Online Control for Meta-optimization

Part of Advances in Neural Information Processing Systems 36 (NeurIPS 2023) Main Conference Track

Bibtex Paper Supplemental

Authors

Xinyi Chen, Elad Hazan

Abstract

Choosing the optimal hyperparameters, including learning rate and momentum, for specific optimization instances is a significant yet non-convex challenge. This makes conventional iterative techniques such as hypergradient descent \cite{baydin2017online} insufficient in obtaining global optimality guarantees.We consider the more general task of meta-optimization -- online learning of the best optimization algorithm given problem instances, and introduce a novel approach based on control theory. We show how meta-optimization can be formulated as an optimal control problem, departing from existing literature that use stability-based methods to study optimization. Our approach leverages convex relaxation techniques in the recently-proposed nonstochastic control framework to overcome the challenge of nonconvexity, and obtains regret guarantees vs. the best offline solution. This guarantees that in meta-optimization, we can learn a method that attains convergence comparable to that of the best optimization method in hindsight from a class of methods.