Auxiliary Losses for Learning Generalizable Concept-based Models

Part of Advances in Neural Information Processing Systems 36 (NeurIPS 2023) Main Conference Track

Bibtex Paper

Authors

Ivaxi Sheth, Samira Ebrahimi Kahou

Abstract

The increasing use of neural networks in various applications has lead to increasing apprehensions, underscoring the necessity to understand their operations beyond mere final predictions. As a solution to enhance model transparency, Concept Bottleneck Models (CBMs) have gained popularity since their introduction. CBMs essentially limit the latent space of a model to human-understandable high-level concepts. While beneficial, CBMs have been reported to often learn irrelevant concept representations that consecutively damage model performance. To overcome the performance trade-off, we propose a cooperative-Concept Bottleneck Model (coop-CBM). The concept representation of our model is particularly meaningful when fine-grained concept labels are absent. Furthermore, we introduce the concept orthogonal loss (COL) to encourage the separation between the concept representations and to reduce the intra-concept distance. This paper presents extensive experiments on real-world datasets for image classification tasks, namely CUB, AwA2, CelebA and TIL. We also study the performance of coop-CBM models under various distributional shift settings. We show that our proposed method achieves higher accuracy in all distributional shift settings even compared to the black-box models with the highest concept accuracy.