PackQViT: Faster Sub-8-bit Vision Transformers via Full and Packed Quantization on the Mobile

Part of Advances in Neural Information Processing Systems 36 (NeurIPS 2023) Main Conference Track

Bibtex Paper Supplemental


Peiyan Dong, LEI LU, Chao Wu, Cheng Lyu, Geng Yuan, Hao Tang, Yanzhi Wang


While Vision Transformers (ViTs) have undoubtedly made impressive strides in computer vision (CV), their intricate network structures necessitate substantial computation and memory resources. A decision-making process for CV tasks typically entails performing computations with low latency, which is a tricky problem for ViT models.Model quantization is a widely-used technique to optimize the hardware efficiency of deep neural networks.Full quantization under Sub-8-bit precision, in particular, is a promising solution to reduce inference latency significantly. Unfortunately, current commodity hardware, such as CPUs and GPUs, still struggles to efficiently execute these sub-8-bit quantized networks, as their SIMD instructions only support a granularity of 8 bits or wider.Also, there is a scarcity of literature that presents a full quantization paradigm for ViTs.In this paper, we propose an activation-aware fully sub-8-bit quantization-aware training (QAT) framework called PackQViT for efficient yet accurate ViT acceleration on mobile devices to facilitate real-time AI-powered decision-making.Specifically, in revisiting data activation within the ViT dataflow, two characteristics are relevant to quantization strategy and precision: the long-tailed distribution and systematic channel-wise outliers.In response, we employ either log2 quantization or clipping to address the long-tailed distribution and incorporate outlier-aware training for residual link quantization to regulate the various channel-wise outliers more consistently.Notably, due to the systematic fixed pattern, outlier-aware training approach can predict the channel indices and regularized scales of outliers in advance, thus avoiding the runtime data-adaptive selection during inference.Furthermore, we employ Int-$2^{n}$-Softmax, Int-LayerNorm, and Integer GELU to enable integer-only computation flow. Finally, we develop a SIMD-based 4-bit packed multiplier to achieve end-to-end ViT acceleration on mobile phones.Compared to prior studies on ViT quantization using 8-bit precision, PackQViT surpasses other works by an improved accuracy ranging from 0.4\% to 17.9\% for various widely used ViTs on ImageNet dataset; under 4-bit precision, PackQViT demonstrates 0.4%$\sim$2.8% higher accuracy. Compared to the baseline multiplier, our implementations on the Realme GT Android smartphone with Snapdragon 870 SoC CPU achieve 2.6x$\sim$3.7x speedup under 8-bit scenario and 3.8x$\sim$5.9x speedup under 4-bit which ensures practical real-time performance.