Specific Text-to-Image Experts with Auto-Generated Data Jialu Li, Jaemin Cho, Yi-Lin Sung, Jaehong Yoon, Mohit Bansal
-
Generalized Protein Pocket Generation with Prior-Informed Flow Matching ZAIXI ZHANG, Marinka Zitnik, Qi Liu
-
Reinforcement Learning Gradients as Vitamin for Online Finetuning Decision Transformers Kai Yan, Alex Schwing, Yu-Xiong Wang
-
Bias Amplification in Language Model Evolution: An Iterated Learning Perspective Yi Ren, Shangmin Guo, Linlu Qiu, Bailin Wang, Danica J. Sutherland
-
Credal Learning Theory Michele Caprio, Maryam Sultana, Eleni Elia, Fabio Cuzzolin
-
On the Power of Small-size Graph Neural Networks for Linear Programming Qian Li, Tian Ding, Linxin Yang, Minghui Ouyang, Qingjiang Shi, Ruoyu Sun
-
An eye for an ear: zero-shot audio description leveraging an image captioner with audio-visual token distribution matching Hugo Malard, Michel Olvera, Stéphane Lathuilière, Slim Essid
-
AdaNeg: Adaptive Negative Proxy Guided OOD Detection with Vision-Language Models Yabin Zhang, Lei Zhang
-
Maximizing utility in multi-agent environments by anticipating the behavior of other learners Angelos Assos, Yuval Dagan, Constantinos Daskalakis
-
Generative Hierarchical Materials Search Sherry Yang, Simon Batzner, Ruiqi Gao, Muratahan Aykol, Alexander Gaunt, Brendan C McMorrow, Danilo Jimenez Rezende, Dale Schuurmans, Igor Mordatch, Ekin Dogus Cubuk
-
Enhancing In-Context Learning Performance with just SVD-Based Weight Pruning: A Theoretical Perspective Xinhao Yao, Xiaolin Hu, Shenzhi Yang, Yong Liu
-
Certified Machine Unlearning via Noisy Stochastic Gradient Descent Eli Chien, Haoyu Wang, Ziang Chen, Pan Li
-
$\boldsymbol{\mu}\mathbf{P^2}$: Effective Sharpness Aware Minimization Requires Layerwise Perturbation Scaling Moritz Haas, Jin Xu, Volkan Cevher, Leena Chennuru Vankadara
-
Leveraging Environment Interaction for Automated PDDL Translation and Planning with Large Language Models Sadegh Mahdavi, Raquel Aoki, Keyi Tang, Yanshuai Cao
-
BiDM: Pushing the Limit of Quantization for Diffusion Models Xingyu Zheng, Xianglong Liu, Yichen Bian, Xudong Ma, Yulun Zhang, Jiakai Wang, Jinyang Guo, Haotong Qin
-
Gated Inference Network: Inference and Learning State-Space Models Hamidreza Hashempoorikderi, Wan Choi
-
FedGTST: Boosting Global Transferability of Federated Models via Statistics Tuning Evelyn Ma, Chao Pan, S. Rasoul Etesami, Han Zhao, Olgica Milenkovic
-
Zero-Shot Scene Reconstruction from Single Images with Deep Prior Assembly Junsheng Zhou, Yu-Shen Liu, Zhizhong Han
-
Binding in hippocampal-entorhinal circuits enables compositionality in cognitive maps Christopher Kymn, Sonia Mazelet, Anthony Thomas, Denis Kleyko, Edward Frady, Fritz Sommer, Bruno Olshausen
-
GREAT Score: Global Robustness Evaluation of Adversarial Perturbation using Generative Models ZAITANG LI, Pin-Yu Chen, Tsung-Yi Ho
-
Multivariate Stochastic Dominance via Optimal Transport and Applications to Models Benchmarking Gabriel Rioux, Apoorva Nitsure, Mattia Rigotti, Kristjan Greenewald, Youssef Mroueh
-
Rethinking Misalignment in Vision-Language Model Adaptation from a Causal Perspective Yanan Zhang, Jiangmeng Li, Lixiang Liu, Wenwen Qiang
-
EEGPT: Pretrained Transformer for Universal and Reliable Representation of EEG Signals Guangyu Wang, Wenchao Liu, Yuhong He, Cong Xu, Lin Ma, Haifeng Li
-
DDGS-CT: Direction-Disentangled Gaussian Splatting for Realistic Volume Rendering Zhongpai Gao, Benjamin Planche, Meng Zheng, Xiao Chen, Terrence Chen, Ziyan Wu
-
ChatTracker: Enhancing Visual Tracking Performance via Chatting with Multimodal Large Language Model Yiming Sun, Fan Yu, Shaoxiang Chen, Yu Zhang, Junwei Huang, Yang Li, Chenhui Li, Changbo Wang
-
L-TTA: Lightweight Test-Time Adaptation Using a Versatile Stem Layer Jin Shin, Hyun Kim
-
Sample Complexity of Interventional Causal Representation Learning Emre Acartürk, Burak Varıcı, Karthikeyan Shanmugam, Ali Tajer
-
GAMap: Zero-Shot Object Goal Navigation with Multi-Scale Geometric-Affordance Guidance shuaihang yuan, Hao Huang, Yu Hao, Congcong Wen, Anthony Tzes, Yi Fang
-
Dual-Personalizing Adapter for Federated Foundation Models yiyuan yang, Guodong Long, Tao Shen, Jing Jiang, Michael Blumenstein
-
SlimSAM: 0.1% Data Makes Segment Anything Slim Zigeng Chen, Gongfan Fang, Xinyin Ma, Xinchao Wang
-
Group-wise oracle-efficient algorithms for online multi-group learning Samuel Deng, Jingwen Liu, Daniel J. Hsu
-
Diff-eRank: A Novel Rank-Based Metric for Evaluating Large Language Models Lai Wei, Zhiquan Tan, Chenghai Li, Jindong Wang, Weiran Huang
-
LG-CAV: Train Any Concept Activation Vector with Language Guidance Qihan Huang, Jie Song, Mengqi Xue, Haofei Zhang, Bingde Hu, Huiqiong Wang, Hao Jiang, Xingen Wang, Mingli Song
-
Text-DiFuse: An Interactive Multi-Modal Image Fusion Framework based on Text-modulated Diffusion Model Hao Zhang, Lei Cao, Jiayi Ma
-
Epipolar-Free 3D Gaussian Splatting for Generalizable Novel View Synthesis Zhiyuan Min, Yawei Luo, Jianwen Sun, Yi Yang
-
Interpreting and Analysing CLIP's Zero-Shot Image Classification via Mutual Knowledge Fawaz Sammani, Nikos Deligiannis
-
An exactly solvable model for emergence and scaling laws in the multitask sparse parity problem yoonsoo nam, Nayara Fonseca, Seok Hyeong Lee, Chris Mingard, Ard Louis
-
The Sample-Communication Complexity Trade-off in Federated Q-Learning Sudeep Salgia, Yuejie Chi
-
Uncertainty-based Offline Variational Bayesian Reinforcement Learning for Robustness under Diverse Data Corruptions Rui Yang, Jie Wang, Guoping Wu, Bin Li
-
Harmonizing Stochasticity and Determinism: Scene-responsive Diverse Human Motion Prediction Zhenyu Lou, Qiongjie Cui, Tuo Wang, Zhenbo Song, Luoming Zhang, Cheng Cheng, Haofan Wang, Xu Tang, Huaxia Li, Hong Zhou
-
MetaUAS: Universal Anomaly Segmentation with One-Prompt Meta-Learning Bin-Bin Gao
-
Harnessing small projectors and multiple views for efficient vision pretraining Arna Ghosh, Kumar Krishna Agrawal, Shagun Sodhani, Adam Oberman, Blake Richards
-
AttnDreamBooth: Towards Text-Aligned Personalized Text-to-Image Generation Lianyu Pang, Jian Yin, Baoquan Zhao, Feize Wu, Fu Lee Wang, Qing Li, Xudong Mao
-
Bridge-IF: Learning Inverse Protein Folding with Markov Bridges Yiheng Zhu, Jialu Wu, Qiuyi Li, Jiahuan Yan, Mingze Yin, Wei Wu, Mingyang Li, Jieping Ye, Zheng Wang, Jian Wu
-
On Differentially Private Subspace Estimation in a Distribution-Free Setting Eliad Tsfadia
-
Optimal Scalarizations for Sublinear Hypervolume Regret Qiuyi (Richard) Zhang
-
PromptFix: You Prompt and We Fix the Photo yongsheng yu, Ziyun Zeng, Hang Hua, Jianlong Fu, Jiebo Luo
-
DenoiseRep: Denoising Model for Representation Learning zhengrui Xu, Guan'an Wang, Xiaowen Huang, Jitao Sang
-
Revealing Distribution Discrepancy by Sampling Transfer in Unlabeled Data Zhilin Zhao, Longbing Cao, Xuhui Fan, Wei-Shi Zheng
-
RoboMamba: Efficient Vision-Language-Action Model for Robotic Reasoning and Manipulation Jiaming Liu, Mengzhen Liu, Zhenyu Wang, Pengju An, Xiaoqi Li, Kaichen Zhou, Senqiao Yang, Renrui Zhang, Yandong Guo, Shanghang Zhang
-
GAIA: Rethinking Action Quality Assessment for AI-Generated Videos Zijian Chen, Wei Sun, Yuan Tian, Jun Jia, Zicheng Zhang, Wang Jiarui, Ru Huang, Xiongkuo Min, Guangtao Zhai, Wenjun Zhang
-
ABCFair: an Adaptable Benchmark approach for Comparing Fairness Methods MaryBeth Defrance, Maarten Buyl, Tijl De Bie
-
Interfacing Foundation Models' Embeddings Xueyan Zou, Linjie Li, Jianfeng Wang, Jianwei Yang, Mingyu Ding, Junyi Wei, Zhengyuan Yang, Feng Li, Hao Zhang, Shilong Liu, Arul Aravinthan, Yong Jae Lee, Lijuan Wang
-
Robust Prompt Optimization for Defending Language Models Against Jailbreaking Attacks Andy Zhou, Bo Li, Haohan Wang
-
Large Spatial Model: End-to-end Unposed Images to Semantic 3D Zhiwen Fan, Jian Zhang, Wenyan Cong, Peihao Wang, Renjie Li, Kairun Wen, Shijie Zhou, Achuta Kadambi, Zhangyang "Atlas" Wang, Danfei Xu, Boris Ivanovic, Marco Pavone, Yue Wang
-
Long-tailed Object Detection Pretraining: Dynamic Rebalancing Contrastive Learning with Dual Reconstruction Chen-Long Duan, Yong Li, Xiu-Shen Wei, Lin Zhao
-
HydraViT: Stacking Heads for a Scalable ViT Janek Haberer, Ali Hojjat, Olaf Landsiedel
-
Meteor: Mamba-based Traversal of Rationale for Large Language and Vision Models Byung-Kwan Lee, Chae Won Kim, Beomchan Park, Yong Man Ro
-
Learning predictable and robust neural representations by straightening image sequences Julie Xueyan Niu, Cristina Savin, Eero Simoncelli
-
The Scandinavian Embedding Benchmarks: Comprehensive Assessment of Multilingual and Monolingual Text Embedding Kenneth Enevoldsen, Márton Kardos, Niklas Muennighoff, Kristoffer Nielbo
-
Quasi-Bayes meets Vines David Huk, Yuanhe Zhang, Ritabrata Dutta, Mark Steel
-
VERIFIED: A Video Corpus Moment Retrieval Benchmark for Fine-Grained Video Understanding Houlun Chen, Xin Wang, Hong Chen, Zeyang Zhang, Wei Feng, Bin Huang, Jia Jia, Wenwu Zhu
-
Online Learning with Sublinear Best-Action Queries Matteo Russo, Andrea Celli, Riccardo Colini Baldeschi, Federico Fusco, Daniel Haimovich, Dima Karamshuk, Stefano Leonardi, Niek Tax
-
On the Target-kernel Alignment: a Unified Analysis with Kernel Complexity Chao Wang, Xin HE, Yuwen Wang, Junhui Wang
-
Reshuffling Resampling Splits Can Improve Generalization of Hyperparameter Optimization Thomas Nagler, Lennart Schneider, Bernd Bischl, Matthias Feurer
-
Generative Modeling of Molecular Dynamics Trajectories Bowen Jing, Hannes Stärk, Tommi Jaakkola, Bonnie Berger
-
On the Sparsity of the Strong Lottery Ticket Hypothesis Emanuele Natale, Davide Ferre, Giordano Giambartolomei, Frederic Giroire, Frederik Mallmann-Trenn
-
Progressive Exploration-Conformal Learning for Sparsely Annotated Object Detection in Aerial Images Zihan Lu, Chenxu Wang, Chunyan Xu, Xiangwei Zheng, Zhen Cui
-
MotionTTT: 2D Test-Time-Training Motion Estimation for 3D Motion Corrected MRI Tobit Klug, Kun Wang, Stefan Ruschke, Reinhard Heckel
-
Wasserstein convergence of Cech persistence diagrams for samplings of submanifolds Charles Arnal, David Cohen-Steiner, Vincent Divol
-
LLM Circuit Analyses Are Consistent Across Training and Scale Curt Tigges, Michael Hanna, Qinan Yu, Stella Biderman
-
Discovering plasticity rules that organize and maintain neural circuits David Bell, Alison Duffy, Adrienne Fairhall
-
On Weak Regret Analysis for Dueling Bandits El Mehdi Saad, Alexandra Carpentier, Tomáš Kocák, Nicolas Verzelen
-
HGDL: Heterogeneous Graph Label Distribution Learning Yufei Jin, Heng Lian, Yi He, Xingquan Zhu
-
Simple and Fast Distillation of Diffusion Models Zhenyu Zhou, Defang Chen, Can Wang, Chun Chen, Siwei Lyu
-
Semi-supervised Knowledge Transfer Across Multi-omic Single-cell Data Fan Zhang, Tianyu Liu, Zihao Chen, Xiaojiang Peng, Chong Chen, Xian-Sheng Hua, Xiao Luo, Hongyu Zhao
-
A Siamese Transformer with Hierarchical Refinement for Lane Detection Zinan Lv, Dong Han, Wenzhe Wang, Danny Z Chen
-
Yo'LLaVA: Your Personalized Language and Vision Assistant Thao Nguyen, Haotian Liu, Yuheng Li, Mu Cai, Utkarsh Ojha, Yong Jae Lee
-
SEL-BALD: Deep Bayesian Active Learning with Selective Labels Ruijiang Gao, Mingzhang Yin, Maytal Saar-Tsechansky
-
Improved Sample Complexity Bounds for Diffusion Model Training Shivam Gupta, Aditya Parulekar, Eric Price, Zhiyang Xun
-
Inexact Augmented Lagrangian Methods for Conic Optimization: Quadratic Growth and Linear Convergence Feng-Yi Liao, Lijun Ding, Yang Zheng
-
VidMan: Exploiting Implicit Dynamics from Video Diffusion Model for Effective Robot Manipulation Youpeng Wen, Junfan Lin, Yi Zhu, Jianhua Han, Hang Xu, Shen Zhao, Xiaodan Liang
-
Compact Language Models via Pruning and Knowledge Distillation Saurav Muralidharan, Sharath Turuvekere Sreenivas, Raviraj Joshi, Marcin Chochowski, Mostofa Patwary, Mohammad Shoeybi, Bryan Catanzaro, Jan Kautz, Pavlo Molchanov
-
Graphcode: Learning from multiparameter persistent homology using graph neural networks Florian Russold, Michael Kerber
-
Boosting Sample Efficiency and Generalization in Multi-agent Reinforcement Learning via Equivariance Josh McClellan, Naveed Haghani, John Winder, Furong Huang, Pratap Tokekar
-
TurboHopp: Accelerated Molecule Scaffold Hopping with Consistency Models Kiwoong Yoo, Owen Oertell, Junhyun Lee, Sanghoon Lee, Jaewoo Kang
-
WikiDBs: A Large-Scale Corpus Of Relational Databases From Wikidata Liane Vogel, Jan-Micha Bodensohn, Carsten Binnig
-
The Expressive Capacity of State Space Models: A Formal Language Perspective Yash Sarrof, Yana Veitsman, Michael Hahn
-
Is One GPU Enough? Pushing Image Generation at Higher-Resolutions with Foundation Models. Athanasios Tragakis, Marco Aversa, Chaitanya Kaul, Roderick Murray-Smith, Daniele Faccio
-
Optimal Algorithms for Online Convex Optimization with Adversarial Constraints Abhishek Sinha, Rahul Vaze
-
Unveiling the Bias Impact on Symmetric Moral Consistency of Large Language Models Ziyi Zhou, Xinwei Guo, Jiashi Gao, Xiangyu Zhao, Shiyao Zhang, Xin Yao, Xuetao Wei
-
Accelerated Regularized Learning in Finite N-Person Games Kyriakos Lotidis, Angeliki Giannou, Panayotis Mertikopoulos, Nicholas Bambos
-
Embedding Dimension of Contrastive Learning and $k$-Nearest Neighbors Dmitrii Avdiukhin, Vaggos Chatziafratis, Orr Fischer, Grigory Yaroslavtsev
-
Verified Code Transpilation with LLMs Sahil Bhatia, Jie Qiu, Niranjan Hasabnis, Sanjit Seshia, Alvin Cheung
-
SVFT: Parameter-Efficient Fine-Tuning with Singular Vectors Vijay Chandra Lingam, Atula Neerkaje, Aditya Vavre, Aneesh Shetty, Gautham Krishna Gudur, Joydeep Ghosh, Eunsol Choi, Alex Dimakis, Aleksandar Bojchevski, Sujay Sanghavi
-
Interpretable Image Classification with Adaptive Prototype-based Vision Transformers Chiyu Ma, Jon Donnelly, Wenjun Liu, Soroush Vosoughi, Cynthia Rudin, Chaofan Chen
-
I2EBench: A Comprehensive Benchmark for Instruction-based Image Editing Yiwei Ma, Jiayi Ji, Ke Ye, Weihuang Lin, Zhibin Wang, Yonghan Zheng, Qiang Zhou, Xiaoshuai Sun, Rongrong Ji
-
F-OAL: Forward-only Online Analytic Learning with Fast Training and Low Memory Footprint in Class Incremental Learning HUIPING ZHUANG, Yuchen Liu, Run He, Kai Tong, Ziqian Zeng, Cen Chen, Yi Wang, Lap-Pui Chau
-
Debiasing Synthetic Data Generated by Deep Generative Models Alexander Decruyenaere, Heidelinde Dehaene, Paloma Rabaey, Johan Decruyenaere, Christiaan Polet, Thomas Demeester, Stijn Vansteelandt
-
Probabilistic Weather Forecasting with Hierarchical Graph Neural Networks Joel Oskarsson, Tomas Landelius, Marc Deisenroth, Fredrik Lindsten
-
Learning Plaintext-Ciphertext Cryptographic Problems via ANF-based SAT Instance Representation Xinhao Zheng, Yang Li, Cunxin Fan, Huaijin Wu, Xinhao Song, Junchi Yan
-
A Universal Growth Rate for Learning with Smooth Surrogate Losses Anqi Mao, Mehryar Mohri, Yutao Zhong
-
Exploiting LLM Quantization Kazuki Egashira, Mark Vero, Robin Staab, Jingxuan He, Martin Vechev
-
Learning Social Welfare Functions Kanad Pardeshi, Itai Shapira, Ariel D. Procaccia, Aarti Singh
-
MaNo: Exploiting Matrix Norm for Unsupervised Accuracy Estimation Under Distribution Shifts RENCHUNZI XIE, Ambroise Odonnat, Vasilii Feofanov, Weijian Deng, Jianfeng Zhang, Bo An
-
Learning 3D Garment Animation from Trajectories of A Piece of Cloth YIDI SHAO, Chen Change Loy, Bo Dai
-
DOPPLER: Differentially Private Optimizers with Low-pass Filter for Privacy Noise Reduction Xinwei Zhang, Zhiqi Bu, Mingyi Hong, Meisam Razaviyayn
-
The Challenges of the Nonlinear Regime for Physics-Informed Neural Networks Andrea Bonfanti, Giuseppe Bruno, Cristina Cipriani
-
Transferability Bound Theory: Exploring Relationship between Adversarial Transferability and Flatness Mingyuan Fan, Xiaodan Li, Cen Chen, Wenmeng Zhou, Yaliang Li
-
Physics-Regularized Multi-Modal Image Assimilation for Brain Tumor Localization Michal Balcerak, Tamaz Amiranashvili, Andreas Wagner, Jonas Weidner, Petr Karnakov, Johannes C. Paetzold, Ivan Ezhov, Petros Koumoutsakos, Benedikt Wiestler, bjoern menze
-
Mechanism design augmented with output advice George Christodoulou, Alkmini Sgouritsa, Ioannis Vlachos
-
Persistent Homology for High-dimensional Data Based on Spectral Methods Sebastian Damrich, Philipp Berens, Dmitry Kobak
-
Sparsity-Agnostic Linear Bandits with Adaptive Adversaries Tianyuan Jin, Kyoungseok Jang, Nicolò Cesa-Bianchi
-
MoME: Mixture of Multimodal Experts for Generalist Multimodal Large Language Models Leyang Shen, Gongwei Chen, Rui Shao, Weili Guan, Liqiang Nie
-
OW-VISCapTor: Abstractors for Open-World Video Instance Segmentation and Captioning Anwesa Choudhuri, Girish Chowdhary, Alex Schwing
-
Unveiling and Mitigating Backdoor Vulnerabilities based on Unlearning Weight Changes and Backdoor Activeness Weilin Lin, Li Liu, Shaokui Wei, Jianze Li, Hui Xiong
-
Lookback Prophet Inequalities Ziyad Benomar, Dorian Baudry, Vianney Perchet
-
Understanding Scaling Laws with Statistical and Approximation Theory for Transformer Neural Networks on Intrinsically Low-dimensional Data Alexander Havrilla, Wenjing Liao
-
Evaluating Numerical Reasoning in Text-to-Image Models Ivana Kajić, Olivia Wiles, Isabela Albuquerque, Matthias Bauer, Su Wang, Jordi Pont-Tuset, Aida Nematzadeh
-
Self-Healing Machine Learning: A Framework for Autonomous Adaptation in Real-World Environments Paulius Rauba, Nabeel Seedat, Krzysztof Kacprzyk, Mihaela van der Schaar
-
Learning Transferable Features for Implicit Neural Representations Kushal Kardam Vyas, Imtiaz Humayun, Aniket Dashpute, Richard Baraniuk, Ashok Veeraraghavan, Guha Balakrishnan
-
VeLoRA: Memory Efficient Training using Rank-1 Sub-Token Projections Roy Miles, Pradyumna Reddy, Ismail Elezi, Jiankang Deng
-
Who’s Gaming the System? A Causally-Motivated Approach for Detecting Strategic Adaptation Trenton Chang, Lindsay Warrenburg, Sae-Hwan Park, Ravi Parikh, Maggie Makar, Jenna Wiens
-
GLBench: A Comprehensive Benchmark for Graph with Large Language Models Yuhan Li, Peisong Wang, Xiao Zhu, Aochuan Chen, Haiyun Jiang, Deng Cai, Wai Kin (Victor) Chan, Jia Li
-
Interactive Deep Clustering via Value Mining Honglin Liu, Peng Hu, Changqing Zhang, Yunfan Li, Xi Peng
-
General Detection-based Text Line Recognition Raphael Baena, Syrine Kalleli, Mathieu Aubry
-
Identifying General Mechanism Shifts in Linear Causal Representations Tianyu Chen, Kevin Bello, Francesco Locatello, Bryon Aragam, Pradeep Ravikumar
-
Wasserstein Distributionally Robust Optimization through the Lens of Structural Causal Models and Individual Fairness Ahmad-Reza Ehyaei, Golnoosh Farnadi, Samira Samadi
-
Accurate and Steady Inertial Pose Estimation through Sequence Structure Learning and Modulation Yinghao Wu, chaoran wang, Lu Yin, Shihui Guo, Yipeng Qin
-
Approximated Orthogonal Projection Unit: Stabilizing Regression Network Training Using Natural Gradient Shaoqi Wang, Chunjie Yang, Siwei Lou
-
Beyond Prompts: Dynamic Conversational Benchmarking of Large Language Models David Castillo-Bolado, Joseph Davidson, Finlay Gray, Marek Rosa
-
InternLM-XComposer2-4KHD: A Pioneering Large Vision-Language Model Handling Resolutions from 336 Pixels to 4K HD Xiaoyi Dong, Pan Zhang, Yuhang Zang, Yuhang Cao, Bin Wang, Linke Ouyang, Songyang Zhang, Haodong Duan, Wenwei Zhang, Yining Li, Hang Yan, Yang Gao, Zhe Chen, xinyue zhang, Wei Li, Li Jingwen, Wenhai Wang, Kai Chen, Conghui He, Xingcheng ZHANG, Jifeng Dai, Yu Qiao, Dahua Lin, Jiaqi Wang
-
IllumiNeRF: 3D Relighting Without Inverse Rendering Xiaoming Zhao, Pratul Srinivasan, Dor Verbin, Keunhong Park, Ricardo Martin Brualla, Philipp Henzler
-
Genetic-guided GFlowNets for Sample Efficient Molecular Optimization Hyeonah Kim, Minsu Kim, Sanghyeok Choi, Jinkyoo Park
-
Slicing Vision Transformer for Flexible Inference Yitian Zhang, n n, Xu Ma, Huan Wang, Ke Ma, Stephen Chen, Derek Hu, Yun Fu
-
Unleashing the Potential of the Diffusion Model in Few-shot Semantic Segmentation Muzhi Zhu, Yang Liu, Zekai Luo, Chenchen Jing, Hao Chen, Guangkai Xu, Xinlong Wang, Chunhua Shen
-
This Too Shall Pass: Removing Stale Observations in Dynamic Bayesian Optimization Anthony Bardou, Patrick Thiran, Giovanni Ranieri
-
Learning symmetries via weight-sharing with doubly stochastic tensors Putri van der Linden, Alejandro García-Castellanos, Sharvaree Vadgama, Thijs Kuipers, Erik Bekkers
-
Taming Diffusion Prior for Image Super-Resolution with Domain Shift SDEs qinpeng cui, yixuan liu, Xinyi Zhang, Qiqi Bao, Qingmin Liao, liwang Amd, Lu Tian, Zicheng Liu, Zhongdao Wang, Emad Barsoum
-
Improved Sample Complexity for Multiclass PAC Learning Steve Hanneke, Shay Moran, Qian Zhang
-
Online Estimation via Offline Estimation: An Information-Theoretic Framework Dylan J Foster, Yanjun Han, Jian Qian, Alexander Rakhlin
-
HEMM: Holistic Evaluation of Multimodal Foundation Models Paul Pu Liang, Akshay Goindani, Talha Chafekar, Leena Mathur, Haofei Yu, Ruslan Salakhutdinov, Louis-Philippe Morency
-
Revisiting the Integration of Convolution and Attention for Vision Backbone Lei Zhu, Xinjiang Wang, Wayne Zhang, Rynson Lau
-
Embedding Trajectory for Out-of-Distribution Detection in Mathematical Reasoning Yiming Wang, Pei Zhang, Baosong Yang, Derek Wong, Zhuosheng Zhang, Rui Wang
-
RL on Incorrect Synthetic Data Scales the Efficiency of LLM Math Reasoning by Eight-Fold Amrith Setlur, Saurabh Garg, Xinyang Geng, Naman Garg, Virginia Smith, Aviral Kumar
-
Learning Formal Mathematics From Intrinsic Motivation Gabriel Poesia, David Broman, Nick Haber, Noah Goodman
-
Hollowed Net for On-Device Personalization of Text-to-Image Diffusion Models Wonguk Cho, Seokeon Choi, Debasmit Das, Matthias Reisser, Taesup Kim, Sungrack Yun, Fatih Porikli
-
LACIE: Listener-Aware Finetuning for Calibration in Large Language Models Elias Stengel-Eskin, Peter Hase, Mohit Bansal
-
Temporal Sentence Grounding with Relevance Feedback in Videos Jianfeng Dong, Xiaoman Peng, Daizong Liu, Xiaoye Qu, Xun Yang, Cuizhu Bao, Meng Wang
-
Revisiting Self-Supervised Heterogeneous Graph Learning from Spectral Clustering Perspective YUJIE MO, Zhihe Lu, Runpeng Yu, Xiaofeng Zhu, Xinchao Wang
-
Beyond Accuracy: Ensuring Correct Predictions With Correct Rationales Tang Li, Mengmeng Ma, Xi Peng
-
LinNet: Linear Network for Efficient Point Cloud Representation Learning Hao Deng, Kunlei Jing, Shengmei Chen, Cheng Liu, Jiawei Ru, Bo Jiang, Lin Wang
-
Mean-Field Analysis for Learning Subspace-Sparse Polynomials with Gaussian Input Ziang Chen, Rong Ge
-
Exploiting Activation Sparsity with Dense to Dynamic-k Mixture-of-Experts Conversion Filip Szatkowski, Bartosz Wójcik, Mikołaj Piórczyński, Simone Scardapane
-
TinyTTA: Efficient Test-time Adaptation via Early-exit Ensembles on Edge Devices Hong Jia, Young Kwon, Alessio Orsino, Ting Dang, DOMENICO TALIA, Cecilia Mascolo
-
DASH: Warm-Starting Neural Network Training in Stationary Settings without Loss of Plasticity Baekrok Shin, Junsoo Oh, Hanseul Cho, Chulhee Yun
-
Initializing Variable-sized Vision Transformers from Learngene with Learnable Transformation Shiyu Xia, Yuankun Zu, Xu Yang, Xin Geng
-
Sketchy Moment Matching: Toward Fast and Provable Data Selection for Finetuning Yijun Dong, Viet Hoang Phan, Xiang Pan, Qi Lei
-
$\texttt{pfl-research}$: simulation framework for accelerating research in Private Federated Learning Filip Granqvist, Congzheng Song, Áine Cahill, Rogier van Dalen, Martin Pelikan, Yi Sheng Chan, Xiaojun Feng, Natarajan Krishnaswami, Vojta Jina, Mona Chitnis
-
QUEEN: QUantized Efficient ENcoding of Dynamic Gaussians for Streaming Free-viewpoint Videos Sharath Girish, Tianye Li, Amrita Mazumdar, Abhinav Shrivastava, david luebke, Shalini De Mello
-
A General Protocol to Probe Large Vision Models for 3D Physical Understanding Guanqi Zhan, Chuanxia Zheng, Weidi Xie, Andrew Zisserman
-
Are nuclear masks all you need for improved out-of-domain generalisation? A closer look at cancer classification in histopathology Dhananjay Tomar, Alexander Binder, Andreas Kleppe
-
Evaluating Multiview Object Consistency in Humans and Image Models Tyler Bonnen, Stephanie Fu, Yutong Bai, Thomas O'Connell, Yoni Friedman, Nancy Kanwisher, Josh Tenenbaum, Alexei Efros
-
WaveAttack: Asymmetric Frequency Obfuscation-based Backdoor Attacks Against Deep Neural Networks Jun Xia, Zhihao Yue, Yingbo Zhou, Zhiwei Ling, Yiyu Shi, Xian Wei, Mingsong Chen
-
ReEvo: Large Language Models as Hyper-Heuristics with Reflective Evolution Haoran Ye, Jiarui Wang, Zhiguang Cao, Federico Berto, Chuanbo Hua, HAEYEON KIM, Jinkyoo Park, Guojie Song
-
Optimal-state Dynamics Estimation for Physics-based Human Motion Capture from Videos Cuong Le, John Viktor Johansson, Manon Kok, Bastian Wandt
-
A Simple Remedy for Dataset Bias via Self-Influence: A Mislabeled Sample Perspective Yeonsung Jung, Jaeyun Song, June Yong Yang, Jin-Hwa Kim, Sung-Yub Kim, Eunho Yang
-
DiffPO: A causal diffusion model for learning distributions of potential outcomes Yuchen Ma, Valentyn Melnychuk, Jonas Schweisthal, Stefan Feuerriegel
-
(FL)$^2$: Overcoming Few Labels in Federated Semi-Supervised Learning Seungjoo Lee, Thanh-Long V. Le, Jaemin Shin, Sung-Ju Lee
-
ChaosBench: A Multi-Channel, Physics-Based Benchmark for Subseasonal-to-Seasonal Climate Prediction Juan Nathaniel, Yongquan Qu, Tung Nguyen, Sungduk Yu, Julius Busecke, Aditya Grover, Pierre Gentine
-
Policy Improvement using Language Feedback Models Victor Zhong, Dipendra Misra, Xingdi Yuan, Marc-Alexandre Côté
-
RAMP: Boosting Adversarial Robustness Against Multiple $l_p$ Perturbations for Universal Robustness Enyi Jiang, Gagandeep Singh
-
Self-Supervised Adversarial Training via Diverse Augmented Queries and Self-Supervised Double Perturbation Ruize Zhang, Sheng Tang, Juan Cao
-
XLand-MiniGrid: Scalable Meta-Reinforcement Learning Environments in JAX Alexander Nikulin, Vladislav Kurenkov, Ilya Zisman, Artem Agarkov, Viacheslav Sinii, Sergey Kolesnikov
-
Causal Effect Identification in a Sub-Population with Latent Variables Amir Mohammad Abouei, Ehsan Mokhtarian, Negar Kiyavash, Matthias Grossglauser
-
Generating compositional scenes via Text-to-image RGBA Instance Generation Alessandro Fontanella, Petru-Daniel Tudosiu, Yongxin Yang, Shifeng Zhang, Sarah Parisot
-
Tight Rates for Bandit Control Beyond Quadratics Y. Jennifer Sun, Zhou Lu
-
DEX: Data Channel Extension for Efficient CNN Inference on Tiny AI Accelerators Taesik Gong, Fahim Kawsar, Chulhong Min
-
Out-of-Distribution Detection with a Single Unconditional Diffusion Model Alvin Heng, alexandre thiery, Harold Soh
-
When are dynamical systems learned from time series data statistically accurate? Jeongjin Park, Nicole Yang, Nisha Chandramoorthy
-
Generative Adversarial Model-Based Optimization via Source Critic Regularization Michael Yao, Yimeng Zeng, Hamsa Bastani, Jacob Gardner, James Gee, Osbert Bastani
-
Aligning Target-Aware Molecule Diffusion Models with Exact Energy Optimization Siyi Gu, Minkai Xu, Alexander Powers, Weili Nie, Tomas Geffner, Karsten Kreis, Jure Leskovec, Arash Vahdat, Stefano Ermon
-
OTTER: Effortless Label Distribution Adaptation of Zero-shot Models Changho Shin, Jitian Zhao, Sonia Cromp, Harit Vishwakarma, Frederic Sala
-
A Closer Look at AUROC and AUPRC under Class Imbalance Matthew McDermott, Haoran Zhang, Lasse Hansen, Giovanni Angelotti, Jack Gallifant
-
SCRREAM : SCan, Register, REnder And Map: A Framework for Annotating Accurate and Dense 3D Indoor Scenes with a Benchmark HyunJun Jung, Weihang Li, Shun-Cheng Wu, William Bittner, Nikolas Brasch, Jifei Song, Eduardo Pérez-Pellitero, Zhensong Zhang, Arthur Moreau, Nassir Navab, Benjamin Busam
-
The GAN is dead; long live the GAN! A Modern GAN Baseline Nick Huang, Aaron Gokaslan, Volodymyr Kuleshov, James Tompkin
-
Amortized Active Causal Induction with Deep Reinforcement Learning Yashas Annadani, Panagiotis Tigas, Stefan Bauer, Adam Foster
-
Long-range Meta-path Search on Large-scale Heterogeneous Graphs Chao Li, Zijie Guo, qiuting he, Kun He
-
A Single-Step, Sharpness-Aware Minimization is All You Need to Achieve Efficient and Accurate Sparse Training Jie Ji, Gen Li, Jingjing Fu, Fatemeh Afghah, Linke Guo, Xiaoyong Yuan, Xiaolong Ma
-
Generalized Eigenvalue Problems with Generative Priors Zhaoqiang Liu, Wen Li, Junren Chen
-
Easy2Hard-Bench: Standardized Difficulty Labels for Profiling LLM Performance and Generalization Mucong Ding, Chenghao Deng, Jocelyn Choo, Zichu Wu, Aakriti Agrawal, Avi Schwarzschild, Tianyi Zhou, Tom Goldstein, John Langford, Animashree Anandkumar, Furong Huang
-
MALT Powers Up Adversarial Attacks Odelia Melamed, Gilad Yehudai, Adi Shamir
-
Multi-Object Hallucination in Vision Language Models Xuweiyi Chen, Ziqiao Ma, Xuejun Zhang, Sihan Xu, Shengyi Qian, Jianing Yang, David Fouhey, Joyce Chai
-
Diffusing Differentiable Representations Yash Savani, Marc Finzi, J. Zico Kolter
-
Implicit Regularization of Sharpness-Aware Minimization for Scale-Invariant Problems Bingcong Li, Liang Zhang, Niao He
-
Reimagining Mutual Information for Enhanced Defense against Data Leakage in Collaborative Inference Lin Duan, Jingwei Sun, Jinyuan Jia, Yiran Chen, Maria Gorlatova
-
Simplifying Constraint Inference with Inverse Reinforcement Learning Adriana Hugessen, Harley Wiltzer, Glen Berseth
-
Constrained Human-AI Cooperation: An Inclusive Embodied Social Intelligence Challenge Weihua Du, Qiushi Lyu, Jiaming Shan, Zhenting Qi, Hongxin Zhang, Sunli Chen, Andi Peng, Tianmin Shu, Kwonjoon Lee, Behzad Dariush, Chuang Gan
-
Temporally Consistent Atmospheric Turbulence Mitigation with Neural Representations Haoming Cai, Jingxi Chen, Brandon Feng, Weiyun Jiang, Mingyang Xie, Kevin Zhang, Cornelia Fermuller, Yiannis Aloimonos, Ashok Veeraraghavan, Chris Metzler
-
Parameter-free Clipped Gradient Descent Meets Polyak Yuki Takezawa, Han Bao, Ryoma Sato, Kenta Niwa, Makoto Yamada
-
Acoustic Volume Rendering for Neural Impulse Response Fields Zitong Lan, Chenhao Zheng, Zhiwei Zheng, Mingmin Zhao
-
DOFEN: Deep Oblivious Forest ENsemble KuanYu Chen, Ping-Han Chiang, Hsin-Rung Chou, Chih-Sheng Chen, Tien-Hao Chang
-
Symbolic Regression with a Learned Concept Library Arya Grayeli, Atharva Sehgal, Omar Costilla Reyes, Miles Cranmer, Swarat Chaudhuri
-
Learning to Embed Distributions via Maximum Kernel Entropy Oleksii Kachaiev, Stefano Recanatesi
-
Aligning Individual and Collective Objectives in Multi-Agent Cooperation Yang Li, Wenhao Zhang, Jianhong Wang, Shao Zhang, Yali Du, Ying Wen, Wei Pan
-
Is Programming by Example Solved by LLMs? Wen-Ding Li, Kevin Ellis
-
Referring Human Pose and Mask Estimation In the Wild Bo Miao, Mingtao Feng, Zijie Wu, Mohammed Bennamoun, Yongsheng Gao, Ajmal Mian
-
Be Confident in What You Know: Bayesian Parameter Efficient Fine-Tuning of Vision Foundation Models Deep Pandey, Spandan Pyakurel, Qi Yu
-
Meta-DT: Offline Meta-RL as Conditional Sequence Modeling with World Model Disentanglement Zhi Wang, Li Zhang, Wenhao Wu, Yuanheng Zhu, Dongbin Zhao, Chunlin Chen
-
Poisson Variational Autoencoder Hadi Vafaii, Dekel Galor, Jacob Yates
-
R$^2$-Gaussian: Rectifying Radiative Gaussian Splatting for Tomographic Reconstruction Ruyi Zha, Tao Jun Lin, Yuanhao Cai, Jiwen Cao, Yanhao Zhang, Hongdong Li
-
Data-faithful Feature Attribution: Mitigating Unobservable Confounders via Instrumental Variables Qiheng Sun, Haocheng Xia, Jinfei Liu
-
FreqBlender: Enhancing DeepFake Detection by Blending Frequency Knowledge hanzhe li, Jiaran Zhou, Yuezun Li, Baoyuan Wu, Bin Li, Junyu Dong
-
The Well: a Large-Scale Collection of Diverse Physics Simulations for Machine Learning Ruben Ohana, Michael McCabe, Lucas Meyer, Rudy Morel, Fruzsina Agocs, Miguel Beneitez, Marsha Berger, Blakesly Burkhart, Stuart Dalziel, Drummond Fielding, Daniel Fortunato, Jared Goldberg, Keiya Hirashima, Yan-Fei Jiang, Rich Kerswell, Suryanarayana Maddu, Jonah Miller, Payel Mukhopadhyay, Stefan Nixon, Jeff Shen, Romain Watteaux, Bruno Régaldo-Saint Blancard, François Rozet, Liam Parker, Miles Cranmer, Shirley Ho
-
Reliable Learning of Halfspaces under Gaussian Marginals Ilias Diakonikolas, Lisheng Ren, Nikos Zarifis
-
EM Distillation for One-step Diffusion Models Sirui Xie, Zhisheng Xiao, Diederik Kingma, Tingbo Hou, Ying Nian Wu, Kevin P. Murphy, Tim Salimans, Ben Poole, Ruiqi Gao
-
A Motion-aware Spatio-temporal Graph for Video Salient Object Ranking Hao Chen, Zhu Yufei, Yongjian Deng
-
An Accelerated Gradient Method for Convex Smooth Simple Bilevel Optimization Jincheng Cao, Ruichen Jiang, Erfan Yazdandoost Hamedani, Aryan Mokhtari
-
Large Scale Transfer Learning for Tabular Data via Language Modeling Josh Gardner, Juan Perdomo, Ludwig Schmidt
-
ControlMLLM: Training-Free Visual Prompt Learning for Multimodal Large Language Models Mingrui Wu, Xinyue Cai, Jiayi Ji, Jiale Li, Oucheng Huang, Gen Luo, Hao Fei, GUANNAN JIANG, Xiaoshuai Sun, Rongrong Ji
-
Continuous Spatiotemporal Events Decoupling through Spike-based Bayesian Computation Yajing Zheng, Jiyuan Zhang, Zhaofei Yu, Tiejun Huang
-
4Real: Towards Photorealistic 4D Scene Generation via Video Diffusion Models Heng Yu, Chaoyang Wang, Peiye Zhuang, Willi Menapace, Aliaksandr Siarohin, Junli Cao, László Jeni, Sergey Tulyakov, Hsin-Ying Lee
-
Transferable Boltzmann Generators Leon Klein, Frank Noe
-
Biologically Inspired Learning Model for Instructed Vision Roy Abel, Shimon Ullman
-
Can Language Models Learn to Skip Steps? Tengxiao Liu, Qipeng Guo, Xiangkun Hu, Cheng Jiayang, Yue Zhang, Xipeng Qiu, Zheng Zhang
-
Learning Noisy Halfspaces with a Margin: Massart is No Harder than Random Gautam Chandrasekaran, Vasilis Kontonis, Konstantinos Stavropoulos, Kevin Tian
-
GraphCroc: Cross-Correlation Autoencoder for Graph Structural Reconstruction Shijin Duan, Ruyi Ding, Jiaxing He, Aidong Ding, Yunsi Fei, Xiaolin Xu
-
Gradient-Free Methods for Nonconvex Nonsmooth Stochastic Compositional Optimization Zhuanghua Liu, Luo Luo, Bryan Kian Hsiang Low
-
A versatile informative diffusion model for single-cell ATAC-seq data generation and analysis Lei Huang, Lei Xiong, Na Sun, Zunpeng Liu, Ka-Chun Wong, Manolis Kellis
-
Dual-frame Fluid Motion Estimation with Test-time Optimization and Zero-divergence Loss Yifei Zhang, Huan-ang Gao, zhou jiang, Hao Zhao
-
Enhancing Domain Adaptation through Prompt Gradient Alignment Viet Hoang Phan, Tung Lam Tran, Quyen Tran, Trung Le
-
From Instance Training to Instruction Learning: Task Adapters Generation from Instructions Huanxuan Liao, Shizhu He, Yao Xu, Yuanzhe Zhang, Yanchao Hao, Shengping Liu, Kang Liu, Jun Zhao
-
Flaws can be Applause: Unleashing Potential of Segmenting Ambiguous Objects in SAM Chenxin Li, Yuzhihuang , WUYANG LI, Hengyu Liu, Xinyu Liu, Qing Xu, Zhen Chen, Yue Huang, Yixuan Yuan
-
HairFastGAN: Realistic and Robust Hair Transfer with a Fast Encoder-Based Approach Maxim Nikolaev, Mikhail Kuznetsov, Dmitry P. Vetrov, Aibek Alanov
-
Adaptive Important Region Selection with Reinforced Hierarchical Search for Dense Object Detection Dingrong Wang, Hitesh Sapkota, Qi Yu
-
PLIP: Language-Image Pre-training for Person Representation Learning Jialong Zuo, Jiahao Hong, Feng Zhang, Changqian Yu, Hanyu Zhou, Changxin Gao, Nong Sang, Jingdong Wang
-
DEL: Discrete Element Learner for Learning 3D Particle Dynamics with Neural Rendering JIAXU WANG, Jingkai SUN, ziyi Zhang, Junhao He, Qiang Zhang, Mingyuan Sun, Renjing Xu
-
In-N-Out: Lifting 2D Diffusion Prior for 3D Object Removal via Tuning-Free Latents Alignment Dongting Hu, Huan Fu, Jiaxian Guo, Liuhua Peng, Tingjin Chu, Feng Liu, Tongliang Liu, Mingming Gong
-
Are More LLM Calls All You Need? Towards the Scaling Properties of Compound AI Systems Lingjiao Chen, Jared Quincy Davis, Boris Hanin, Peter Bailis, Ion Stoica, Matei A Zaharia, James Y. Zou
-
Federated Transformer: Multi-Party Vertical Federated Learning on Practical Fuzzily Linked Data Zhaomin Wu, Junyi Hou, Yiqun Diao, Bingsheng He
-
MMSite: A Multi-modal Framework for the Identification of Active Sites in Proteins Song Ouyang, Huiyu Cai, Yong Luo, Kehua Su, Lefei Zhang, Bo Du
-
Questioning the Survey Responses of Large Language Models Ricardo Dominguez-Olmedo, Moritz Hardt, Celestine Mendler-Dünner
-
DHA: Learning Decoupled-Head Attention from Transformer Checkpoints via Adaptive Heads Fusion Yilong Chen, Linhao Zhang, Junyuan Shang, Zhenyu Zhang, Tingwen Liu, Shuohuan Wang, YU SUN
-
Connectivity Shapes Implicit Regularization in Matrix Factorization Models for Matrix Completion Zhiwei Bai, Jiajie Zhao, Yaoyu Zhang
-
Diversify, Contextualize, and Adapt: Efficient Entropy Modeling for Neural Image Codec Jun-Hyuk Kim, Seungeon Kim, Won-Hee Lee, Dokwan Oh
-
Goal-Conditioned On-Policy Reinforcement Learning Xudong Gong, Feng Dawei, Kele Xu, Bo Ding, Huaimin Wang
-
Scribbles for All: Benchmarking Scribble Supervised Segmentation Across Datasets Wolfgang Boettcher, Lukas Hoyer, Ozan Unal, Jan Eric Lenssen, Bernt Schiele
-
FlowLLM: Flow Matching for Material Generation with Large Language Models as Base Distributions Anuroop Sriram, Benjamin Miller, Ricky T. Q. Chen, Brandon Wood
-
Training Dynamics of Transformers to Recognize Word Co-occurrence via Gradient Flow Analysis Hongru Yang, Bhavya Kailkhura, Zhangyang "Atlas" Wang, Yingbin Liang
-
BELM: Bidirectional Explicit Linear Multi-step Sampler for Exact Inversion in Diffusion Models Fangyikang Wang, Hubery Yin, Yue-Jiang Dong, Huminhao Zhu, zhang chao, Hanbin Zhao, Hui Qian, Chen Li
-
Learning to Understand: Identifying Interactions via the Möbius Transform Justin Kang, Yigit Efe Erginbas, Landon Butler, Ramtin Pedarsani, Kannan Ramchandran
-
SparseLLM: Towards Global Pruning of Pre-trained Language Models Guangji Bai, Yijiang Li, Chen LING, Kibaek Kim, Liang Zhao
-
Text-Aware Diffusion for Policy Learning Calvin Luo, Mandy He, Zilai Zeng, Chen Sun
-
Private Geometric Median Mahdi Haghifam, Thomas Steinke, Jonathan Ullman
-
Goal Conditioned Reinforcement Learning for Photo Finishing Tuning Jiarui Wu, Yujin Wang, Lingen Li, Zhang Fan, Tianfan Xue
-
A Benchmark Suite for Evaluating Neural Mutual Information Estimators on Unstructured Datasets Kyungeun Lee, Wonjong Rhee
-
Private and Personalized Frequency Estimation in a Federated Setting Amrith Setlur, Vitaly Feldman, Kunal Talwar
-
II-Bench: An Image Implication Understanding Benchmark for Multimodal Large Language Models Ziqiang Liu, Feiteng Fang, Xi Feng, Xeron Du, Chenhao Zhang, Noah Wang, yuelin bai, Qixuan Zhao, Liyang Fan, CHENGGUANG GAN, Hongquan Lin, Jiaming Li, Yuansheng Ni, Haihong Wu, Yaswanth Narsupalli, Zhigang Zheng, Chengming Li, Xiping Hu, Ruifeng Xu, Xiaojun Chen, Min Yang, Jiaheng Liu, Ruibo Liu, Wenhao Huang, Ge Zhang, Shiwen Ni
-
How does Gradient Descent Learn Features --- A Local Analysis for Regularized Two-Layer Neural Networks Mo Zhou, Rong Ge
-
Pipeline Parallelism with Controllable Memory Penghui Qi, Xinyi Wan, Nyamdavaa Amar, Min Lin
-
MARVEL: Multidimensional Abstraction and Reasoning through Visual Evaluation and Learning Yifan Jiang, jiarui zhang, Kexuan Sun, Zhivar Sourati, Kian Ahrabian, Kaixin Ma, Filip Ilievski, Jay Pujara
-
ReFIR: Grounding Large Restoration Models with Retrieval Augmentation Hang Guo, Tao Dai, Zhihao Ouyang, Taolin Zhang, Yaohua Zha, Bin Chen, Shu-Tao Xia
-
Grounded Answers for Multi-agent Decision-making Problem through Generative World Model Zeyang Liu, Xinrui Yang, Shiguang Sun, Long Qian, Lipeng Wan, Xingyu Chen, Xuguang Lan
-
AlterMOMA: Fusion Redundancy Pruning for Camera-LiDAR Fusion Models with Alternative Modality Masking shiqi sun, Yantao Lu, Ning Liu, Bo Jiang, Jinchao Chen, Ying Zhang
-
Loss Landscape Characterization of Neural Networks without Over-Parametrization Rustem Islamov, Niccolò Ajroldi, Antonio Orvieto, Aurelien Lucchi
-
Gradient-based Discrete Sampling with Automatic Cyclical Scheduling Patrick Pynadath, Riddhiman Bhattacharya, ARUN HARIHARAN, Ruqi Zhang
-
2D-OOB: Attributing Data Contribution Through Joint Valuation Framework Yifan Sun, Jingyan Shen, Yongchan Kwon
-
Zero-Shot Tokenizer Transfer Benjamin Minixhofer, Edoardo Maria Ponti, Ivan Vulić
-
A Careful Examination of Large Language Model Performance on Grade School Arithmetic Hugh Zhang, Jeff Da, Dean Lee, Vaughn Robinson, Catherine Wu, William Song, Tiffany Zhao, Pranav Raja, Charlotte Zhuang, Dylan Slack, Qin Lyu, Sean Hendryx, Russell Kaplan, Michele Lunati, Summer Yue
-
Theoretical Analysis of Weak-to-Strong Generalization Hunter Lang, David Sontag, Aravindan Vijayaraghavan
-
Grasp as You Say: Language-guided Dexterous Grasp Generation Yi-Lin Wei, Jian-Jian Jiang, Chengyi Xing, Xian-Tuo Tan, Xiao-Ming Wu, Hao Li, Mark Cutkosky, Wei-Shi Zheng
-
RGFN: Synthesizable Molecular Generation Using GFlowNets Michał Koziarski, Andrei Rekesh, Dmytro Shevchuk, Almer van der Sloot, Piotr Gaiński, Yoshua Bengio, Chenghao Liu, Mike Tyers, Robert Batey
-
Exploring Molecular Pretraining Model at Scale xiaohong ji, Zhen Wang, Zhifeng Gao, Hang Zheng, Linfeng Zhang, Guolin Ke, Weinan E
-
Model Collapse Demystified: The Case of Regression Elvis Dohmatob, Yunzhen Feng, Julia Kempe
-
Metric Transforms and Low Rank Representations of Kernels for Fast Attention Timothy Chu, Josh Alman, Gary L. Miller, Shyam Narayanan, Mark Sellke, Zhao Song
-
Generalizable Person Re-identification via Balancing Alignment and Uniformity Yoonki Cho, Jaeyoon Kim, Woo Jae Kim, Junsik Jung, Sung-eui Yoon
-
WildTeaming at Scale: From In-the-Wild Jailbreaks to (Adversarially) Safer Language Models Liwei Jiang, Kavel Rao, Seungju Han, Allyson Ettinger, Faeze Brahman, Sachin Kumar, Niloofar Mireshghallah, Ximing Lu, Maarten Sap, Yejin Choi, Nouha Dziri
-
Cracking the Code of Juxtaposition: Can AI Models Understand the Humorous Contradictions Zhe Hu, Tuo Liang, Jing Li, Yiren Lu, Yunlai Zhou, Yiran Qiao, Jing Ma, Yu Yin
-
Controlling Continuous Relaxation for Combinatorial Optimization Yuma Ichikawa
-
Reinforced Cross-Domain Knowledge Distillation on Time Series Data QING XU, Min Wu, Xiaoli Li, Kezhi Mao, Zhenghua Chen
-
3DET-Mamba: Causal Sequence Modelling for End-to-End 3D Object Detection Mingsheng Li, Jiakang Yuan, Sijin Chen, Lin Zhang, Anyu Zhu, Xin Chen, Tao Chen
-
DisCEdit: Model Editing by Identifying Discriminative Components Chaitanya Murti, Chiranjib Bhattacharyya
-
Prompt Tuning Strikes Back: Customizing Foundation Models with Low-Rank Prompt Adaptation Abhinav Jain, Swarat Chaudhuri, Thomas Reps, Christopher Jermaine
-
SEA: State-Exchange Attention for High-Fidelity Physics Based Transformers Parsa Esmati, Amirhossein Dadashzadeh, Vahid Ardakani, Nicolas Larrosa, Nicolò Grilli
-
ZSC-Eval: An Evaluation Toolkit and Benchmark for Multi-agent Zero-shot Coordination Xihuai Wang, Shao Zhang, Wenhao Zhang, Wentao Dong, Jingxiao Chen, Ying Wen, Weinan Zhang
-
Referencing Where to Focus: Improving Visual Grounding with Referential Query Yabing Wang, Zhuotao Tian, Qingpei Guo, Zheng Qin, Sanping Zhou, Ming Yang, Le Wang
-
Remove that Square Root: A New Efficient Scale-Invariant Version of AdaGrad Sayantan Choudhury, Nazarii Tupitsa, Nicolas Loizou, Samuel Horváth, Martin Takac, Eduard Gorbunov
-
CausalStock: Deep End-to-end Causal Discovery for News-driven Multi-stock Movement Prediction Shuqi Li, Yuebo Sun, Yuxin Lin, Xin Gao, Shuo Shang, Rui Yan
-
Improved Distribution Matching Distillation for Fast Image Synthesis Tianwei Yin, Michaël Gharbi, Taesung Park, Richard Zhang, Eli Shechtman, Fredo Durand, Bill Freeman
-
Expert-level protocol translation for self-driving labs Yu-Zhe Shi, Fanxu Meng, Haofei Hou, Zhangqian Bi, Qiao Xu, Lecheng Ruan, Qining Wang
-
Satformer: Accurate and Robust Traffic Data Estimation for Satellite Networks Liang Qin, Xiyuan Liu, Wenting Wei, Liang Chengbin, Huaxi Gu
-
Generalized Tensor Decomposition for Understanding Multi-Output Regression under Combinatorial Shifts Andong Wang, Yuning Qiu, Mingyuan Bai, Zhong Jin, Guoxu Zhou, Qibin Zhao
-
Unleashing the Denoising Capability of Diffusion Prior for Solving Inverse Problems Jiawei Zhang, Jiaxin Zhuang, Cheng Jin, Gen Li, Yuantao Gu
-
Task Confusion and Catastrophic Forgetting in Class-Incremental Learning: A Mathematical Framework for Discriminative and Generative Modelings Milad Khademi Nori, Il-Min Kim
-
Stepping on the Edge: Curvature Aware Learning Rate Tuners Vincent Roulet, Atish Agarwala, Jean-Bastien Grill, Grzegorz Swirszcz, Mathieu Blondel, Fabian Pedregosa
-
Do's and Don'ts: Learning Desirable Skills with Instruction Videos HYUNSEUNG KIM, BYUNG KUN LEE, Hojoon Lee, Dongyoon Hwang, Donghu Kim, Jaegul Choo
-
Towards Accurate and Fair Cognitive Diagnosis via Monotonic Data Augmentation zheng zhang, Wei Song, Qi Liu, Qingyang Mao, Yiyan Wang, Weibo Gao, Zhenya Huang, Shijin Wang, Enhong Chen
-
MAGNET: Improving the Multilingual Fairness of Language Models with Adaptive Gradient-Based Tokenization Orevaoghene Ahia, Sachin Kumar, Hila Gonen, Valentin Hofmann, Tomasz Limisiewicz, Yulia Tsvetkov, Noah A. Smith
-
Action Gaps and Advantages in Continuous-Time Distributional Reinforcement Learning Harley Wiltzer, Marc Bellemare, David Meger, Patrick Shafto, Yash Jhaveri
-
Does Egalitarian Fairness Lead to Instability? The Fairness Bounds in Stable Federated Learning Under Altruistic Behaviors Jiashi Gao, Ziwei Wang, Xiangyu Zhao, Xin Yao, Xuetao Wei
-
Counterfactual Fairness by Combining Factual and Counterfactual Predictions Zeyu Zhou, Tianci Liu, Ruqi Bai, Jing Gao, Murat Kocaoglu, David I. Inouye
-
Does Video-Text Pretraining Help Open-Vocabulary Online Action Detection? qingsong zhao, Yi Wang, Jilan Xu, Yinan He, Zifan Song, Limin Wang, Yu Qiao, Cairong Zhao
-
Sample-efficient Bayesian Optimisation Using Known Invariances Theodore Brown, Alexandru Cioba, Ilija Bogunovic
-
Enhancing Consistency-Based Image Generation via Adversarialy-Trained Classification and Energy-Based Discrimination Shelly Golan, Roy Ganz, Michael Elad
-
Multi-view Masked Contrastive Representation Learning for Endoscopic Video Analysis Kai Hu, Ye Xiao, Yuan Zhang, Xieping Gao
-
WATT: Weight Average Test Time Adaptation of CLIP David OSOWIECHI, Mehrdad Noori, Gustavo Vargas Hakim, Moslem Yazdanpanah, Ali Bahri, Milad Cheraghalikhani, Sahar Dastani, Farzad Beizaee, Ismail Ayed, Christian Desrosiers
-
ProbTS: Benchmarking Point and Distributional Forecasting across Diverse Prediction Horizons Jiawen Zhang, Xumeng Wen, Zhenwei Zhang, Shun Zheng, Jia Li, Jiang Bian
-
Taming Heavy-Tailed Losses in Adversarial Bandits and the Best-of-Both-Worlds Setting Duo Cheng, Xingyu Zhou, Bo Ji
-
Online Control with Adversarial Disturbance for Continuous-time Linear Systems Jingwei Li, Jing Dong, Can Chang, Baoxiang Wang, Jingzhao Zhang
-
Graph Neural Networks Do Not Always Oversmooth Bastian Epping, Alexandre René, Moritz Helias, Michael T Schaub
-
HLM-Cite: Hybrid Language Model Workflow for Text-based Scientific Citation Prediction Qianyue Hao, Jingyang Fan, Fengli Xu, Jian Yuan, Yong Li
-
WildVision: Evaluating Vision-Language Models in the Wild with Human Preferences Yujie Lu, Dongfu Jiang, Wenhu Chen, William Yang Wang, Yejin Choi, Bill Yuchen Lin
-
Identification and Estimation of the Bi-Directional MR with Some Invalid Instruments Feng Xie, Zhen Yao, Lin Xie, Yan Zeng, Zhi Geng
-
STONE: A Submodular Optimization Framework for Active 3D Object Detection RUIYU MAO, Sarthak Kumar Maharana, Rishabh Iyer, Yunhui Guo
-
Estimating Generalization Performance Along the Trajectory of Proximal SGD in Robust Regression Kai Tan, Pierre C Bellec
-
Learning Better Representations From Less Data For Propositional Satisfiability Mohamed Ghanem, Frederik Schmitt, Julian Siber, Bernd Finkbeiner
-
SARAD: Spatial Association-Aware Anomaly Detection and Diagnosis for Multivariate Time Series Zhihao Dai, Ligang He, Shuanghua Yang, Matthew Leeke
-
Decoupling Semantic Similarity from Spatial Alignment for Neural Networks. Tassilo Wald, Constantin Ulrich, Priyank Jaini, Gregor Koehler, David Zimmerer, Stefan Denner, Fabian Isensee, Michael Baumgartner, Klaus Maier-Hein
-
Measuring Per-Unit Interpretability at Scale Without Humans Roland S. Zimmermann, David Klindt, Wieland Brendel
-
Efficient Recurrent Off-Policy RL Requires a Context-Encoder-Specific Learning Rate Fan-Ming Luo, Zuolin Tu, Zefang Huang, Yang Yu
-
Model Based Inference of Synaptic Plasticity Rules Yash Mehta, Danil Tyulmankov, Adithya Rajagopalan, Glenn Turner, James Fitzgerald, Jan Funke
-
Similarity-Navigated Conformal Prediction for Graph Neural Networks Jianqing Song, Jianguo Huang, Wenyu Jiang, Baoming Zhang, Shuangjie Li, Chongjun Wang
-
ReplaceAnything3D: Text-Guided Object Replacement in 3D Scenes with Compositional Scene Representations Edward Bartrum, Thu H. Nguyen-Phuoc, Christopher Xie, Zhengqin Li, Numair Khan, Armen Avetisyan, Douglas Lanman, Lei Xiao
-
Divide-and-Conquer Predictive Coding: a structured Bayesian inference algorithm Eli Sennesh, Hao Wu, Tommaso Salvatori
-
Monomial Matrix Group Equivariant Neural Functional Networks Hoang Tran, Thieu Vo, Tho Huu, An Nguyen The, Tan Nguyen
-
Error Analysis of Spherically Constrained Least Squares Reformulation in Solving the Stackelberg Prediction Game Xiyuan Li, Weiwei Liu
-
Nuclear Fusion Diamond Polishing Dataset Antonios Alexos, Junze Liu, Shashank Galla, Sean Hayes, Kshitij Bhardwaj, Alexander Schwartz, Monika Biener, Pierre Baldi, Satish Bukkapatnam, Suhas Bhandarkar
-
On the cohesion and separability of average-link for hierarchical agglomerative clustering Eduardo Laber, Miguel Batista
-
Block Transformer: Global-to-Local Language Modeling for Fast Inference Namgyu Ho, Sangmin Bae, Taehyeon Kim, Hyunjik Jo, Yireun Kim, Tal Schuster, Adam Fisch, James Thorne, Se-Young Yun
-
Linear Transformers are Versatile In-Context Learners Max Vladymyrov, Johannes von Oswald, Mark Sandler, Rong Ge
-
CountGD: Multi-Modal Open-World Counting Niki Amini-Naieni, Tengda Han, Andrew Zisserman
-
SimGen: Simulator-conditioned Driving Scene Generation Yunsong Zhou, Michael Simon, Zhenghao (Mark) Peng, Sicheng Mo, Hongzi Zhu, Minyi Guo, Bolei Zhou
-
Decoding-Time Language Model Alignment with Multiple Objectives Ruizhe Shi, Yifang Chen, Yushi Hu, Alisa Liu, Hanna Hajishirzi, Noah A. Smith, Simon S. Du
-
SS1: Accelerating Inference with Fast and Expressive Sketch Structured Transform Aditya Desai, Kimia Saedi, Apoorv Walia, Jihyeong Lee, Keren Zhou, Anshumali Shrivastava
-
MiraData: A Large-Scale Video Dataset with Long Durations and Structured Captions Xuan Ju, Yiming Gao, Zhaoyang Zhang, Ziyang Yuan, Xintao Wang, AILING ZENG, Yu Xiong, Qiang Xu, Ying Shan
-
FedGMark: Certifiably Robust Watermarking for Federated Graph Learning Yuxin Yang, Qiang Li, Yuan Hong, Binghui Wang
-
Learning Macroscopic Dynamics from Partial Microscopic Observations Mengyi Chen, Qianxiao Li
-
Spatio-Spectral Graph Neural Networks Simon Markus Geisler, Arthur Kosmala, Daniel Herbst, Stephan Günnemann
-
On Mesa-Optimization in Autoregressively Trained Transformers: Emergence and Capability Chenyu Zheng, Wei Huang, Rongzhen Wang, Guoqiang Wu, Jun Zhu, Chongxuan LI
-
Enhancing Protein Mutation Effect Prediction through a Retrieval-Augmented Framework Ruihan Guo, Rui Wang, Ruidong Wu, Zhizhou Ren, Jiahan Li, Shitong Luo, Zuofan Wu, Qiang Liu, Jian Peng, Jianzhu Ma
-
Key-Grid: Unsupervised 3D Keypoints Detection using Grid Heatmap Features Chengkai Hou, Zhengrong Xue, Bingyang Zhou, Jinghan Ke, Lin Shao, Huazhe Xu
-
Active Learning of General Halfspaces: Label Queries vs Membership Queries Ilias Diakonikolas, Daniel Kane, Mingchen Ma
-
Intruding with Words: Towards Understanding Graph Injection Attacks at the Text Level Runlin Lei, Yuwei Hu, Yuchen Ren, Zhewei Wei
-
FlexPlanner: Flexible 3D Floorplanning via Deep Reinforcement Learning in Hybrid Action Space with Multi-Modality Representation Ruizhe Zhong, Xingbo Du, Shixiong Kai, Zhentao Tang, Siyuan Xu, Jianye Hao, Mingxuan Yuan, Junchi Yan
-
MultiTrust: A Comprehensive Benchmark Towards Trustworthy Multimodal Large Language Models Yichi Zhang, Yao Huang, Yitong Sun, Chang Liu, Zhe Zhao, Zhengwei Fang, Yifan Wang, Huanran Chen, Xiao Yang, Xingxing Wei, Hang Su, Yinpeng Dong, Jun Zhu
-
Learning to Shape In-distribution Feature Space for Out-of-distribution Detection Yonggang Zhang, Jie Lu, Bo Peng, Zhen Fang, Yiu-ming Cheung
-
RoleAgent: Building, Interacting, and Benchmarking High-quality Role-Playing Agents from Scripts Jiaheng Liu, Zehao Ni, Haoran Que, Sun, Noah Wang, Jian Yang, JiakaiWang , Hongcheng Guo, Zhongyuan Peng, Ge Zhang, Jiayi Tian, Xingyuan Bu, Ke Xu, Wenge Rong, Junran Peng, ZHAO-XIANG ZHANG
-
Equivariant Neural Diffusion for Molecule Generation François Cornet, Grigory Bartosh, Mikkel Schmidt, Christian Andersson Naesseth
-
SyncVIS: Synchronized Video Instance Segmentation Rongkun Zheng, Lu Qi, Xi Chen, Yi Wang, Kun Wang, Yu Qiao, Hengshuang Zhao
-
Gradients of Functions of Large Matrices Nicholas Krämer, Pablo Moreno-Muñoz, Hrittik Roy, Søren Hauberg
-
Personalized Steering of Large Language Models: Versatile Steering Vectors Through Bi-directional Preference Optimization Yuanpu Cao, Tianrong Zhang, Bochuan Cao, Ziyi Yin, Lu Lin, Fenglong Ma, Jinghui Chen
-
Achieving Domain-Independent Certified Robustness via Knowledge Continuity Alan Sun, Chiyu Ma, Kenneth Ge, Soroush Vosoughi
-
Monte Carlo Tree Search based Space Transfer for Black Box Optimization Shukuan Wang, Ke Xue, Song Lei, Xiaobin Huang, Chao Qian
-
Discovering Creative Behaviors through DUPLEX: Diverse Universal Features for Policy Exploration Borja G. Leon, Francesco Riccio, Kaushik Subramanian, Peter Wurman, Peter Stone
-
Efficient Centroid-Linkage Clustering Mohammadhossein Bateni, Laxman Dhulipala, Willem Fletcher, Kishen N. Gowda, D Ellis Hershkowitz, Rajesh Jayaram, Jakub Lacki
-
Everyday Object Meets Vision-and-Language Navigation Agent via Backdoor Keji He, Kehan Chen, Jiawang Bai, Yan Huang, Qi Wu, Shu-Tao Xia, Liang Wang
-
The Art of Saying No: Contextual Noncompliance in Language Models Faeze Brahman, Sachin Kumar, Vidhisha Balachandran, Pradeep Dasigi, Valentina Pyatkin, Abhilasha Ravichander, Sarah Wiegreffe, Nouha Dziri, Khyathi Chandu, Jack Hessel, Yulia Tsvetkov, Noah A. Smith, Yejin Choi, Hanna Hajishirzi
-
OAM-TCD: A globally diverse dataset of high-resolution tree cover maps Josh Veitch-Michaelis, Andrew Cottam, Daniella Schweizer, Eben Broadbent, David Dao, Ce Zhang, Angelica Almeyda Zambrano, Simeon Max
-
Newswire: A Large-Scale Structured Database of a Century of Historical News Emily Silcock, Abhishek Arora, Luca D'Amico-Wong, Melissa Dell
-
GS-Hider: Hiding Messages into 3D Gaussian Splatting Xuanyu Zhang, Jiarui Meng, Runyi Li, Zhipei Xu, yongbing zhang, Jian Zhang
-
Rethinking Decoders for Transformer-based Semantic Segmentation: A Compression Perspective Qishuai Wen, Chun-Guang Li
-
LLMs Can Evolve Continually on Modality for $\mathbb{X}$-Modal Reasoning Jiazuo Yu, Haomiao Xiong, Lu Zhang, Haiwen Diao, Yunzhi Zhuge, Lanqing Hong, Dong Wang, Huchuan Lu, You He, Long Chen
-
DarkSAM: Fooling Segment Anything Model to Segment Nothing Ziqi Zhou, Yufei Song, Minghui Li, Shengshan Hu, Xianlong Wang, Leo Yu Zhang, Dezhong Yao, Hai Jin
-
Optimus-1: Hybrid Multimodal Memory Empowered Agents Excel in Long-Horizon Tasks Zaijing Li, Yuquan Xie, Rui Shao, Gongwei Chen, Dongmei Jiang, Liqiang Nie
-
Contextual Active Model Selection Xuefeng Liu, Fangfang Xia, Rick Stevens, Yuxin Chen
-
Learning Successor Features the Simple Way Raymond Chua, Arna Ghosh, Christos Kaplanis, Blake Richards, Doina Precup
-
Probabilistic size-and-shape functional mixed models Fangyi Wang, Karthik Bharath, Oksana Chkrebtii, Sebastian Kurtek
-
Diffusion Models are Certifiably Robust Classifiers Huanran Chen, Yinpeng Dong, Shitong Shao, Hao Zhongkai, Xiao Yang, Hang Su, Jun Zhu
-
Diffusion Policies Creating a Trust Region for Offline Reinforcement Learning Tianyu Chen, Zhendong Wang, Mingyuan Zhou
-
CA-SSLR: Condition-Aware Self-Supervised Learning Representation for Generalized Speech Processing Yen-Ju Lu, Jing Liu, Thomas Thebaud, Laureano Moro-Velazquez, Ariya Rastrow, Najim Dehak, Jesus Villalba
-
WebUOT-1M: Advancing Deep Underwater Object Tracking with A Million-Scale Benchmark Chunhui Zhang, Li Liu, Guanjie Huang, Hao Wen, XI ZHOU, Yanfeng Wang
-
Matryoshka Query Transformer for Large Vision-Language Models Wenbo Hu, Zi-Yi Dou, Liunian Li, Amita Kamath, Nanyun Peng, Kai-Wei Chang
-
Interpolating Item and User Fairness in Multi-Sided Recommendations Qinyi Chen, Jason Cheuk Nam Liang, Negin Golrezaei, Djallel Bouneffouf
-
TFGDA: Exploring Topology and Feature Alignment in Semi-supervised Graph Domain Adaptation through Robust Clustering Jun Dan, Weiming Liu, Xie, Hua Yu, Shunjie Dong, Yanchao Tan
-
Towards Multi-Domain Learning for Generalizable Video Anomaly Detection MyeongAh Cho, Taeoh Kim, Minho Shim, Dongyoon Wee, Sangyoun Lee
-
GDeR: Safeguarding Efficiency, Balancing, and Robustness via Prototypical Graph Pruning Guibin Zhang, Haonan Dong, yuchen zhang, Zhixun Li, Dingshuo Chen, Kai Wang, Tianlong Chen, Yuxuan Liang, Dawei Cheng, Kun Wang
-
EMGBench: Benchmarking Out-of-Distribution Generalization and Adaptation for Electromyography Jehan Yang, Maxwell Soh, Vivianna Lieu, Douglas Weber, Zackory Erickson
-
SpeechAlign: Aligning Speech Generation to Human Preferences Dong Zhang, Zhaowei Li, Shimin Li, Xin Zhang, Pengyu Wang, Yaqian Zhou, Xipeng Qiu
-
Gaussian Graph Network: Learning Efficient and Generalizable Gaussian Representations from Multi-view Images Shengjun Zhang, Xin Fei, Fangfu Liu, Haixu Song, Yueqi Duan
-
SETLEXSEM CHALLENGE: Using Set Operations to Evaluate the Lexical and Semantic Robustness of Language Models Nicholas Dronen, Bardiya Akhbari, Manish Digambar Gawali
-
Splatter a Video: Video Gaussian Representation for Versatile Processing Yang-Tian Sun, Yihua Huang, Lin Ma, Xiaoyang Lyu, Yan-Pei Cao, Xiaojuan Qi
-
Approaching Human-Level Forecasting with Language Models Danny Halawi, Fred Zhang, Chen Yueh-Han, Jacob Steinhardt
-
HYDRA-FL: Hybrid Knowledge Distillation for Robust and Accurate Federated Learning Momin Ahmad Khan, Yasra Chandio, Fatima Anwar
-
Selective Generation for Controllable Language Models Minjae Lee, Kyungmin Kim, Taesoo Kim, Sangdon Park
-
SWE-agent: Agent-Computer Interfaces Enable Automated Software Engineering John Yang, Carlos Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik Narasimhan, Ofir Press
-
Towards the Dynamics of a DNN Learning Symbolic Interactions Qihan Ren, Junpeng Zhang, Yang Xu, Yue Xin, Dongrui Liu, Quanshi Zhang
-
Communication Bounds for the Distributed Experts Problem Zhihao Jia, Qi Pang, Trung Tran, David Woodruff, Zhihao Zhang, Wenting Zheng
-
Déjà Vu Memorization in Vision–Language Models Bargav Jayaraman, Chuan Guo, Kamalika Chaudhuri
-
Noisy Ostracods: A Fine-Grained, Imbalanced Real-World Dataset for Benchmarking Robust Machine Learning and Label Correction Methods Jiamian Hu, Hong Yuanyuan, Yihua Chen, He Wang, Moriaki Yasuhara
-
ARC: A Generalist Graph Anomaly Detector with In-Context Learning Yixin Liu, Shiyuan Li, Yu Zheng, Qingfeng Chen, Chengqi Zhang, Shirui Pan
-
CTIBench: A Benchmark for Evaluating LLMs in Cyber Threat Intelligence Md Tanvirul Alam, Dipkamal Bhusal, Le Nguyen, Nidhi Rastogi
-
Exploiting Descriptive Completeness Prior for Cross Modal Hashing with Incomplete Labels Haoyang Luo, Zheng Zhang, Yadan Luo
-
Happy: A Debiased Learning Framework for Continual Generalized Category Discovery Shijie Ma, Fei Zhu, Zhun Zhong, Wenzhuo Liu, Xu-yao Zhang, Cheng-lin Liu
-
Predicting Future Actions of Reinforcement Learning Agents Stephen Chung, Scott Niekum, David Krueger
-
MMScan: A Multi-Modal 3D Scene Dataset with Hierarchical Grounded Language Annotations Ruiyuan Lyu, Jingli Lin, Tai WANG, Shuaiyang , Xiaohan Mao, Yilun Chen, Runsen Xu, Haifeng Huang, Chenming Zhu, Dahua Lin, Jiangmiao Pang
-
JaxMARL: Multi-Agent RL Environments and Algorithms in JAX Alexander Rutherford, Benjamin Ellis, Matteo Gallici, Jonathan Cook, Andrei Lupu, Garðar Ingvarsson Juto, Timon Willi, Ravi Hammond, Akbir Khan, Christian Schroeder de Witt, Alexandra Souly, Saptarashmi Bandyopadhyay, Mikayel Samvelyan, Minqi Jiang, Robert Lange, Shimon Whiteson, Bruno Lacerda, Nick Hawes, Tim Rocktäschel, Chris Lu, Jakob Foerster
-
Exploring Token Pruning in Vision State Space Models Zheng Zhan, Zhenglun Kong, Yifan Gong, Yushu Wu, Zichong Meng, Hangyu Zheng, Xuan Shen, Stratis Ioannidis, Wei Niu, Pu Zhao, Yanzhi Wang
-
Benchmarking Uncertainty Disentanglement: Specialized Uncertainties for Specialized Tasks Bálint Mucsányi, Michael Kirchhof, Seong Joon Oh
-
ShowMaker: Creating High-Fidelity 2D Human Video via Fine-Grained Diffusion Modeling Quanwei Yang, Jiazhi Guan, Kaisiyuan Wang, Lingyun Yu, Wenqing Chu, Hang Zhou, ZhiQiang Feng, Haocheng Feng, Errui Ding, Jingdong Wang, Hongtao Xie
-
HEPrune: Fast Private Training of Deep Neural Networks With Encrypted Data Pruning Yancheng Zhang, Mengxin Zheng, Yuzhang Shang, Xun Chen, Qian Lou
-
dopanim: A Dataset of Doppelganger Animals with Noisy Annotations from Multiple Humans Marek Herde, Denis Huseljic, Lukas Rauch, Bernhard Sick
-
Easy-to-Hard Generalization: Scalable Alignment Beyond Human Supervision Zhiqing Sun, Longhui Yu, Yikang Shen, Weiyang Liu, Yiming Yang, Sean Welleck, Chuang Gan
-
Fast TRAC: A Parameter-Free Optimizer for Lifelong Reinforcement Learning Aneesh Muppidi, Zhiyu Zhang, Heng Yang
-
Incentivizing Quality Text Generation via Statistical Contracts Eden Saig, Ohad Einav, Inbal Talgam-Cohen
-
Practical $0.385$-Approximation for Submodular Maximization Subject to a Cardinality Constraint Morad Tukan, Loay Mualem, Moran Feldman
-
Fast Proxy Experiment Design for Causal Effect Identification Sepehr Elahi, Sina Akbari, Jalal Etesami, Negar Kiyavash, Patrick Thiran
-
Dealing with Synthetic Data Contamination in Online Continual Learning Maorong Wang, Nicolas MICHEL, Jiafeng Mao, Toshihiko Yamasaki
-
Recognize Any Regions Haosen Yang, Chuofan Ma, Bin Wen, Yi Jiang, Zehuan Yuan, Xiatian Zhu
-
SAMPa: Sharpness-aware Minimization Parallelized Wanyun Xie, Thomas Pethick, Volkan Cevher
-
WenMind: A Comprehensive Benchmark for Evaluating Large Language Models in Chinese Classical Literature and Language Arts Jiahuan Cao, Yang Liu, Yongxin Shi, Kai Ding, Lianwen Jin
-
Continuous Contrastive Learning for Long-Tailed Semi-Supervised Recognition Zi-Hao Zhou, Siyuan Fang, Zi-Jing Zhou, Tong Wei, Yuanyu Wan, Min-Ling Zhang
-
Doubly Mild Generalization for Offline Reinforcement Learning Yixiu Mao, Qi Wang, Yun Qu, Yuhang Jiang, Xiangyang Ji
-
Is Mamba Compatible with Trajectory Optimization in Offline Reinforcement Learning? Yang Dai, Oubo Ma, Longfei Zhang, Xingxing Liang, Shengchao Hu, Mengzhu Wang, Shouling Ji, Jincai Huang, Li Shen
-
Calibrated Self-Rewarding Vision Language Models Yiyang Zhou, Zhiyuan Fan, Dongjie Cheng, Sihan Yang, Zhaorun Chen, Chenhang Cui, Xiyao Wang, Yun Li, Linjun Zhang, Huaxiu Yao
-
ContextGS : Compact 3D Gaussian Splatting with Anchor Level Context Model Yufei Wang, Zhihao Li, Lanqing Guo, Wenhan Yang, Alex Kot, Bihan Wen
-
Advancing Cross-domain Discriminability in Continual Learning of Vision-Language Models Yicheng Xu, Yuxin Chen, Jiahao Nie, Yusong Wang, HUIPING ZHUANG, Manabu Okumura
-
DG-SLAM: Robust Dynamic Gaussian Splatting SLAM with Hybrid Pose Optimization Yueming Xu, Haochen Jiang, Zhongyang Xiao, Jianfeng Feng, Li Zhang
-
KOALA: Empirical Lessons Toward Memory-Efficient and Fast Diffusion Models for Text-to-Image Synthesis Youngwan Lee, Kwanyong Park, Yoorhim Cho, Yong-Ju Lee, Sung Ju Hwang
-
In Pursuit of Causal Label Correlations for Multi-label Image Recognition Zhao-Min Chen, Xin Jin, YisuGe , Sixian Chan
-
NeuroClips: Towards High-fidelity and Smooth fMRI-to-Video Reconstruction Zixuan Gong, Guangyin Bao, Qi Zhang, Zhongwei Wan, Duoqian Miao, Shoujin Wang, Lei Zhu, Changwei Wang, Rongtao Xu, Liang Hu, Ke Liu, Yu Zhang
-
Active Classification with Few Queries under Misspecification Vasilis Kontonis, Mingchen Ma, Christos Tzamos
-
EnOF-SNN: Training Accurate Spiking Neural Networks via Enhancing the Output Feature Yufei Guo, Weihang Peng, Xiaode Liu, Yuanpei Chen, Yuhan Zhang, Xin Tong, Zhou Jie, Zhe Ma
-
Why are Visually-Grounded Language Models Bad at Image Classification? Yuhui Zhang, Alyssa Unell, Xiaohan Wang, Dhruba Ghosh, Yuchang Su, Ludwig Schmidt, Serena Yeung
-
Association of Objects May Engender Stereotypes: Mitigating Association-Engendered Stereotypes in Text-to-Image Generation Junlei Zhou, Jiashi Gao, Xiangyu Zhao, Xin Yao, Xuetao Wei
-
Stochastic Concept Bottleneck Models Moritz Vandenhirtz, Sonia Laguna, Ričards Marcinkevičs, Julia Vogt
-
Stealth edits to large language models Oliver Sutton, Qinghua Zhou, Wei Wang, Desmond Higham, Alexander N Gorban, Alexander Bastounis, Ivan Tyukin
-
Rejection via Learning Density Ratios Alexander Soen, Hisham Husain, Philip Schulz, Vu Nguyen
-
The Many Faces of Optimal Weak-to-Strong Learning Mikael Møller Høgsgaard, Kasper Green Larsen, Markus Engelund Mathiasen
-
Vision Mamba Mender Jiacong Hu, Anda Cao, Zunlei Feng, Shengxuming Zhang, Yi Wang, Lingxiang Jia, Mingli Song
-
Online Non-convex Learning in Dynamic Environments Zhipan Xu, Lijun Zhang
-
MAGIS: LLM-Based Multi-Agent Framework for GitHub Issue Resolution Wei Tao, Yucheng Zhou, Yanlin Wang, Wenqiang Zhang, Hongyu Zhang, Yu Cheng
-
U-DiTs: Downsample Tokens in U-Shaped Diffusion Transformers Yuchuan Tian, Zhijun Tu, Hanting Chen, Jie Hu, Chao Xu, Yunhe Wang
-
Generalize or Detect? Towards Robust Semantic Segmentation Under Multiple Distribution Shifts Zhitong Gao, Bingnan Li, Mathieu Salzmann, Xuming He
-
OSWorld: Benchmarking Multimodal Agents for Open-Ended Tasks in Real Computer Environments Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao, Jing Hua Toh, Zhoujun Cheng, Dongchan Shin, Fangyu Lei, Yitao Liu, Yiheng Xu, Shuyan Zhou, Silvio Savarese, Caiming Xiong, Victor Zhong, Tao Yu
-
Equivariant spatio-hemispherical networks for diffusion MRI deconvolution Axel Elaldi, Guido Gerig, Neel Dey
-
Pandora's Box: Towards Building Universal Attackers against Real-World Large Vision-Language Models Daizong Liu, Mingyu Yang, Xiaoye Qu, Pan Zhou, Xiang Fang, Keke Tang, Yao Wan, Lichao Sun
-
Generalization Bounds via Conditional $f$-Information Ziqiao Wang, Yongyi Mao
-
Outlier-Robust Distributionally Robust Optimization via Unbalanced Optimal Transport Zifan Wang, Yi Shen, Michael Zavlanos, Karl H. Johansson
-
Separate and Reconstruct: Asymmetric Encoder-Decoder for Speech Separation Ui-Hyeop Shin, Sangyoun Lee, Taehan Kim, Hyung-Min Park
-
AudioMarkBench: Benchmarking Robustness of Audio Watermarking Hongbin Liu, Moyang Guo, Zhengyuan Jiang, Lun Wang, Neil Gong
-
DeiSAM: Segment Anything with Deictic Prompting Hikaru Shindo, Manuel Brack, Gopika Sudhakaran, Devendra S Dhami, Patrick Schramowski, Kristian Kersting
-
E2E-MFD: Towards End-to-End Synchronous Multimodal Fusion Detection Jiaqing Zhang, Mingxiang Cao, Weiying Xie, Jie Lei, Daixun Li, Wenbo Huang, Yunsong Li, Xue Yang
-
AdvAD: Exploring Non-Parametric Diffusion for Imperceptible Adversarial Attacks Jin Li, Ziqiang He, Anwei Luo, Jian-Fang Hu, Z. Jane Wang, Xiangui Kang
-
REBEL: Reinforcement Learning via Regressing Relative Rewards Zhaolin Gao, Jonathan Chang, Wenhao Zhan, Owen Oertell, Gokul Swamy, Kianté Brantley, Thorsten Joachims, Drew Bagnell, Jason D. Lee, Wen Sun
-
Predictive Attractor Models Ramy Mounir, Sudeep Sarkar
-
Improving Adaptivity via Over-Parameterization in Sequence Models Yicheng Li, Qian Lin
-
MInference 1.0: Accelerating Pre-filling for Long-Context LLMs via Dynamic Sparse Attention Huiqiang Jiang, Yucheng LI, Chengruidong Zhang, Qianhui Wu, Xufang Luo, Surin Ahn, Zhenhua Han, Amir Abdi, Dongsheng Li, Chin-Yew Lin, Yuqing Yang, Lili Qiu
-
Personalizing Reinforcement Learning from Human Feedback with Variational Preference Learning Sriyash Poddar, Yanming Wan, Hamish Ivison, Abhishek Gupta, Natasha Jaques
-
Unveiling Encoder-Free Vision-Language Models Haiwen Diao, Yufeng Cui, Xiaotong Li, Yueze Wang, Huchuan Lu, Xinlong Wang
-
Density-based User Representation using Gaussian Process Regression for Multi-interest Personalized Retrieval Haolun Wu, Ofer Meshi, Masrour Zoghi, Fernando Diaz, Xue (Steve) Liu, Craig Boutilier, Maryam Karimzadehgan
-
Frequency-aware Generative Models for Multivariate Time Series Imputation XINYU YANG, Yu Sun, Yuan xiaojie, Xinyang Chen
-
Overfitting Behaviour of Gaussian Kernel Ridgeless Regression: Varying Bandwidth or Dimensionality Marko Medvedev, Gal Vardi, Nati Srebro
-
Empowering and Assessing the Utility of Large Language Models in Crop Science Hang Zhang, Jiawei SUN, Renqi Chen, Wei Liu, Zhonghang Yuan, Xinzhe Zheng, Zhefan Wang, Zhiyuan Yang, Hang Yan, Han-Sen Zhong, Xiqing Wang, Wanli Ouyang, Fan Yang, Nanqing Dong
-
Toward Self-Improvement of LLMs via Imagination, Searching, and Criticizing Ye Tian, Baolin Peng, Linfeng Song, Lifeng Jin, Dian Yu, Lei Han, Haitao Mi, Dong Yu
-
A Theory of Optimistically Universal Online Learnability for General Concept Classes Steve Hanneke, Hongao Wang
-
Belief-State Query Policies for User-Aligned POMDPs Daniel Bramblett, Siddharth Srivastava
-
Adversarially Trained Weighted Actor-Critic for Safe Offline Reinforcement Learning Honghao Wei, Xiyue Peng, Arnob Ghosh, Xin Liu
-
Fast Iterative Hard Thresholding Methods with Pruning Gradient Computations Yasutoshi Ida, Sekitoshi Kanai, Atsutoshi Kumagai, Tomoharu Iwata, Yasuhiro Fujiwara
-
InterDreamer: Zero-Shot Text to 3D Dynamic Human-Object Interaction Sirui Xu, ziyin wang, Yu-Xiong Wang, Liangyan Gui
-
Graph Convolutions Enrich the Self-Attention in Transformers! Jeongwhan Choi, Hyowon Wi, Jayoung Kim, Yehjin Shin, Kookjin Lee, Nathaniel Trask, Noseong Park
-
FineStyle: Fine-grained Controllable Style Personalization for Text-to-image Models Gong Zhang, Kihyuk Sohn, Meera Hahn, Humphrey Shi, Irfan Essa
-
Alias-Free Mamba Neural Operator Jianwei Zheng, Wei Li, Ni Xu, Junwei Zhu, XiaoxuLin , Xiaoqin Zhang
-
Guiding a Diffusion Model with a Bad Version of Itself Tero Karras, Miika Aittala, Tuomas Kynkäänniemi, Jaakko Lehtinen, Timo Aila, Samuli Laine
-
Multilinear Mixture of Experts: Scalable Expert Specialization through Factorization James Oldfield, Markos Georgopoulos, Grigorios Chrysos, Christos Tzelepis, Yannis Panagakis, Mihalis Nicolaou, Jiankang Deng, Ioannis Patras
-
ERBench: An Entity-Relationship based Automatically Verifiable Hallucination Benchmark for Large Language Models Jio Oh, Soyeon Kim, Junseok Seo, Jindong Wang, Ruochen Xu, Xing Xie, Steven Whang
-
Doing Experiments and Revising Rules with Natural Language and Probabilistic Reasoning Top Piriyakulkij, Cassidy Langenfeld, Tuan Anh Le, Kevin Ellis
-
Understanding Emergent Abilities of Language Models from the Loss Perspective Zhengxiao Du, Aohan Zeng, Yuxiao Dong, Jie Tang
-
HourVideo: 1-Hour Video-Language Understanding Keshigeyan Chandrasegaran, Agrim Gupta, Lea M. Hadzic, Taran Kota, Jimming He, Cristobal Eyzaguirre, Zane Durante, Manling Li, Jiajun Wu, Fei-Fei Li
-
G3: An Effective and Adaptive Framework for Worldwide Geolocalization Using Large Multi-Modality Models Pengyue Jia, Yiding Liu, Xiaopeng Li, Xiangyu Zhao, Yuhao Wang, Yantong Du, Xiao Han, Xuetao Wei, Shuaiqiang Wang, Dawei Yin
-
WelQrate: Defining the Gold Standard in Small Molecule Drug Discovery Benchmarking Yunchao Liu, Ha Dong, Xin Wang, Rocco Moretti, Yu Wang, Zhaoqian Su, Jiawei Gu, Bobby Bodenheimer, Charles Weaver, Jens Meiler, Tyler Derr
-
Color-Oriented Redundancy Reduction in Dataset Distillation Bowen Yuan, Zijian Wang, Mahsa Baktashmotlagh, Yadan Luo, Zi Huang
-
Euclidean distance compression via deep random features Brett Leroux, Luis Rademacher
-
LRM-Zero: Training Large Reconstruction Models with Synthesized Data Desai Xie, Sai Bi, Zhixin Shu, Kai Zhang, Zexiang Xu, Yi Zhou, Soeren Pirk, Arie Kaufman, Xin Sun, Hao Tan
-
Uncertainty-aware Fine-tuning of Segmentation Foundation Models Kangning Liu, Brian Price, Jason Kuen, Yifei Fan, Zijun Wei, Luis Figueroa, Krzysztof Geras, Carlos Fernandez-Granda
-
Learning via Surrogate PAC-Bayes Antoine Picard, Roman Moscoviz, Benjamin Guedj
-
MACM: Utilizing a Multi-Agent System for Condition Mining in Solving Complex Mathematical Problems Bin Lei, Yi Zhang, Shan Zuo, Ali Payani, Caiwen Ding
-
ECMamba: Consolidating Selective State Space Model with Retinex Guidance for Efficient Multiple Exposure Correction Wei Dong, Han Zhou, Yulun Zhang, Xiaohong Liu, Jun Chen
-
Provable Tempered Overfitting of Minimal Nets and Typical Nets Itamar Harel, William Hoza, Gal Vardi, Itay Evron, Nati Srebro, Daniel Soudry
-
Dynamic Service Fee Pricing under Strategic Behavior: Actions as Instruments and Phase Transition Rui Ai, David Simchi-Levi, Feng Zhu
-
AllClear: A Comprehensive Dataset and Benchmark for Cloud Removal in Satellite Imagery Hangyu Zhou, Chia-Hsiang Kao, Cheng Perng Phoo, Utkarsh Mall, Bharath Hariharan, Kavita Bala
-
Autoformalize Mathematical Statements by Symbolic Equivalence and Semantic Consistency Zenan Li, Yifan Wu, Zhaoyu Li, Xinming Wei, Xian Zhang, Fan Yang, Xiaoxing Ma
-
The State of Data Curation at NeurIPS: An Assessment of Dataset Development Practices in the Datasets and Benchmarks Track Eshta Bhardwaj, Harshit Gujral, Siyi Wu, Ciara Zogheib, Tegan Maharaj, Christoph Becker
-
Only Strict Saddles in the Energy Landscape of Predictive Coding Networks? Francesco Innocenti, El Mehdi Achour, Ryan Singh, Christopher L Buckley
-
Unelicitable Backdoors via Cryptographic Transformer Circuits Andis Draguns, Andrew Gritsevskiy, Sumeet Motwani, Christian Schroeder de Witt
-
Accelerating Greedy Coordinate Gradient and General Prompt Optimization via Probe Sampling Yiran Zhao, Wenyue Zheng, Tianle Cai, Do Xuan Long, Kenji Kawaguchi, Anirudh Goyal, Michael Qizhe Shieh
-
Flow Snapshot Neurons in Action: Deep Neural Networks Generalize to Biological Motion Perception Shuangpeng Han, Ziyu Wang, Mengmi Zhang
-
WISE: Rethinking the Knowledge Memory for Lifelong Model Editing of Large Language Models Peng Wang, Zexi Li, Ningyu Zhang, Ziwen Xu, Yunzhi Yao, Yong Jiang, Pengjun Xie, Fei Huang, Huajun Chen
-
HEST-1k: A Dataset For Spatial Transcriptomics and Histology Image Analysis Guillaume Jaume, Paul Doucet, Andrew Song, Ming Yang Lu, Cristina Almagro Pérez, Sophia Wagner, Anurag Vaidya, Richard Chen, Drew Williamson, Ahrong Kim, Faisal Mahmood
-
Harnessing Multiple Correlated Networks for Exact Community Recovery Miklos Z. Racz, Jifan Zhang
-
Active Learning for Derivative-Based Global Sensitivity Analysis with Gaussian Processes Syrine Belakaria, Ben Letham, Jana Doppa, Barbara Engelhardt, Stefano Ermon, Eytan Bakshy
-
FlexSBDD: Structure-Based Drug Design with Flexible Protein Modeling ZAIXI ZHANG, Mengdi Wang, Qi Liu
-
Diffusion-based Reinforcement Learning via Q-weighted Variational Policy Optimization Shutong Ding, Ke Hu, Zhenhao Zhang, Kan Ren, Weinan Zhang, Jingyi Yu, Jingya Wang, Ye Shi
-
EAI: Emotional Decision-Making of LLMs in Strategic Games and Ethical Dilemmas Mikhail Mozikov, Nikita Severin, Valeria Bodishtianu, Maria Glushanina, Ivan Nasonov, Daniil Orekhov, Pekhotin Vladislav, Ivan Makovetskiy, Mikhail Baklashkin, Vasily Lavrentyev, Akim Tsvigun, Denis Turdakov, Tatiana Shavrina, Andrey Savchenko, Ilya Makarov
-
Denoising Diffusion Path: Attribution Noise Reduction with An Auxiliary Diffusion Model Yiming Lei, Zilong Li, Junping Zhang, Hongming Shan
-
Transformer Doctor: Diagnosing and Treating Vision Transformers Jiacong Hu, Hao Chen, Kejia Chen, Yang Gao, Jingwen Ye, Xingen Wang, Mingli Song, Zunlei Feng
-
StepbaQ: Stepping backward as Correction for Quantized Diffusion Models Yi-Chung Chen, Zhi-Kai Huang, Jing-Ren Chen
-
Learning to Merge Tokens via Decoupled Embedding for Efficient Vision Transformers Dong Hoon Lee, Seunghoon Hong
-
PIVOT-R: Primitive-Driven Waypoint-Aware World Model for Robotic Manipulation Kaidong Zhang, Pengzhen Ren, Bingqian Lin, Junfan Lin, Shikui Ma, Hang Xu, Xiaodan Liang
-
A Foundation Model for Zero-shot Logical Query Reasoning Michael Galkin, Jincheng Zhou, Bruno Ribeiro, Jian Tang, Zhaocheng Zhu
-
LSH-MoE: Communication-efficient MoE Training via Locality-Sensitive Hashing Xiaonan Nie, Liu Qibin, Fangcheng Fu, Shenhan Zhu, Xupeng Miao, Xiaoyang Li, Yang Zhang, Shouda Liu, Bin CUI
-
Diffusion Actor-Critic with Entropy Regulator Yinuo Wang, Likun Wang, Yuxuan Jiang, Wenjun Zou, Tong Liu, Xujie Song, Wenxuan Wang, Liming Xiao, Jiang Wu, Jingliang Duan, Shengbo Li
-
Can LLMs Implicitly Learn Numeric Parameter Constraints in Data Science APIs? Yinlin Deng, Chunqiu Steven Xia, Zhezhen Cao, Meiziniu Li, LINGMING ZHANG
-
Freya PAGE: First Optimal Time Complexity for Large-Scale Nonconvex Finite-Sum Optimization with Heterogeneous Asynchronous Computations Alexander Tyurin, Kaja Gruntkowska, Peter Richtarik
-
Multivariate Probabilistic Time Series Forecasting with Correlated Errors Vincent Zhihao Zheng, Lijun Sun
-
Variational Delayed Policy Optimization Qingyuan Wu, Simon Zhan, Yixuan Wang, Yuhui Wang, Chung-Wei Lin, Chen Lv, Qi Zhu, Chao Huang
-
MILP-StuDio: MILP Instance Generation via Block Structure Decomposition Haoyang Liu, Jie Wang, Wanbo Zhang, Zijie Geng, Yufei Kuang, Xijun Li, Bin Li, Yongdong Zhang, Feng Wu
-
BrainBits: How Much of the Brain are Generative Reconstruction Methods Using? David Mayo, Christopher Wang, Asa Harbin, Abdulrahman Alabdulkareem, Albert Shaw, Boris Katz, Andrei Barbu
-
Q-Distribution guided Q-learning for offline reinforcement learning: Uncertainty penalized Q-value via consistency model Jing Zhang, Linjiajie Fang, Kexin SHI, Wenjia Wang, Bingyi Jing
-
APIGen: Automated PIpeline for Generating Verifiable and Diverse Function-Calling Datasets Zuxin Liu, Thai Hoang, Jianguo Zhang, Ming Zhu, Tian Lan, Shirley kokane, Juntao Tan, Weiran Yao, Zhiwei Liu, Yihao Feng, Rithesh R N, Liangwei Yang, Silvio Savarese, Juan Carlos Niebles, Huan Wang, Shelby Heinecke, Caiming Xiong
-
ChatCam: Empowering Camera Control through Conversational AI Xinhang Liu, Yu-Wing Tai, Chi-Keung Tang
-
What Rotary Position Embedding Can Tell Us: Identifying Query and Key Weights Corresponding to Basic Syntactic or High-level Semantic Information Yiting Chen, Junchi Yan
-
EgoChoir: Capturing 3D Human-Object Interaction Regions from Egocentric Views Yuhang Yang, Wei Zhai, Chengfeng Wang, Chengjun Yu, Yang Cao, Zheng-Jun Zha
-
NeuralFuse: Learning to Recover the Accuracy of Access-Limited Neural Network Inference in Low-Voltage Regimes Hao-Lun Sun, Lei Hsiung, Nandhini Chandramoorthy, Pin-Yu Chen, Tsung-Yi Ho
-
Dissecting Query-Key Interaction in Vision Transformers Xu Pan, Aaron Philip, Ziqian Xie, Odelia Schwartz
-
PEAC: Unsupervised Pre-training for Cross-Embodiment Reinforcement Learning Chengyang Ying, Hao Zhongkai, Xinning Zhou, Xuezhou Xu, Hang Su, Xingxing Zhang, Jun Zhu
-
Idiographic Personality Gaussian Process for Psychological Assessment Yehu Chen, Muchen Xi, Joshua Jackson, Jacob Montgomery, Roman Garnett
-
pFedClub: Controllable Heterogeneous Model Aggregation for Personalized Federated Learning Jiaqi Wang, Qi Li, Lingjuan Lyu, Fenglong Ma
-
Efficient Minimum Bayes Risk Decoding using Low-Rank Matrix Completion Algorithms Firas Trabelsi, David Vilar, Mara Finkelstein, Markus Freitag
-
USCILab3D: A Large-scale, Long-term, Semantically Annotated Outdoor Dataset Kiran Lekkala, Henghui Bao, Peixu Cai, Wei Lim, Chen Liu, Laurent Itti
-
Taming the Long Tail in Human Mobility Prediction Xiaohang Xu, Renhe Jiang, Chuang Yang, zipei fan, Kaoru Sezaki
-
Instruction Tuning Large Language Models to Understand Electronic Health Records Zhenbang Wu, Anant Dadu, Michael Nalls, Faraz Faghri, Jimeng Sun
-
Categorical Flow Matching on Statistical Manifolds Chaoran Cheng, Jiahan Li, Jian Peng, Ge Liu
-
How does Inverse RL Scale to Large State Spaces? A Provably Efficient Approach Filippo Lazzati, Mirco Mutti, Alberto Maria Metelli
-
Unlocking the Capabilities of Thought: A Reasoning Boundary Framework to Quantify and Optimize Chain-of-Thought Qiguang Chen, Libo Qin, Jiaqi Wang, Jingxuan Zhou, Wanxiang Che
-
LoRA-GA: Low-Rank Adaptation with Gradient Approximation Shaowen Wang, Linxi Yu, Jian Li
-
FVEL: Interactive Formal Verification Environment with Large Language Models via Theorem Proving Xiaohan Lin, Qingxing Cao, Yinya Huang, Haiming Wang, Jianqiao Lu, Zhengying Liu, Linqi Song, Xiaodan Liang
-
DALD: Improving Logits-based Detector without Logits from Black-box LLMs Cong Zeng, Shengkun Tang, Xianjun Yang, Yuanzhou Chen, Yiyou Sun, Zhiqiang Xu, Yao Li, Haifeng Chen, Wei Cheng, Dongkuan (DK) Xu
-
Free-Rider and Conflict Aware Collaboration Formation for Cross-Silo Federated Learning Mengmeng Chen, Xiaohu Wu, Xiaoli Tang, Tiantian He, Yew Soon Ong, QIQI LIU, Qicheng Lao, Han Yu
-
JailbreakBench: An Open Robustness Benchmark for Jailbreaking Large Language Models Patrick Chao, Edoardo Debenedetti, Alexander Robey, Maksym Andriushchenko, Francesco Croce, Vikash Sehwag, Edgar Dobriban, Nicolas Flammarion, George J. Pappas, Florian Tramer, Hamed Hassani, Eric Wong
-
Distributionally Robust Performative Prediction Songkai Xue, Yuekai Sun
-
Abrupt Learning in Transformers: A Case Study on Matrix Completion Pulkit Gopalani, Ekdeep S Lubana, Wei Hu
-
Pre-Trained Multi-Goal Transformers with Prompt Optimization for Efficient Online Adaptation Haoqi Yuan, Yuhui Fu, Feiyang Xie, Zongqing Lu
-
FilterNet: Harnessing Frequency Filters for Time Series Forecasting Kun Yi, Jingru Fei, Qi Zhang, Hui He, Shufeng Hao, Defu Lian, Wei Fan
-
Not All Diffusion Model Activations Have Been Evaluated as Discriminative Features Benyuan Meng, Qianqian Xu, Zitai Wang, Xiaochun Cao, Qingming Huang
-
Estimating Ego-Body Pose from Doubly Sparse Egocentric Video Data Seunggeun Chi, Pin-Hao Huang, Enna Sachdeva, Hengbo Ma, Karthik Ramani, Kwonjoon Lee
-
DECRL: A Deep Evolutionary Clustering Jointed Temporal Knowledge Graph Representation Learning Approach Qian Chen, Ling Chen
-
Single Image Reflection Separation via Dual-Stream Interactive Transformers Qiming Hu, Hainuo Wang, Xiaojie Guo
-
Recursive Introspection: Teaching Language Model Agents How to Self-Improve Yuxiao Qu, Tianjun Zhang, Naman Garg, Aviral Kumar
-
START: A Generalized State Space Model with Saliency-Driven Token-Aware Transformation Jintao Guo, Lei Qi, Yinghuan Shi, Yang Gao
-
When does perceptual alignment benefit vision representations? Shobhita Sundaram, Stephanie Fu, Lukas Muttenthaler, Netanel Tamir, Lucy Chai, Simon Kornblith, Trevor Darrell, Phillip Isola
-
Towards Understanding the Working Mechanism of Text-to-Image Diffusion Model Mingyang Yi, Aoxue Li, Yi Xin, Zhenguo Li
-
Inevitable Trade-off between Watermark Strength and Speculative Sampling Efficiency for Language Models Zhengmian Hu, Heng Huang
-
MoTE: Reconciling Generalization with Specialization for Visual-Language to Video Knowledge Transfer Minghao Zhu, Zhengpu Wang, Mengxian Hu, Ronghao Dang, Xiao Lin, Xun Zhou, Chengju Liu, Qijun Chen
-
UAV3D: A Large-scale 3D Perception Benchmark for Unmanned Aerial Vehicles hui ye, Rajshekhar Sunderraman, Jonathan Shihao Ji
-
DreamClear: High-Capacity Real-World Image Restoration with Privacy-Safe Dataset Curation Yuang Ai, Xiaoqiang Zhou, Huaibo Huang, Xiaotian Han, Zhengyu Chen, Quanzeng You, Hongxia Yang
-
Revisiting Differentially Private ReLU Regression Meng Ding, Mingxi Lei, Liyang Zhu, Shaowei Wang, Di Wang, Jinhui Xu
-
Empowering Active Learning for 3D Molecular Graphs with Geometric Graph Isomorphism Ronast Subedi, Lu Wei, Wenhan Gao, Shayok Chakraborty, Yi Liu
-
Dual Lagrangian Learning for Conic Optimization Mathieu Tanneau, Pascal Van Hentenryck
-
Selective Explanations Lucas Monteiro Paes, Dennis Wei, Flavio Calmon
-
Cascade of phase transitions in the training of energy-based models Dimitrios Bachtis, Giulio Biroli, Aurélien Decelle, Beatriz Seoane
-
WAGLE: Strategic Weight Attribution for Effective and Modular Unlearning in Large Language Models Jinghan Jia, Jiancheng Liu, Yihua Zhang, Parikshit Ram, Nathalie Baracaldo, Sijia Liu
-
Shuffling Gradient-Based Methods for Nonconvex-Concave Minimax Optimization Quoc Tran Dinh, Trang H. Tran, Lam Nguyen
-
Preferential Normalizing Flows Petrus Mikkola, Luigi Acerbi, Arto Klami
-
emg2pose: A Large and Diverse Benchmark for Surface Electromyographic Hand Pose Estimation Sasha Salter, Richard Warren, Collin Schlager, Adrian Spurr, Shangchen Han, Rohin Bhasin, Yujun Cai, Peter Walkington, Anuoluwapo Bolarinwa, Robert J. Wang, Nathan Danielson, Josh S. Merel, Eftychios A. Pnevmatikakis, Jesse Marshall
-
SceneDiffuser: Efficient and Controllable Driving Simulation Initialization and Rollout Max Jiang, Yijing Bai, Andre Cornman, Christopher Davis, XIUKUN HUANG, Hong Jeon, Sakshum Kulshrestha, John Lambert, Shuangyu Li, Xuanyu Zhou, Carlos Fuertes, Chang Yuan, Mingxing Tan, Yin Zhou, Dragomir Anguelov
-
GeoLRM: Geometry-Aware Large Reconstruction Model for High-Quality 3D Gaussian Generation Chubin Zhang, Hongliang Song, Yi Wei, Chen Yu, Jiwen Lu, Yansong Tang
-
CryoSPIN: Improving Ab-Initio Cryo-EM Reconstruction with Semi-Amortized Pose Inference Shayan Shekarforoush, David Lindell, Marcus A. Brubaker, David J. Fleet
-
Disentangled Style Domain for Implicit $z$-Watermark Towards Copyright Protection Junqiang Huang, Zhaojun Guo, Ge Luo, Zhenxing Qian, Sheng Li, Xinpeng Zhang
-
EZ-HOI: VLM Adaptation via Guided Prompt Learning for Zero-Shot HOI Detection Qinqian Lei, Bo Wang, Robby Tan
-
Near-Optimal Dynamic Regret for Adversarial Linear Mixture MDPs Long-Fei Li, Peng Zhao, Zhi-Hua Zhou
-
Online Classification with Predictions Vinod Raman, Ambuj Tewari
-
QWO: Speeding Up Permutation-Based Causal Discovery in LiGAMs Mohammad Shahverdikondori, Ehsan Mokhtarian, Negar Kiyavash
-
Towards Robust Multimodal Sentiment Analysis with Incomplete Data Haoyu Zhang, Wenbin Wang, Tianshu Yu
-
Era3D: High-Resolution Multiview Diffusion using Efficient Row-wise Attention Peng Li, Yuan Liu, Xiaoxiao Long, Feihu Zhang, Cheng Lin, Mengfei Li, Xingqun Qi, Shanghang Zhang, Wei Xue, Wenhan Luo, Ping Tan, Wenping Wang, Qifeng Liu, Yike Guo
-
Piecewise-Stationary Bandits with Knapsacks Xilin Zhang, Wang Chi Cheung
-
Do Counterfactually Fair Image Classifiers Satisfy Group Fairness? -- A Theoretical and Empirical Study Sangwon Jung, Sumin Yu, Sanghyuk Chun, Taesup Moon
-
Bileve: Securing Text Provenance in Large Language Models Against Spoofing with Bi-level Signature Tong Zhou, Xuandong Zhao, Xiaolin Xu, Shaolei Ren
-
Deep Homomorphism Networks Takanori Maehara, Hoang NT
-
When to Act and When to Ask: Policy Learning With Deferral Under Hidden Confounding Marah Ghoummaid, Uri Shalit
-
Maximum Entropy Reinforcement Learning via Energy-Based Normalizing Flow Chen-Hao Chao, Chien Feng, Wei-Fang Sun, Cheng-Kuang Lee, Simon See, Chun-Yi Lee
-
FasterDiT: Towards Faster Diffusion Transformers Training without Architecture Modification JINGFENG YAO, Cheng Wang, Wenyu Liu, Xinggang Wang
-
Large Pre-trained time series models for cross-domain Time series analysis tasks Harshavardhan Prabhakar Kamarthi, B. Aditya Prakash
-
Iteratively Refined Behavior Regularization for Offline Reinforcement Learning Yi Ma, Jianye Hao, Xiaohan Hu, YAN ZHENG, Chenjun Xiao
-
Rethinking LLM Memorization through the Lens of Adversarial Compression Avi Schwarzschild, Zhili Feng, Pratyush Maini, Zachary Lipton, J. Zico Kolter
-
Learning in Markov Games with Adaptive Adversaries: Policy Regret, Fundamental Barriers, and Efficient Algorithms Thanh Nguyen-Tang, Raman Arora
-
BAM! Just Like That: Simple and Efficient Parameter Upcycling for Mixture of Experts Qizhen (Irene) Zhang, Nikolas Gritsch, Dwaraknath Gnaneshwar Talupuru, Simon Guo, David Cairuz, Bharat Venkitesh, Jakob Foerster, Phil Blunsom, Sebastian Ruder, Ahmet Üstün, Acyr Locatelli
-
Self-Calibrated Tuning of Vision-Language Models for Out-of-Distribution Detection Geng Yu, Jianing Zhu, Jiangchao Yao, Bo Han
-
An Efficient Recipe for Long Context Extension via Middle-Focused Positional Encoding Tong Wu, Yanpeng Zhao, Zilong Zheng
-
Precipitation Downscaling with Spatiotemporal Video Diffusion Prakhar Srivastava, Ruihan Yang, Gavin Kerrigan, Gideon Dresdner, Jeremy McGibbon, Christopher S. Bretherton, Stephan Mandt
-
Diversity Is Not All You Need: Training A Robust Cooperative Agent Needs Specialist Partners Rujikorn Charakorn, Poramate Manoonpong, Nat Dilokthanakul
-
Autoregressive Image Generation without Vector Quantization Tianhong Li, Yonglong Tian, He Li, Mingyang Deng, Kaiming He
-
Clustering with Non-adaptive Subset Queries Hadley Black, Euiwoong Lee, Arya Mazumdar, Barna Saha
-
What Variables Affect Out-of-Distribution Generalization in Pretrained Models? Md Yousuf Harun, Kyungbok Lee, Gianmarco Gallardo, Giri Krishnan, Christopher Kanan
-
Bayesian Adaptive Calibration and Optimal Design Rafael Oliveira, Dino Sejdinovic, David Howard, Edwin V. Bonilla
-
Deep Submodular Peripteral Networks Gantavya Bhatt, Arnav Das, Jeff A Bilmes
-
Parametric model reduction of mean-field and stochastic systems via higher-order action matching Jules Berman, Tobias Blickhan, Benjamin Peherstorfer
-
DeeR-VLA: Dynamic Inference of Multimodal Large Language Models for Efficient Robot Execution Yang Yue, Yulin Wang, Bingyi Kang, Yizeng Han, Shenzhi Wang, Shiji Song, Jiashi Feng, Gao Huang
-
Can Simple Averaging Defeat Modern Watermarks? Pei Yang, Hai Ci, Yiren Song, Mike Zheng Shou
-
Causal language modeling can elicit search and reasoning capabilities on logic puzzles Kulin Shah, Nishanth Dikkala, Xin Wang, Rina Panigrahy
-
Local and Adaptive Mirror Descents in Extensive-Form Games Côme Fiegel, Pierre Ménard, Tadashi Kozuno, Remi Munos, Vianney Perchet, Michal Valko
-
Single-Loop Stochastic Algorithms for Difference of Max-Structured Weakly Convex Functions Quanqi Hu, Qi Qi, Zhaosong Lu, Tianbao Yang
-
GTA: Generative Trajectory Augmentation with Guidance for Offline Reinforcement Learning Jaewoo Lee, Sujin Yun, Taeyoung Yun, Jinkyoo Park
-
UniAudio 1.5: Large Language Model-Driven Audio Codec is A Few-Shot Audio Task Learner Dongchao Yang, Haohan Guo, Yuanyuan Wang, Rongjie Huang, Xiang Li, Xu Tan, Xixin Wu, Helen Meng
-
L4GM: Large 4D Gaussian Reconstruction Model Jiawei Ren, Cheng Xie, Ashkan Mirzaei, hanxue liang, xiaohui zeng, Karsten Kreis, Ziwei Liu, Antonio Torralba, Sanja Fidler, Seung Wook Kim, Huan Ling
-
One for All: Multi-Domain Joint Training for Point Cloud Based 3D Object Detection Zhenyu Wang, Ya-Li Li, Hengshuang Zhao, Shengjin Wang
-
Construction and Application of Materials Knowledge Graph in Multidisciplinary Materials Science via Large Language Model Yanpeng Ye, Jie Ren, Shaozhou Wang, Yuwei Wan, Imran Razzak, Bram Hoex, Haofen Wang, Tong Xie, Wenjie Zhang
-
SD-Eval: A Benchmark Dataset for Spoken Dialogue Understanding Beyond Words Junyi AO, Yuancheng Wang, Xiaohai Tian, Dekun Chen, Jun Zhang, Lu Lu, Yuxuan Wang, Haizhou Li, Zhizheng Wu
-
Contrasting with Symile: Simple Model-Agnostic Representation Learning for Unlimited Modalities Adriel Saporta, Aahlad Manas Puli, Mark Goldstein, Rajesh Ranganath
-
Spectral Editing of Activations for Large Language Model Alignment Yifu QIU, Zheng Zhao, Yftah Ziser, Anna Korhonen, Edoardo Maria Ponti, Shay Cohen
-
Mixture of neural fields for heterogeneous reconstruction in cryo-EM Axel Levy, Rishwanth Raghu, David Shustin, Adele Peng, Huan Li, Oliver Clarke, Gordon Wetzstein, Ellen Zhong
-
LISA: Layerwise Importance Sampling for Memory-Efficient Large Language Model Fine-Tuning Rui Pan, Xiang Liu, SHIZHE DIAO, Renjie Pi, Jipeng Zhang, Chi Han, Tong Zhang
-
ODGS: 3D Scene Reconstruction from Omnidirectional Images with 3D Gaussian Splattings Suyoung Lee, Jaeyoung Chung, Jaeyoo Huh, Kyoung Mu Lee
-
Geometric-Averaged Preference Optimization for Soft Preference Labels Hiroki Furuta, Kuang-Huei Lee, Shixiang (Shane) Gu, Yutaka Matsuo, Aleksandra Faust, Heiga Zen, Izzeddin Gur
-
Magnet: We Never Know How Text-to-Image Diffusion Models Work, Until We Learn How Vision-Language Models Function Chenyi Zhuang, Ying Hu, Pan Gao
-
Enhancing Graph Transformers with Hierarchical Distance Structural Encoding Yuankai Luo, Hongkang Li, Lei Shi, Xiao-Ming Wu
-
Graph Neural Flows for Unveiling Systemic Interactions Among Irregularly Sampled Time Series Giangiacomo Mercatali, Andre Freitas, Jie Chen
-
Vitron: A Unified Pixel-level Vision LLM for Understanding, Generating, Segmenting, Editing Hao Fei, Shengqiong Wu, Hanwang Zhang, Tat-Seng Chua, Shuicheng Yan
-
Vript: A Video Is Worth Thousands of Words Dongjie Yang, Suyuan Huang, Chengqiang Lu, Xiaodong Han, Haoxin Zhang, Yan Gao, Yao Hu, Hai Zhao
-
PANORAMIA: Privacy Auditing of Machine Learning Models without Retraining Mishaal Kazmi, Hadrien Lautraite, Alireza Akbari, Qiaoyue Tang, Mauricio Soroco, Tao Wang, Sébastien Gambs, Mathias Lécuyer
-
A Metalearned Neural Circuit for Nonparametric Bayesian Inference Jake Snell, Gianluca Bencomo, Tom Griffiths
-
MSA Generation with Seqs2Seqs Pretraining: Advancing Protein Structure Predictions LE ZHANG, Jiayang Chen, Tao Shen, Yu Li, Siqi Sun
-
Learning on Large Graphs using Intersecting Communities Ben Finkelshtein, Ismail Ceylan, Michael Bronstein, Ron Levie
-
Flow Priors for Linear Inverse Problems via Iterative Corrupted Trajectory Matching Yasi Zhang, Peiyu Yu, Yaxuan Zhu, Yingshan CHANG, Feng Gao, Ying Nian Wu, Oscar Leong
-
No-Regret M${}^{\natural}$-Concave Function Maximization: Stochastic Bandit Algorithms and NP-Hardness of Adversarial Full-Information Setting Taihei Oki, Shinsaku Sakaue
-
BIGOS V2 Benchmark for Polish ASR: Curated Datasets and Tools for Reproducible Evaluation Michał Junczyk
-
NYU CTF Bench: A Scalable Open-Source Benchmark Dataset for Evaluating LLMs in Offensive Security Minghao Shao, Sofija Jancheska, Meet Udeshi, Brendan Dolan-Gavitt, haoran xi, Kimberly Milner, Boyuan Chen, Max Yin, Siddharth Garg, Prashanth Krishnamurthy, Farshad Khorrami, Ramesh Karri, Muhammad Shafique
-
Understanding Generalizability of Diffusion Models Requires Rethinking the Hidden Gaussian Structure Xiang Li, Yixiang Dai, Qing Qu
-
MGF: Mixed Gaussian Flow for Diverse Trajectory Prediction Jiahe Chen, Jinkun Cao, Dahua Lin, Kris Kitani, Jiangmiao Pang
-
DeltaDEQ: Exploiting Heterogeneous Convergence for Accelerating Deep Equilibrium Iterations Zuowen Wang, Longbiao Cheng, Pehuen Moure, Niklas Hahn, Shih-Chii Liu
-
Functionally Constrained Algorithm Solves Convex Simple Bilevel Problem Huaqing Zhang, Lesi Chen, Jing Xu, Jingzhao Zhang
-
EvoCodeBench: An Evolving Code Generation Benchmark with Domain-Specific Evaluations Jia Li, Ge Li, Xuanming Zhang, YunFei Zhao, Yihong Dong, Zhi Jin, Binhua Li, Fei Huang, Yongbin Li
-
Generalizable and Animatable Gaussian Head Avatar Xuangeng Chu, Tatsuya Harada
-
No-Regret Learning for Fair Multi-Agent Social Welfare Optimization Mengxiao Zhang, Ramiro Deo-Campo Vuong, Haipeng Luo
-
Initializing Services in Interactive ML Systems for Diverse Users Avinandan Bose, Mihaela Curmei, Daniel Jiang, Jamie H. Morgenstern, Sarah Dean, Lillian Ratliff, Maryam Fazel
-
Shadowcast: Stealthy Data Poisoning Attacks Against Vision-Language Models Yuancheng Xu, Jiarui Yao, Manli Shu, Yanchao Sun, Zichu Wu, Ning Yu, Tom Goldstein, Furong Huang
-
Rethinking Exploration in Reinforcement Learning with Effective Metric-Based Exploration Bonus Yiming Wang, Kaiyan Zhao, Furui Liu, Leong Hou U
-
Local Curvature Smoothing with Stein's Identity for Efficient Score Matching GENKI OSADA, Makoto Shing, Takashi Nishide
-
CoIN: A Benchmark of Continual Instruction Tuning for Multimodel Large Language Models Cheng Chen, Junchen Zhu, Xu Luo, Hengtao Shen, Jingkuan Song, Lianli Gao
-
The Multimodal Universe: Enabling Large-Scale Machine Learning with 100 TB of Astronomical Scientific Data Eirini Angeloudi, Jeroen Audenaert, Micah Bowles, Benjamin M. Boyd, David Chemaly, Brian Cherinka, Ioana Ciucă, Miles Cranmer, Aaron Do, Matthew Grayling, Erin E. Hayes, Tom Hehir, Shirley Ho, Marc Huertas-Company, Kartheik Iyer, Maja Jablonska, Francois Lanusse, Henry Leung, Kaisey Mandel, Rafael Martínez-Galarza, Peter Melchior, Lucas Meyer, Liam Parker, Helen Qu, Jeff Shen, Michael T. Smith, Connor Stone, Mike Walmsley, John Wu
-
Model-based Diffusion for Trajectory Optimization Chaoyi Pan, Zeji Yi, Guanya Shi, Guannan Qu
-
A Cat Is A Cat (Not A Dog!): Unraveling Information Mix-ups in Text-to-Image Encoders through Causal Analysis and Embedding Optimization Chieh-Yun Chen, Chiang Tseng, Li-Wu Tsao, Hong-Han Shuai
-
Learning De-Biased Representations for Remote-Sensing Imagery Zichen Tian, Zhaozheng CHEN, QIANRU SUN
-
Challenges of Generating Structurally Diverse Graphs Fedor Velikonivtsev, Mikhail Mironov, Liudmila Prokhorenkova
-
The Price of Implicit Bias in Adversarially Robust Generalization Nikolaos Tsilivis, Natalie Frank, Nati Srebro, Julia Kempe
-
A probability contrastive learning framework for 3D molecular representation learning Jiayu Qin, Jian Chen, Rohan Sharma, Jingchen Sun, Changyou Chen
-
To Believe or Not to Believe Your LLM: Iterative Prompting for Estimating Epistemic Uncertainty Yasin Abbasi Yadkori, Ilja Kuzborskij, András György, Csaba Szepesvari
-
From News to Forecast: Integrating Event Analysis in LLM-Based Time Series Forecasting with Reflection Xinlei Wang, Maike Feng, Jing Qiu, JINJIN GU, Junhua Zhao
-
Vision-Language Models are Strong Noisy Label Detectors Tong Wei, Hao-Tian Li, ChunShu Li, Jiang-Xin Shi, Yu-Feng Li, Min-Ling Zhang
-
Teach Better or Show Smarter? On Instructions and Exemplars in Automatic Prompt Optimization Xingchen Wan, Ruoxi Sun, Hootan Nakhost, Sercan Arik
-
Algorithmic progress in language models Wing Hin Anson Ho, Tamay Besiroglu, Ege Erdil, Zifan Guo, David Owen, Robi Rahman, David Atkinson, Neil Thompson, Jaime Sevilla
-
Train-Attention: Meta-Learning Where to Focus in Continual Knowledge Learning Seo Yeongbin, Dongha Lee, Jinyoung Yeo
-
One Sample Fits All: Approximating All Probabilistic Values Simultaneously and Efficiently Weida Li, Yaoliang Yu
-
Forgetting, Ignorance or Myopia: Revisiting Key Challenges in Online Continual Learning Wang Xinrui, Chuanxing Geng, Wenhai Wan, Shao-Yuan Li, Songcan Chen
-
Sample and Computationally Efficient Robust Learning of Gaussian Single-Index Models Puqian Wang, Nikos Zarifis, Ilias Diakonikolas, Jelena Diakonikolas
-
Towards Unsupervised Model Selection for Domain Adaptive Object Detection Hengfu Yu, Jinhong Deng, Wen Li, Lixin Duan
-
Where Do Large Learning Rates Lead Us? Ildus Sadrtdinov, Maxim Kodryan, Eduard Pokonechny, Ekaterina Lobacheva, Dmitry P. Vetrov
-
Mixture of Nested Experts: Adaptive Processing of Visual Tokens Gagan Jain, Nidhi Hegde, Aditya Kusupati, Arsha Nagrani, Shyamal Buch, Prateek Jain, Anurag Arnab, Sujoy Paul
-
Unified Domain Generalization and Adaptation for Multi-View 3D Object Detection Gyusam Chang, Jiwon Lee, Donghyun Kim, Jinkyu Kim, Dongwook Lee, Daehyun Ji, Sujin Jang, Sangpil Kim
-
Muharaf: Manuscripts of Handwritten Arabic Dataset for Cursive Text Recognition Mehreen Saeed, Adrian Chan, Anupam Mijar, joseph Moukarzel, Gerges Habchi, Carlos Younes, amin elias, Chau-Wai Wong, Akram Khater
-
Provably Efficient Reinforcement Learning with Multinomial Logit Function Approximation Long-Fei Li, Yu-Jie Zhang, Peng Zhao, Zhi-Hua Zhou
-
Conformalized Multiple Testing after Data-dependent Selection Xiaoning Wang, Yuyang Huo, Liuhua Peng, Changliang Zou
-
GrounDiT: Grounding Diffusion Transformers via Noisy Patch Transplantation Yuseung Lee, Taehoon Yoon, Minhyuk Sung
-
Reconstruction of Manipulated Garment with Guided Deformation Prior Ren Li, Corentin Dumery, Zhantao Deng, Pascal Fua
-
Navigating Chemical Space with Latent Flows Guanghao Wei, Yining Huang, Chenru Duan, Yue Song, Yuanqi Du
-
Assemblage: Automatic Binary Dataset Construction for Machine Learning Chang Liu, Rebecca Saul, Yihao Sun, Edward Raff, Maya Fuchs, Townsend Southard Pantano, James Holt, Kristopher Micinski
-
Neural network learns low-dimensional polynomials with SGD near the information-theoretic limit Jason D. Lee, Kazusato Oko, Taiji Suzuki, Denny Wu
-
Diffusion for World Modeling: Visual Details Matter in Atari Eloi Alonso, Adam Jelley, Vincent Micheli, Anssi Kanervisto, Amos J. Storkey, Tim Pearce, François Fleuret
-
Black-Box Forgetting Yusuke Kuwana, Yuta Goto, Takashi Shibata, Go Irie
-
Continual learning with the neural tangent ensemble Ari Benjamin, Christian-Gernot Pehle, Kyle Daruwalla
-
Aligning Audio-Visual Joint Representations with an Agentic Workflow Shentong Mo, Yibing Song
-
CLAVE: An Adaptive Framework for Evaluating Values of LLM Generated Responses Jing Yao, Xiaoyuan Yi, Xing Xie
-
Inference via Interpolation: Contrastive Representations Provably Enable Planning and Inference Benjamin Eysenbach, Vivek Myers, Ruslan Salakhutdinov, Sergey Levine
-
Self-Guided Masked Autoencoder Jeongwoo Shin, Inseo Lee, Junho Lee, Joonseok Lee
-
Robust Offline Active Learning on Graphs Yuanchen Wu, Yubai Yuan
-
OnlineTAS: An Online Baseline for Temporal Action Segmentation Qing Zhong, Guodong Ding, Angela Yao
-
Efficient LLM Scheduling by Learning to Rank Yichao Fu, Siqi Zhu, Runlong Su, Aurick Qiao, Ion Stoica, Hao Zhang
-
Swift Sampler: Efficient Learning of Sampler by 10 Parameters Jiawei Yao, Chuming Li, Canran Xiao
-
Identifiability Analysis of Linear ODE Systems with Hidden Confounders Yuanyuan Wang, Biwei Huang, Wei Huang, Xi Geng, Mingming Gong
-
EGODE: An Event-attended Graph ODE Framework for Modeling Rigid Dynamics Jingyang Yuan, Gongbo Sun, Zhiping Xiao, Hang Zhou, Xiao Luo, Junyu Luo, Yusheng Zhao, Wei Ju, Ming Zhang
-
Validating Climate Models with Spherical Convolutional Wasserstein Distance Robert Garrett, Trevor Harris, Zhuo Wang, Bo Li
-
Optical Diffusion Models for Image Generation Ilker Oguz, Niyazi Dinc, Mustafa Yildirim, Junjie Ke, Innfarn Yoo, Qifei Wang, Feng Yang, Christophe Moser, Demetri Psaltis
-
Private Stochastic Convex Optimization with Heavy Tails: Near-Optimality from Simple Reductions Hilal Asi, Daogao Liu, Kevin Tian
-
OpenSatMap: A Fine-grained High-resolution Satellite Dataset for Large-scale Map Construction Hongbo Zhao, Lue Fan, Yuntao Chen, Haochen Wang, yuran Yang, Xiaojuan Jin, YIXIN ZHANG, GAOFENG MENG, ZHAO-XIANG ZHANG
-
Learning World Models for Unconstrained Goal Navigation Yuanlin Duan, Wensen Mao, He Zhu
-
An engine not a camera: Measuring performative power of online search Celestine Mendler-Dünner, Gabriele Carovano, Moritz Hardt
-
DFA-GNN: Forward Learning of Graph Neural Networks by Direct Feedback Alignment Gongpei Zhao, Tao Wang, Congyan Lang, Yi Jin, Yidong Li, Haibin Ling
-
MeshFormer : High-Quality Mesh Generation with 3D-Guided Reconstruction Model Minghua Liu, Chong Zeng, Xinyue Wei, Ruoxi Shi, Linghao Chen, Chao Xu, Mengqi Zhang, Zhaoning Wang, Xiaoshuai Zhang, Isabella Liu, Hongzhi Wu, Hao Su
-
SubjECTive-QA: Measuring Subjectivity in Earnings Call Transcripts' QA Through Six-Dimensional Feature Analysis Huzaifa Pardawala, Siddhant Sukhani, Agam Shah, Veer Kejriwal, Abhishek Pillai, Rohan Bhasin, Andrew DiBiasio, Tarun Mandapati, Dhruv Adha, Sudheer Chava
-
Differentiable Task Graph Learning: Procedural Activity Representation and Online Mistake Detection from Egocentric Videos Luigi Seminara, Giovanni Maria Farinella, Antonino Furnari
-
Jailbreaking Large Language Models Against Moderation Guardrails via Cipher Characters Haibo Jin, Andy Zhou, Joe Menke, Haohan Wang
-
Benchmarking Generative Models on Computational Thinking Tests in Elementary Visual Programming Victor-Alexandru Pădurean, Adish Singla
-
MmCows: A Multimodal Dataset for Dairy Cattle Monitoring Hien Vu, Omkar Chandrakant Prabhune, Unmesh Raskar, Dimuth Panditharatne, Hanwook Chung, Christopher Choi, Younghyun Kim
-
A Unified Framework for 3D Scene Understanding Wei Xu, Chunsheng Shi, Sifan Tu, Xin Zhou, Dingkang Liang, Xiang Bai
-
Reciprocal Reward Influence Encourages Cooperation From Self-Interested Agents John L Zhou, Weizhe Hong, Jonathan Kao
-
Navigable Graphs for High-Dimensional Nearest Neighbor Search: Constructions and Limits Haya Diwan, Jinrui Gou, Cameron Musco, Christopher Musco, Torsten Suel
-
HippoRAG: Neurobiologically Inspired Long-Term Memory for Large Language Models Bernal Jimenez Gutierrez, Yiheng Shu, Yu Gu, Michihiro Yasunaga, Yu Su
-
Breaking Semantic Artifacts for Generalized AI-generated Image Detection Chende Zheng, Chenhao Lin, Zhengyu Zhao, Hang Wang, Xu Guo, Shuai Liu, Chao Shen
-
QTIP: Quantization with Trellises and Incoherence Processing Albert Tseng, Qingyao Sun, David Hou, Christopher M. De Sa
-
Imprecise Label Learning: A Unified Framework for Learning with Various Imprecise Label Configurations Hao Chen, Ankit Shah, Jindong Wang, Ran Tao, Yidong Wang, Xiang Li, Xing Xie, Masashi Sugiyama, Rita Singh, Bhiksha Raj
-
Minimum Entropy Coupling with Bottleneck Reza Ebrahimi, Jun Chen, Ashish Khisti
-
Artificial Generational Intelligence: Cultural Accumulation in Reinforcement Learning Jonathan Cook, Chris Lu, Edward Hughes, Joel Z. Leibo, Jakob Foerster
-
RMLR: Extending Multinomial Logistic Regression into General Geometries Ziheng Chen, Yue Song, Rui Wang, Xiaojun Wu, Nicu Sebe
-
Wide Two-Layer Networks can Learn from Adversarial Perturbations Soichiro Kumano, Hiroshi Kera, Toshihiko Yamasaki
-
Coupled Mamba: Enhanced Multimodal Fusion with Coupled State Space Model Wenbing Li, Hang Zhou, Junqing Yu, Zikai Song, Wei Yang
-
Synthesize, Partition, then Adapt: Eliciting Diverse Samples from Foundation Models Yeming Wen, Swarat Chaudhuri
-
ODRL: A Benchmark for Off-Dynamics Reinforcement Learning Jiafei Lyu, Kang Xu, Jiacheng Xu, yan, Jing-Wen Yang, Zongzhang Zhang, Chenjia Bai, Zongqing Lu, Xiu Li
-
S$^{2}$FT: Efficient, Scalable and Generalizable LLM Fine-tuning by Structured Sparsity Xinyu Yang, Jixuan Leng, Geyang Guo, Jiawei Zhao, Ryumei Nakada, Linjun Zhang, Huaxiu Yao, Beidi Chen
-
SR-CACO-2: A Dataset for Confocal Fluorescence Microscopy Image Super-Resolution Soufiane Belharbi, Mara Whitford, Phuong Hoang, Shakeeb Murtaza, Luke McCaffrey, Eric Granger
-
OPEL: Optimal Transport Guided ProcedurE Learning Sayeed Shafayet Chowdhury, Soumyadeep Chandra, Kaushik Roy
-
ANAH-v2: Scaling Analytical Hallucination Annotation of Large Language Models Yuzhe Gu, Ziwei Ji, Wenwei Zhang, Chengqi Lyu, Dahua Lin, Kai Chen
-
Unveiling The Matthew Effect Across Channels: Assessing Layer Width Sufficiency via Weight Norm Variance Yiting Chen, Jiazi Bu, Junchi Yan
-
Learning to Cooperate with Humans using Generative Agents Yancheng Liang, Daphne Chen, Abhishek Gupta, Simon S. Du, Natasha Jaques
-
ReMI: A Dataset for Reasoning with Multiple Images Mehran Kazemi, Nishanth Dikkala, Ankit Anand, Petar Devic, Ishita Dasgupta, Fangyu Liu, Bahare Fatemi, Pranjal Awasthi, Sreenivas Gollapudi, Dee Guo, Ahmed Qureshi
-
Active, anytime-valid risk controlling prediction sets Ziyu Xu, Nikos Karampatziakis, Paul Mineiro
-
SGD vs GD: Rank Deficiency in Linear Networks Aditya Vardhan Varre, Margarita Sagitova, Nicolas Flammarion
-
Are Language Models Actually Useful for Time Series Forecasting? Mingtian Tan, Mike Merrill, Vinayak Gupta, Tim Althoff, Tom Hartvigsen
-
Parameterized Approximation Schemes for Fair-Range Clustering Zhen Zhang, Xiaohong Chen, Limei Liu, Jie Chen, Junyu Huang, Qilong Feng
-
Simulation-Free Training of Neural ODEs on Paired Data Semin Kim, Jaehoon Yoo, Jinwoo Kim, Yeonwoo Cha, Saehoon Kim, Seunghoon Hong
-
Infusing Synthetic Data with Real-World Patterns for Zero-Shot Material State Segmentation sagi eppel, Jolina Li, Manuel Drehwald, Alan Aspuru-Guzik
-
ETO:Efficient Transformer-based Local Feature Matching by Organizing Multiple Homography Hypotheses Junjie Ni, Guofeng Zhang, Guanglin Li, Yijin Li, Xinyang Liu, Zhaoyang Huang, Hujun Bao
-
SemCoder: Training Code Language Models with Comprehensive Semantics Reasoning Yangruibo Ding, Jinjun Peng, Marcus Min, Gail Kaiser, Junfeng Yang, Baishakhi Ray
-
On the Limitations of Fractal Dimension as a Measure of Generalization Charlie Tan, Inés García-Redondo, Qiquan Wang, Michael Bronstein, Anthea Monod
-
ColJailBreak: Collaborative Generation and Editing for Jailbreaking Text-to-Image Deep Generation Yizhuo Ma, Shanmin Pang, Qi Guo, Tianyu Wei, Qing Guo
-
DI-MaskDINO: A Joint Object Detection and Instance Segmentation Model Zhixiong Nan, Li Xianghong, Tao Xiang, Jifeng Dai
-
Leveraging partial stragglers within gradient coding Aditya RAMAMOORTHY, Ruoyu Meng, Vrinda Girimaji
-
Multiclass Transductive Online Learning Steve Hanneke, Vinod Raman, Amirreza Shaeiri, Unique Subedi
-
Generating Code World Models with Large Language Models Guided by Monte Carlo Tree Search Nicola Dainese, Matteo Merler, Minttu Alakuijala, Pekka Marttinen
-
Localizing Memorization in SSL Vision Encoders Wenhao Wang, Adam Dziedzic, Michael Backes, Franziska Boenisch
-
LibAMM: Empirical Insights into Approximate Computing for Accelerating Matrix Multiplication Xianzhi Zeng, Wenchao Jiang, Shuhao Zhang
-
Opponent Modeling based on Subgoal Inference XiaoPeng Yu, Jiechuan Jiang, Zongqing Lu
-
Scaling Laws in Linear Regression: Compute, Parameters, and Data Licong Lin, Jingfeng Wu, Sham Kakade, Peter Bartlett, Jason D. Lee
-
Cherry on Top: Parameter Heterogeneity and Quantization in Large Language Models Wanyun Cui, Qianle Wang
-
How Do Large Language Models Acquire Factual Knowledge During Pretraining? Hoyeon Chang, Jinho Park, Seonghyeon Ye, Sohee Yang, Youngkyung Seo, Du-Seong Chang, Minjoon Seo
-
YouDream: Generating Anatomically Controllable Consistent Text-to-3D Animals Sandeep Mishra, Oindrila Saha, Alan Bovik
-
Online Consistency of the Nearest Neighbor Rule Geelon So, Sanjoy Dasgupta
-
Constrained Binary Decision Making Daniel Průša, Vojtech Franc
-
Found in the Middle: How Language Models Use Long Contexts Better via Plug-and-Play Positional Encoding Zhenyu Zhang, Runjin Chen, Shiwei Liu, Zhewei Yao, Olatunji Ruwase, Beidi Chen, Xiaoxia Wu, Zhangyang "Atlas" Wang
-
HW-GPT-Bench: Hardware-Aware Architecture Benchmark for Language Models Rhea Sukthanker, Arber Zela, Benedikt Staffler, Aaron Klein, Lennart Purucker, Jörg Franke, Frank Hutter
-
RA-PbRL: Provably Efficient Risk-Aware Preference-Based Reinforcement Learning Yujie Zhao, Jose Aguilar Escamilla, Weyl Lu, Huazheng Wang
-
Inferring Neural Signed Distance Functions by Overfitting on Single Noisy Point Clouds through Finetuning Data-Driven based Priors Chao Chen, Yu-Shen Liu, Zhizhong Han
-
Flipped Classroom: Aligning Teacher Attention with Student in Generalized Category Discovery Haonan Lin, Wenbin An, Jiahao Wang, Yan Chen, Feng Tian, Mengmeng Wang, QianYing Wang, Guang Dai, Jingdong Wang
-
A Canonicalization Perspective on Invariant and Equivariant Learning George Ma, Yifei Wang, Derek Lim, Stefanie Jegelka, Yisen Wang
-
TEG-DB: A Comprehensive Dataset and Benchmark of Textual-Edge Graphs Zhuofeng Li, Zixing Gou, Xiangnan Zhang, Zhongyuan Liu, Sirui Li, Yuntong Hu, Chen LING, Zheng Zhang, Liang Zhao
-
Neural Conditional Probability for Uncertainty Quantification Vladimir Kostic, Grégoire Pacreau, Giacomo Turri, Pietro Novelli, Karim Lounici, Massimiliano Pontil
-
DDR: Exploiting Deep Degradation Response as Flexible Image Descriptor Juncheng Wu, Zhangkai Ni, Hanli Wang, Wenhan Yang, Yuyin Zhou, Shiqi Wang
-
Tree of Attacks: Jailbreaking Black-Box LLMs Automatically Anay Mehrotra, Manolis Zampetakis, Paul Kassianik, Blaine Nelson, Hyrum Anderson, Yaron Singer, Amin Karbasi
-
Repurposing Language Models into Embedding Models: Finding the Compute-Optimal Recipe Albert Q. Jiang, Alicja Ziarko, Bartosz Piotrowski, Wenda Li, Mateja Jamnik, Piotr Miłoś
-
Diffusion Priors for Variational Likelihood Estimation and Image Denoising Jun Cheng, Shan Tan
-
Exploring the Edges of Latent State Clusters for Goal-Conditioned Reinforcement Learning Yuanlin Duan, Guofeng Cui, He Zhu
-
Spec-Gaussian: Anisotropic View-Dependent Appearance for 3D Gaussian Splatting Ziyi Yang, Xinyu Gao, Yang-Tian Sun, Yihua Huang, Xiaoyang Lyu, Wen Zhou, Shaohui Jiao, Xiaojuan Qi, Xiaogang Jin
-
$\textit{Trans-LoRA}$: towards data-free Transferable Parameter Efficient Finetuning Runqian Wang, Soumya Ghosh, David Cox, Diego Antognini, Aude Oliva, Rogerio Feris, Leonid Karlinsky
-
PACE: Marrying generalization in PArameter-efficient fine-tuning with Consistency rEgularization Yao Ni, Shan Zhang, Piotr Koniusz
-
Real-Time Selection Under General Constraints via Predictive Inference Yuyang Huo, Lin Lu, Haojie Ren, Changliang Zou
-
Unsupervised Homography Estimation on Multimodal Image Pair via Alternating Optimization Sanghyeob Song, Jaihyun Lew, Hyemi Jang, Sungroh Yoon
-
Self-Supervised Alignment with Mutual Information: Learning to Follow Principles without Preference Labels Jan-Philipp Fraenken, Eric Zelikman, Rafael Rafailov, Kanishk Gandhi, Tobias Gerstenberg, Noah Goodman
-
Talking Heads: Understanding Inter-Layer Communication in Transformer Language Models Jack Merullo, Carsten Eickhoff, Ellie Pavlick
-
The Fine-Grained Complexity of Gradient Computation for Training Large Language Models Josh Alman, Zhao Song
-
Learning Cut Generating Functions for Integer Programming Hongyu Cheng, Amitabh Basu
-
Worst-Case Offline Reinforcement Learning with Arbitrary Data Support Kohei Miyaguchi
-
Fairness without Harm: An Influence-Guided Active Sampling Approach Jinlong Pang, Jialu Wang, Zhaowei Zhu, Yuanshun Yao, Chen Qian, Yang Liu
-
Opponent Modeling with In-context Search Yuheng Jing, Bingyun Liu, Kai Li, Yifan Zang, Haobo Fu, Qiang Fu, Junliang Xing, Jian Cheng
-
On Sampling Strategies for Spectral Model Sharding Denis Korzhenkov, Christos Louizos
-
S-SOS: Stochastic Sum-Of-Squares for Parametric Polynomial Optimization Licheng Zhu, Mathias Oster, Yuehaw Khoo
-
TopoLogic: An Interpretable Pipeline for Lane Topology Reasoning on Driving Scenes Yanping Fu, Wenbin Liao, Xinyuan Liu, Hang Xu, Yike Ma, Yucheng Zhang, Feng Dai
-
Detecting and Measuring Confounding Using Causal Mechanism Shifts Abbavaram Gowtham Reddy, Vineeth N Balasubramanian
-
Robust Gaussian Processes via Relevance Pursuit Sebastian Ament, Elizabeth Santorella, David Eriksson, Ben Letham, Maximilian Balandat, Eytan Bakshy
-
No "Zero-Shot" Without Exponential Data: Pretraining Concept Frequency Determines Multimodal Model Performance Vishaal Udandarao, Ameya Prabhu, Adhiraj Ghosh, Yash Sharma, Philip Torr, Adel Bibi, Samuel Albanie, Matthias Bethge
-
On the Minimax Regret for Contextual Linear Bandits and Multi-Armed Bandits with Expert Advice Shinji Ito
-
Gradient Rewiring for Editable Graph Neural Network Training Zhimeng Jiang, Zirui Liu, Xiaotian Han, Qizhang Feng, Hongye Jin, Qiaoyu Tan, Kaixiong Zhou, Na Zou, Xia Hu
-
Understanding Bias in Large-Scale Visual Datasets Boya Zeng, Yida Yin, Zhuang Liu
-
4M-21: An Any-to-Any Vision Model for Tens of Tasks and Modalities Roman Bachmann, Oguzhan Fatih Kar, David Mizrahi, Ali Garjani, Mingfei Gao, David Griffiths, Jiaming Hu, Afshin Dehghan, Amir Zamir
-
BOLD: Boolean Logic Deep Learning Van Minh NGUYEN, Cristian Ocampo-Blandon, Aymen Askri, Louis Leconte, Ba-Hien Tran
-
Unifying Generation and Prediction on Graphs with Latent Graph Diffusion Cai Zhou, Xiyuan Wang, Muhan Zhang
-
Template-free Articulated Gaussian Splatting for Real-time Reposable Dynamic View Synthesis Diwen Wan, Yuxiang Wang, Ruijie Lu, Gang Zeng
-
DART-Eval: A Comprehensive DNA Language Model Evaluation Benchmark on Regulatory DNA Aman Patel, Arpita Singhal, Austin Wang, Anusri Pampari, Maya Kasowski, Anshul Kundaje
-
MAN TruckScenes: A multimodal dataset for autonomous trucking in diverse conditions Felix Fent, Fabian Kuttenreich, Florian Ruch, Farija Rizwin, Stefan Juergens, Lorenz Lechermann, Christian Nissler, Andrea Perl, Ulrich Voll, Min Yan, Markus Lienkamp
-
Rethinking The Training And Evaluation of Rich-Context Layout-to-Image Generation Jiaxin Cheng, ZIXU ZHAO, Tong He, Tianjun Xiao, Zheng Zhang, Yicong Zhou
-
Facilitating Multimodal Classification via Dynamically Learning Modality Gap Yang Yang, Fengqiang Wan, Qing-Yuan Jiang, Yi Xu
-
Periodic agent-state based Q-learning for POMDPs Amit Sinha, Matthieu Geist, Aditya Mahajan
-
Make Your LLM Fully Utilize the Context Shengnan An, Zexiong Ma, Zeqi Lin, Nanning Zheng, Jian-Guang Lou, Weizhu Chen
-
Vivid-ZOO: Multi-View Video Generation with Diffusion Model Bing Li, Cheng Zheng, Wenxuan Zhu, Jinjie Mai, Biao Zhang, Peter Wonka, Bernard Ghanem
-
Boosting Vision-Language Models with Transduction Maxime Zanella, Benoît Gérin, Ismail Ayed
-
Nature-Inspired Local Propagation Alessandro Betti, Marco Gori
-
Regularizing Hidden States Enables Learning Generalizable Reward Model for LLMs Rui Yang, Ruomeng Ding, Yong Lin, Huan Zhang, Tong Zhang
-
OSLO: One-Shot Label-Only Membership Inference Attacks Yuefeng Peng, Jaechul Roh, Subhransu Maji, Amir Houmansadr
-
DistillNeRF: Perceiving 3D Scenes from Single-Glance Images by Distilling Neural Fields and Foundation Model Features Letian Wang, Seung Wook Kim, Jiawei Yang, Cunjun Yu, Boris Ivanovic, Steven Waslander, Yue Wang, Sanja Fidler, Marco Pavone, Peter Karkus
-
The Feature Speed Formula: a flexible approach to scale hyper-parameters of deep neural networks Lénaïc Chizat, Praneeth Netrapalli
-
On the Power of Decision Trees in Auto-Regressive Language Modeling Yulu Gan, Tomer Galanti, Tomaso Poggio, Eran Malach
-
HardCore Generation: Generating Hard UNSAT Problems for Data Augmentation Joseph Cotnareanu, Zhanguang Zhang, Hui-Ling Zhen, Yingxue Zhang, Mark Coates
-
The Mamba in the Llama: Distilling and Accelerating Hybrid Models Junxiong Wang, Daniele Paliotta, Avner May, Alexander Rush, Tri Dao
-
Expectation Alignment: Handling Reward Misspecification in the Presence of Expectation Mismatch Malek Mechergui, Sarath Sreedharan
-
BendVLM: Test-Time Debiasing of Vision-Language Embeddings Walter Gerych, Haoran Zhang, Kimia Hamidieh, Eileen Pan, Maanas K. Sharma, Tom Hartvigsen, Marzyeh Ghassemi
-
An Analysis of Tokenization: Transformers under Markov Data Nived Rajaraman, Jiantao Jiao, Kannan Ramchandran
-
SGLang: Efficient Execution of Structured Language Model Programs Lianmin Zheng, Liangsheng Yin, Zhiqiang Xie, Chuyue (Livia) Sun, Jeff Huang, Cody Hao Yu, Shiyi Cao, Christos Kozyrakis, Ion Stoica, Joseph E. Gonzalez, Clark Barrett, Ying Sheng
-
The Closeness of In-Context Learning and Weight Shifting for Softmax Regression Shuai Li, Zhao Song, Yu Xia, Tong Yu, Tianyi Zhou
-
Induced Model Matching: Restricted Models Help Train Full-Featured Models Usama Muneeb, Mesrob I Ohannessian
-
The ALCHEmist: Automated Labeling 500x CHEaper than LLM Data Annotators Tzu-Heng Huang, Catherine Cao, Vaishnavi Bhargava, Frederic Sala
-
SpikeReveal: Unlocking Temporal Sequences from Real Blurry Inputs with Spike Streams Kang Chen, Shiyan Chen, Jiyuan Zhang, Baoyue Zhang, Yajing Zheng, Tiejun Huang, Zhaofei Yu
-
Are Large Language Models Good Statisticians? Yizhang Zhu, Shiyin Du, Boyan Li, Yuyu Luo, Nan Tang
-
PTQ4DiT: Post-training Quantization for Diffusion Transformers Junyi Wu, Haoxuan Wang, Yuzhang Shang, Mubarak Shah, Yan Yan
-
B-cosification: Transforming Deep Neural Networks to be Inherently Interpretable Shreyash Arya, Sukrut Rao, Moritz Böhle, Bernt Schiele
-
SelfCodeAlign: Self-Alignment for Code Generation Yuxiang Wei, Federico Cassano, Jiawei Liu, Yifeng Ding, Naman Jain, Zachary Mueller, Harm de Vries, Leandro Von Werra, Arjun Guha, LINGMING ZHANG
-
A Cross-Domain Benchmark for Active Learning Thorben Werner, Johannes Burchert, Maximilian Stubbemann, Lars Schmidt-Thieme
-
SPARKLE: A Unified Single-Loop Primal-Dual Framework for Decentralized Bilevel Optimization Shuchen Zhu, Boao Kong, Songtao Lu, Xinmeng Huang, Kun Yuan
-
Mitigating Partial Observability in Sequential Decision Processes via the Lambda Discrepancy Cameron Allen, Aaron Kirtland, Ruo Yu Tao, Sam Lobel, Daniel Scott, Nicholas Petrocelli, Omer Gottesman, Ronald Parr, Michael Littman, George Konidaris
-
The Edge-of-Reach Problem in Offline Model-Based Reinforcement Learning Anya Sims, Cong Lu, Jakob Foerster, Yee Whye Teh
-
UGC: Universal Graph Coarsening Mohit Kataria, Sandeep Kumar, Jayadeva Dr
-
Improving the Training of Rectified Flows Sangyun Lee, Zinan Lin, Giulia Fanti
-
JourneyBench: A Challenging One-Stop Vision-Language Understanding Benchmark of Generated Images Zhecan Wang, Junzhang Liu, Chia-Wei Tang, Hani Alomari, Anushka Sivakumar, Rui Sun, Wenhao Li, Md. Atabuzzaman, Hammad Ayyubi, Haoxuan You, Alvi Md Ishmam, Kai-Wei Chang, Shih-Fu Chang, Christopher Thomas
-
A robust inlier identification algorithm for point cloud registration via $\mathbf{\ell_0}$-minimization Yinuo Jiang, Xiuchuan Tang, Cheng Cheng, Ye Yuan
-
Score-based generative models are provably robust: an uncertainty quantification perspective Nikiforos Mimikos-Stamatopoulos, Benjamin Zhang, Markos Katsoulakis
-
Distributional Reinforcement Learning with Regularized Wasserstein Loss Ke Sun, Yingnan Zhao, Wulong Liu, Bei Jiang, Linglong Kong
-
CryoGEM: Physics-Informed Generative Cryo-Electron Microscopy Jiakai Zhang, Qihe Chen, Yan Zeng, Wenyuan Gao, Xuming He, Zhijie Liu, Jingyi Yu
-
Semi-Open 3D Object Retrieval via Hierarchical Equilibrium on Hypergraph Yang Xu, Yifan Feng, Jun Zhang, Jun-Hai Yong, Yue Gao
-
Task-recency bias strikes back: Adapting covariances in Exemplar-Free Class Incremental Learning Grzegorz Rypeść, Sebastian Cygert, Tomasz Trzcinski, Bartłomiej Twardowski
-
ScaleKD: Strong Vision Transformers Could Be Excellent Teachers Jiawei Fan, Chao Li, Xiaolong Liu, Anbang Yao
-
Unscrambling disease progression at scale: fast inference of event permutations with optimal transport Peter Wijeratne, Daniel Alexander
-
Provably Transformers Harness Multi-Concept Word Semantics for Efficient In-Context Learning Dake Bu, Wei Huang, Andi Han, Atsushi Nitanda, Taiji Suzuki, Qingfu Zhang, Hau-San Wong
-
Differentially Private Optimization with Sparse Gradients Badih Ghazi, Cristóbal Guzmán, Pritish Kamath, Ravi Kumar, Pasin Manurangsi
-
Fourier-enhanced Implicit Neural Fusion Network for Multispectral and Hyperspectral Image Fusion YuJie Liang, ZiHan Cao, Shangqi Deng, Hong-Xia Dou, Liang-Jian Deng
-
Learning Linear Causal Representations from General Environments: Identifiability and Intrinsic Ambiguity Jikai Jin, Vasilis Syrgkanis
-
Self-Retrieval: End-to-End Information Retrieval with One Large Language Model Qiaoyu Tang, Jiawei Chen, Zhuoqun Li, Bowen Yu, Yaojie Lu, ChengFu , Haiyang Yu, Hongyu Lin, Fei Huang, Ben He, Xianpei Han, Le Sun, Yongbin Li
-
Conformal Inverse Optimization Bo Lin, Erick Delage, Timothy Chan
-
Alignment for Honesty Yuqing Yang, Ethan Chern, Xipeng Qiu, Graham Neubig, Pengfei Liu
-
ODGEN: Domain-specific Object Detection Data Generation with Diffusion Models Jingyuan Zhu, Shiyu Li, Yuxuan (Andy) Liu, Jian Yuan, Ping Huang, Jiulong Shan, Huimin Ma
-
Language Models as Zero-shot Lossless Gradient Compressors: Towards General Neural Parameter Prior Models Hui-Po Wang, Mario Fritz
-
When to Sense and Control? A Time-adaptive Approach for Continuous-Time RL Lenart Treven, Bhavya , Yarden As, Florian Dorfler, Andreas Krause
-
Efficient Multi-task LLM Quantization and Serving for Multiple LoRA Adapters Yifei Xia, Fangcheng Fu, Wentao Zhang, Jiawei Jiang, Bin CUI
-
Adversarial Environment Design via Regret-Guided Diffusion Models Hojun Chung, Junseo Lee, Minsoo Kim, Dohyeong Kim, Songhwai Oh
-
Generalizable Implicit Motion Modeling for Video Frame Interpolation Zujin Guo, Wei Li, Chen Change Loy
-
SurgicAI: A Hierarchical Platform for Fine-Grained Surgical Policy Learning and Benchmarking Jin Wu, Haoying Zhou, Peter Kazanzides, Adnan Munawar, Anqi Liu
-
Provable Partially Observable Reinforcement Learning with Privileged Information Yang Cai, Xiangyu Liu, Argyris Oikonomou, Kaiqing Zhang
-
T2VSafetyBench: Evaluating the Safety of Text-to-Video Generative Models Yibo Miao, Yifan Zhu, Lijia Yu, Jun Zhu, Xiao-Shan Gao, Yinpeng Dong
-
Noise-Aware Differentially Private Regression via Meta-Learning Ossi Räisä, Stratis Markou, Matthew Ashman, Wessel Bruinsma, Marlon Tobaben, Antti Honkela, Richard Turner
-
ReFT: Representation Finetuning for Language Models Zhengxuan Wu, Aryaman Arora, Zheng Wang, Atticus Geiger, Dan Jurafsky, Christopher D Manning, Christopher Potts
-
Training Binary Neural Networks via Gaussian Variational Inference and Low-Rank Semidefinite Programming Lorenzo Orecchia, Jiawei Hu, Xue He, Wang Mark, Xulei Yang, Min Wu, Xue Geng
-
SMART: Towards Pre-trained Missing-Aware Model for Patient Health Status Prediction Zhihao Yu, Chu Xu, Yujie Jin, Yasha Wang, Junfeng Zhao
-
Me, Myself, and AI: The Situational Awareness Dataset (SAD) for LLMs Rudolf Laine, Bilal Chughtai, Jan Betley, Kaivalya Hariharan, Mikita Balesni, Jérémy Scheurer, Marius Hobbhahn, Alexander Meinke, Owain Evans
-
BMRS: Bayesian Model Reduction for Structured Pruning Dustin Wright, Christian Igel, Raghavendra Selvan
-
SOFTS: Efficient Multivariate Time Series Forecasting with Series-Core Fusion Han Lu, Xu-Yang Chen, Han-Jia Ye, De-Chuan Zhan
-
MO-DDN: A Coarse-to-Fine Attribute-based Exploration Agent for Multi-Object Demand-driven Navigation Hongcheng Wang, Peiqi Liu, Wenzhe Cai, Mingdong Wu, Zhengyu Qian, Hao Dong
-
The Sample Complexity of Gradient Descent in Stochastic Convex Optimization Roi Livni
-
Fight Back Against Jailbreaking via Prompt Adversarial Tuning Yichuan Mo, Yuji Wang, Zeming Wei, Yisen Wang
-
The Evolution of Statistical Induction Heads: In-Context Learning Markov Chains Ezra Edelman, Nikolaos Tsilivis, Benjamin Edelman, Eran Malach, Surbhi Goel
-
Leveraging Tumor Heterogeneity: Heterogeneous Graph Representation Learning for Cancer Survival Prediction in Whole Slide Images Junxian Wu, Xinyi Ke, XIAOMING JIANG, Huanwen Wu, Youyong Kong, Lizhi Shao
-
Paloma: A Benchmark for Evaluating Language Model Fit Ian Magnusson, Akshita Bhagia, Valentin Hofmann, Luca Soldaini, Ananya Harsh Jha, Oyvind Tafjord, Dustin Schwenk, Evan Walsh, Yanai Elazar, Kyle Lo, Dirk Groeneveld, Iz Beltagy, Hanna Hajishirzi, Noah A. Smith, Kyle Richardson, Jesse Dodge
-
Flipping-based Policy for Chance-Constrained Markov Decision Processes Xun Shen, Shuo Jiang, Akifumi Wachi, Kazumune Hashimoto, Sebastien Gros
-
Memory-Efficient LLM Training with Online Subspace Descent Kaizhao Liang, Bo Liu, Lizhang Chen, Qiang Liu
-
Map It Anywhere: Empowering BEV Map Prediction using Large-scale Public Datasets Cherie Ho, Jiaye Zou, Omar Alama, Sai Mitheran Jagadesh Kumar, Cheng-Yu Chiang, Taneesh Gupta, Chen Wang, Nikhil Keetha, Katia Sycara, Sebastian Scherer
-
Learning Distinguishable Trajectory Representation with Contrastive Loss Tianxu Li, Kun Zhu, Juan Li, Yang Zhang
-
HEALNet: Multimodal Fusion for Heterogeneous Biomedical Data Konstantin Hemker, Nikola Simidjievski, Mateja Jamnik
-
Stochastic contextual bandits with graph feedback: from independence number to MAS number Yuxiao Wen, Yanjun Han, Zhengyuan Zhou
-
Reinforcement Learning with Lookahead Information Nadav Merlis
-
SearchLVLMs: A Plug-and-Play Framework for Augmenting Large Vision-Language Models by Searching Up-to-Date Internet Knowledge Chuanhao Li, Zhen Li, Chenchen Jing, Shuo Liu, Wenqi Shao, Yuwei Wu, Ping Luo, Yu Qiao, Kaipeng Zhang
-
Drones Help Drones: A Collaborative Framework for Multi-Drone Object Trajectory Prediction and Beyond Zhechao Wang, Peirui Cheng, Minxing Chen, Pengju Tian, Zhirui Wang, Xinming Li, Xue Yang, Xian Sun
-
DCDepth: Progressive Monocular Depth Estimation in Discrete Cosine Domain Kun Wang, Zhiqiang Yan, Junkai Fan, Wanlu Zhu, Xiang Li, Jun Li, Jian Yang
-
Queueing Matching Bandits with Preference Feedback Jung-hun Kim, Min-hwan Oh
-
CableInspect-AD: An Expert-Annotated Anomaly Detection Dataset Akshatha Arodi, Margaux Luck, Jean-Luc Bedwani, Aldo Zaimi, Ge Li, Nicolas Pouliot, Julien Beaudry, Gaetan Marceau Caron
-
Faster Neighborhood Attention: Reducing the O(n^2) Cost of Self Attention at the Threadblock Level Ali Hassani, Wen-Mei Hwu, Humphrey Shi
-
ReST-MCTS*: LLM Self-Training via Process Reward Guided Tree Search Dan Zhang, Sining Zhoubian, Ziniu Hu, Yisong Yue, Yuxiao Dong, Jie Tang
-
A Global Depth-Range-Free Multi-View Stereo Transformer Network with Pose Embedding Yitong Dong, Yijin Li, Zhaoyang Huang, Weikang Bian, Jingbo Liu, Hujun Bao, Zhaopeng Cui, Hongsheng Li, Guofeng Zhang
-
Multi-Stage Predict+Optimize for (Mixed Integer) Linear Programs Xinyi HU, Jasper Lee, Jimmy Lee, Peter Stuckey
-
Optimization Can Learn Johnson Lindenstrauss Embeddings Nikos Tsikouras, Constantine Caramanis, Christos Tzamos
-
Federated Graph Learning for Cross-Domain Recommendation Ziqi Yang, Zhaopeng Peng, Zihui Wang, Jianzhong Qi, Chaochao Chen, Weike Pan, Chenglu Wen, Cheng Wang, Xiaoliang Fan
-
Co-occurrence is not Factual Association in Language Models Xiao Zhang, Miao Li, Ji Wu
-
LLM-AutoDA: Large Language Model-Driven Automatic Data Augmentation for Long-tailed Problems Pengkun Wang, Zhe Zhao, HaiBin Wen, Fanfu Wang, Binwu Wang, Qingfu Zhang, Yang Wang
-
Designs for Enabling Collaboration in Human-Machine Teaming via Interactive and Explainable Systems Rohan Paleja, Michael Munje, Kimberlee Chang, Reed Jensen, Matthew Gombolay
-
Data Augmentation with Diffusion for Open-Set Semi-Supervised Learning Seonghyun Ban, Heesan Kong, Kee-Eung Kim
-
LoTLIP: Improving Language-Image Pre-training for Long Text Understanding Wei Wu, Kecheng Zheng, Shuailei Ma, Fan Lu, Yuxin Guo, Yifei Zhang, Wei Chen, Qingpei Guo, Yujun Shen, Zheng-Jun Zha
-
Rethinking Parity Check Enhanced Symmetry-Preserving Ansatz Ge Yan, Mengfei Ran, Ruocheng Wang, Kaisen Pan, Junchi Yan
-
Dynamic Neural Regeneration: Enhancing Deep Learning Generalization on Small Datasets Vijaya Raghavan Ramkumar, Elahe Arani, Bahram Zonooz
-
Safe LoRA: The Silver Lining of Reducing Safety Risks when Finetuning Large Language Models Chia-Yi Hsu, Yu-Lin Tsai, Chih-Hsun Lin, Pin-Yu Chen, Chia-Mu Yu, Chun-Ying Huang
-
Learning Structure-Aware Representations of Dependent Types Konstantinos Kogkalidis, Orestis Melkonian, Jean-Philippe Bernardy
-
AsCAN: Asymmetric Convolution-Attention Networks for Efficient Recognition and Generation Anil Kag, n n, Jierun Chen, Junli Cao, Willi Menapace, Aliaksandr Siarohin, Sergey Tulyakov, Jian Ren
-
Microstructures and Accuracy of Graph Recall by Large Language Models Yanbang Wang, Hejie Cui, Jon Kleinberg
-
CulturePark: Boosting Cross-cultural Understanding in Large Language Models Cheng Li, Damien Teney, Linyi Yang, Qingsong Wen, Xing Xie, Jindong Wang
-
Robust group and simultaneous inferences for high-dimensional single index model Weichao Yang, Hongwei Shi, Xu Guo, Changliang Zou
-
A Separation in Heavy-Tailed Sampling: Gaussian vs. Stable Oracles for Proximal Samplers Ye He, Alireza Mousavi-Hosseini, Krishnakumar Balasubramanian, Murat A. Erdogdu
-
Symmetry-Informed Governing Equation Discovery Jianke Yang, Wang Rao, Nima Dehmamy, Robin Walters, Rose Yu
-
The Limits of Differential Privacy in Online Learning Bo Li, Wei Wang, Peng Ye
-
Listenable Maps for Zero-Shot Audio Classifiers Francesco Paissan, Luca Della Libera, Mirco Ravanelli, Cem Subakan
-
LaSCal: Label-Shift Calibration without target labels Teodora Popordanoska, Gorjan Radevski, Tinne Tuytelaars, Matthew Blaschko
-
Beyond Optimism: Exploration With Partially Observable Rewards Simone Parisi, Alireza Kazemipour, Michael Bowling
-
Wasserstein Distance Rivals Kullback-Leibler Divergence for Knowledge Distillation Jiaming Lv, Haoyuan Yang, Peihua Li
-
Sequential Decision Making with Expert Demonstrations under Unobserved Heterogeneity Vahid Balazadeh, Keertana Chidambaram, Viet Nguyen, Rahul G. Krishnan, Vasilis Syrgkanis
-
CoFie: Learning Compact Neural Surface Representations with Coordinate Fields Hanwen Jiang, Haitao Yang, Georgios Pavlakos, Qixing Huang
-
Heterogeneity-Guided Client Sampling: Towards Fast and Efficient Non-IID Federated Learning Huancheng Chen, Haris Vikalo
-
Learning Versatile Skills with Curriculum Masking Yao Tang, Zhihui Xie, Zichuan Lin, Deheng Ye, Shuai Li
-
Neural Collapse To Multiple Centers For Imbalanced Data Hongren Yan, Yuhua Qian, Furong Peng, Jiachen Luo, zheqing zhu, Feijiang Li
-
VidProM: A Million-scale Real Prompt-Gallery Dataset for Text-to-Video Diffusion Models Wenhao Wang, Yi Yang
-
NeuMA: Neural Material Adaptor for Visual Grounding of Intrinsic Dynamics Junyi Cao, Shanyan Guan, Yanhao Ge, Wei Li, Xiaokang Yang, Chao Ma
-
Stable-Pose: Leveraging Transformers for Pose-Guided Text-to-Image Generation Jiajun Wang, Morteza Ghahremani Boozandani, Yitong Li, Björn Ommer, Christian Wachinger
-
Generalized Fast Exact Conformalization Diyang Li
-
Unleashing Multispectral Video's Potential in Semantic Segmentation: A Semi-supervised Viewpoint and New UAV-View Benchmark Wei Ji, Jingjing Li, Wenbo Li, Yilin Shen, Li cheng, Hongxia Jin
-
Nonparametric Classification on Low Dimensional Manifolds using Overparameterized Convolutional Residual Networks Zixuan Zhang, Kaiqi Zhang, Minshuo Chen, Yuma Takeda, Mengdi Wang, Tuo Zhao, Yu-Xiang Wang
-
Amortized Planning with Large-Scale Transformers: A Case Study on Chess Anian Ruoss, Grégoire Delétang, Sourabh Medapati, Jordi Grau-Moya, Kevin Li, Elliot Catt, John Reid, Cannada Lewis, Joel Veness, Tim Genewein
-
Doob's Lagrangian: A Sample-Efficient Variational Approach to Transition Path Sampling Yuanqi Du, Michael Plainer, Rob Brekelmans, Chenru Duan, Frank Noe, Carla P. Gomes, Alan Aspuru-Guzik, Kirill Neklyudov
-
On the Impact of Feature Heterophily on Link Prediction with Graph Neural Networks Jiong Zhu, Gaotang Li, Yao-An Yang, Jing Zhu, Xuehao Cui, Danai Koutra
-
Breaking the curse of dimensionality in structured density estimation Robert A. Vandermeulen, Wai Ming Tai, Bryon Aragam
-
Zipper: Addressing Degeneracy in Algorithm-Agnostic Inference Geng Chen, Yinxu Jia, Guanghui Wang, Changliang Zou
-
Adaptive Exploration for Data-Efficient General Value Function Evaluations Arushi Jain, Josiah Hanna, Doina Precup
-
Benchmarking PtO and PnO Methods in the Predictive Combinatorial Optimization Regime Haoyu Geng, Hang Ruan, Runzhong Wang, Yang Li, YANG WANG, Lei Chen, Junchi Yan
-
The Poisson Midpoint Method for Langevin Dynamics: Provably Efficient Discretization for Diffusion Models Saravanan Kandasamy, Dheeraj Nagaraj
-
Dual Risk Minimization: Towards Next-Level Robustness in Fine-tuning Zero-Shot Models Kaican Li, Weiyan XIE, Yongxiang Huang, Didan Deng, Lanqing Hong, Zhenguo Li, Ricardo Silva, Nevin L. Zhang
-
Language Generation in the Limit Jon Kleinberg, Sendhil Mullainathan
-
Model Decides How to Tokenize: Adaptive DNA Sequence Tokenization with MxDNA Lifeng Qiao, Peng Ye, Yuchen Ren, Weiqiang Bai, Chaoqi Liang, Xinzhu Ma, Nanqing Dong, Wanli Ouyang
-
Provably and Practically Efficient Adversarial Imitation Learning with General Function Approximation Tian Xu, Zhilong Zhang, Ruishuo Chen, Yihao Sun, Yang Yu
-
EGonc : Energy-based Open-Set Node Classification with substitute Unknowns Qin Zhang, Zelin Shi, Shirui Pan, Junyang Chen, Huisi Wu, Xiaojun Chen
-
Latent Functional Maps: a spectral framework for representation alignment Marco Fumero, Marco Pegoraro, Valentino Maiorca, Francesco Locatello, Emanuele Rodolà
-
Learning Neural Contracting Dynamics: Extended Linearization and Global Guarantees Sean Jaffe, Alexander Davydov, Deniz Lapsekili, Ambuj K Singh, Francesco Bullo
-
Just Add $100 More: Augmenting Pseudo-LiDAR Point Cloud for Resolving Class-imbalance Problem Mincheol Chang, Siyeong Lee, Jinkyu Kim, Namil Kim
-
A Novel Unified Architecture for Low-Shot Counting by Detection and Segmentation Jer Pelhan, Alan Lukezic, Vitjan Zavrtanik, Matej Kristan
-
cPAPERS: A Dataset of Situated and Multimodal Interactive Conversations in Scientific Papers Anirudh Sundar, Jin Xu, William Gay, Christopher Richardson, Larry Heck
-
RouterDC: Query-Based Router by Dual Contrastive Learning for Assembling Large Language Models Shuhao Chen, Weisen Jiang, Baijiong Lin, James Kwok, Yu Zhang
-
Terra: A Multimodal Spatio-Temporal Dataset Spanning the Earth Wei Chen, Xixuan Hao, Yuankai Wu, Yuxuan Liang
-
OneBit: Towards Extremely Low-bit Large Language Models Yuzhuang Xu, Xu Han, Zonghan Yang, Shuo Wang, Qingfu Zhu, Zhiyuan Liu, Weidong Liu, Wanxiang Che
-
Chain-of-Thought Reasoning Without Prompting Xuezhi Wang, Denny Zhou
-
Slack-Free Spiking Neural Network Formulation for Hypergraph Minimum Vertex Cover Tam Nguyen, Anh-Dzung Doan, zhipeng cai, Tat-Jun Chin
-
Federated Model Heterogeneous Matryoshka Representation Learning Liping Yi, Han Yu, Chao Ren, Gang Wang, xiaoguang Liu, Xiaoxiao Li
-
MaskFactory: Towards High-quality Synthetic Data Generation for Dichotomous Image Segmentation Haotian Qian, Yinda Chen, Shengtao Lou, Fahad Shahbaz Khan, Xiaogang Jin, Deng-Ping Fan
-
Unveiling Induction Heads: Provable Training Dynamics and Feature Learning in Transformers Siyu Chen, Heejune Sheen, Tianhao Wang, Zhuoran Yang
-
Optimal Top-Two Method for Best Arm Identification and Fluid Analysis Agniv Bandyopadhyay, Sandeep Juneja, Shubhada Agrawal
-
Training Data Attribution via Approximate Unrolling Juhan Bae, Wu Lin, Jonathan Lorraine, Roger B. Grosse
-
Parsimony or Capability? Decomposition Delivers Both in Long-term Time Series Forecasting Jinliang Deng, Feiyang Ye, Du Yin, Xuan Song, Ivor Tsang, Hui Xiong
-
The Impact of Geometric Complexity on Neural Collapse in Transfer Learning Michael Munn, Benoit Dherin, Javier Gonzalvo
-
Smoothed Energy Guidance: Guiding Diffusion Models with Reduced Energy Curvature of Attention Susung Hong
-
Cross-modal Representation Flattening for Multi-modal Domain Generalization Yunfeng FAN, Wenchao Xu, Haozhao Wang, Song Guo
-
FM-Delta: Lossless Compression for Storing Massive Fine-tuned Foundation Models Wanyi Ning, Jingyu Wang, Qi Qi, Mengde Zhu, Haifeng Sun, Daixuan Cheng, Jianxin Liao, Ce Zhang
-
Interpretable Concept Bottlenecks to Align Reinforcement Learning Agents Quentin Delfosse, Sebastian Sztwiertnia, Mark Rothermel, Wolfgang Stammer, Kristian Kersting
-
Back to the Continuous Attractor Ábel Ságodi, Guillermo Martín-Sánchez, Piotr Sokol, Memming Park
-
CriticEval: Evaluating Large-scale Language Model as Critic Tian Lan, Wenwei Zhang, Chen Xu, Heyan Huang, Dahua Lin, Kai Chen, Xian-Ling Mao
-
Learning Distributions on Manifolds with Free-Form Flows Peter Sorrenson, Felix Draxler, Armand Rousselot, Sander Hummerich, Ullrich Köthe
-
Truthful High Dimensional Sparse Linear Regression Liyang Zhu, Amina Manseur, Meng Ding, Jinyan Liu, Jinhui Xu, Di Wang
-
Exploratory Retrieval-Augmented Planning For Continual Embodied Instruction Following Minjong Yoo, Jinwoo Jang, Wei-Jin Park, Honguk Woo
-
Divide-and-Conquer Meets Consensus: Unleashing the Power of Functions in Code Generation Jingchang Chen, Hongxuan Tang, Zheng Chu, Qianglong Chen, Zekun Wang, Ming Liu, Bing Qin
-
Navigating the Maze of Explainable AI: A Systematic Approach to Evaluating Methods and Metrics Lukas Klein, Carsten Lüth, Udo Schlegel, Till Bungert, Mennatallah El-Assady, Paul Jaeger
-
TrackIME: Enhanced Video Point Tracking via Instance Motion Estimation Seong Hyeon Park, Huiwon Jang, Byungwoo Jeon, Sukmin Yun, Paul Hongsuck Seo, Jinwoo Shin
-
Knowledge-Empowered Dynamic Graph Network for Irregularly Sampled Medical Time Series Yicheng Luo, Zhen Liu, Linghao Wang, Binquan Wu, Junhao Zheng, Qianli Ma
-
UDA: A Benchmark Suite for Retrieval Augmented Generation in Real-World Document Analysis Yulong Hui, YAO LU, Huanchen Zhang
-
OptEx: Expediting First-Order Optimization with Approximately Parallelized Iterations Yao Shu, Jiongfeng Fang, Ying He, Fei Yu
-
Muscles in Time: Learning to Understand Human Motion In-Depth by Simulating Muscle Activations David Schneider, Simon Reiß, Marco Kugler, Alexander Jaus, Kunyu Peng, Susanne Sutschet, M. Saquib Sarfraz, Sven Matthiesen, Rainer Stiefelhagen
-
HHD-GP: Incorporating Helmholtz-Hodge Decomposition into Gaussian Processes for Learning Dynamical Systems Hao Xu, Jia Pan
-
Knowledge Composition using Task Vectors with Learned Anisotropic Scaling Frederic Z. Zhang, Paul Albert, Cristian Rodriguez-Opazo, Anton van den Hengel, Ehsan Abbasnejad
-
UniFL: Improve Latent Diffusion Model via Unified Feedback Learning Jiacheng Zhang, Jie Wu, Yuxi Ren, Xin Xia, Huafeng Kuang, Pan Xie, Jiashi Li, Xuefeng Xiao, Weilin Huang, Shilei Wen, Lean Fu, Guanbin Li
-
Learning a Single Neuron Robustly to Distributional Shifts and Adversarial Label Noise Shuyao Li, Sushrut Karmalkar, Ilias Diakonikolas, Jelena Diakonikolas
-
SpikedAttention: Training-Free and Fully Spike-Driven Transformer-to-SNN Conversion with Winner-Oriented Spike Shift for Softmax Operation Sangwoo Hwang, Seunghyun Lee, Dahoon Park, Donghun Lee, Jaeha Kung
-
Deep Correlated Prompting for Visual Recognition with Missing Modalities lianyu hu, Tongkai Shi, Wei Feng, Fanhua Shang, Liang Wan
-
Partial observation can induce mechanistic mismatches in data-constrained models of neural dynamics William Qian, Jacob Zavatone-Veth, Ben Ruben, Cengiz Pehlevan
-
GraphVis: Boosting LLMs with Visual Knowledge Graph Integration Yihe Deng, Chenchen Ye, Zijie Huang, Mingyu Derek Ma, Yiwen Kou, Wei Wang
-
PACE: Pacing Operator Learning to Accurate Optical Field Simulation for Complicated Photonic Devices Hanqing Zhu, Wenyan Cong, Guojin Chen, Shupeng Ning, Ray Chen, Jiaqi Gu, David Z. Pan
-
Evidential Stochastic Differential Equations for Time-Aware Sequential Recommendation Krishna Neupane, Ervine Zheng, Qi Yu
-
Architect: Generating Vivid and Interactive 3D Scenes with Hierarchical 2D Inpainting Yian Wang, Xiaowen Qiu, Jiageng Liu, Zhehuan Chen, Jiting Cai, Yufei Wang, Tsun-Hsuan Johnson Wang, Zhou Xian, Chuang Gan
-
Zero-Shot Transfer of Neural ODEs Tyler Ingebrand, Adam Thorpe, Ufuk Topcu
-
ACES: Generating a Diversity of Challenging Programming Puzzles with Autotelic Generative Models Julien Pourcel, Cédric Colas, Gaia Molinaro, Pierre-Yves Oudeyer, Laetitia Teodorescu
-
Subwords as Skills: Tokenization for Sparse-Reward Reinforcement Learning David Yunis, Justin Jung, Falcon Dai, Matthew Walter
-
Beware of Road Markings: A New Adversarial Patch Attack to Monocular Depth Estimation Hangcheng Liu, Zhenhu Wu, Hao Wang, Xingshuo Han, Shangwei Guo, Tao Xiang, Tianwei Zhang
-
Do LLMs dream of elephants (when told not to)? Latent concept association and associative memory in transformers Yibo Jiang, Goutham Rajendran, Pradeep Ravikumar, Bryon Aragam
-
BLoB: Bayesian Low-Rank Adaptation by Backpropagation for Large Language Models Yibin Wang, Haizhou Shi, Ligong Han, Dimitris Metaxas, Hao Wang
-
BoostAdapter: Improving Vision-Language Test-Time Adaptation via Regional Bootstrapping Taolin Zhang, Jinpeng Wang, Hang Guo, Tao Dai, Bin Chen, Shu-Tao Xia
-
$\textit{NeuroPath}$: A Neural Pathway Transformer for Joining the Dots of Human Connectomes Ziquan Wei, Tingting Dan, Jiaqi Ding, Guorong Wu
-
FuseMoE: Mixture-of-Experts Transformers for Fleximodal Fusion Xing Han, Huy Nguyen, Carl Harris, Nhat Ho, Suchi Saria
-
SLIM: Style-Linguistics Mismatch Model for Generalized Audio Deepfake Detection Yi Zhu, Surya Koppisetti, Trang Tran, Gaurav Bharaj
-
Long-Horizon Planning for Multi-Agent Robots in Partially Observable Environments Sid Nayak, Adelmo Morrison Orozco, Marina Have, Jackson Zhang, Vittal Thirumalai, Darren Chen, Aditya Kapoor, Eric Robinson, Karthik Gopalakrishnan, James Harrison, Anuj Mahajan, Brian Ichter, Hamsa Balakrishnan
-
Abductive Reasoning in Logical Credal Networks Radu Marinescu, Junkyu Lee, Debarun Bhattacharjya, Fabio Cozman, Alexander Gray
-
GSGAN: Adversarial Learning for Hierarchical Generation of 3D Gaussian Splats Sangeek Hyun, Jae-Pil Heo
-
Optimization Algorithm Design via Electric Circuits Stephen Boyd, Tetiana Parshakova, Ernest Ryu, Jaewook J. Suh
-
iVideoGPT: Interactive VideoGPTs are Scalable World Models Jialong Wu, Shaofeng Yin, Ningya Feng, Xu He, Dong Li, Jianye Hao, Mingsheng Long
-
Smoothed Online Classification can be Harder than Batch Classification Vinod Raman, Unique Subedi, Ambuj Tewari
-
Optimal Classification under Performative Distribution Shift Edwige Cyffers, Muni Sreenivas Pydi, Jamal Atif, Olivier Cappé
-
IndicVoices-R: Unlocking a Massive Multilingual Multi-speaker Speech Corpus for Scaling Indian TTS Ashwin Sankar, Srija Anand, Praveen Varadhan, Sherry Thomas, Mehak Singal, Shridhar Kumar, Deovrat Mehendale, Aditi Krishana, Giri Raju, Mitesh Khapra
-
Improving Robustness of 3D Point Cloud Recognition from a Fourier Perspective Yibo Miao, Yinpeng Dong, Jinlai Zhang, Lijia Yu, Xiao Yang, Xiao-Shan Gao
-
Deep Graph Neural Networks via Posteriori-Sampling-based Node-Adaptative Residual Module Jingbo Zhou, Yixuan Du, Ruqiong Zhang, Jun Xia, Zhizhi Yu, Zelin Zang, Di Jin, Carl Yang, Rui Zhang, Stan Z. Li
-
John Ellipsoids via Lazy Updates David Woodruff, Taisuke Yasuda
-
Inversion-based Latent Bayesian Optimization Jaewon Chu, Jinyoung Park, Seunghun Lee, Hyunwoo J. Kim
-
ZipCache: Accurate and Efficient KV Cache Quantization with Salient Token Identification Yefei He, Luoming Zhang, Weijia Wu, Jing Liu, Hong Zhou, Bohan Zhuang
-
Policy Aggregation Parand A. Alamdari, Soroush Ebadian, Ariel D. Procaccia
-
When is an Embedding Model More Promising than Another? Maxime Darrin, Philippe Formont, Ismail Ayed, Jackie CK Cheung, Pablo Piantanida
-
Sample-Efficient Constrained Reinforcement Learning with General Parameterization Washim Mondal, Vaneet Aggarwal
-
What Is Missing For Graph Homophily? Disentangling Graph Homophily For Graph Neural Networks Yilun Zheng, Sitao Luan, Lihui Chen
-
HDR-GS: Efficient High Dynamic Range Novel View Synthesis at 1000x Speed via Gaussian Splatting Yuanhao Cai, Zihao Xiao, Yixun Liang, Minghan Qin, Yulun Zhang, Xiaokang Yang, Yaoyao Liu, Alan L. Yuille
-
GraphMorph: Tubular Structure Extraction by Morphing Predicted Graphs Zhao Zhang, Ziwei Zhao, Dong Wang, Liwei Wang
-
Revisiting Ensembling in One-Shot Federated Learning Youssef Allouah, Akash Dhasade, Rachid Guerraoui, Nirupam Gupta, Anne-marie Kermarrec, Rafael Pinot, Rafael Pires, Rishi Sharma
-
Few-Shot Diffusion Models Escape the Curse of Dimensionality Ruofeng Yang, Bo Jiang, Cheng Chen, ruinan Jin, Baoxiang Wang, Shuai Li
-
Safetywashing: Do AI Safety Benchmarks Actually Measure Safety Progress? Richard Ren, Steven Basart, Adam Khoja, Alice Gatti, Long Phan, Xuwang Yin, Mantas Mazeika, Alexander Pan, Gabriel Mukobi, Ryan Kim, Stephen Fitz, Dan Hendrycks
-
Binocular-Guided 3D Gaussian Splatting with View Consistency for Sparse View Synthesis Liang Han, Junsheng Zhou, Yu-Shen Liu, Zhizhong Han
-
Solving Zero-Sum Markov Games with Continuous State via Spectral Dynamic Embedding Chenhao Zhou, Zebang Shen, zhang chao, Hanbin Zhao, Hui Qian
-
FlashAttention-3: Fast and Accurate Attention with Asynchrony and Low-precision Jay Shah, Ganesh Bikshandi, Ying Zhang, Vijay Thakkar, Pradeep Ramani, Tri Dao
-
Factorized Diffusion Architectures for Unsupervised Image Generation and Segmentation Xin Yuan, Michael Maire
-
Group and Shuffle: Efficient Structured Orthogonal Parametrization Mikhail Gorbunov, Nikolay Yudin, Vera Soboleva, Aibek Alanov, Alexey Naumov, Maxim Rakhuba
-
Scaling transformer neural networks for skillful and reliable medium-range weather forecasting Tung Nguyen, Rohan Shah, Hritik Bansal, Troy Arcomano, Romit Maulik, Rao Kotamarthi, Ian Foster, Sandeep Madireddy, Aditya Grover
-
LLM Evaluators Recognize and Favor Their Own Generations Arjun Panickssery, Samuel Bowman, Shi Feng
-
SpatialPIN: Enhancing Spatial Reasoning Capabilities of Vision-Language Models through Prompting and Interacting 3D Priors Chenyang Ma, Kai Lu, Ta-Ying Cheng, Niki Trigoni, Andrew Markham
-
Reasons and Solutions for the Decline in Model Performance after Editing Xiusheng Huang, Jiaxiang Liu, Yequan Wang, Kang Liu
-
Changing the Training Data Distribution to Reduce Simplicity Bias Improves In-distribution Generalization Dang Nguyen, Paymon Haddad, Eric Gan, Baharan Mirzasoleiman
-
P$^2$C$^2$Net: PDE-Preserved Coarse Correction Network for efficient prediction of spatiotemporal dynamics Qi Wang, Pu Ren, Hao Zhou, Xin-Yang Liu, Zhiwen Deng, Yi Zhang, Zeruizhi Cheng, Hongsheng Liu, Zidong Wang, Jian-Xun Wang, Ji-Rong Wen, Hao Sun, Yang Liu
-
Approximation Rate of the Transformer Architecture for Sequence Modeling Haotian Jiang, Qianxiao Li
-
Consistency of Neural Causal Partial Identification Jiyuan Tan, Jose Blanchet, Vasilis Syrgkanis
-
SpeAr: A Spectral Approach for Zero-Shot Node Classification Ting Guo, Da Wang, Jiye Liang, Kaihan Zhang, Jianchao Zeng
-
On the Worst Prompt Performance of Large Language Models Bowen Cao, Deng Cai, Zhisong Zhang, Yuexian Zou, Wai Lam
-
Putting Gale & Shapley to Work: Guaranteeing Stability Through Learning Hadi Hosseini, Sanjukta Roy, Duohan Zhang
-
Thinking Forward: Memory-Efficient Federated Finetuning of Language Models Kunjal Panchal, Nisarg Parikh, Sunav Choudhary, Lijun Zhang, Yuriy Brun, Hui Guan
-
Bias Detection via Signaling Yiling Chen, Tao Lin, Ariel D. Procaccia, Aaditya Ramdas, Itai Shapira
-
Stress-Testing Capability Elicitation With Password-Locked Models Ryan Greenblatt, Fabien Roger, Dmitrii Krasheninnikov, David Krueger
-
Instruction Tuning With Loss Over Instructions Zhengxiang Shi, Adam Yang, Bin Wu, Laurence Aitchison, Emine Yilmaz, Aldo Lipani
-
FACT or Fiction: Can Truthful Mechanisms Eliminate Federated Free Riding? Marco Bornstein, Amrit Singh Bedi, Abdirisak Mohamed, Furong Huang
-
Log-concave Sampling from a Convex Body with a Barrier: a Robust and Unified Dikin Walk Yuzhou Gu, Nikki Lijing Kuang, Yian Ma, Zhao Song, Lichen Zhang
-
United We Stand, Divided We Fall: Fingerprinting Deep Neural Networks via Adversarial Trajectories Tianlong Xu, Chen Wang, Gaoyang Liu, Yang Yang, Kai Peng, Wei Liu
-
VideoGUI: A Benchmark for GUI Automation from Instructional Videos Kevin Qinghong Lin, Linjie Li, Difei Gao, Qinchen WU, Mingyi Yan, Zhengyuan Yang, Lijuan Wang, Mike Zheng Shou
-
Can Graph Neural Networks Expose Training Data Properties? An Efficient Risk Assessment Approach Hanyang Yuan, Jiarong Xu, Renhong Huang, Mingli Song, Chunping Wang, YANG YANG
-
Training Compute-Optimal Protein Language Models Xingyi Cheng, Bo Chen, Pan Li, Jing Gong, Jie Tang, Le Song
-
CALANet: Cheap All-Layer Aggregation for Human Activity Recognition Jaegyun Park, Dae-Won Kim, Jaesung Lee
-
Over-parameterized Student Model via Tensor Decomposition Boosted Knowledge Distillation Yu-Liang Zhan, Zhong-Yi Lu, Hao Sun, Ze-Feng Gao
-
Qualitative Mechanism Independence Oliver Richardson, Spencer J Peters, Joseph Halpern
-
Tensor-Based Synchronization and the Low-Rankness of the Block Trifocal Tensor Daniel Miao, Gilad Lerman, Joe Kileel
-
DINTR: Tracking via Diffusion-based Interpolation Pha Nguyen, Ngan Le, Jackson Cothren, Alper Yilmaz, Khoa Luu
-
A Large-Scale Human-Centric Benchmark for Referring Expression Comprehension in the LMM Era Fangyun Wei, Jinjing Zhao, Kun Yan, Hongyang Zhang, Chang Xu
-
Training-Free Open-Ended Object Detection and Segmentation via Attention as Prompts Zhiwei Lin, Yongtao Wang, Zhi Tang
-
Multi-Agent Domain Calibration with a Handful of Offline Data Tao Jiang, Lei Yuan, Lihe Li, Cong Guan, Zongzhang Zhang, Yang Yu
-
A New Multi-Source Light Detection Benchmark and Semi-Supervised Focal Light Detection Jae-Yong Baek, Yong-Sang Yoo, Seung-Hwan Bae
-
No Representation, No Trust: Connecting Representation, Collapse, and Trust Issues in PPO Skander Moalla, Andrea Miele, Daniil Pyatko, Razvan Pascanu, Caglar Gulcehre
-
MM-WLAuslan: Multi-View Multi-Modal Word-Level Australian Sign Language Recognition Dataset Xin Shen, Heming Du, Hongwei Sheng, Shuyun Wang, Hui Chen, Huiqiang Chen, Zhuojie Wu, Xiaobiao Du, Jiaying Ying, Ruihan Lu, Qingzheng Xu, Xin Yu
-
The Best of Both Worlds: On the Dilemma of Out-of-distribution Detection Qingyang Zhang, Qiuxuan Feng, Joey Tianyi Zhou, Yatao Bian, Qinghua Hu, Changqing Zhang
-
Rainbow Teaming: Open-Ended Generation of Diverse Adversarial Prompts Mikayel Samvelyan, Sharath Chandra Raparthy, Andrei Lupu, Eric Hambro, Aram Markosyan, Manish Bhatt, Yuning Mao, Minqi Jiang, Jack Parker-Holder, Jakob Foerster, Tim Rocktäschel, Roberta Raileanu
-
Externally Valid Policy Evaluation from Randomized Trials Using Additional Observational Data Sofia Ek, Dave Zachariah
-
Semidefinite Relaxations of the Gromov-Wasserstein Distance Junyu Chen, Binh T. Nguyen, Shang Koh, Yong Sheng Soh
-
LogiCity: Advancing Neuro-Symbolic AI with Abstract Urban Simulation Bowen Li, Zhaoyu Li, Qiwei Du, Jinqi Luo, Wenshan Wang, Yaqi Xie, Simon Stepputtis, Chen Wang, Katia Sycara, Pradeep Ravikumar, Alexander Gray, Xujie Si, Sebastian Scherer
-
Exploring the Precise Dynamics of Single-Layer GAN Models: Leveraging Multi-Feature Discriminators for High-Dimensional Subspace Learning Andrew Bond, Zafer Dogan
-
Understanding Visual Feature Reliance through the Lens of Complexity Thomas Fel, Louis Béthune, Andrew Lampinen, Thomas Serre, Katherine Hermann
-
VisionLLM v2: An End-to-End Generalist Multimodal Large Language Model for Hundreds of Vision-Language Tasks Jiannan Wu, Muyan Zhong, Sen Xing, Zeqiang Lai, Zhaoyang Liu, Zhe Chen, Wenhai Wang, Xizhou Zhu, Lewei Lu, Tong Lu, Ping Luo, Yu Qiao, Jifeng Dai
-
Continual Learning with Global Alignment Xueying Bai, Jinghuan Shang, Yifan Sun, Niranjan Balasubramanian
-
Self-Distilled Depth Refinement with Noisy Poisson Fusion Jiaqi Li, Yiran Wang, Jinghong Zheng, Zihao Huang, Ke Xian, Zhiguo Cao, Jianming Zhang
-
Scalable DP-SGD: Shuffling vs. Poisson Subsampling Lynn Chua, Badih Ghazi, Pritish Kamath, Ravi Kumar, Pasin Manurangsi, Amer Sinha, Chiyuan Zhang
-
Improving Generalization of Dynamic Graph Learning via Environment Prompt Kuo Yang, Zhengyang Zhou, Qihe Huang, Limin Li, Yuxuan Liang, Yang Wang
-
Indoor Air Quality Dataset with Activities of Daily Living in Low to Middle-income Communities Prasenjit Karmakar, Swadhin Pradhan, Sandip Chakraborty
-
Enhancing Motion in Text-to-Video Generation with Decomposed Encoding and Conditioning PENGHUI RUAN, Pichao WANG, Divya Saxena, Jiannong Cao, Yuhui Shi
-
ProxyFusion: Face Feature Aggregation Through Sparse Experts Bhavin Jawade, Alexander Stone, Deen Dayal Mohan, Xiao Wang, Srirangaraj Setlur, Venu Govindaraju
-
WorldCoder, a Model-Based LLM Agent: Building World Models by Writing Code and Interacting with the Environment Hao Tang, Darren Key, Kevin Ellis
-
ViLCo-Bench: VIdeo Language COntinual learning Benchmark Tianqi Tang, Shohreh Deldari, Hao Xue, Celso de Melo, Flora Salim
-
A Consistency-Aware Spot-Guided Transformer for Versatile and Hierarchical Point Cloud Registration Renlang Huang, Yufan Tang, Jiming Chen, Liang Li
-
Perceptual Fairness in Image Restoration Guy Ohayon, Michael Elad, Tomer Michaeli
-
Deterministic Uncertainty Propagation for Improved Model-Based Offline Reinforcement Learning Abdullah Akgül, Manuel Haussmann, Melih Kandemir
-
Building a stable classifier with the inflated argmax Jake Soloff, Rina Barber, Rebecca Willett
-
Constrained Latent Action Policies for Model-Based Offline Reinforcement Learning Marvin Alles, Philip Becker-Ehmck, Patrick van der Smagt, Maximilian Karl
-
LaSe-E2V: Towards Language-guided Semantic-aware Event-to-Video Reconstruction Kanghao Chen, Hangyu Li, Jiazhou Zhou, Zeyu Wang, Lin Wang
-
Predicting Label Distribution from Ternary Labels Yunan Lu, Xiuyi Jia
-
VQ-Map: Bird's-Eye-View Map Layout Estimation in Tokenized Discrete Space via Vector Quantization Yiwei Zhang, Jin Gao, Fudong Ge, Guan Luo, Bing Li, ZHAO-XIANG ZHANG, Haibin Ling, Weiming Hu
-
Dual Defense: Enhancing Privacy and Mitigating Poisoning Attacks in Federated Learning Runhua Xu, Shiqi Gao, Chao Li, James Joshi, Jianxin Li
-
Dual-Perspective Activation: Efficient Channel Denoising via Joint Forward-Backward Criterion for Artificial Neural Networks Tian Qiu, Chenchao Gao, Zunlei Feng, Jie Lei, Bingde Hu, Xingen Wang, Yi Gao, Mingli Song
-
Provably Faster Algorithms for Bilevel Optimization via Without-Replacement Sampling Junyi Li, Heng Huang
-
Offline Multitask Representation Learning for Reinforcement Learning Haque Ishfaq, Thanh Nguyen-Tang, Songtao Feng, Raman Arora, Mengdi Wang, Ming Yin, Doina Precup
-
Performative Control for Linear Dynamical Systems Songfu Cai, Fei Han, Xuanyu Cao
-
Boosting Generalization in Parametric PDE Neural Solvers through Adaptive Conditioning Armand Kassaï Koupaï, Jorge Mifsut Benet, Yuan Yin, Jean-Noël Vittaut, Patrick Gallinari
-
Provably Optimal Memory Capacity for Modern Hopfield Models: Transformer-Compatible Dense Associative Memories as Spherical Codes Jerry Yao-Chieh Hu, Dennis Wu, Han Liu
-
Aligning Embeddings and Geometric Random Graphs: Informational Results and Computational Approaches for the Procrustes-Wasserstein Problem Mathieu Even, Luca Ganassali, Jakob Maier, Laurent Massoulié
-
Pin-Tuning: Parameter-Efficient In-Context Tuning for Few-Shot Molecular Property Prediction Qiang Liu, Shaozhen Liu, Xin Sun, Shu Wu, Liang Wang
-
Improving Context-Aware Preference Modeling for Language Models Silviu Pitis, Ziang Xiao, Nicolas Le Roux, Alessandro Sordoni
-
Almost Free: Self-concordance in Natural Exponential Families and an Application to Bandits Shuai Liu, Alex Ayoub, Flore Sentenac, Xiaoqi Tan, Csaba Szepesvari
-
Neural Cover Selection for Image Steganography Karl Chahine, Hyeji Kim
-
Counter-Current Learning: A Biologically Plausible Dual Network Approach for Deep Learning Chia-Hsiang Kao, Bharath Hariharan
-
Faster Differentially Private Top-$k$ Selection: A Joint Exponential Mechanism with Pruning Hao WU, Hanwen Zhang
-
A Tractable Inference Perspective of Offline RL Xuejie Liu, Anji Liu, Guy Van den Broeck, Yitao Liang
-
Adaptive Labeling for Efficient Out-of-distribution Model Evaluation Daksh Mittal, Yuanzhe Ma, Shalmali Joshi, Hongseok Namkoong
-
The Ladder in Chaos: Improving Policy Learning by Harnessing the Parameter Evolving Path in A Low-dimensional Space Hongyao Tang, Min Zhang, Chen Chen, Jianye Hao
-
MetaLA: Unified Optimal Linear Approximation to Softmax Attention Map YUHONG CHOU, Man Yao, Kexin Wang, Yuqi Pan, Rui-Jie Zhu, Jibin Wu, Yiran Zhong, Yu Qiao, Bo Xu, Guoqi Li
-
2DQuant: Low-bit Post-Training Quantization for Image Super-Resolution Kai Liu, Haotong Qin, Yong Guo, Xin Yuan, Linghe Kong, Guihai Chen, Yulun Zhang
-
Using Surrogates in Covariate-adjusted Response-adaptive Randomization Experiments with Delayed Outcomes Lei Shi, Waverly Wei, Jingshen Wang
-
Zeroth-Order Sampling Methods for Non-Log-Concave Distributions: Alleviating Metastability by Denoising Diffusion Ye He, Kevin Rojas, Molei Tao
-
MambaAD: Exploring State Space Models for Multi-class Unsupervised Anomaly Detection Haoyang He, Yuhu Bai, Jiangning Zhang, Qingdong He, Hongxu Chen, Zhenye Gan, Chengjie Wang, Xiangtai Li, Guanzhong Tian, Lei Xie
-
Can LLMs Learn by Teaching for Better Reasoning? A Preliminary Study Xuefei Ning, Zifu Wang, Shiyao Li, Zinan Lin, Peiran Yao, Tianyu Fu, Matthew Blaschko, Guohao Dai, Huazhong Yang, Yu Wang
-
The Star Geometry of Critic-Based Regularizer Learning Oscar Leong, Eliza O'Reilly, Yong Sheng Soh
-
Even Sparser Graph Transformers Hamed Shirzad, Honghao Lin, Balaji Venkatachalam, Ameya Velingker, David Woodruff, Danica J. Sutherland
-
Large Stepsize Gradient Descent for Non-Homogeneous Two-Layer Networks: Margin Improvement and Fast Optimization Yuhang Cai, Jingfeng Wu, Song Mei, Michael Lindsey, Peter Bartlett
-
Taming "data-hungry" reinforcement learning? Stability in continuous state-action spaces Yaqi Duan, Martin J. Wainwright
-
Risk-sensitive control as inference with Rényi divergence Kaito Ito, Kenji Kashima
-
Adaptive Domain Learning for Cross-domain Image Denoising Zian Qian, Chenyang Qi, Ka Law, Hao Fu, Chenyang Lei, Qifeng Chen
-
On the Inductive Bias of Stacking Towards Improving Reasoning Nikunj Saunshi, Stefani Karp, Shankar Krishnan, Sobhan Miryoosefi, Sashank Jakkam Reddi, Sanjiv Kumar
-
All-in-One Image Coding for Joint Human-Machine Vision with Multi-Path Aggregation Xu Zhang, Peiyao Guo, Ming Lu, Zhan Ma
-
FouRA: Fourier Low-Rank Adaptation Shubhankar Borse, Shreya Kadambi, Nilesh Pandey, Kartikeya Bhardwaj, Viswanath Ganapathy, Sweta Priyadarshi, Risheek Garrepalli, Rafael Esteves, Munawar Hayat, Fatih Porikli
-
Learning to Assist Humans without Inferring Rewards Vivek Myers, Evan Ellis, Sergey Levine, Benjamin Eysenbach, Anca Dragan
-
Are Your Models Still Fair? Fairness Attacks on Graph Neural Networks via Node Injections Zihan Luo, Hong Huang, Yongkang Zhou, Jiping Zhang, Nuo Chen, Hai Jin
-
Trace is the Next AutoDiff: Generative Optimization with Rich Feedback, Execution Traces, and LLMs Ching-An Cheng, Allen Nie, Adith Swaminathan
-
Integrating Deep Metric Learning with Coreset for Active Learning in 3D Segmentation Arvind Vepa, Zukang Yang, Andrew Choi, Jungseock Joo, Fabien Scalzo, Yizhou Sun
-
Great Minds Think Alike: The Universal Convergence Trend of Input Salience Yipei Wang, Jeffrey Siskind, Xiaoqian Wang
-
Marrying Causal Representation Learning with Dynamical Systems for Science Dingling Yao, Caroline Muller, Francesco Locatello
-
OMG-LLaVA: Bridging Image-level, Object-level, Pixel-level Reasoning and Understanding Tao Zhang, Xiangtai Li, Hao Fei, Haobo Yuan, Shengqiong Wu, Shunping Ji, Chen Change Loy, Shuicheng Yan
-
CorDA: Context-Oriented Decomposition Adaptation of Large Language Models for Task-Aware Parameter-Efficient Fine-tuning Yibo Yang, Xiaojie Li, Zhongzhu Zhou, Shuaiwen Song, Jianlong Wu, Liqiang Nie, Bernard Ghanem
-
Neural Concept Binder Wolfgang Stammer, Antonia Wüst, David Steinmann, Kristian Kersting
-
Megalodon: Efficient LLM Pretraining and Inference with Unlimited Context Length Xuezhe Ma, Xiaomeng Yang, Wenhan Xiong, Beidi Chen, LILI YU, Hao Zhang, Jonathan May, Luke Zettlemoyer, Omer Levy, Chunting Zhou
-
Arctique: An artificial histopathological dataset unifying realism and controllability for uncertainty quantification Jannik Franzen, Claudia Winklmayr, Vanessa Emanuela Guarino, Christoph Karg, Xiaoyan Yu, Nora Koreuber, Jan Albrecht, Philip Bischoff, Dagmar Kainmueller
-
Boosted Conformal Prediction Intervals Ran Xie, Rina Barber, Emmanuel Candes
-
Enriching Disentanglement: From Logical Definitions to Quantitative Metrics Yivan Zhang, Masashi Sugiyama
-
Active preference learning for ordering items in- and out-of-sample Herman Bergström, Emil Carlsson, Devdatt Dubhashi, Fredrik D. Johansson
-
Introspective Planning: Aligning Robots' Uncertainty with Inherent Task Ambiguity Kaiqu Liang, Zixu Zhang, Jaime Fisac
-
Can Transformers Smell Like Humans? Farzaneh Taleb, Miguel Vasco, Antonio Ribeiro, Mårten Björkman, Danica Kragic
-
Universal In-Context Approximation By Prompting Fully Recurrent Models Aleksandar Petrov, Tom Lamb, Alasdair Paren, Philip Torr, Adel Bibi
-
TabEBM: A Tabular Data Augmentation Method with Distinct Class-Specific Energy-Based Models Andrei Margeloiu, Xiangjian Jiang, Nikola Simidjievski, Mateja Jamnik
-
Training an Open-Vocabulary Monocular 3D Detection Model without 3D Data Rui Huang, Henry Zheng, Yan Wang, Zhuofan Xia, Marco Pavone, Gao Huang
-
Automatically Learning Hybrid Digital Twins of Dynamical Systems Samuel Holt, Tennison Liu, Mihaela van der Schaar
-
DISP-LLM: Dimension-Independent Structural Pruning for Large Language Models Shangqian Gao, Chi-Heng Lin, Ting Hua, Zheng Tang, Yilin Shen, Hongxia Jin, Yen-Chang Hsu
-
EEG2Video: Towards Decoding Dynamic Visual Perception from EEG Signals Xuan-Hao Liu, Yan-Kai Liu, Yansen Wang, Kan Ren, Hanwen Shi, Zilong Wang, Dongsheng Li, Bao-Liang Lu, Wei-Long Zheng
-
Physics-informed Neural Networks for Functional Differential Equations: Cylindrical Approximation and Its Convergence Guarantees Taiki Miyagawa, Takeru Yokota
-
PPLNs: Parametric Piecewise Linear Networks for Event-Based Temporal Modeling and Beyond Chen Song, Zhenxiao Liang, Bo Sun, Qixing Huang
-
ADOPT: Modified Adam Can Converge with Any $\beta_2$ with the Optimal Rate Shohei Taniguchi, Keno Harada, Gouki Minegishi, Yuta Oshima, Seong Cheol Jeong, Go Nagahara, Tomoshi Iiyama, Masahiro Suzuki, Yusuke Iwasawa, Yutaka Matsuo
-
Tighter Convergence Bounds for Shuffled SGD via Primal-Dual Perspective Xufeng Cai, Cheuk Yin Lin, Jelena Diakonikolas
-
Poseidon: Efficient Foundation Models for PDEs Maximilian Herde, Bogdan Raonic, Tobias Rohner, Roger Käppeli, Roberto Molinaro, Emmanuel de Bezenac, Siddhartha Mishra
-
Integrating GNN and Neural ODEs for Estimating Non-Reciprocal Two-Body Interactions in Mixed-Species Collective Motion Masahito Uwamichi, Simon Schnyder, Tetsuya J. Kobayashi, Satoshi Sawai
-
Accelerating ERM for data-driven algorithm design using output-sensitive techniques Maria-Florina F. Balcan, Christopher Seiler, Dravyansh Sharma
-
Decision Mamba: Reinforcement Learning via Hybrid Selective Sequence Modeling Sili Huang, Jifeng Hu, Zhejian Yang, Liwei Yang, Tao Luo, Hechang Chen, Lichao Sun, Bo Yang
-
Dissecting the Interplay of Attention Paths in a Statistical Mechanics Theory of Transformers Lorenzo Tiberi, Francesca Mignacco, Kazuki Irie, Haim Sompolinsky
-
Does Worst-Performing Agent Lead the Pack? Analyzing Agent Dynamics in Unified Distributed SGD Jie Hu, Yi-Ting Ma, Do-Young Eun
-
Generative Retrieval Meets Multi-Graded Relevance Yubao Tang, Ruqing Zhang, Jiafeng Guo, Maarten Rijke, Wei Chen, Xueqi Cheng
-
Order-Independence Without Fine Tuning Reid McIlroy-Young, Katrina Brown, Conlan Olson, Linjun Zhang, Cynthia Dwork
-
SeTAR: Out-of-Distribution Detection with Selective Low-Rank Approximation Yixia Li, Boya Xiong, Guanhua Chen, Yun Chen
-
Efficient Availability Attacks against Supervised and Contrastive Learning Simultaneously Yihan Wang, Yifan Zhu, Xiao-Shan Gao
-
Safe Exploitative Play with Untrusted Type Beliefs Tongxin Li, Tinashe Handina, Shaolei Ren, Adam Wierman
-
Compositional Automata Embeddings for Goal-Conditioned Reinforcement Learning Beyazit Yalcinkaya, Niklas Lauffer, Marcell Vazquez-Chanlatte, Sanjit Seshia
-
Improved Bayes Regret Bounds for Multi-Task Hierarchical Bayesian Bandit Algorithms Jiechao Guan, Hui Xiong
-
Pure Message Passing Can Estimate Common Neighbor for Link Prediction Kaiwen Dong, Zhichun Guo, Nitesh Chawla
-
Bridging Multicalibration and Out-of-distribution Generalization Beyond Covariate Shift Jiayun Wu, Jiashuo Liu, Peng Cui, Steven Z. Wu
-
Towards Stable Representations for Protein Interface Prediction Ziqi Gao, Zijing Liu, Yu Li, Jia Li
-
Towards Heterogeneous Long-tailed Learning: Benchmarking, Metrics, and Toolbox Haohui Wang, Weijie Guan, Chen Jianpeng, Zi Wang, Dawei Zhou
-
Are Graph Neural Networks Optimal Approximation Algorithms? Morris Yau, Nikolaos Karalias, Eric Lu, Jessica Xu, Stefanie Jegelka
-
Symmetries in Overparametrized Neural Networks: A Mean Field View Javier Maass, Joaquin Fontbona
-
Physical Consistency Bridges Heterogeneous Data in Molecular Multi-Task Learning Yuxuan Ren, Dihan Zheng, Chang Liu, Peiran Jin, Yu Shi, Lin Huang, Jiyan He, Shengjie Luo, Tao Qin, Tie-Yan Liu
-
OmniJARVIS: Unified Vision-Language-Action Tokenization Enables Open-World Instruction Following Agents Zihao Wang, Shaofei Cai, Zhancun Mu, Haowei Lin, Ceyao Zhang, Xuejie Liu, Qing Li, Anji Liu, Xiaojian (Shawn) Ma, Yitao Liang
-
State Chrono Representation for Enhancing Generalization in Reinforcement Learning Jianda Chen, Wen zheng terence Ng, Zichen Chen, Sinno Pan, Tianwei Zhang
-
On Affine Homotopy between Language Encoders Robin Chan, Reda Boumasmoud, Anej Svete, Yuxin Ren, Qipeng Guo, Zhijing Jin, Shauli Ravfogel, Mrinmaya Sachan, Bernhard Schölkopf, Mennatallah El-Assady, Ryan Cotterell
-
Self-Play Fine-tuning of Diffusion Models for Text-to-image Generation Huizhuo Yuan, Zixiang Chen, Kaixuan Ji, Quanquan Gu
-
Graph Edit Distance with General Costs Using Neural Set Divergence Eeshaan Jain, Indradyumna Roy, Saswat Meher, Soumen Chakrabarti, Abir De
-
Secret Collusion among AI Agents: Multi-Agent Deception via Steganography Sumeet Motwani, Mikhail Baranchuk, Martin Strohmeier, Vijay Bolina, Philip Torr, Lewis Hammond, Christian Schroeder de Witt
-
Scalable Early Childhood Reading Performance Prediction Zhongkai Shangguan, Zanming Huang, Eshed Ohn-Bar, Ola Ozernov-Palchik, Derek Kosty, Michael Stoolmiller, Hank Fien
-
Scalable Optimization in the Modular Norm Tim Large, Yang Liu, Jacob Huh, Hyojin Bahng, Phillip Isola, Jeremy Bernstein
-
Solving Inverse Problems via Diffusion Optimal Control Henry Li, Marcus Pereira
-
Enhancing Reasoning Capabilities of LLMs via Principled Synthetic Logic Corpus Terufumi Morishita, Gaku Morio, Atsuki Yamaguchi, Yasuhiro Sogawa
-
Optimal Aggregation of Prediction Intervals under Unsupervised Domain Shift Jiawei Ge, Debarghya Mukherjee, Jianqing Fan
-
Realizable $H$-Consistent and Bayes-Consistent Loss Functions for Learning to Defer Anqi Mao, Mehryar Mohri, Yutao Zhong
-
GeoNLF: Geometry guided Pose-Free Neural LiDAR Fields Weiyi Xue, Zehan Zheng, Fan Lu, Haiyun Wei, Guang Chen, changjun jiang
-
Gradual Domain Adaptation via Manifold-Constrained Distributionally Robust Optimization seyed amir saberi, Amir Najafi, Amin Behjati, Ala Emrani, Yasaman Zolfimoselo, Shadrooy, Abolfazl Motahari, Babak Khalaj
-
Efficient Leverage Score Sampling for Tensor Train Decomposition Vivek Bharadwaj, Beheshteh Toloueirakhshan, Osman Asif Malik, Guillaume Rabusseau
-
Distributed Least Squares in Small Space via Sketching and Bias Reduction Sachin Garg, Kevin Tan, Michal Derezinski
-
Aligning to Thousands of Preferences via System Message Generalization Seongyun Lee, Sue Hyun Park, Seungone Kim, Minjoon Seo
-
On the Expressive Power of Tree-Structured Probabilistic Circuits Lang Yin, Han Zhao
-
Hybrid Mamba for Few-Shot Segmentation Qianxiong Xu, Xuanyi Liu, Lanyun Zhu, Guosheng Lin, Cheng Long, Ziyue Li, Rui Zhao
-
Conformal Alignment: Knowing When to Trust Foundation Models with Guarantees Yu Gui, Ying Jin, Zhimei Ren
-
Time-Varying LoRA: Towards Effective Cross-Domain Fine-Tuning of Diffusion Models Zhan Zhuang, Yulong Zhang, Xuehao Wang, Jiangang Lu, Ying Wei, Yu Zhang
-
Neural Flow Diffusion Models: Learnable Forward Process for Improved Diffusion Modelling Grigory Bartosh, Dmitry P. Vetrov, Christian Andersson Naesseth
-
Efficient Large Multi-modal Models via Visual Context Compression Jieneng Chen, Luoxin Ye, Ju He, Zhaoyang Wang, Daniel Khashabi, Alan L. Yuille
-
SequentialAttention++ for Block Sparsification: Differentiable Pruning Meets Combinatorial Optimization Taisuke Yasuda, Kyriakos Axiotis, Gang Fu, Mohammadhossein Bateni, Vahab Mirrokni
-
Contrastive dimension reduction: when and how? Sam Hawke, YueEn Ma, Didong Li
-
Vaccine: Perturbation-aware Alignment for Large Language Models against Harmful Fine-tuning Attack Tiansheng Huang, Sihao Hu, Ling Liu
-
Efficient Lifelong Model Evaluation in an Era of Rapid Progress Ameya Prabhu, Vishaal Udandarao, Philip Torr, Matthias Bethge, Adel Bibi, Samuel Albanie
-
Membership Inference on Text-to-Image Diffusion Models via Conditional Likelihood Discrepancy Shengfang ZHAI, Huanran Chen, Yinpeng Dong, Jiajun Li, Qingni Shen, Yansong Gao, Hang Su, Yang Liu
-
Tiny Time Mixers (TTMs): Fast Pre-trained Models for Enhanced Zero/Few-Shot Forecasting of Multivariate Time Series Vijay Ekambaram, Arindam Jati, Pankaj Dayama, Sumanta Mukherjee, Nam Nguyen, Wesley M Gifford, Chandra Reddy, Jayant Kalagnanam
-
Pre-trained Text-to-Image Diffusion Models Are Versatile Representation Learners for Control Gunshi Gupta, Karmesh Yadav, Yarin Gal, Dhruv Batra, Zsolt Kira, Cong Lu, Tim G. J. Rudner
-
TALoS: Enhancing Semantic Scene Completion via Test-time Adaptation on the Line of Sight Hyun-Kurl Jang, Jihun Kim, Hyeokjun Kweon, Kuk-Jin Yoon
-
UMB: Understanding Model Behavior for Open-World Object Detection Xing Xi, Yangyang Huang, Zhijie Zhong, Ronghua Luo
-
Unity by Diversity: Improved Representation Learning for Multimodal VAEs Thomas Sutter, Yang Meng, Andrea Agostini, Daphné Chopard, Norbert Fortin, Julia Vogt, Babak Shahbaba, Stephan Mandt
-
Relationship Prompt Learning is Enough for Open-Vocabulary Semantic Segmentation Jiahao Li, Yang Lu, Yuan Xie, Yanyun Qu
-
AgentBoard: An Analytical Evaluation Board of Multi-turn LLM Agents Ma Chang, Junlei Zhang, Zhihao Zhu, Cheng Yang, Yujiu Yang, Yaohui Jin, Zhenzhong Lan, Lingpeng Kong, Junxian He
-
Mitigating Spurious Correlations via Disagreement Probability Hyeonggeun Han, Sehwan Kim, Hyungjun Joo, Sangwoo Hong, Jungwoo Lee
-
HumanSplat: Generalizable Single-Image Human Gaussian Splatting with Structure Priors Panwang Pan, Zhuo Su, Chenguo Lin, Zhen Fan, Yongjie Zhang, Zeming Li, Tingting Shen, Yadong Mu, Yebin Liu
-
SwitchHead: Accelerating Transformers with Mixture-of-Experts Attention Robert Csordas, Piotr Piękos, Kazuki Irie, Jürgen Schmidhuber
-
FastDrag: Manipulate Anything in One Step Xuanjia Zhao, Jian Guan, Congyi Fan, Dongli Xu, Youtian Lin, Haiwei Pan, Pengming Feng
-
Decoupled Kullback-Leibler Divergence Loss Jiequan Cui, Zhuotao Tian, Zhisheng Zhong, Xiaojuan Qi, Bei Yu, Hanwang Zhang
-
Small steps no more: Global convergence of stochastic gradient bandits for arbitrary learning rates Jincheng Mei, Bo Dai, Alekh Agarwal, Sharan Vaswani, Anant Raj, Csaba Szepesvari, Dale Schuurmans
-
Oja's Algorithm for Streaming Sparse PCA Syamantak Kumar, Purnamrita Sarkar
-
Fair and Welfare-Efficient Constrained Multi-Matchings under Uncertainty Elita Lobo, Justin Payan, Cyrus Cousins, Yair Zick
-
Randomized Exploration in Cooperative Multi-Agent Reinforcement Learning Hao-Lun Hsu, Weixin Wang, Miroslav Pajic, Pan Xu
-
Stochastic Kernel Regularisation Improves Generalisation in Deep Kernel Machines Edward Milsom, Ben Anson, Laurence Aitchison
-
S-MolSearch: 3D Semi-supervised Contrastive Learning for Bioactive Molecule Search Gengmo Zhou, Zhen Wang, Feng Yu, Guolin Ke, Zhewei Wei, Zhifeng Gao
-
Gaussian Process Bandits for Top-k Recommendations Mohit Yadav, Cameron Musco, Daniel R. Sheldon
-
Universal Rates for Active Learning Steve Hanneke, Amin Karbasi, Shay Moran, Grigoris Velegkas
-
Full-Atom Peptide Design with Geometric Latent Diffusion Xiangzhe Kong, Yinjun Jia, Wenbing Huang, Yang Liu
-
ReF-LDM: A Latent Diffusion Model for Reference-based Face Image Restoration Chi-Wei Hsiao, Yu-Lun Liu, Cheng-Kun Yang, Sheng-Po Kuo, Kevin Jou, Chia-Ping Chen
-
The Implicit Bias of Gradient Descent toward Collaboration between Layers: A Dynamic Analysis of Multilayer Perceptions Zheng Wang, Geyong Min, Wenjie Ruan
-
TableRAG: Million-Token Table Understanding with Language Models Si-An Chen, Lesly Miculicich, Julian Eisenschlos, Zifeng Wang, Zilong Wang, Yanfei Chen, YASUHISA FUJII, Hsuan-Tien Lin, Chen-Yu Lee, Tomas Pfister
-
XMask3D: Cross-modal Mask Reasoning for Open Vocabulary 3D Semantic Segmentation Ziyi Wang, Yanbo Wang, Xumin Yu, Jie Zhou, Jiwen Lu
-
Towards Global Optimal Visual In-Context Learning Prompt Selection Chengming Xu, Chen Liu, Yikai Wang, Yuan Yao, Yanwei Fu
-
NeoRL: Efficient Exploration for Nonepisodic RL Bhavya , Lenart Treven, Florian Dorfler, Stelian Coros, Andreas Krause
-
DiReCT: Diagnostic Reasoning for Clinical Notes via Large Language Models Bowen Wang, Jiuyang Chang, Yiming Qian, Guoxin Chen, Junhao Chen, Zhouqiang Jiang, Jiahao Zhang, Yuta Nakashima, Hajime Nagahara
-
Transformers Represent Belief State Geometry in their Residual Stream Adam Shai, Lucas Teixeira, Alexander Oldenziel, Sarah Marzen, Paul Riechers
-
GIC: Gaussian-Informed Continuum for Physical Property Identification and Simulation Junhao Cai, Yuji Yang, Weihao Yuan, Yisheng HE, Zilong Dong, Liefeng Bo, Hui Cheng, Qifeng Chen
-
Spiking Neural Network as Adaptive Event Stream Slicer Jiahang Cao, Mingyuan Sun, Ziqing Wang, Hao Cheng, Qiang Zhang, shibo zhou, Renjing Xu
-
IntraMix: Intra-Class Mixup Generation for Accurate Labels and Neighbors Shenghe Zheng, Hongzhi Wang, Xianglong Liu
-
Director3D: Real-world Camera Trajectory and 3D Scene Generation from Text Xinyang Li, Zhangyu Lai, Linning Xu, Yansong Qu, Liujuan Cao, ShengChuan Zhang, Bo Dai, Rongrong Ji
-
Fast Rates for Bandit PAC Multiclass Classification Liad Erez, Alon Peled-Cohen, Tomer Koren, Yishay Mansour, Shay Moran
-
Prune and Repaint: Content-Aware Image Retargeting for any Ratio Feihong Shen, Chao Li, Yifeng Geng, Yongjian Deng, Hao Chen
-
BricksRL: A Platform for Democratizing Robotics and Reinforcement Learning Research and Education with LEGO Sebastian Dittert, Vincent Moens, Gianni De Fabritiis
-
On scalable oversight with weak LLMs judging strong LLMs Zachary Kenton, Noah Siegel, Janos Kramar, Jonah Brown-Cohen, Samuel Albanie, Jannis Bulian, Rishabh Agarwal, David Lindner, Yunhao Tang, Noah Goodman, Rohin Shah
-
Exploration by Learning Diverse Skills through Successor State Representations Paul-Antoine LE TOLGUENEC, Yann BESSE, Florent Teichteil-Koenigsbuch, Dennis Wilson, Emmanuel Rachelson
-
DePLM: Denoising Protein Language Models for Property Optimization Zeyuan Wang, Keyan Ding, Ming Qin, Xiaotong Li, Xiang Zhuang, Yu Zhao, Jianhua Yao, Qiang Zhang, Huajun Chen
-
MambaTree: Tree Topology is All You Need in State Space Model Yicheng Xiao, Lin Song, shaoli huang, Jiangshan Wang, Siyu Song, Yixiao Ge, Xiu Li, Ying Shan
-
Structural Inference of Dynamical Systems with Conjoined State Space Models Aoran Wang, Jun Pang
-
Is A Picture Worth A Thousand Words? Delving Into Spatial Reasoning for Vision Language Models Jiayu Wang, Yifei Ming, Zhenmei Shi, Vibhav Vineet, Xin Wang, Sharon Li, Neel Joshi
-
Domain Adaptation for Large-Vocabulary Object Detectors Kai Jiang, Jiaxing Huang, Weiying Xie, Jie Lei, Yunsong Li, Ling Shao, Shijian Lu
-
ConceptFactory: Facilitate 3D Object Knowledge Annotation with Object Conceptualization Jianhua Sun, Yuxuan Li, Longfei Xu, Nange Wang, Jiude Wei, Yining Zhang, Cewu Lu
-
CAT3D: Create Anything in 3D with Multi-View Diffusion Models Ruiqi Gao, Aleksander Holynski, Philipp Henzler, Arthur Brussee, Ricardo Martin Brualla, Pratul Srinivasan, Jonathan Barron, Ben Poole
-
From Biased to Unbiased Dynamics: An Infinitesimal Generator Approach Timothée Devergne, Vladimir Kostic, Michele Parrinello, Massimiliano Pontil
-
Panacea: Pareto Alignment via Preference Adaptation for LLMs Yifan Zhong, Chengdong Ma, Xiaoyuan Zhang, Ziran Yang, Haojun Chen, Qingfu Zhang, Siyuan Qi, Yaodong Yang
-
IR-CM: The Fast and General-purpose Image Restoration Method Based on Consistency Model Xiaoxuan Gong, Jie Ma
-
Assouad, Fano, and Le Cam with Interaction: A Unifying Lower Bound Framework and Characterization for Bandit Learnability Fan Chen, Dylan J Foster, Yanjun Han, Jian Qian, Alexander Rakhlin, Yunbei Xu
-
Towards an Information Theoretic Framework of Context-Based Offline Meta-Reinforcement Learning Lanqing Li, Hai Zhang, Xinyu Zhang, Shatong Zhu, Yang YU, Junqiao Zhao, Pheng-Ann Heng
-
Accelerating Pre-training of Multimodal LLMs via Chain-of-Sight Ziyuan Huang, Kaixiang Ji, Biao Gong, Zhiwu Qing, Qinglong Zhang, Kecheng Zheng, Jian Wang, Jingdong Chen, Ming Yang
-
T2V-Turbo: Breaking the Quality Bottleneck of Video Consistency Model with Mixed Reward Feedback Jiachen Li, Weixi Feng, Tsu-Jui Fu, Xinyi Wang, S Basu, Wenhu Chen, William Yang Wang
-
Pricing and Competition for Generative AI Rafid Mahmood
-
GTA: A Benchmark for General Tool Agents Jize Wang, Ma Zerun, Yining Li, Songyang Zhang, Cailian Chen, Kai Chen, Xinyi Le
-
Accelerating Relative Entropy Coding with Space Partitioning Jiajun He, Gergely Flamich, José Miguel Hernández-Lobato
-
Samba: Severity-aware Recurrent Modeling for Cross-domain Medical Image Grading Qi Bi, Jingjun Yi, Hao Zheng, Wei Ji, Haolan Zhan, Yawen Huang, Yuexiang Li, Yefeng Zheng
-
What to Say and When to Say it: Live Fitness Coaching as a Testbed for Situated Interaction Sunny Panchal, Apratim Bhattacharyya, Guillaume Berger, Antoine Mercier, Cornelius Böhm, Florian Dietrichkeit, Reza Pourreza, Xuanlin Li, Pulkit Madan, Mingu Lee, Mark Todorovich, Ingo Bax, Roland Memisevic
-
On Divergence Measures for Training GFlowNets Tiago Silva, Eliezer de Souza da Silva, Diego Mesquita
-
Conditional Synthesis of 3D Molecules with Time Correction Sampler Hojung Jung, Youngrok Park, Laura Schmid, Jaehyeong Jo, Dongkyu Lee, Bongsang Kim, Se-Young Yun, Jinwoo Shin
-
VLM Agents Generate Their Own Memories: Distilling Experience into Embodied Programs of Thought Gabriel Sarch, Lawrence Jang, Michael Tarr, William W. Cohen, Kenneth Marino, Katerina Fragkiadaki
-
Local Linearity: the Key for No-regret Reinforcement Learning in Continuous MDPs Davide Maran, Alberto Maria Metelli, Matteo Papini, Marcello Restelli
-
The Reliability of OKRidge Method in Solving Sparse Ridge Regression Problems Xiyuan Li, Youjun Wang, Weiwei Liu
-
Continual Audio-Visual Sound Separation Weiguo Pian, Yiyang Nan, Shijian Deng, Shentong Mo, Yunhui Guo, Yapeng Tian
-
Amortizing intractable inference in diffusion models for vision, language, and control Siddarth Venkatraman, Moksh Jain, Luca Scimeca, Minsu Kim, Marcin Sendera, Mohsin Hasan, Luke Rowe, Sarthak Mittal, Pablo Lemos, Emmanuel Bengio, Alexandre Adam, Jarrid Rector-Brooks, Yoshua Bengio, Glen Berseth, Nikolay Malkin
-
Video Diffusion Models are Training-free Motion Interpreter and Controller Zeqi Xiao, Yifan Zhou, Shuai Yang, Xingang Pan
-
Confident Natural Policy Gradient for Local Planning in $q_\pi$-realizable Constrained MDPs Tian Tian, Lin Yang, Csaba Szepesvari
-
CoMat: Aligning Text-to-Image Diffusion Model with Image-to-Text Concept Matching DONGZHI JIANG, Guanglu Song, Xiaoshi Wu, Renrui Zhang, Dazhong Shen, ZHUOFAN ZONG, Yu Liu, Hongsheng Li
-
Convergence of No-Swap-Regret Dynamics in Self-Play Renato Leme, Georgios Piliouras, Jon Schneider
-
Scaling Laws and Compute-Optimal Training Beyond Fixed Training Durations Alex Hägele, Elie Bakouch, Atli Kosson, Loubna Ben allal, Leandro Von Werra, Martin Jaggi
-
Measuring Mutual Policy Divergence for Multi-Agent Sequential Exploration Haowen Dou, Lujuan Dang, Zhirong Luan, Badong Chen
-
Neural Assets: 3D-Aware Multi-Object Scene Synthesis with Image Diffusion Models Ziyi Wu, Yulia Rubanova, Rishabh Kabra, Drew Hudson, Igor Gilitschenski, Yusuf Aytar, Sjoerd van Steenkiste, Kelsey Allen, Thomas Kipf
-
NanoBaseLib: A Multi-Task Benchmark Dataset for Nanopore Sequencing Guangzhao Cheng, Chengbo Fu, Lu Cheng
-
Persistence Homology Distillation for Semi-supervised Continual Learning YanFan , Yu Wang, Pengfei Zhu, Dongyue Chen, Qinghua Hu
-
Normal-GS: 3D Gaussian Splatting with Normal-Involved Rendering Meng Wei, Qianyi Wu, Jianmin Zheng, Hamid Rezatofighi, Jianfei Cai
-
GuardT2I: Defending Text-to-Image Models from Adversarial Prompts Yijun Yang, Ruiyuan Gao, Xiao Yang, Jianyuan Zhong, Qiang Xu
-
Online Bayesian Persuasion Without a Clue Francesco Bacchiocchi, Matteo Bollini, Matteo Castiglioni, Alberto Marchesi, Nicola Gatti
-
Testing Semantic Importance via Betting Jacopo Teneggi, Jeremias Sulam
-
Set-based Neural Network Encoding Without Weight Tying Bruno Andreis, Bedionita Soro, Philip Torr, Sung Ju Hwang
-
Disentangled Unsupervised Skill Discovery for Efficient Hierarchical Reinforcement Learning Jiaheng Hu, Zizhao Wang, Peter Stone, Roberto Martín-Martín
-
Space-Time Continuous PDE Forecasting using Equivariant Neural Fields David Knigge, David Wessels, Riccardo Valperga, Samuele Papa, Jan-jakob Sonke, Erik Bekkers, Efstratios Gavves
-
Few-shot Algorithms for Consistent Neural Decoding (FALCON) Benchmark Brianna Karpowicz, Joel Ye, Chaofei Fan, Pablo Tostado-Marcos, Fabio Rizzoglio, Clayton Washington, Thiago Scodeler, Diogo de Lucena, Samuel Nason-Tomaszewski, Matthew Mender, Xuan Ma, Ezequiel Arneodo, Leigh Hochberg, Cynthia Chestek, Jaimie Henderson, Timothy Gentner, Vikash Gilja, Lee Miller, Adam Rouse, Robert Gaunt, Jennifer Collinger, Chethan Pandarinath
-
Expanding Sparse Tuning for Low Memory Usage Shufan Shen, Junshu Sun, Xiangyang Ji, Qingming Huang, Shuhui Wang
-
Randomized Exploration for Reinforcement Learning with Multinomial Logistic Function Approximation Wooseong Cho, Taehyun Hwang, Joongkyu Lee, Min-hwan Oh
-
PINNacle: A Comprehensive Benchmark of Physics-Informed Neural Networks for Solving PDEs Hao Zhongkai, Jiachen Yao, Chang Su, Hang Su, Ziao Wang, Fanzhi Lu, Zeyu Xia, Yichi Zhang, Songming Liu, Lu Lu, Jun Zhu
-
BitsFusion: 1.99 bits Weight Quantization of Diffusion Model Yang Sui, Yanyu Li, Anil Kag, Yerlan Idelbayev, Junli Cao, Ju Hu, Dhritiman Sagar, Bo Yuan, Sergey Tulyakov, Jian Ren
-
Lexicon3D: Probing Visual Foundation Models for Complex 3D Scene Understanding Yunze Man, Shuhong Zheng, Zhipeng Bao, Martial Hebert, Liangyan Gui, Yu-Xiong Wang
-
Deep linear networks for regression are implicitly regularized towards flat minima Pierre Marion, Lénaïc Chizat
-
Enabling Adaptive Agent Training in Open-Ended Simulators by Targeting Diversity Robby Costales, Stefanos Nikolaidis
-
Many-Shot In-Context Learning Rishabh Agarwal, Avi Singh, Lei Zhang, Bernd Bohnet, Luis Rosias, Stephanie Chan, Biao Zhang, Ankesh Anand, Zaheer Abbas, Azade Nova, John Co-Reyes, Eric Chu, Feryal Behbahani, Aleksandra Faust, Hugo Larochelle
-
Robust Fine-tuning of Zero-shot Models via Variance Reduction Beier Zhu, Jiequan Cui, Hanwang Zhang
-
Orchid: Flexible and Data-Dependent Convolution for Sequence Modeling Mahdi Karami, Ali Ghodsi
-
TrajCLIP: Pedestrian trajectory prediction method using contrastive learning and idempotent networks Pengfei Yao, Yinglong Zhu, Huikun Bi, Tianlu Mao, Zhaoqi Wang
-
Personalized Federated Learning via Feature Distribution Adaptation Connor Mclaughlin, Lili Su
-
Learning to Discuss Strategically: A Case Study on One Night Ultimate Werewolf Xuanfa Jin, Ziyan Wang, Yali Du, Meng Fang, Haifeng Zhang, Jun Wang
-
Causal Temporal Representation Learning with Nonstationary Sparse Transition Xiangchen Song, Zijian Li, Guangyi Chen, Yujia Zheng, Yewen Fan, Xinshuai Dong, Kun Zhang
-
HOI-Swap: Swapping Objects in Videos with Hand-Object Interaction Awareness Zihui (Sherry) Xue, Romy Luo, Changan Chen, Kristen Grauman
-
End-To-End Causal Effect Estimation from Unstructured Natural Language Data Nikita Dhawan, Leonardo Cotta, Karen Ullrich, Rahul G. Krishnan, Chris J. Maddison
-
CoMERA: Computing- and Memory-Efficient Training via Rank-Adaptive Tensor Optimization Zi Yang, Ziyue Liu, Samridhi Choudhary, Xinfeng Xie, Cao Gao, Siegfried Kunzmann, Zheng Zhang
-
Sample-Efficient Geometry Reconstruction from Euclidean Distances using Non-Convex Optimization Ipsita Ghosh, Abiy Tasissa, Christian Kümmerle
-
Conditional Generative Models are Sufficient to Sample from Any Causal Effect Estimand Md Musfiqur Rahman, Matt Jordan, Murat Kocaoglu
-
Pretrained Transformer Efficiently Learns Low-Dimensional Target Functions In-Context Kazusato Oko, Yujin Song, Taiji Suzuki, Denny Wu
-
Contracting with a Learning Agent Guru Guruganesh, Yoav Kolumbus, Jon Schneider, Inbal Talgam-Cohen, Emmanouil-Vasileios Vlatakis-Gkaragkounis, Joshua Wang, S. Weinberg
-
Faster Accelerated First-order Methods for Convex Optimization with Strongly Convex Function Constraints zhenwei lin, Qi Deng
-
DevBench: A multimodal developmental benchmark for language learning Alvin Tan, Chunhua Yu, Bria Long, Wanjing Ma, Tonya Murray, Rebecca Silverman, Jason Yeatman, Michael C Frank
-
BPQP: A Differentiable Convex Optimization Framework for Efficient End-to-End Learning Jianming Pan, Zeqi Ye, Xiao Yang, Xu Yang, Weiqing Liu, Lewen Wang, Jiang Bian
-
Sm: enhanced localization in Multiple Instance Learning for medical imaging classification Francisco M. Castro-Macías, Pablo Morales Alvarez, Yunan Wu, Rafael Molina, Aggelos Katsaggelos
-
Local Anti-Concentration Class: Logarithmic Regret for Greedy Linear Contextual Bandit Seok-Jin Kim, Min-hwan Oh
-
Iteratively Refined Early Interaction Alignment for Subgraph Matching based Graph Retrieval Ashwin Ramachandran, Vaibhav Raj, Indradyumna Roy, Soumen Chakrabarti, Abir De
-
Solving Sparse \& High-Dimensional-Output Regression via Compression Renyuan Li, Zhehui Chen, Guanyi Wang
-
Relational Concept Bottleneck Models Pietro Barbiero, Francesco Giannini, Gabriele Ciravegna, Michelangelo Diligenti, Giuseppe Marra
-
Confidence Calibration of Classifiers with Many Classes Adrien Le Coz, Stéphane Herbin, Faouzi Adjed
-
An Analytical Study of Utility Functions in Multi-Objective Reinforcement Learning Manel Rodríguez Soto, Juan A Rodríguez-Aguilar, Maite López-Sánchez
-
SkiLD: Unsupervised Skill Discovery Guided by Factor Interactions Zizhao Wang, Jiaheng Hu, Caleb Chuck, Stephen Chen, Roberto Martín-Martín, Amy Zhang, Scott Niekum, Peter Stone
-
$\text{ID}^3$: Identity-Preserving-yet-Diversified Diffusion Models for Synthetic Face Recognition Jianqing Xu, Shen Li, Jiaying Wu, Miao Xiong, Ailin Deng, Jiazhen Ji, Yuge Huang, Guodong Mu, Wenjie Feng, Shouhong Ding, Bryan Hooi
-
Point Cloud Matters: Rethinking the Impact of Different Observation Spaces on Robot Learning Haoyi Zhu, Yating Wang, Di Huang, Weicai Ye, Wanli Ouyang, Tong He
-
Language-Driven Interactive Traffic Trajectory Generation Junkai XIA, Chenxin Xu, Qingyao Xu, Yanfeng Wang, Siheng Chen
-
VLMimic: Vision Language Models are Visual Imitation Learner for Fine-grained Actions Guangyan Chen, Meiling Wang, Te Cui, Yao Mu, Haoyang Lu, Tianxing Zhou, Zicai Peng, Mengxiao Hu, Haizhou Li, Li Yuan, Yi Yang, Yufeng Yue
-
Time-MMD: Multi-Domain Multimodal Dataset for Time Series Analysis Haoxin Liu, Shangqing Xu, Zhiyuan Zhao, Lingkai Kong, Harshavardhan Prabhakar Kamarthi, Aditya Sasanur, Megha Sharma, Jiaming Cui, Qingsong Wen, Chao Zhang, B. Aditya Prakash
-
Uncovering, Explaining, and Mitigating the Superficial Safety of Backdoor Defense Rui Min, Zeyu Qin, Nevin L. Zhang, Li Shen, Minhao Cheng
-
SSDiff: Spatial-spectral Integrated Diffusion Model for Remote Sensing Pansharpening Yu Zhong, Xiao Wu, Liang-Jian Deng, ZiHan Cao, Hong-Xia Dou
-
Generating Highly Designable Proteins with Geometric Algebra Flow Matching Simon Wagner, Leif Seute, Vsevolod Viliuga, Nicolas Wolf, Frauke Gräter, Jan Stühmer
-
Covariate Shift Corrected Conditional Randomization Test Bowen Xu, Yiwen Huang, Chuan Hong, Shuangning Li, Molei Liu
-
kGym: A Platform and Dataset to Benchmark Large Language Models on Linux Kernel Crash Resolution Alex Mathai, Chenxi Huang, Petros Maniatis, Aleksandr Nogikh, Franjo Ivančić, Junfeng Yang, Baishakhi Ray
-
Dual-Diffusion for Binocular 3D Human Pose Estimation Xiaoyue Wan, Zhuo Chen, Bingzhi Duan, Xu Zhao
-
BLEnD: A Benchmark for LLMs on Everyday Knowledge in Diverse Cultures and Languages Junho Myung, Nayeon Lee, Yi Zhou, Jiho Jin, Rifki Putri, Dimosthenis Antypas, Hsuvas Borkakoty, Eunsu Kim, Carla Perez-Almendros, Abinew Ali Ayele, Victor Gutierrez Basulto, Yazmin Ibanez-Garcia, Hwaran Lee, Shamsuddeen H Muhammad, Kiwoong Park, Anar Rzayev, Nina White, Seid Muhie Yimam, Mohammad Taher Pilehvar, Nedjma Ousidhoum, Jose Camacho-Collados, Alice Oh
-
Motion Forecasting in Continuous Driving Nan Song, Bozhou Zhang, Xiatian Zhu, Li Zhang
-
Two-way Deconfounder for Off-policy Evaluation in Causal Reinforcement Learning Shuguang Yu, Shuxing Fang, Ruixin Peng, Zhengling Qi, Fan Zhou, Chengchun Shi
-
An Accelerated Algorithm for Stochastic Bilevel Optimization under Unbounded Smoothness Xiaochuan Gong, Jie Hao, Mingrui Liu
-
Structured Unrestricted-Rank Matrices for Parameter Efficient Finetuning Arijit Sehanobish, Kumar Avinava Dubey, Krzysztof M Choromanski, Somnath Basu Roy Chowdhury, Deepali Jain, Vikas Sindhwani, Snigdha Chaturvedi
-
Online Convex Optimisation: The Optimal Switching Regret for all Segmentations Simultaneously Stephen Pasteris, Chris Hicks, Vasilios Mavroudis, Mark Herbster
-
AmoebaLLM: Constructing Any-Shape Large Language Models for Efficient and Instant Deployment Yonggan Fu, Zhongzhi Yu, Junwei Li, Jiayi Qian, Yongan Zhang, Xiangchi Yuan, Dachuan Shi, Roman Yakunin, Yingyan (Celine) Lin
-
Understanding Transformer Reasoning Capabilities via Graph Algorithms Clayton Sanford, Bahare Fatemi, Ethan Hall, Anton Tsitsulin, Mehran Kazemi, Jonathan Halcrow, Bryan Perozzi, Vahab Mirrokni
-
One-to-Normal: Anomaly Personalization for Few-shot Anomaly Detection Yiyue Li, Shaoting Zhang, Kang Li, Qicheng Lao
-
TabularBench: Benchmarking Adversarial Robustness for Tabular Deep Learning in Real-world Use-cases Thibault Simonetto, Salah GHAMIZI, Maxime Cordy
-
Multi-modal Transfer Learning between Biological Foundation Models Juan Jose Garau-Luis, Patrick Bordes, Liam Gonzalez, Maša Roller, Bernardo de Almeida, Christopher Blum, Lorenz Hexemer, Stefan Laurent, Maren Lang, Thomas Pierrot, Guillaume Richard
-
OASIS: Conditional Distribution Shaping for Offline Safe Reinforcement Learning Yihang Yao, Zhepeng Cen, Wenhao Ding, Haohong Lin, Shiqi Liu, Tingnan Zhang, Wenhao Yu, DING ZHAO
-
Learning from higher-order correlations, efficiently: hypothesis tests, random features, and neural networks Eszter Szekely, Lorenzo Bardone, Federica Gerace, Sebastian Goldt
-
Unified Mechanism-Specific Amplification by Subsampling and Group Privacy Amplification Jan Schuchardt, Mihail Stoian, Arthur Kosmala, Stephan Günnemann
-
PeRFlow: Piecewise Rectified Flow as Universal Plug-and-Play Accelerator Hanshu Yan, Xingchao Liu, Jiachun Pan, Jun Hao Liew, Qiang Liu, Jiashi Feng
-
Online Weighted Paging with Unknown Weights Orin Levy, Noam Touitou, Aviv Rosenberg
-
Achieving $\tilde{O}(1/\epsilon)$ Sample Complexity for Constrained Markov Decision Process Jiashuo Jiang, Yinyu Ye
-
Overcoming the Sim-to-Real Gap: Leveraging Simulation to Learn to Explore for Real-World RL Andrew Wagenmaker, Kevin Huang, Liyiming Ke, Kevin G. Jamieson, Abhishek Gupta
-
Animal-Bench: Benchmarking Multimodal Video Models for Animal-centric Video Understanding Yinuo Jing, Ruxu Zhang, Kongming Liang, Yongxiang Li, Zhongjiang He, Zhanyu Ma, Jun Guo
-
Transfer Learning for Latent Variable Network Models Akhil Jalan, Arya Mazumdar, Soumendu Sundar Mukherjee, Purnamrita Sarkar
-
Beyond Single Stationary Policies: Meta-Task Players as Naturally Superior Collaborators Wang Haoming, Zhaoming Tian, Yunpeng Song, Xiangliang Zhang, Zhongmin Cai
-
Hierarchical Federated Learning with Multi-Timescale Gradient Correction Wenzhi Fang, Dong-Jun Han, Evan Chen, Shiqiang Wang, Christopher Brinton
-
Twin-Merging: Dynamic Integration of Modular Expertise in Model Merging Zhenyi Lu, Chenghao Fan, Wei Wei, Xiaoye Qu, Dangyang Chen, Yu Cheng
-
Connectivity-Driven Pseudo-Labeling Makes Stronger Cross-Domain Segmenters Dong Zhao, Qi Zang, Shuang Wang, Nicu Sebe, Zhun Zhong
-
Lambda: Learning Matchable Prior For Entity Alignment with Unlabeled Dangling Cases Hang Yin, Liyao Xiang, Dong Ding, Yuheng He, Yihan Wu, Pengzhi Chu, Xinbing Wang, Chenghu Zhou
-
Replicability in Learning: Geometric Partitions and KKM-Sperner Lemma Jason Vander Woude, Peter Dixon, A. Pavan, Jamie Radcliffe, N. V. Vinodchandran
-
Is Value Learning Really the Main Bottleneck in Offline RL? Seohong Park, Kevin Frans, Sergey Levine, Aviral Kumar
-
VLG-CBM: Training Concept Bottleneck Models with Vision-Language Guidance Divyansh Srivastava, Ge Yan, Lily Weng
-
ActSort: An active-learning accelerated cell sorting algorithm for large-scale calcium imaging datasets Yiqi Jiang, Hakki Akengin, Ji Zhou, Mehmet Aslihak, Yang Li, Radoslaw Chrapkiewicz, Oscar Hernandez, sadegh ebrahimi, Omar Jaidar, Yanping Zhang, Hakan Inan, Christopher Miranda, Fatih Dinc, Marta Pozo, Mark Schnitzer
-
Learnability of high-dimensional targets by two-parameter models and gradient flow Dmitry Yarotsky
-
UnSeg: One Universal Unlearnable Example Generator is Enough against All Image Segmentation Ye Sun, Hao Zhang, Tiehua Zhang, Xingjun Ma, Yu-Gang Jiang
-
Decision-Focused Learning with Directional Gradients Michael Huang, Vishal Gupta
-
Bridging the Divide: Reconsidering Softmax and Linear Attention Dongchen Han, Yifan Pu, Zhuofan Xia, Yizeng Han, Xuran Pan, Xiu Li, Jiwen Lu, Shiji Song, Gao Huang
-
Energy-Based Modelling for Discrete and Mixed Data via Heat Equations on Structured Spaces Tobias Schröder, Zijing Ou, Yingzhen Li, Andrew Duncan
-
RegExplainer: Generating Explanations for Graph Neural Networks in Regression Tasks Jiaxing Zhang, Zhuomin Chen, hao mei, Longchao Da, Dongsheng Luo, Hua Wei
-
Humanoid Locomotion as Next Token Prediction Ilija Radosavovic, Bike Zhang, Baifeng Shi, Jathushan Rajasegaran, Sarthak Kamat, Trevor Darrell, Koushil Sreenath, Jitendra Malik
-
Dendritic Integration Inspired Artificial Neural Networks Capture Data Correlation Chongming Liu, Jingyang Ma, Songting Li, Douglas (Dongzhuo) Zhou
-
Explaining Datasets in Words: Statistical Models with Natural Language Parameters Ruiqi Zhong, Heng Wang, Dan Klein, Jacob Steinhardt
-
Learning with Fitzpatrick Losses Seta Rakotomandimby, Jean-Philippe Chancelier, Michel De Lara, Mathieu Blondel
-
MDAgents: An Adaptive Collaboration of LLMs for Medical Decision-Making Yubin Kim, Chanwoo Park, Hyewon Jeong, Yik Siu Chan, Xuhai "Orson" Xu, Daniel McDuff, Hyeonhoon Lee, Marzyeh Ghassemi, Cynthia Breazeal, Hae Park
-
Compact Proofs of Model Performance via Mechanistic Interpretability Jason Gross, Rajashree Agrawal, Thomas Kwa, Euan Ong, Chun Hei Yip, Alex Gibson, Soufiane Noubir, Lawrence Chan
-
Semantic Feature Learning for Universal Unsupervised Cross-Domain Retrieval Lixu Wang, Xinyu Du, Qi Zhu
-
Credal Deep Ensembles for Uncertainty Quantification Kaizheng Wang, Fabio Cuzzolin, Shireen Kudukkil Manchingal -, Keivan Shariatmadar, David Moens, Hans Hallez
-
Mixture of In-Context Experts Enhance LLMs' Long Context Awareness Hongzhan Lin, Ang Lv, yuhan chen, chen zhu, Yang Song, Hengshu Zhu, Rui Yan
-
BehaviorGPT: Smart Agent Simulation for Autonomous Driving with Next-Patch Prediction Zikang Zhou, HU Haibo, Xinhong Chen, Jianping Wang, Nan Guan, Kui Wu, Yung-Hui Li, Yu-Kai Huang, Chun Jason Xue
-
OctreeOcc: Efficient and Multi-Granularity Occupancy Prediction Using Octree Queries Yuhang Lu, Xinge ZHU, Tai WANG, Yuexin Ma
-
Weak-eval-Strong: Evaluating and Eliciting Lateral Thinking of LLMs with Situation Puzzles Qi Chen, Bowen Zhang, Gang Wang, Qi Wu
-
Langevin Unlearning: A New Perspective of Noisy Gradient Descent for Machine Unlearning Eli Chien, Haoyu Wang, Ziang Chen, Pan Li
-
Discrete-state Continuous-time Diffusion for Graph Generation Zhe Xu, Ruizhong Qiu, Yuzhong Chen, Huiyuan Chen, Xiran Fan, Menghai Pan, Zhichen Zeng, Mahashweta Das, Hanghang Tong
-
CooHOI: Learning Cooperative Human-Object Interaction with Manipulated Object Dynamics Jiawei Gao, Ziqin Wang, Zeqi Xiao, Jingbo Wang, Tai WANG, Jinkun Cao, Xiaolin Hu, Si Liu, Jifeng Dai, Jiangmiao Pang
-
A Boosting-Type Convergence Result for AdaBoost.MH with Factorized Multi-Class Classifiers Xin Zou, Zhengyu Zhou, Jingyuan Xu, Weiwei Liu
-
MutaPLM: Protein Language Modeling for Mutation Explanation and Engineering Yizhen Luo, Zikun Nie, Massimo Hong, Suyuan Zhao, Hao Zhou, Zaiqing Nie
-
Graph Neural Networks Need Cluster-Normalize-Activate Modules Arseny Skryagin, Felix Divo, Mohammad Amin Ali, Devendra S Dhami, Kristian Kersting
-
Meta-Diffu$B$: A Contextualized Sequence-to-Sequence Text Diffusion Model with Meta-Exploration Yun-Yen Chuang, Hung-Min Hsu, Kevin Lin, Chen-Sheng Gu, Ling-Zhen Li, Ray-I Chang, Hung-yi Lee
-
DRIP: Unleashing Diffusion Priors for Joint Foreground and Alpha Prediction in Image Matting Xiaodi Li, Zongxin Yang, Ruijie Quan, Yi Yang
-
GenAI Arena: An Open Evaluation Platform for Generative Models Dongfu Jiang, Max KU, Tianle Li, Yuansheng Ni, Shizhuo Sun, Rongqi Fan, Wenhu Chen
-
Revive Re-weighting in Imbalanced Learning by Density Ratio Estimation JIAAN LUO, Feng Hong, Jiangchao Yao, Bo Han, Ya Zhang, Yanfeng Wang
-
AutoPSV: Automated Process-Supervised Verifier Jianqiao Lu, Zhiyang Dou, Hongru WANG, Zeyu Cao, Jianbo Dai, Yunlong Feng, Zhijiang Guo
-
Free Lunch in Pathology Foundation Model: Task-specific Model Adaptation with Concept-Guided Feature Enhancement Yanyan Huang, Weiqin Zhao, Yihang Chen, Yu Fu, Lequan Yu
-
Du-IN: Discrete units-guided mask modeling for decoding speech from Intracranial Neural signals Hui Zheng, Haiteng Wang, Weibang Jiang, Zhongtao Chen, Li He, Peiyang Lin, Penghu Wei, Guoguang Zhao, Yunzhe Liu
-
Reference Trustable Decoding: A Training-Free Augmentation Paradigm for Large Language Models Luohe Shi, Yao Yao, Zuchao Li, Lefei Zhang, Hai Zhao
-
MambaSCI: Efficient Mamba-UNet for Quad-Bayer Patterned Video Snapshot Compressive Imaging Zhenghao Pan, Haijin Zeng, Jiezhang Cao, Yongyong Chen, Kai Zhang, Yong Xu
-
Learning from Snapshots of Discrete and Continuous Data Streams Pramith Devulapalli, Steve Hanneke
-
SongCreator: Lyrics-based Universal Song Generation Shun Lei, Yixuan Zhou, Boshi Tang, Max W. Y. Lam, Feng liu, Hangyu Liu, Jingcheng Wu, Shiyin Kang, Zhiyong Wu, Helen Meng
-
Automated Label Unification for Multi-Dataset Semantic Segmentation with GNNs Ma Rong, Jie Chen, Xiangyang Xue, Jian Pu
-
Tetrahedron Splatting for 3D Generation Chun Gu, Zeyu Yang, Zijie Pan, Xiatian Zhu, Li Zhang
-
Lighting Every Darkness with 3DGS: Fast Training and Real-Time Rendering for HDR View Synthesis Xin Jin, Pengyi Jiao, Zheng-Peng Duan, Xingchao Yang, Chongyi Li, Chun-Le Guo, Bo Ren
-
GenWarp: Single Image to Novel Views with Semantic-Preserving Generative Warping Junyoung Seo, Kazumi Fukuda, Takashi Shibuya, Takuya Narihira, Naoki Murata, Shoukang Hu, Chieh-Hsin Lai, Seungryong Kim, Yuki Mitsufuji
-
Direct Unlearning Optimization for Robust and Safe Text-to-Image Models Yong-Hyun Park, Sangdoo Yun, Jin-Hwa Kim, Junho Kim, Geonhui Jang, Yonghyun Jeong, Junghyo Jo, Gayoung Lee
-
Balancing Context Length and Mixing Times for Reinforcement Learning at Scale Matthew Riemer, Khimya Khetarpal, Janarthanan Rajendran, Sarath Chandar
-
PCP-MAE: Learning to Predict Centers for Point Masked Autoencoders Xiangdong Zhang, Shaofeng Zhang, Junchi Yan
-
A scalable generative model for dynamical system reconstruction from neuroimaging data Eric Volkmann, Alena Brändle, Daniel Durstewitz, Georgia Koppe
-
FFAM: Feature Factorization Activation Map for Explanation of 3D Detectors Shuai Liu, Boyang Li, Zhiyu Fang, Mingyue Cui, Kai Huang
-
Dissecting the Failure of Invariant Learning on Graphs Qixun Wang, Yifei Wang, Yisen Wang, Xianghua Ying
-
Axioms for AI Alignment from Human Feedback Luise Ge, Daniel Halpern, Evi Micha, Ariel D. Procaccia, Itai Shapira, Yevgeniy Vorobeychik, Junlin Wu
-
Dynamic 3D Gaussian Fields for Urban Areas Tobias Fischer, Jonas Kulhanek, Samuel Rota Bulò, Lorenzo Porzi, Marc Pollefeys, Peter Kontschieder
-
Towards a "Universal Translator" for Neural Dynamics at Single-Cell, Single-Spike Resolution Yizi Zhang, Yanchen Wang, Donato Jiménez-Benetó, Zixuan Wang, Mehdi Azabou, Blake Richards, Renee Tung, Olivier Winter, Brain Laboratory International, Eva Dyer, Liam Paninski, Cole Hurwitz
-
V-PETL Bench: A Unified Visual Parameter-Efficient Transfer Learning Benchmark Yi Xin, Siqi Luo, Xuyang Liu, Yuntao Du., Haodi Zhou, Xinyu Cheng, Christina E. Lee, Junlong Du, Haozhe Wang, MingCai Chen, Ting Liu, Guimin Hu, Zhongwei Wan, rongchao zhang, Aoxue Li, Mingyang Yi, Xiaohong Liu
-
IKEA Manuals at Work: 4D Grounding of Assembly Instructions on Internet Videos Yunong Liu, Cristobal Eyzaguirre, Manling Li, Shubh Khanna, Juan Carlos Niebles, Vineeth Ravi, Saumitra Mishra, Weiyu Liu, Jiajun Wu
-
Bandits with Ranking Feedback Davide Maran, Francesco Bacchiocchi, Francesco Emanuele Stradi, Matteo Castiglioni, Nicola Gatti, Marcello Restelli
-
HiCoM: Hierarchical Coherent Motion for Dynamic Streamable Scenes with 3D Gaussian Splatting Qiankun Gao, Jiarui Meng, Chengxiang Wen, Jie Chen, Jian Zhang
-
Non-asymptotic Convergence of Training Transformers for Next-token Prediction Ruiquan Huang, Yingbin Liang, Jing Yang
-
Mitigating Backdoor Attack by Injecting Proactive Defensive Backdoor Shaokui Wei, Hongyuan Zha, Baoyuan Wu
-
Logarithmic Smoothing for Pessimistic Off-Policy Evaluation, Selection and Learning Otmane Sakhi, Imad Aouali, Pierre Alquier, Nicolas Chopin
-
Long-form factuality in large language models Jerry Wei, Chengrun Yang, Xinying Song, Yifeng Lu, Nathan Hu, Jie Huang, Dustin Tran, Daiyi Peng, Ruibo Liu, Da Huang, Cosmo Du, Quoc V Le
-
Graph-enhanced Optimizers for Structure-aware Recommendation Embedding Evolution Cong Xu, Jun Wang, Jianyong Wang, Wei Zhang
-
FuseAnyPart: Diffusion-Driven Facial Parts Swapping via Multiple Reference Images zheng yu, Yaohua Wang, Siying Cui, Aixi Zhang, Wei-Long Zheng, Senzhang Wang
-
Multi-hypotheses Conditioned Point Cloud Diffusion for 3D Human Reconstruction from Occluded Images Donghwan Kim, Tae-Kyun Kim
-
Towards Harmless Rawlsian Fairness Regardless of Demographic Prior Xuanqian Wang, Jing Li, Ivor Tsang, Yew Soon Ong
-
Towards Dynamic Message Passing on Graphs Junshu Sun, Chenxue Yang, Xiangyang Ji, Qingming Huang, Shuhui Wang
-
3D Gaussian Splatting as Markov Chain Monte Carlo Shakiba Kheradmand, Daniel Rebain, Gopal Sharma, Weiwei Sun, Yang-Che Tseng, Hossam Isack, Abhishek Kar, Andrea Tagliasacchi, Kwang Moo Yi
-
Nearest Neighbor Speculative Decoding for LLM Generation and Attribution Minghan Li, Xilun Chen, Ari Holtzman, Beidi Chen, Jimmy Lin, Scott Yih, Victoria Lin
-
Improved off-policy training of diffusion samplers Marcin Sendera, Minsu Kim, Sarthak Mittal, Pablo Lemos, Luca Scimeca, Jarrid Rector-Brooks, Alexandre Adam, Yoshua Bengio, Nikolay Malkin
-
Decomposing and Interpreting Image Representations via Text in ViTs Beyond CLIP Sriram Balasubramanian, Samyadeep Basu, Soheil Feizi
-
Aggregate-and-Adapt Natural Language Prompts for Downstream Generalization of CLIP Chen Huang, Skyler Seto, Samira Abnar, David Grangier, Navdeep Jaitly, Joshua Susskind
-
UPS: Unified Projection Sharing for Lightweight Single-Image Super-resolution and Beyond Kun Zhou, Xinyu Lin, Zhonghang LIU, Xiaoguang Han, Jiangbo Lu
-
Transforming Vision Transformer: Towards Efficient Multi-Task Asynchronous Learner Hanwen Zhong, Jiaxin Chen, Yutong Zhang, Di Huang, Yunhong Wang
-
Get rich quick: exact solutions reveal how unbalanced initializations promote rapid feature learning Daniel Kunin, Allan Raventós, Clémentine Dominé, Feng Chen, David Klindt, Andrew Saxe, Surya Ganguli
-
Segment Any Change Zhuo Zheng, Yanfei Zhong, Liangpei Zhang, Stefano Ermon
-
Uni-Med: A Unified Medical Generalist Foundation Model For Multi-Task Learning Via Connector-MoE Xun Zhu, Ying Hu, Fanbin Mo, Miao Li, Ji Wu
-
The surprising efficiency of temporal difference learning for rare event prediction Xiaoou Cheng, Jonathan Weare
-
Multimodal Large Language Models Make Text-to-Image Generative Models Align Better Xun Wu, Shaohan Huang, Guolong Wang, Jing Xiong, Furu Wei
-
The Implicit Bias of Gradient Descent on Separable Multiclass Data Hrithik Ravi, Clay Scott, Daniel Soudry, Yutong Wang
-
Classifier Clustering and Feature Alignment for Federated Learning under Distributed Concept Drift Junbao Chen, Jingfeng Xue, Yong Wang, Zhenyan Liu, Lu Huang
-
Mesa-Extrapolation: A Weave Position Encoding Method for Enhanced Extrapolation in LLMs Xin Ma, Yang Liu, Jingjing Liu, Xiaoxu Ma
-
TorchSpatial: A Location Encoding Framework and Benchmark for Spatial Representation Learning Nemin Wu, Qian Cao, Zhangyu Wang, Zeping Liu, Yanlin Qi, Jielu Zhang, Joshua Ni, X. Yao, Hongxu Ma, Lan Mu, Stefano Ermon, Tanuja Ganu, Akshay Nambi, Ni Lao, Gengchen Mai
-
Lumen: Unleashing Versatile Vision-Centric Capabilities of Large Multimodal Models Yang Jiao, Shaoxiang Chen, Zequn Jie, Jingjing Chen, Lin Ma, Yu-Gang Jiang
-
Voxel Mamba: Group-Free State Space Models for Point Cloud based 3D Object Detection Guowen Zhang, Lue Fan, Chenhang HE, Zhen Lei, ZHAO-XIANG ZHANG, Lei Zhang
-
FedLPA: One-shot Federated Learning with Layer-Wise Posterior Aggregation Xiang Liu, Liangxi Liu, Feiyang Ye, Yunheng Shen, Xia Li, Linshan Jiang, Jialin Li
-
On the Comparison between Multi-modal and Single-modal Contrastive Learning Wei Huang, Andi Han, Yongqiang Chen, Yuan Cao, Zhiqiang Xu, Taiji Suzuki
-
Stability and Generalizability in SDE Diffusion Models with Measure-Preserving Dynamics Weitong Zhang, Chengqi Zang, Liu Li, Sarah Cechnicka, Cheng Ouyang, Bernhard Kainz
-
QGFN: Controllable Greediness with Action Values Elaine Lau, Stephen Lu, Ling Pan, Doina Precup, Emmanuel Bengio
-
Rethinking Human Evaluation Protocol for Text-to-Video Models: Enhancing Reliability, Reproducibility, and Practicality Tianle Zhang, Langtian Ma, Yuchen Yan, yuchen zhang, yue yang, Ziyao Guo, Wenqi Shao, Kai Wang, Yang You, Yu Qiao, Ping Luo, Kaipeng Zhang
-
Mitigating Reward Overoptimization via Lightweight Uncertainty Estimation Xiaoying Zhang, Jean-Francois Ton, Wei Shen, Hongning Wang, Yang Liu
-
A Structure-Aware Framework for Learning Device Placements on Computation Graphs Shukai Duan, Heng Ping, Nikos Kanakaris, Xiongye Xiao, Panagiotis Kyriakis, Nesreen K. Ahmed, Peiyu Zhang, Guixiang Ma, Mihai Capotă, Shahin Nazarian, Theodore Willke, Paul Bogdan
-
Online Iterative Reinforcement Learning from Human Feedback with General Preference Model Chenlu Ye, Wei Xiong, Yuheng Zhang, Hanze Dong, Nan Jiang, Tong Zhang
-
SlowFocus: Enhancing Fine-grained Temporal Understanding in Video LLM Ming Nie, Dan Ding, Chunwei Wang, Yuanfan Guo, Jianhua Han, Hang Xu, Li Zhang
-
Higher-Order Causal Message Passing for Experimentation with Complex Interference Mohsen Bayati, Yuwei Luo, William Overman, Mohamad Sadegh Shirani Faradonbeh, Ruoxuan Xiong
-
SWT-Bench: Testing and Validating Real-World Bug-Fixes with Code Agents Niels Mündler, Mark Müller, Jingxuan He, Martin Vechev
-
Differentially Private Set Representations Sarvar Patel, Giuseppe Persiano, Joon Young Seo, Kevin Yeo
-
realSEUDO for real-time calcium imaging analysis Iuliia Dmitrieva, Sergey Babkin, Adam S. Charles
-
Probabilistic Federated Prompt-Tuning with Non-IID and Imbalanced Data Pei-Yau Weng, Minh Hoang, Lam Nguyen, My T. Thai, Lily Weng, Nghia Hoang
-
Monoculture in Matching Markets Kenny Peng, Nikhil Garg
-
BuckTales: A multi-UAV dataset for multi-object tracking and re-identification of wild antelopes Hemal Naik, Junran Yang, Dipin Das, Margaret Crofoot, Akanksha Rathore, Vivek Hari Sridhar
-
Input-to-State Stable Coupled Oscillator Networks for Closed-form Model-based Control in Latent Space Maximilian Stölzle, Cosimo Della Santina
-
SceneCraft: Layout-Guided 3D Scene Generation Xiuyu Yang, Yunze Man, Junkun Chen, Yu-Xiong Wang
-
Bayes-optimal learning of an extensive-width neural network from quadratically many samples Antoine Maillard, Emanuele Troiani, Simon Martin, Florent Krzakala, Lenka Zdeborová
-
Croissant: A Metadata Format for ML-Ready Datasets Mubashara Akhtar, Omar Benjelloun, Costanza Conforti, Luca Foschini, Joan Giner-Miguelez, Pieter Gijsbers, Sujata Goswami, Nitisha Jain, Michalis Karamousadakis, Michael Kuchnik, Satyapriya Krishna, Sylvain Lesage, Quentin Lhoest, Pierre Marcenac, Manil Maskey, Peter Mattson, Luis Oala, Hamidah Oderinwale, Pierre Ruyssen, Tim Santos, Rajat Shinde, Elena Simperl, Arjun Suresh, Goeffry Thomas, Slava Tykhonov, Joaquin Vanschoren, Susheel Varma, Jos van der Velde, Steffen Vogler, Carole-Jean Wu, Luyao Zhang
-
TAPVid-3D: A Benchmark for Tracking Any Point in 3D Skanda Koppula, Ignacio Rocco, Yi Yang, joseph heyward, Joao Carreira, Andrew Zisserman, Gabriel Brostow, Carl Doersch
-
One-Layer Transformer Provably Learns One-Nearest Neighbor In Context Zihao Li, Yuan Cao, Cheng Gao, Yihan He, Han Liu, Jason Klusowski, Jianqing Fan, Mengdi Wang
-
Promoting Fairness Among Dynamic Agents in Online-Matching Markets under Known Stationary Arrival Distributions Will Ma, Pan Xu
-
RaVL: Discovering and Mitigating Spurious Correlations in Fine-Tuned Vision-Language Models Maya Varma, Jean-Benoit Delbrouck, Zhihong Chen, Akshay Chaudhari, Curtis Langlotz
-
From Trojan Horses to Castle Walls: Unveiling Bilateral Data Poisoning Effects in Diffusion Models Zhuoshi Pan, Yuguang Yao, Gaowen Liu, Bingquan Shen, H. Vicky Zhao, Ramana Kompella, Sijia Liu
-
Sample Complexity of Posted Pricing for a Single Item Billy Jin, Thomas Kesselheim, Will Ma, Sahil Singla
-
Generalizing CNNs to graphs with learnable neighborhood quantization Isaac Osafo Nkansah, Neil Gallagher, Ruchi Sandilya, Conor Liston, Logan Grosenick
-
Leveraging Separated World Model for Exploration in Visually Distracted Environments Kaichen Huang, Shenghua Wan, Minghao Shao, Hai-Hang Sun, Le Gan, Shuai Feng, De-Chuan Zhan
-
Preventing Model Collapse in Deep Canonical Correlation Analysis by Noise Regularization Junlin He, Jinxiao Du, Susu Xu, Wei Ma
-
UniBench: Visual Reasoning Requires Rethinking Vision-Language Beyond Scaling Haider Al-Tahan, Quentin Garrido, Randall Balestriero, Diane Bouchacourt, Caner Hazirbas, Mark Ibrahim
-
Reawakening knowledge: Anticipatory recovery from catastrophic interference via structured training Yanlai Yang, Matt Jones, Michael C. Mozer, Mengye Ren
-
Diffusion Model with Cross Attention as an Inductive Bias for Disentanglement Tao Yang, Cuiling Lan, Yan Lu, Nanning Zheng
-
Error Correction Output Codes for Robust Neural Networks against Weight-errors: A Neural Tangent Kernel Point of View Anlan Yu, Shusen Jing, Ning Lyu, Wujie Wen, Zhiyuan Yan
-
Optimal Rates for Vector-Valued Spectral Regularization Learning Algorithms Dimitri Meunier, Zikai Shen, Mattes Mollenhauer, Arthur Gretton, Zhu Li
-
Conjugated Semantic Pool Improves OOD Detection with Pre-trained Vision-Language Models Mengyuan Chen, Junyu Gao, Changsheng Xu
-
Benchmarking Estimators for Natural Experiments: A Novel Dataset and a Doubly Robust Algorithm R. Teal Witter, Christopher Musco
-
Learning from Noisy Labels via Conditional Distributionally Robust Optimization Hui GUO, Grace Yi, Boyu Wang
-
CE-NAS: An End-to-End Carbon-Efficient Neural Architecture Search Framework Yiyang Zhao, Yunzhuo Liu, Bo Jiang, Tian Guo
-
Customized Multiple Clustering via Multi-Modal Subspace Proxy Learning Jiawei Yao, Qi Qian, Juhua Hu
-
RL in Latent MDPs is Tractable: Online Guarantees via Off-Policy Evaluation Jeongyeol Kwon, Shie Mannor, Constantine Caramanis, Yonathan Efroni
-
AFBench: A Large-scale Benchmark for Airfoil Design Jian Liu, Jianyu Wu, Hairun Xie, Guoqing zhang, Jing Wang, Liu Wei, Wanli Ouyang, Junjun Jiang, Xianming Liu, SHIXIANG TANG, Miao Zhang
-
REDUCR: Robust Data Downsampling using Class Priority Reweighting William Bankes, George Hughes, Ilija Bogunovic, Zi Wang
-
Proving Olympiad Algebraic Inequalities without Human Demonstrations Chenrui Wei, Mengzhou Sun, Wei Wang
-
Auditing Privacy Mechanisms via Label Inference Attacks Róbert Busa-Fekete, Travis Dick, Claudio Gentile, Andres Munoz Medina, Adam Smith, Marika Swanberg
-
Provable Posterior Sampling with Denoising Oracles via Tilted Transport Joan Bruna, Jiequn Han
-
AgentDojo: A Dynamic Environment to Evaluate Prompt Injection Attacks and Defenses for LLM Agents Edoardo Debenedetti, Jie Zhang, Mislav Balunovic, Luca Beurer-Kellner, Marc Fischer, Florian Tramer
-
Theoretical Investigations and Practical Enhancements on Tail Task Risk Minimization in Meta Learning Yiqin Lv, Qi Wang, Dong Liang, Zheng Xie
-
SAM-Guided Masked Token Prediction for 3D Scene Understanding Zhimin Chen, Liang Yang, Yingwei Li, Longlong Jing, Bing Li
-
Gradient-free Decoder Inversion in Latent Diffusion Models Seongmin Hong, Suh Yoon Jeon, Kyeonghyun Lee, Ernest Ryu, Se Young Chun
-
Codec Avatar Studio: Paired Human Captures for Complete, Driveable, and Generalizable Avatars Julieta Martinez, Emily Kim, Javier Romero, Timur Bagautdinov, Shunsuke Saito, Shoou-I Yu, Stuart Anderson, Michael Zollhöfer, Te-Li Wang, Shaojie Bai, Chenghui Li, Shih-En Wei, Rohan Joshi, Wyatt Borsos, Tomas Simon, Jason Saragih, Paul Theodosis, Alexander Greene, Anjani Josyula, Silvio Maeta, Andrew Jewett, Simion Venshtain, Christopher Heilman, Yueh-Tung Chen, Sidi Fu, Mohamed Elshaer, Tingfang Du, Longhua Wu, Shen-Chi Chen, Kai Kang, Michael Wu, Youssef Emad, Steven Longay, Ashley Brewer, Hitesh Shah, James Booth, Taylor Koska, Kayla Haidle, Matthew Andromalos, Joanna Hsu, Thomas Dauer, Peter Selednik, Tim Godisart, Scott Ardisson, Matthew Cipperly, Ben Humberston, Lon Farr, Bob Hansen, Peihong Guo, Dave Braun, Steven Krenn, He Wen, Lucas Evans, Natalia Fadeeva, Matthew Stewart, Gabriel Schwartz, Divam Gupta, Gyeongsik Moon, Kaiwen Guo, Yuan Dong, Yichen Xu, Takaaki Shiratori, Fabian Prada, Bernardo Pires, Bo Peng, Julia Buffalini, Autumn Trimble, Kevyn McPhail, Melissa Schoeller, Yaser Sheikh
-
GACL: Exemplar-Free Generalized Analytic Continual Learning HUIPING ZHUANG, Yizhu Chen, Di Fang, Run He, Kai Tong, Hongxin Wei, Ziqian Zeng, Cen Chen
-
QT-ViT: Improving Linear Attention in ViT with Quadratic Taylor Expansion Yixing Xu, Chao Li, Dong Li, Xiao Sheng, Fan Jiang, Lu Tian, Emad Barsoum
-
Self-supervised Transformation Learning for Equivariant Representations Jaemyung Yu, Jaehyun Choi, DongJae Lee, HyeongGwon Hong, Junmo Kim
-
Measuring Progress in Dictionary Learning for Language Model Interpretability with Board Game Models Adam Karvonen, Benjamin Wright, Can Rager, Rico Angell, Jannik Brinkmann, Logan Smith, Claudio Mayrink Verdun, David Bau, Samuel Marks
-
Towards a theory of how the structure of language is acquired by deep neural networks Francesco Cagnetta, Matthieu Wyart
-
AnyFit: Controllable Virtual Try-on for Any Combination of Attire Across Any Scenario Yuhan Li, Hao Zhou, Wenxiang Shang, Ran Lin, Xuanhong Chen, Bingbing Ni
-
Non-Stationary Learning of Neural Networks with Automatic Soft Parameter Reset Alexandre Galashov, Michalis Titsias, András György, Clare Lyle, Razvan Pascanu, Yee Whye Teh, Maneesh Sahani
-
Fairness-Aware Meta-Learning via Nash Bargaining Yi Zeng, Xuelin Yang, Li Chen, Cristian Ferrer, Ming Jin, Michael Jordan, Ruoxi Jia
-
Trajectory Data Suffices for Statistically Efficient Learning in Offline RL with Linear $q^\pi$-Realizability and Concentrability Volodymyr Tkachuk, Gellert Weisz, Csaba Szepesvari
-
Scaling Law for Time Series Forecasting Jingzhe Shi, Qinwei Ma, Huan Ma, Lei Li
-
Improving Alignment and Robustness with Circuit Breakers Andy Zou, Long Phan, Justin Wang, Derek Duenas, Maxwell Lin, Maksym Andriushchenko, J. Zico Kolter, Matt Fredrikson, Dan Hendrycks
-
Privacy Backdoors: Enhancing Membership Inference through Poisoning Pre-trained Models Yuxin Wen, Leo Marchyok, Sanghyun Hong, Jonas Geiping, Tom Goldstein, Nicholas Carlini
-
Model Reconstruction Using Counterfactual Explanations: A Perspective From Polytope Theory Pasan Dissanayake, Sanghamitra Dutta
-
TuneTables: Context Optimization for Scalable Prior-Data Fitted Networks Benjamin Feuer, Robin Schirrmeister, Valeriia Cherepanova, Chinmay Hegde, Frank Hutter, Micah Goldblum, Niv Cohen, Colin White
-
SmallToLarge (S2L): Scalable Data Selection for Fine-tuning Large Language Models by Summarizing Training Trajectories of Small Models Yu Yang, Siddhartha Mishra, Jeffrey Chiang, Baharan Mirzasoleiman
-
Improving Equivariant Model Training via Constraint Relaxation Stefanos Pertigkiozoglou, Evangelos Chatzipantazis, Shubhendu Trivedi, Kostas Daniilidis
-
ClavaDDPM: Multi-relational Data Synthesis with Cluster-guided Diffusion Models Wei Pang, Masoumeh Shafieinejad, Lucy Liu, Stephanie Hazlewood, Xi He
-
Cooperation, Competition, and Maliciousness: LLM-Stakeholders Interactive Negotiation Sahar Abdelnabi, Amr Gomaa, Sarath Sivaprasad, Lea Schönherr, Mario Fritz
-
Multi-language Diversity Benefits Autoformalization Albert Q. Jiang, Wenda Li, Mateja Jamnik
-
The Value of Reward Lookahead in Reinforcement Learning Nadav Merlis, Dorian Baudry, Vianney Perchet
-
On the Stability and Generalization of Meta-Learning Yunjuan Wang, Raman Arora
-
Cross-model Control: Improving Multiple Large Language Models in One-time Training Jiayi Wu, Hao Sun, Hengyi Cai, Lixin Su, Shuaiqiang Wang, Dawei Yin, Xiang Li, Ming Gao
-
How Does Variance Shape the Regret in Contextual Bandits? Zeyu Jia, Jian Qian, Alexander Rakhlin, Chen-Yu Wei
-
Understanding and Minimising Outlier Features in Transformer Training Bobby He, Lorenzo Noci, Daniele Paliotta, Imanol Schlag, Thomas Hofmann
-
Guided Trajectory Generation with Diffusion Models for Offline Model-based Optimization Taeyoung Yun, Sujin Yun, Jaewoo Lee, Jinkyoo Park
-
Towards training digitally-tied analog blocks via hybrid gradient computation Timothy Nest, Maxence Ernoult
-
Achievable distributional robustness when the robust risk is only partially identified Julia Kostin, Nicola Gnecco, Fanny Yang
-
Phased Consistency Models Fu-Yun Wang, Zhaoyang Huang, Alexander Bergman, Dazhong Shen, Peng Gao, Michael Lingelbach, Keqiang Sun, Weikang Bian, Guanglu Song, Yu Liu, Xiaogang Wang, Hongsheng Li
-
Zero-shot Image Editing with Reference Imitation Xi Chen, Yutong Feng, Mengting Chen, Yiyang Wang, Shilong Zhang, Yu Liu, Yujun Shen, Hengshuang Zhao
-
Toward Efficient Inference for Mixture of Experts Haiyang Huang, Newsha Ardalani, Anna Sun, Liu Ke, Shruti Bhosale, Hsien-Hsin Lee, Carole-Jean Wu, Benjamin Lee
-
Learning Disentangled Representations for Perceptual Point Cloud Quality Assessment via Mutual Information Minimization Ziyu Shan, Yujie Zhang, Yipeng Liu, YILING XU
-
Practical Shuffle Coding Julius Kunze, Daniel Severo, Jan-Willem van de Meent, James Townsend
-
DN-4DGS: Denoised Deformable Network with Temporal-Spatial Aggregation for Dynamic Scene Rendering Jiahao Lu, Jiacheng Deng, Ruijie Zhu, Yanzhe Liang, Wenfei Yang, Xu Zhou, Tianzhu Zhang
-
PGN: The RNN's New Successor is Effective for Long-Range Time Series Forecasting Yuxin Jia, Youfang Lin, Jing Yu, Shuo Wang, Tianhao Liu, Huaiyu Wan
-
Dissect Black Box: Interpreting for Rule-Based Explanations in Unsupervised Anomaly Detection Yu Zhang, Ruoyu Li, Nengwu Wu, Qing Li, Xinhan Lin, Yang Hu, Tao Li, Yong Jiang
-
Vision Transformer Neural Architecture Search for Out-of-Distribution Generalization: Benchmark and Insights Sy-Tuyen Ho, Tuan Van Vo, Somayeh Ebrahimkhani, Ngai-Man (Man) Cheung
-
Information-theoretic Generalization Analysis for Expected Calibration Error Futoshi Futami, Masahiro Fujisawa
-
Interpreting CLIP with Sparse Linear Concept Embeddings (SpLiCE) Usha Bhalla, Alex Oesterling, Suraj Srinivas, Flavio Calmon, Himabindu Lakkaraju
-
Small coresets via negative dependence: DPPs, linear statistics, and concentration Rémi Bardenet, Subhroshekhar Ghosh, Hugo Simon-Onfroy, Hoang Son Tran
-
One-Shot Safety Alignment for Large Language Models via Optimal Dualization Xinmeng Huang, Shuo Li, Edgar Dobriban, Osbert Bastani, Hamed Hassani, Dongsheng Ding
-
Mind the Gap: A Causal Perspective on Bias Amplification in Prediction & Decision-Making Drago Plecko, Elias Bareinboim
-
Leveraging an ECG Beat Diffusion Model for Morphological Reconstruction from Indirect Signals Lisa Bedin, Gabriel Cardoso, Josselin Duchateau, Remi Dubois, Eric Moulines
-
FASTopic: Pretrained Transformer is a Fast, Adaptive, Stable, and Transferable Topic Model Xiaobao Wu, Thong Nguyen, Delvin Zhang, William Yang Wang, Anh Tuan Luu
-
EffiLearner: Enhancing Efficiency of Generated Code via Self-Optimization Dong HUANG, Jianbo Dai, Han Weng, Puzhen Wu, Yuhao QING, Heming Cui, Zhijiang Guo, Jie Zhang
-
Don't Compress Gradients in Random Reshuffling: Compress Gradient Differences Abdurakhmon Sadiev, Grigory Malinovsky, Eduard Gorbunov, Igor Sokolov, Ahmed Khaled, Konstantin Burlachenko, Peter Richtarik
-
Hybrid Generative AI for De Novo Design of Co-Crystals with Enhanced Tabletability Nina Gubina, Andrei Dmitrenko, Gleb Solovev, Lyubov Yamshchikova, Oleg Petrov, Ivan Lebedev, Nikita Serov, Grigorii Kirgizov, Nikolay Nikitin, Vladimir Vinogradov
-
Hyper-opinion Evidential Deep Learning for Out-of-Distribution Detection Jingen Qu, Yufei Chen, Xiaodong Yue, Wei Fu, Qiguang Huang
-
Mimicking To Dominate: Imitation Learning Strategies for Success in Multiagent Games The Viet Bui, Tien Mai, Thanh Nguyen
-
Emergence of Hidden Capabilities: Exploring Learning Dynamics in Concept Space Core Francisco Park, Maya Okawa, Andrew Lee, Ekdeep S Lubana, Hidenori Tanaka
-
MedCalc-Bench: Evaluating Large Language Models for Medical Calculations Nikhil Khandekar, Qiao Jin, Guangzhi Xiong, Soren Dunn, Serina Applebaum, Zain Anwar, Maame Sarfo-Gyamfi, Conrad Safranek, Abid Anwar, Andrew Zhang, Aidan Gilson, Maxwell Singer, Amisha Dave, Anrew Taylor, Aidong Zhang, Qingyu Chen, Zhiyong Lu
-
Parameter Competition Balancing for Model Merging Guodong DU, Junlin Lee, Jing Li, Runhua Jiang, Yifei Guo, Shuyang Yu, Hanting Liu, Sim Kuan Goh, Ho-Kin Tang, Daojing He, Min Zhang
-
Deep Learning for Computing Convergence Rates of Markov Chains Yanlin Qu, Jose Blanchet, Peter W Glynn
-
CultureLLM: Incorporating Cultural Differences into Large Language Models Cheng Li, Mengzhuo Chen, Jindong Wang, Sunayana Sitaram, Xing Xie
-
Visual Autoregressive Modeling: Scalable Image Generation via Next-Scale Prediction Keyu Tian, Yi Jiang, Zehuan Yuan, BINGYUE PENG, Liwei Wang
-
PointAD: Comprehending 3D Anomalies from Points and Pixels for Zero-shot 3D Anomaly Detection Qihang Zhou, Jiangtao Yan, Shibo He, Wenchao Meng, Jiming Chen
-
Personalized Adapter for Large Meteorology Model on Devices: Towards Weather Foundation Models Shengchao Chen, Guodong Long, Jing Jiang, Chengqi Zhang
-
NeuralFluid: Nueral Fluidic System Design and Control with Differentiable Simulation Yifei Li, Yuchen Sun, Pingchuan Ma, Eftychios Sifakis, Tao Du, Bo Zhu, Wojciech Matusik
-
What does guidance do? A fine-grained analysis in a simple setting Muthu Chidambaram, Khashayar Gatmiry, Sitan Chen, Holden Lee, Jianfeng Lu
-
Beyond Concept Bottleneck Models: How to Make Black Boxes Intervenable? Sonia Laguna, Ričards Marcinkevičs, Moritz Vandenhirtz, Julia Vogt
-
Images that Sound: Composing Images and Sounds on a Single Canvas Ziyang Chen, Daniel Geng, Andrew Owens
-
DeTikZify: Synthesizing Graphics Programs for Scientific Figures and Sketches with TikZ Jonas Belouadi, Simone Ponzetto, Steffen Eger
-
MagR: Weight Magnitude Reduction for Enhancing Post-Training Quantization Aozhong Zhang, Naigang Wang, Yanxia Deng, Xin Li, Zi Yang, Penghang Yin
-
Boosting Alignment for Post-Unlearning Text-to-Image Generative Models Myeongseob Ko, Henry Li, Zhun Wang, Jonathan Patsenker, Jiachen (Tianhao) Wang, Qinbin Li, Ming Jin, Dawn Song, Ruoxi Jia
-
DreamCatcher: A Wearer-aware Multi-modal Sleep Event Dataset Based on Earables in Non-restrictive Environments Zeyu Wang, Xiyuxing Zhang, Ruotong Yu, Yuntao Wang, Kenneth Christofferson, Jingru Zhang, Alex Mariakakis, Yuanchun Shi
-
Federated Learning over Connected Modes Dennis Grinwald, Philipp Wiesner, Shinichi Nakajima
-
Faster Diffusion: Rethinking the Role of the Encoder for Diffusion Model Inference Senmao Li, Taihang Hu, Joost van de Weijer, Fahad Shahbaz Khan, Tao Liu, Linxuan Li, Shiqi Yang, Yaxing Wang, Ming-Ming Cheng, jian Yang
-
A provable control of sensitivity of neural networks through a direct parameterization of the overall bi-Lipschitzness Yuri Kinoshita, Taro Toyoizumi
-
Dynamic Subgroup Identification in Covariate-adjusted Response-adaptive Randomization Experiments Yanping Li, Jingshen Wang, Waverly Wei
-
TinyLUT: Tiny Look-Up Table for Efficient Image Restoration at the Edge Huanan LI, Juntao Guan, Lai Rui, Sijun Ma, Lin Gu, Noperson
-
PRODuctive bandits: Importance Weighting No More Julian Zimmert, Teodor Vanislavov Marinov
-
Continual Learning in the Frequency Domain RuiQi Liu, Boyu Diao, Libo Huang, Zijia An, Zhulin An, Yongjun Xu
-
Advancing Open-Set Domain Generalization Using Evidential Bi-Level Hardest Domain Scheduler Kunyu Peng, Di Wen, Kailun Yang, Ao Luo, Yufan Chen, Jia Fu, M. Saquib Sarfraz, Alina Roitberg, Rainer Stiefelhagen
-
Flexible mapping of abstract domains by grid cells via self-supervised extraction and projection of generalized velocity signals Abhiram Iyer, Sarthak Chandra, Sugandha Sharma, Ila Fiete
-
Protected Test-Time Adaptation via Online Entropy Matching: A Betting Approach Yarin Bar, Shalev Shaer, Yaniv Romano
-
Identification of Analytic Nonlinear Dynamical Systems with Non-asymptotic Guarantees Negin Musavi, Ziyao Guo, Geir Dullerud, Yingying Li
-
A Closer Look at the CLS Token for Cross-Domain Few-Shot Learning Yixiong Zou, Shuai Yi, Yuhua Li, Ruixuan Li
-
INDICT: Code Generation with Internal Dialogues of Critiques for Both Security and Helpfulness Hung Le, Doyen Sahoo, Yingbo Zhou, Caiming Xiong, Silvio Savarese
-
On the Necessity of Collaboration for Online Model Selection with Decentralized Data Junfan Li, Zheshun Wu, Zenglin Xu, Irwin King
-
Who Evaluates the Evaluations? Objectively Scoring Text-to-Image Prompt Coherence Metrics with T2IScoreScore (TS2) Michael Saxon, Fatima Jahara, Mahsa Khoshnoodi, Yujie Lu, Aditya Sharma, William Yang Wang
-
Exploiting the Replay Memory Before Exploring the Environment: Enhancing Reinforcement Learning Through Empirical MDP Iteration Hongming Zhang, Chenjun Xiao, Chao Gao, Han Wang, bo xu, Martin Müller
-
SocraticLM: Exploring Socratic Personalized Teaching with Large Language Models Jiayu Liu, Zhenya Huang, Tong Xiao, Jing Sha, Jinze Wu, Qi Liu, Shijin Wang, Enhong Chen
-
IWBVT: Instance Weighting-based Bias-Variance Trade-off for Crowdsourcing Wenjun Zhang, Liangxiao Jiang, Chaoqun Li
-
A-FedPD: Aligning Dual-Drift is All Federated Primal-Dual Learning Needs Yan Sun, Li Shen, Dacheng Tao
-
Sub-optimal Experts mitigate Ambiguity in Inverse Reinforcement Learning Riccardo Poiani, Curti Gabriele, Alberto Maria Metelli, Marcello Restelli
-
Leveraging Contrastive Learning for Enhanced Node Representations in Tokenized Graph Transformers Jinsong Chen, Hanpeng Liu, John Hopcroft, Kun He
-
DoFIT: Domain-aware Federated Instruction Tuning with Alleviated Catastrophic Forgetting Binqian Xu, Xiangbo Shu, Haiyang Mei, Zechen Bai, Basura Fernando, Mike Zheng Shou, Jinhui Tang
-
In-Context Learning with Representations: Contextual Generalization of Trained Transformers Tong Yang, Yu Huang, Yingbin Liang, Yuejie Chi
-
Multi-Winner Reconfiguration Jiehua Chen, Christian Hatschka, Sofia Simola
-
Large Language Models Must Be Taught to Know What They Don’t Know Sanyam Kapoor, Nate Gruver, Manley Roberts, Katie Collins, Arka Pal, Umang Bhatt, Adrian Weller, Samuel Dooley, Micah Goldblum, Andrew G. Wilson
-
Learning Infinitesimal Generators of Continuous Symmetries from Data Gyeonghoon Ko, Hyunsu Kim, Juho Lee
-
ConceptMix: A Compositional Image Generation Benchmark with Controllable Difficulty Xindi Wu, Dingli Yu, Yangsibo Huang, Olga Russakovsky, Sanjeev Arora
-
Brain-JEPA: Brain Dynamics Foundation Model with Gradient Positioning and Spatiotemporal Masking Zijian Dong, Ruilin Li, Yilei Wu, Thuan Tinh Nguyen, Joanna Chong, Fang Ji, Nathanael Tong, Christopher Chen, Juan Helen Zhou
-
StreamingDialogue: Prolonged Dialogue Learning via Long Context Compression with Minimal Losses JIANAN LI, Quan Tu, Cunli Mao, Zhengtao Yu, Ji-Rong Wen, Rui Yan
-
Enhancing Robustness in Deep Reinforcement Learning: A Lyapunov Exponent Approach Rory Young, Nicolas Pugeault
-
SpeechForensics: Audio-Visual Speech Representation Learning for Face Forgery Detection Yachao Liang, Min Yu, Gang Li, Jianguo Jiang, Boquan Li, Feng Yu, Ning Zhang, Xiang Meng, Weiqing Huang
-
On Feature Learning in Structured State Space Models Leena Chennuru Vankadara, Jin Xu, Moritz Haas, Volkan Cevher
-
Toward Conditional Distribution Calibration in Survival Prediction Shi-ang Qi, Yakun Yu, Russell Greiner
-
Cascade Speculative Drafting for Even Faster LLM Inference Ziyi Chen, Xiaocong Yang, Jiacheng Lin, Chenkai Sun, Kevin Chang, Jie Huang
-
Local to Global: Learning Dynamics and Effect of Initialization for Transformers Ashok Vardhan Makkuva, Marco Bondaschi, Adway Girish, Alliot Nagle, Hyeji Kim, Michael Gastpar, Chanakya Ekbote
-
Localized Zeroth-Order Prompt Optimization Wenyang Hu, Yao Shu, Zongmin Yu, Zhaoxuan Wu, Xiaoqiang Lin, Zhongxiang Dai, See-Kiong Ng, Bryan Kian Hsiang Low
-
Bayesian Optimisation with Unknown Hyperparameters: Regret Bounds Logarithmically Closer to Optimal Juliusz Ziomek, Masaki Adachi, Michael A Osborne
-
Neural Model Checking Mirco Giacobbe, Daniel Kroening, Abhinandan Pal, Michael Tautschnig
-
Aligning Vision Models with Human Aesthetics in Retrieval: Benchmarks and Algorithms Miaosen Zhang, Yixuan Wei, Zhen Xing, Yifei Ma, Zuxuan Wu, Ji Li, Zheng Zhang, Qi Dai, Chong Luo, Xin Geng, Baining Guo
-
Benchmark Data Repositories for Better Benchmarking Rachel Longjohn, Markelle Kelly, Sameer Singh, Padhraic Smyth
-
How many classifiers do we need? Hyunsuk Kim, Liam Hodgkinson, Ryan Theisen, Michael W. Mahoney
-
HENASY: Learning to Assemble Scene-Entities for Interpretable Egocentric Video-Language Model Khoa Vo, Thinh Phan, Kashu Yamazaki, Minh Tran, Ngan Le
-
SpaFL: Communication-Efficient Federated Learning With Sparse Models And Low Computational Overhead Minsu Kim, Walid Saad, Merouane DEBBAH, Choong Hong
-
Discovering Preference Optimization Algorithms with and for Large Language Models Chris Lu, Samuel Holt, Claudio Fanconi, Alex Chan, Jakob Foerster, Mihaela van der Schaar, Robert Lange
-
Interventional Causal Discovery in a Mixture of DAGs Burak Varıcı, Dmitriy Katz, Dennis Wei, Prasanna Sattigeri, Ali Tajer
-
Minimax Optimal and Computationally Efficient Algorithms for Distributionally Robust Offline Reinforcement Learning Zhishuai Liu, Pan Xu
-
WhodunitBench: Evaluating Large Multimodal Agents via Murder Mystery Games Junlin Xie, Ruifei Zhang, Zhihong Chen, Xiang Wan, Guanbin Li
-
Neur2BiLO: Neural Bilevel Optimization Justin Dumouchelle, Esther Julien, Jannis Kurtz, Elias Khalil
-
Proving Theorems Recursively Haiming Wang, Huajian Xin, Zhengying Liu, Wenda Li, Yinya Huang, Jianqiao Lu, Zhicheng Yang, Jing Tang, Jian Yin, Zhenguo Li, Xiaodan Liang
-
Analytically deriving Partial Information Decomposition for affine systems of stable and convolution-closed distributions Chaitanya Goswami, Amanda Merkley
-
UDON: Universal Dynamic Online distillatioN for generic image representations Nikolaos-Antonios Ypsilantis, Kaifeng Chen, Andre Araujo, Ondrej Chum
-
Disentangling Linear Quadratic Control with Untrusted ML Predictions Tongxin Li, Hao Liu, Yisong Yue
-
CleanDiffuser: An Easy-to-use Modularized Library for Diffusion Models in Decision Making Zibin Dong, Yifu Yuan, Jianye Hao, Fei Ni, Yi Ma, Pengyi Li, YAN ZHENG
-
Reducing Transformer Key-Value Cache Size with Cross-Layer Attention William Brandon, Mayank Mishra, Aniruddha Nrusimha, Rameswar Panda, Jonathan Ragan-Kelley
-
Unveiling User Satisfaction and Creator Productivity Trade-Offs in Recommendation Platforms Fan Yao, Yiming Liao, Jingzhou Liu, Shaoliang Nie, Qifan Wang, Haifeng Xu, Hongning Wang
-
Transcendence: Generative Models Can Outperform The Experts That Train Them Edwin Zhang, Vincent Zhu, Naomi Saphra, Anat Kleiman, Benjamin Edelman, Milind Tambe, Sham Kakade, Eran Malach
-
Identifying Causal Effects Under Functional Dependencies Yizuo Chen, Adnan Darwiche
-
Style Adaptation and Uncertainty Estimation for Multi-Source Blended-Target Domain Adaptation Yuwu Lu, Haoyu Huang, Xue Hu
-
Linear Regression using Heterogeneous Data Batches Ayush Jain, Rajat Sen, Weihao Kong, Abhimanyu Das, Alon Orlitsky
-
Adaptive $Q$-Aid for Conditional Supervised Learning in Offline Reinforcement Learning Jeonghye Kim, Suyoung Lee, Woojun Kim, Youngchul Sung
-
You Only Look Around: Learning Illumination-Invariant Feature for Low-light Object Detection Mingbo Hong, Shen Cheng, Haibin Huang, Haoqiang Fan, Shuaicheng Liu
-
Amnesia as a Catalyst for Enhancing Black Box Pixel Attacks in Image Classification and Object Detection Dongsu Song, Daehwa Ko, Jay Hoon Jung
-
End-to-End Ontology Learning with Large Language Models Andy Lo, Albert Q. Jiang, Wenda Li, Mateja Jamnik
-
Bayesian Domain Adaptation with Gaussian Mixture Domain-Indexing Yanfang Ling, Jiyong Li, Lingbo Li, Shangsong Liang
-
Reprogramming Pretrained Target-Specific Diffusion Models for Dual-Target Drug Design Xiangxin Zhou, Jiaqi Guan, Yijia Zhang, Xingang Peng, Liang Wang, Jianzhu Ma
-
Upping the Game: How 2D U-Net Skip Connections Flip 3D Segmentation Xingru Huang, yihao guo, Jian Huang, Tianyun Zhang, HE HONG, Shaowei Jiang, Yaoqi Sun
-
Cambrian-1: A Fully Open, Vision-Centric Exploration of Multimodal LLMs Peter Tong, Ellis Brown, Penghao Wu, Sanghyun Woo, Adithya Jairam Vedagiri IYER, Sai Charitha Akula, Shusheng Yang, Jihan Yang, Manoj Middepogu, Ziteng Wang, Xichen Pan, Rob Fergus, Yann LeCun, Saining Xie
-
Dual Encoder GAN Inversion for High-Fidelity 3D Head Reconstruction from Single Images Bahri Batuhan Bilecen, Ahmet Gökmen, Aysegul Dundar
-
Base of RoPE Bounds Context Length Mingyu Xu, Xin Men, Bingning Wang, Qingyu Zhang, Hongyu Lin, Xianpei Han, weipeng chen
-
How does Architecture Influence the Base Capabilities of Pre-trained Language Models? A Case Study Based on FFN-Wider and MoE Transformers Xin Lu, Yanyan Zhao, Bing Qin, Liangyu Huo, Qing Yang, Dongliang Xu
-
FactorSim: Generative Simulation via Factorized Representation Fan-Yun Sun, Harini S I, Angela Yi, Yihan Zhou, Alex Zook, Jonathan Tremblay, Logan Cross, Jiajun Wu, Nick Haber
-
AMAGO-2: Breaking the Multi-Task Barrier in Meta-Reinforcement Learning with Transformers Jake Grigsby, Justin Sasek, Samyak Parajuli, Ikechukwu D. Adebi, Amy Zhang, Yuke Zhu
-
Alleviate Anchor-Shift: Explore Blind Spots with Cross-View Reconstruction for Incomplete Multi-View Clustering Suyuan Liu, Siwei Wang, KE LIANG, Junpu Zhang, Zhibin Dong, Tianrui Liu, En Zhu, Xinwang Liu, Kunlun He
-
LLMCBench: Benchmarking Large Language Model Compression for Efficient Deployment Ge Yang, Changyi He, Jinyang Guo, Jianyu Wu, Yifu Ding, Aishan Liu, Haotong Qin, Pengliang Ji, Xianglong Liu
-
Transferable Adversarial Attacks on SAM and Its Downstream Models Song Xia, Wenhan Yang, Yi Yu, Xun Lin, Henghui Ding, LINGYU DUAN, Xudong Jiang
-
MoGU: A Framework for Enhancing Safety of LLMs While Preserving Their Usability YANRUI DU, Sendong Zhao, Danyang Zhao, Ming Ma, Yuhan Chen, Liangyu Huo, Qing Yang, Dongliang Xu, Bing Qin
-
Causal Imitation for Markov Decision Processes: a Partial Identification Approach Kangrui Ruan, Junzhe Zhang, Xuan Di, Elias Bareinboim
-
MedJourney: Benchmark and Evaluation of Large Language Models over Patient Clinical Journey Xian Wu, Yutian Zhao, Yunyan Zhang, Jiageng Wu, Zhihong Zhu, Yingying Zhang, Yi Ouyang, Ziheng Zhang, Huimin WANG, zhenxi Lin, Jie Yang, Shuang Zhao, Yefeng Zheng
-
Learning Diffusion Priors from Observations by Expectation Maximization François Rozet, Gerome Andry, Francois Lanusse, Gilles Louppe
-
Instruction Embedding: Latent Representations of Instructions Towards Task Identification Yiwei Li, Jiayi Shi, Shaoxiong Feng, Peiwen Yuan, Xinglin Wang, Boyuan Pan, Heda Wang, Yao Hu, Prof. Kan
-
FastSurvival: Hidden Computational Blessings in Training Cox Proportional Hazards Models Jiachang Liu, Rui Zhang, Cynthia Rudin
-
DuQuant: Distributing Outliers via Dual Transformation Makes Stronger Quantized LLMs Haokun Lin, Haobo Xu, Yichen WU, Jingzhi Cui, Yingtao Zhang, Linzhan Mou, Linqi Song, Zhenan Sun, Ying Wei
-
DAGER: Exact Gradient Inversion for Large Language Models Ivo Petrov, Dimitar I. Dimitrov, Maximilian Baader, Mark Müller, Martin Vechev
-
Posture-Informed Muscular Force Learning for Robust Hand Pressure Estimation Kyungjin Seo, Junghoon Seo, Hanseok Jeong, Sangpil Kim, Sang Ho Yoon
-
What matters when building vision-language models? Hugo Laurençon, Leo Tronchon, Matthieu Cord, Victor Sanh
-
Language Grounded Multi-agent Reinforcement Learning with Human-interpretable Communication Huao Li, Hossein Nourkhiz Mahjoub, Behdad Chalaki, Vaishnav Tadiparthi, Kwonjoon Lee, Ehsan Moradi Pari, Charles Lewis, Katia Sycara
-
Variational Multi-scale Representation for Estimating Uncertainty in 3D Gaussian Splatting Ruiqi Li, Yiu-ming Cheung
-
Exploring DCN-like architecture for fast image generation with arbitrary resolution Shuai Wang, Zexian Li, Tianhui Song, Xubin Li, Tiezheng Ge, Bo Zheng, Limin Wang
-
Replay-and-Forget-Free Graph Class-Incremental Learning: A Task Profiling and Prompting Approach Chaoxi Niu, Guansong Pang, Ling Chen, Bing Liu
-
DeformableTST: Transformer for Time Series Forecasting without Over-reliance on Patching Donghao Luo, Xue Wang
-
An Efficient High-dimensional Gradient Estimator for Stochastic Differential Equations Shengbo Wang, Jose Blanchet, Peter W Glynn
-
Mixture of Demonstrations for In-Context Learning Song Wang, Zihan Chen, Chengshuai Shi, Cong Shen, Jundong Li
-
Differentially Private Reinforcement Learning with Self-Play Dan Qiao, Yu-Xiang Wang
-
Contextual Decision-Making with Knapsacks Beyond the Worst Case Zhaohua Chen, Rui Ai, Mingwei Yang, Yuqi Pan, Chang Wang, Xiaotie Deng
-
Transition Constrained Bayesian Optimization via Markov Decision Processes Jose Pablo Folch, Calvin Tsay, Robert Lee, Behrang Shafei, Weronika Ormaniec, Andreas Krause, Mark van der Wilk, Ruth Misener, Mojmir Mutny
-
Finding NeMo: Localizing Neurons Responsible For Memorization in Diffusion Models Dominik Hintersdorf, Lukas Strupp