Structural Pruning for Diffusion Models

Part of Advances in Neural Information Processing Systems 36 (NeurIPS 2023) Main Conference Track

Bibtex Paper Supplemental


Gongfan Fang, Xinyin Ma, Xinchao Wang


Generative modeling has recently undergone remarkable advancements, primarily propelled by the transformative implications of Diffusion Probabilistic Models (DPMs). The impressive capability of these models, however, often entails significant computational overhead during both training and inference. To tackle this challenge, we present Diff-Pruning, an efficient compression method tailored for learning lightweight diffusion models from pre-existing ones, without the need for extensive re-training. The essence of Diff-Pruning is encapsulated in a Taylor expansion over pruned timesteps, a process that disregards non-contributory diffusion steps and ensembles informative gradients to identify important weights. Our empirical assessment, undertaken across several datasets highlights two primary benefits of our proposed method: 1) Efficiency: it enables approximately a 50\% reduction in FLOPs at a mere 10% to 20% of the original training expenditure; 2) Consistency: the pruned diffusion models inherently preserve generative behavior congruent with their pre-trained models.