Stochastic Distributed Optimization under Average Second-order Similarity: Algorithms and Analysis

Part of Advances in Neural Information Processing Systems 36 (NeurIPS 2023) Main Conference Track

Bibtex Paper Supplemental

Authors

Dachao Lin, Yuze Han, Haishan Ye, Zhihua Zhang

Abstract

We study finite-sum distributed optimization problems involving a master node and $n-1$ local nodes under the popular $\delta$-similarity and $\mu$-strong convexity conditions. We propose two new algorithms, SVRS and AccSVRS, motivated by previous works. The non-accelerated SVRS method combines the techniques of gradient sliding and variance reduction and achieves a better communication complexity of $\tilde{\mathcal{O}}(n {+} \sqrt{n}\delta/\mu)$ compared to existing non-accelerated algorithms. Applying the framework proposed in Katyusha X, we also develop a directly accelerated version named AccSVRS with the $\tilde{\mathcal{O}}(n {+} n^{3/4}\sqrt{\delta/\mu})$ communication complexity. In contrast to existing results, our complexity bounds are entirely smoothness-free and exhibit superiority in ill-conditioned cases. Furthermore, we establish a nearly matched lower bound to verify the tightness of our AccSVRS method.