Unified 3D Segmenter As Prototypical Classifiers

Part of Advances in Neural Information Processing Systems 36 (NeurIPS 2023) Main Conference Track

Bibtex Paper Supplemental

Authors

Zheyun Qin, Cheng Han, Qifan Wang, Xiushan Nie, Yilong Yin, Lu Xiankai

Abstract

The task of point cloud segmentation, comprising semantic, instance, and panoptic segmentation, has been mainly tackled by designing task-specific network architectures, which often lack the flexibility to generalize across tasks, thus resulting in a fragmented research landscape. In this paper, we introduce ProtoSEG, a prototype-based model that unifies semantic, instance, and panoptic segmentation tasks. Our approach treats these three homogeneous tasks as a classification problem with different levels of granularity. By leveraging a Transformer architecture, we extract point embeddings to optimize prototype-class distances and dynamically learn class prototypes to accommodate the end tasks. Our prototypical design enjoys simplicity and transparency, powerful representational learning, and ad-hoc explainability. Empirical results demonstrate that ProtoSEG outperforms concurrent well-known specialized architectures on 3D point cloud benchmarks, achieving 72.3%, 76.4% and 74.2% mIoU for semantic segmentation on S3DIS, ScanNet V2 and SemanticKITTI, 66.8% mCov and 51.2% mAP for instance segmentation on S3DIS and ScanNet V2, 62.4% PQ for panoptic segmentation on SemanticKITTI, validating the strength of our concept and the effectiveness of our algorithm. The code and models are available at https://github.com/zyqin19/PROTOSEG.