Part of Advances in Neural Information Processing Systems 36 (NeurIPS 2023) Main Conference Track
Lasse Vuursteen, Botond Szabo, Aad van der Vaart, Harry van Zanten
Combining test statistics from independent trials or experiments is a popular method of meta-analysis. However, there is very limited theoretical understanding of the power of the combined test, especially in high-dimensional models considering composite hypotheses tests. We derive a mathematical framework to study standard {meta-analysis} testing approaches in the context of the many normal means model, which serves as the platform to investigate more complex models.We introduce a natural and mild restriction on the meta-level combination functions of the local trials. This allows us to mathematically quantify the cost of compressing $m$ trials into real-valued test statistics and combining these. We then derive minimax lower and matching upper bounds for the separation rates of standard combination methods for e.g. p-values and e-values, quantifying the loss relative to using the full, pooled data. We observe an elbow effect, revealing that in certain cases combining the locally optimal tests in each trial results in a sub-optimal {meta-analysis} method and develop approaches to achieve the global optima. We also explore the possible gains of allowing limited coordination between the trial designs. Our results connect meta-analysis with bandwidth constraint distributed inference and build on recent information theoretic developments in the latter field.