Part of Advances in Neural Information Processing Systems 36 (NeurIPS 2023) Main Conference Track
Xiao Luo, Haixin Wang, Zijie Huang, Huiyu Jiang, Abhijeet Gangan, Song Jiang, Yizhou Sun
Modeling interacting dynamical systems, such as fluid dynamics and intermolecular interactions, is a fundamental research problem for understanding and simulating complex real-world systems. Many of these systems can be naturally represented by dynamic graphs, and graph neural network-based approaches have been proposed and shown promising performance. However, most of these approaches assume the underlying dynamics does not change over time, which is unfortunately untrue. For example, a molecular dynamics can be affected by the environment temperature over the time. In this paper, we take an attempt to provide a probabilistic view for time-varying dynamics and propose a model Context-attended Graph ODE (CARE) for modeling time-varying interacting dynamical systems. In our CARE, we explicitly use a context variable to model time-varying environment and construct an encoder to initialize the context variable from historical trajectories. Furthermore, we employ a neural ODE model to depict the dynamic evolution of the context variable inferred from system states. This context variable is incorporated into a coupled ODE to simultaneously drive the evolution of systems. Comprehensive experiments on four datasets demonstrate the effectiveness of our proposed CARE compared with several state-of-the-art approaches.