OBELICS: An Open Web-Scale Filtered Dataset of Interleaved Image-Text Documents

Part of Advances in Neural Information Processing Systems 36 (NeurIPS 2023) Datasets and Benchmarks Track

Bibtex Paper Supplemental

Authors

Hugo Laurençon, Lucile Saulnier, Leo Tronchon, Stas Bekman, Amanpreet Singh, Anton Lozhkov, Thomas Wang, Siddharth Karamcheti, Alexander Rush, Douwe Kiela, Matthieu Cord, Victor Sanh

Abstract

Large multimodal models trained on natural documents, which interleave images and text, outperform models trained on image-text pairs on various multimodal benchmarks. However, the datasets used to train these models have not been released, and the collection process has not been fully specified. We introduce the OBELICS dataset, an open web-scale filtered dataset of interleaved image-text documents comprising 141 million web pages extracted from Common Crawl, 353 million associated images, and 115 billion text tokens. We describe the dataset creation process, present comprehensive filtering rules, and provide an analysis of the dataset's content. To show the viability of OBELICS, we train on the dataset vision and language models of 9 and 80 billion parameters, IDEFICS-9B and IDEFICS, and obtain competitive performance on different multimodal benchmarks. We release our dataset, models and code.