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Abstract

Fréchet regression has emerged as a promising approach for regression analysis1

involving non-Euclidean response variables. However, its practical applicability2

has been hindered by its reliance on ideal scenarios with abundant and noiseless3

covariate data. In this paper, we present a novel estimation method that tackles these4

limitations by leveraging the low-rank structure inherent in the covariate matrix.5

Our proposed framework combines the concepts of global Fréchet regression and6

principal component regression, aiming to improve the efficiency and accuracy7

of the regression estimator. By incorporating the low-rank structure, our method8

enables more effective modeling and estimation, particularly in high-dimensional9

and errors-in-variables regression settings. We provide a theoretical analysis of10

the proposed estimator’s large-sample properties, including a comprehensive rate11

analysis of bias, variance, and additional variations due to measurement errors.12

Furthermore, our numerical experiments provide empirical evidence that supports13

the theoretical findings, demonstrating the superior performance of our approach.14

Overall, this work introduces a promising framework for regression analysis of15

non-Euclidean variables, effectively addressing the challenges associated with16

limited and noisy covariate data, with potential applications in diverse fields.17

1 Introduction18

Regression analysis is a fundamental statistical methodology to model the relationship between19

response variables and explanatory variables (covariates). Linear regression, for example, models the20

(conditional) expected value of the response variable as a linear function of covariates. Regression21

models enable researchers and analysts to make predictions, gain insights into how input variables22

influence the outcomes of interest, and validate hypothetical associations between variables in23

inferential studies. As a result, regression is widely utilized across various scientific domains,24

including economics, psychology, biology, and engineering [31, 21, 29].25

In recent decades, there has been a growing interest in developing statistical methods capable of26

handling random objects in non-Euclidean spaces. Examples of these include functional data analysis27

[42], statistical manifold learning [32], statistical network analysis [35], and object-oriented data28

analysis [40]. In such contexts, the response variable is defined in a metric space that may lack an29

algebraic structure, making it challenging to apply global, parametric approaches toward regression30

as in the classical Euclidean setting. To overcome this challenge, (global) Fréchet regression, which31

models the relationship by fitting the (conditional) barycenters of the responses as a function of32

covariates, has been introduced [41]. Notably, when the Euclidean metric is considered, Fréchet33

regression recovers classical Euclidean regression models. For more details on Fréchet regression34

and its recent developments, we refer readers to [30, 41, 22, 46, 27].35
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Nevertheless, most existing research on Fréchet regression has focused on ideal scenarios char-36

acterized by abundant covariate data that are accurately measured and free of noise. In practical37

applications, however, high-dimensional data often arise, which are also susceptible to measurement38

errors and other forms of contamination. These errors can stem from various sources, such as39

unreliable data collection methods (e.g., low-resolution probes, subjective self-reports) or imperfect40

data storage and transmission. The high-dimensionality and the presence of measurement errors in41

covariates pose critical challenges for statistical inference, as regression analysis based on error-prone42

covariates may result in incorrect associations between variables, yielding misleading conclusions.43

To address these limitations, it is crucial to extend the methodology and analysis of Fréchet regression44

to tackle high-dimensional errors-in-variables problems. In this work, we aim to leverage the low-45

rank structure in the covariates to enhance the estimation accuracy and computational efficiency46

of Fréchet regression. Specifically, we explore the extension of principal component regression to47

handle errors-in-variables regression problems with non-Euclidean response variables.48

1.1 Contributions49

This paper contributes to advancing the (global) Fréchet regression of non-Euclidean response50

variables, with a particular focus on high-dimensional, errors-in-variables regression.51

Firstly, we propose a novel framework, called the regularized (global) Fréchet regression (Section 3)52

that combines the ideas from Fréchet regression [41] and the principal component regression [33].53

This framework effectively utilizes the low-rank structure in the matrix of (Euclidean) covariates54

by extracting its principal components via low-rank matrix approximation. Our proposed method is55

straightforward to implement, not requiring any knowledge about the error-generating mechanism.56

Furthermore, we provide a comprehensive theoretical analysis in three main theorems (Section57

4) to establish the effectiveness of the proposed framework. Firstly, we prove the consistency of58

the proposed estimator for the true global Fréchet regression model (Theorem 1). Secondly, we59

investigate the convergence rate of the estimator’s bias and variance (Theorem 2). Lastly, we derive60

an upper bound for the distance between the estimates obtained using error-free covariates and those61

with errors-in-variables covariates (Theorem 3). Collectively, these results demonstrate that our62

approach effectively addresses model mis-specification and achieve more efficient model estimation63

by incorporating the low-rank structure of covariates, despite the presence of inherent bias due to64

unobserved measurement errors.65

To validate our theoretical findings, we conduct numerical experiments on simulated datasets. Our66

results demonstrate that the proposed method provides more accurate estimates of the regression67

parameters, especially in high-dimensional settings. Our experiments emphasize the importance68

of incorporating the low-rank structure of covariates in Fréchet regression, and provide empirical69

evidence that aligns with our theoretical analysis.70

1.2 Related work71

Metric space-valued variables. Nonparametric regression models for Riemannian manifold-valued72

responses were proposed as a generalization of regression for multivariate outputs by Steinke et73

al. [49, 50]. These works provided a foundation for recent developments in regression analysis of74

non-Euclidean responses. Later, Hein [30] proposed a Nadaraya-Watson-type kernel estimation of75

regression model for general metric-space-valued outcomes. Since then, statistical properties of76

regression models for some special classes of metric space-valued outcomes, such as distribution77

functions [23, 53, 28] and matrix-valued responses [57, 20], have been investigated. Recently, many78

researchers have introduced further advances in Fréchet regression, including [41, 10, 38, 46]. In this79

study, we use the global Fréchet regression proposed by [41] as the basis for our proposed method.80

Errors-in-variables regression. Much of earlier work on errors-in-variables problems in the81

statistical literature can be found in [13], which covers the simulation-extrapolation (SIMEX) [16, 11],82

the attenuation correction method [37], covariate-adjusted model [47, 19], and the deconvolution83

kernel method [25, 24, 18]. The regression calibration method [48], instrumental variable modeling84

[12, 44], and the two-phase study design [9, 4] were also proposed when additional data are available85

for correcting measurement errors. In the high-dimensional modeling literature, regularization86
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methods for recovering the true covariate structure can also be utilized [39, 7, 17]. However, most of87

these methods require prior knowledge about the measurement error distributions.88

Principal component regression. The principal component regression (PCR) [33] is a statistical89

technique that regresses response variables on principal component scores of the covariate matrix.90

The conventional PCR selects a few principal components as the “new” regressors associated with91

the first leading eigenvalues to explain the highest proportion of variations observed in the original92

covariate matrix. In functional data analysis, PCR is known to have a shrinkage effect on the model93

estimate and produce robust prediction performance in functional regression [43, 34]. Recently,94

Agarwal et al. [2] investigated the robustness of PCR in the presence of measurement errors on95

covariates and the statistical guarantees for learning a good predictive model. Motivated by these96

findings, we will adopt the PCR framework to improve the estimation and prediction performance of97

the errors-in-variables Fréchet regression. in this study.98

1.3 Organization99

This paper is organized as follows. In Section 2, we introduce the notation used throughout the100

paper, and overview the global Fréchet regression framework. Section 3 presents the problem setup,101

objectives, and our proposed estimator, which we refer to as the regularized Fréchet regression102

(Definition 4). In Section 4, we discuss theoretical guarantees on the regularized Fréchet regression103

method in accurately estimating the global Fréchet regression function. Section 5 presents the104

results of numerical ’proof-of-concept’ experiments that support the theoretical findings. Finally, we105

conclude this paper with discussions in Section 6. Due to space constraints, detailed proofs of the106

theorems as well as additional details and discussions of experiments are provided in the Appendix.107

2 Preliminaries108

2.1 Notation109

Let N denote the set of positive integers and R denote the set of real numbers. Also, let R+ :=110

{x ∈ R : x ≥ 0}. For n ∈ N, we let [n] := {1, . . . , n}. We mostly use plain letters to denote111

scalars, vectors, and random variables, but we also use boldface uppercase letters for matrices, and112

curly letters to denote sets when useful. Note that we may identify a vector with its column matrix113

representation. For a matrix X , we let X−1 denote its inverse (if exists) and X† denote the Moore-114

Penrose pseudoinverse of X . Also, we let rowsp (X) and colsp (X) denote the row and column115

spaces of X , respectively. Furthermore, we let spec (X) denote the set of non-zero singular values116

of X , σi(X) denote the i-th largest singular value of X , and σ(λ)(X) := inf{σi(X) > λ : i ∈ N}117

with the convention inf ∅ = ∞. We let 1n = (1, 1, . . . , 1) ∈ Rd and let 1 denote the indicator118

function. We let ∥ · ∥ denote a norm, and set ∥ · ∥ = ∥ · ∥2 (the ℓ2-norm for vectors, and the spectral119

norm for matrices) by default, unless stated otherwise. For a finite set D, we may identify D with its120

empirical measure νemp
D = 1

|D|
∑

x∈D δx, where δx denotes the Dirac measure supported on {x}.121

Letting f, g : R → R, we write f(x) = O(g(x)) as x → ∞ if there exist M > 0 and x0 > 0 such122

that |f(x)| ≤ M · g(x) for all x ≥ x0. Likewise, we write f(x) = Ω(g(x)) if g(x) = O(f(x)).123

Furthermore, we write f(x) = o(g(x)) as x → ∞ if limx→∞
f(x)
g(x) = 0. For a sequence of random124

variables Xn, and a sequence an, we write Xn = Op(an) as n → ∞ if for any ε > 0, there exists125

M ∈ R+ and N ∈ N such that P
(∣∣Xn

an

∣∣ > M
)
< ε for all n ≥ N . Similarly, we write Xn = op(an)126

if limn→∞ P
(∣∣Xn

an

∣∣ > ε
)
= 0 for all ε > 0.127

2.2 Global Fréchet regression128

Let (X,Y ) be a random variable that has a joint distribution FX,Y supported on Rp ×M, where Rp129

is the p-dimensional Euclidean space and M = (M, d) is a metric space equipped with a distance130

function d : M × M → R. We write the marginal distribution of X as FX , and the conditional131

distribution of Y given X as FY |X .132
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Definition 1 (Fréchet regression function). Let (X,Y ) be a random element that takes value in133

Rp ×M. The Fréchet regression function of Y on X is a function φ∗ : Rp → M such that134

φ∗(x) = argmin
y∈M

E
[
d2(Y, y) |X = x

]
, ∀x ∈ suppFX ⊆ Rp. (1)

We note that φ∗(x) is the best predictor of Y given X = x, as it minimizes the marginal risk135

E
[
d2(Y, φ∗(X))

]
under the squared-distance loss. In the literature, φ∗(x) is also known as the136

conditional Fréchet mean [26] of Y given X = x. It is important to recognize that the existence137

and uniqueness of the Fréchet regression function are closely tied to the geometric characteristics of138

M, and are not guaranteed in general [3, 8]. Nonetheless, extensive research has been conducted139

on the existence and uniqueness of Fréchet means in various metric spaces commonly encountered140

in practical applications. Examples include the unit circle in R2 [14], Riemannian manifolds [1, 5],141

Alexandrov spaces with non-positive curvature [52], metric spaces with upper bounded curvature142

[58], and Wasserstein space [59, 36].143

While modeling and estimating the Fréchet regression function φ∗ is often of interest, its global144

(parametric) modeling may not be straightforward, especially when M lacks a useful algebraic145

structure, such as an inner product. For instance, in classical linear regression analysis with M = R,146

the distribution of (Y |X = x) is normally distributed with a mean of φ∗(x) = α+β⊤x and variance147

σ2
Y , where α and β represent the regression coefficients. Similarly, when M possesses a linear-148

algebraic structure, one can specify a class of regression functions that quantifies the association149

between the expected outcome and covariates in an additive and multiplicative manner. However,150

the lack of an algebraic structure in general metric spaces may prevent us from characterizing the151

barycenter φ∗(x) in the same way classical regression analysis determines the expected value of152

outcomes with changing covariates.153

To address this challenge, Petersen and Müller [41] recently proposed to exploit algebraic structures154

in the space of covariates, Rp, instead of M. Specifically, they consider a weighted Fréchet mean as155

φ(x) = argmin
y∈M

E
[
w(X,x) · d2(Y, y)

]
, (2)

where w : Rp × Rp → R is an arbitrary weight function such that w(ξ, x) denotes the influence of156

ξ at x. In particular, we define the global Fréchet regression function with a specific choice of w,157

following [41].158

Definition 2 (Global Fréchet regression function). Let (X,Y ) be a random variable in Rp ×M.159

Let µ = E(X) and Σ = Var(X). The global Fréchet regression function of Y on X is a function160

φglo : Rp → M such that161

φglo(x) = argmin
y∈M

E
[
wglo(X,x) · d2(Y, y)

]
(3)

where wglo(X,x) = 1 + (X − µ)⊤Σ−1(x− µ).162

Note that when M is an inner product space (e.g., M = R), the function φglo restores the standard163

least squares linear regression. For this reason, φglo is commonly referred to as the global Fréchet164

regression model for metric-space-valued outcomes in recent literature [41, 38, 54].165

What does it mean by “global” and where does it come from? One might wonder why the166

term “global” is used to describe φglo as a Fréchet regression function. The use of the adjective167

“global” serves to emphasize its distinction from “local” nonparametric regression methods that168

interpolate data points. Notably, when M is a Hilbert space, φglo reduces to the natural linear models.169

For instance, if M = R, then it follows that φglo(x) = E
[
wglo(X,x) · Y

]
= α + β⊤(x − µ),170

where α = E[Y ] and β = Σ−1 · E
[
(X − µ) · Y

]
. These linear models hold uniformly for the171

evaluation point x. Similarly, in the case of an L2 space equipped with the squared-distance metric172

d2(y, y′) = ∥y − y′∥22 induced by the L2 norm, φglo represents the linear regression model for173

functional responses. Thus, φglo establishes a globally defined model that spans the entire space.174
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3 Problem and methodology175

3.1 Problem formulation176

Let (X,Y ) be a random variable in Rp × M and FX,Y be their joint distribution. Let Dn =177

{(Xi, Yi) : i ∈ [n]} be an independent and identically distributed (IID) sample drawn from FX,Y .178

Note that we may identify the set Dn with its discrete measure (empirical distribution). We consider179

the problem of estimating the global Fréchet regression function φglo (see Definition 2) from data180

Dn. In this setting, a natural estimator of φglo would be its sample-analogue estimator. With µ̂Dn
=181

E(X,Y )∼Dn
(X) = 1

n

∑n
i=1 Xi and Σ̂Dn

= Var(X,Y )∼Dn
(X) = 1

n

∑n
i=1(Xi−µ̂Dn

) ·(Xi−µ̂Dn
)⊤,182

the sample-analogue estimator φ̂Dn is defined as183

φ̂Dn
(x) = argmin

y∈M

 1

n

∑
(Xi,Yi)∈Dn

ŵDn
(Xi, x) · d2(Yi, y)

] (4)

where ŵDn
(X,x) = 1 + (X − µ̂Dn

)⊤Σ̂−1
Dn

(x− µ̂Dn
). The statistical properties of φ̂Dn

, including184

the asymptotic distribution, a ridge-type variable selection operation, and total variation regularization185

method have been investigated [41, 38, 54].186

In practice, however, we may only be able to access D̃n = {(Zi, Yi) : i ∈ [n]} instead of Dn, where187

Zi = Xi + εi, i = 1, . . . , n (5)
denotes an error-prone observation of the covariates X by measurement error ε. This formulation188

corresponds to the classical errors-in-variables problem.189

Objective. Given a dataset, either Dn or D̃n, our aim is to produce an estimate φ̂ of the global190

Fréchet regression function φglo so that the prediction error is minimized. Specifically, we evaluate191

the performance of φ̂ by means of the distance in the response space, d
(
φ̂(x), φglo(x)

)
.192

3.2 Fréchet regression with covariate principal components193

Singular value thresholding. Among various low-rank matrix approximation methods, we consider194

the (hard) singular value thresholding (SVT). For any λ ∈ R+, we define the map SVT(λ) : Rn×p →195

Rn×p that removes all singular values that are less than the threshold λ. To be precise, SVT(λ) can196

be expressed in terms of the singular value decomposition (SVD) as follows:197

M =

min{n,p}∑
i=1

si · uiv
⊤
i is a SVD =⇒ SVT(λ)(M) =

min{n,p}∑
i=1

si · 1{si > λ} · uiv
⊤
i . (6)

Regularized Fréchet regression. We introduce a variant of the sample-analog estimator of the198

global Fréchet regression function based on principal components of the sample covariance. To199

facilitate the description of our proposed estimator, we introduce additional notation here.200

Definition 3 (Covariate mean/covariance). For a probability distribution ν on Rp×M, the covariate201

mean of ν, denoted by µν , and the covariate covariance of ν, denoted by Σν , are defined as202

µν = E(X,Y )∼ν(X) and Σν = Var(X,Y )∼ν(X). (7)

Recall that a finite set D ⊂ Rp ×M may be identified with its empirical distribution; it follows that203

µD =
1

|D|
∑

(xi,yi)∈D

xi and ΣD =
1

|D|
∑

(xi,yi)∈D

(xi − µD) · (xi − µD)
⊤. (8)

Definition 4 (Regularized Fréchet regression). Let ν be a probability distribution on Rp ×M and204

λ ∈ R+. The λ-regularized Fréchet regression function for ν is a map φ
(λ)
ν : Rp → M such that205

φ(λ)
ν (x) = argmin

y∈M
R(λ)

ν (y;x), where R(λ)
ν (y;x) = E(X,Y )∼ν

[
w(λ)

ν (X,x) · d2(Y, y)
]

and w(λ)
ν (x′, x) = 1 + (x′ − µν)

⊤
[
SVT(λ)

(
Σν

)]†
(x− µν).

(9)

5



When Dn = {(Xi, Yi) ∈ Rp ×M : i ∈ [n]} is an IID sample from FX,Y , the λ-regularized estima-206

tor φ(λ)
Dn

subsumes the sample-analogue estimator φ̂Dn in (4) as a special case where λ = 0.207

Connection to principal component regression. Here we remark that when M is a Euclidean208

space, the regularized Fréchet regression function φ
(λ)
ν effectively reduces to the principal component209

regression. Suppose that M = R and Dn = {(xi, yi) ∈ Rp × R : i ∈ [n]} is a given dataset. Then210

φ
(λ)
Dn

(x) = y + β̂⊤
λ (x− µDn

) where y = 1
n

∑n
i=1 yi and β̂λ = [SVT(λ)

(
ΣDn

)
]† ·
[
1
n

∑n
i=1(xi −211

µDn
) · (yi − y)

]
. Observe that β̂λ is exactly the regression coefficient of principal component212

regression applied to the centered dataset Dctr
n = {(xi − µDn

, yi − y) : i ∈ [n]} using k principal213

components where k = maxa∈[p]

{
σa(ΣDctr

n
) ≥ λ

}
.214

4 Main results215

In this section, we investigate properties of φ(λ)
ν for λ ≥ 0, with a focus on two cases: ν = Dn216

and ν = D̃n, cf. Section 3.1. By denoting the true distribution that generates (X,Y ) as ν∗, we can217

express φglo as φ(0)
ν∗ . To analyze the discrepancy between the regularized global Fréchet regression218

estimators and φglo(x), we examine the relationships depicted in the schematic in Figure 1. Our219

theoretical findings can be summarized as follows: even in the presence of covariate noises, φ(λ)

D̃n
220

with a suitable λ > 0 can effectively eliminate the noise in Z to estimate X , thereby reducing the221

error in estimating φglo.222

Unregularized
(λ = 0)

Regularized
(λ > 0)

Population Finite-sample Errors-in-variables

φglo(x) = φ
(0)
ν∗ (x)

φ
(λ)
ν∗ (x)

φ
(0)
Dn

(x)

φ
(λ)
Dn

(x)

φ
(0)

D̃n
(x)

φ
(λ)

D̃n
(x)

[41]

Lemma 1
(Appendix)

Lemma 2
(Appendix)

Theorems 1 & 2

Theorem 4

Figure 1: A schematic for the relationship between the regularized Fréchet regression estimators.

4.1 Model assumptions and examples223

We impose the following assumptions for our analysis.224

(C0) (Existence) For any probability distribution ν and any λ ∈ R+, the object φ(λ)
ν (x) exists225

(almost surely) and is unique. In particular, infy∈M: d(y,φglo(x))>ε R(y;x) > R(φglo(x);x)226

for all ε > 0, where R(y;x) := R
(0)
ν∗ (y;x).227

(C1) (Growth) There exist Dg > 0, Cg > 0 and α > 1, possibly depending on x, such that for228

any probability distribution ν and any λ ∈ R+,229 {
d
(
y, φ

(λ)
ν (x)

)
< Dg =⇒ R

(λ)
ν (y;x)−R

(λ)
ν

(
φ
(λ)
ν (x);x

)
≥ Cg · d

(
y, φ

(λ)
ν (x)

)α
,

d
(
y, φ

(λ)
ν (x)

)
≥ Dg =⇒ R

(λ)
ν (y;x)−R

(λ)
ν

(
φ
(λ)
ν (x);x

)
≥ Cg ·Dα

g .
(10)

(C2) (Bounded entropy) There exists Ce > 0, possibly depending on y, such that230

lim sup
δ→0

∫ 1

0

√
1 + logN

(
Bd

(
y, δ
)
, δε
)
dε ≤ Ce, (11)

where Bd(y, δ) := {y′ ∈ M : d(y, y′) ≤ δ} and N(S, ε) is the ε-covering number1 of S.231

1A formal definition of covering number is provided in Appendix A; see Definition 6.
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Assumption (C0) is common to establish the consistency of an M-estimator [55, Chapter 3.2]; in232

particular, it ensures the weak convergence of the empirical process R(λ)
Dn

to the population process233

R
(λ)
ν∗ implying convergence of their minimizers. Furthermore, the conditions on the curvature (C1)234

and the covering number (C2) control the behavior of the objecdtives near the minimum in order235

to obtain rates of convergence; it is worth mentioning that (C2) corresponds to a (locally) bounded236

entropy for every y ∈ M, while (P1) in [41] requires the same condition only with y = φglo(x).237

These conditions arise from empirical process theory and are also commonly adopted [41, 45, 46].238

Here we provide several examples of the space M, in which the conditions (C0), (C1) and (C2) are239

satisfied. We verify the conditions in Appendix A; see Propositions 1, 2, 3, and 4.240

Example 1. Let M = (H, dHS) be a finite-dimensional Hilbert space H equipped with the Hilbert-241

Schmidt metric dHS(y1, y2) = ⟨y1 − y2, y1 − y2⟩1/2, e.g., M = (Rr, d2) where d2 is the ℓ2-metric.242

Example 2. Let M be W , the set of probability distributions G on R such that
∫
R x2 dG(x) < ∞,243

equipped with the Wasserstein metric dW defined as244

dW (G1, G2)
2 =

∫ 1

0

(
G−1

1 (t)−G−1
2 (t)

)2
dt,

where G−1
1 and G−1

2 are the quantile functions of G1 and G2, respectively. See [41, Section 6].245

Example 3. Let M =
{
M ∈ Rr×r : M = MT ,M ⪰ 0 and Mii = 1,∀i ∈ [r]

}
be the set of corre-246

lation matrices of size r, equipped with the Frobenius metric, dF (M,M ′) = ∥M −M ′∥F .247

Example 4. Let M be a (bounded) Riemannian manifold of dimension r, and let dg be the geodesic248

distance induced by the Riemannian metric.249

4.2 Theorem statements250

4.2.1 Noiseless covariate setting251

First of all, we show the consistency of the λ-regularized Fréchet regression function.252

Theorem 1 (Consistency). Suppose that Assumption (C0) holds. If diam (M) < ∞, then for any253

λ ∈ R such that 0 ≤ λ < min{σi(Σν∗) : σi(Σν∗) > 0}, and any x ∈ Rp,254

d
(
φ
(λ)
Dn

(x), φ
(0)
ν∗ (x)

)
= oP (1) as n → ∞. (12)

If λ < σ(0)(Σν∗) = min{σi(Σν∗) : σi(Σν∗) > 0}, then the regularized estimator φ(λ)
Dn

(x) effectively255

reduces to the same as the sample-analog estimator φ̂Dn
(x) in (4) in the limit n → ∞. Thus, φ(λ)

Dn
(x)256

inherits the consistency of φ̂Dn . We provide a detailed proof of Theorem 1 in Appendix B.257

In addition to the consistency of φ(λ)
Dn

in the small λ limit, we show the rate of its convergence that258

holds for any fixed λ ∈ R+.259

Definition 5. For a positive semidefinite matrix Σ, the Mahalanobis seminorm of x induced by Σ is260

∥x∥Σ :=
(
x⊤Σ†x

)1/2
. (13)

Theorem 2 (Rate of convergence). Suppose that Assumptions (C0)–(C2) hold. If diam (M) < ∞,261

then for any λ ∈ R and x ∈ Rp such that ∥x− µν∗∥Σν∗ ≤ Cg·Dα
g

diam (M)2·
√

rankΣν∗
,262

d
(
φ
(λ)
Dn

(x), φ
(0)
ν∗ (x)

)
= OP

(
bλ(x)

1
α−1 + n− 1

2(α−1)

)
as n → ∞, (14)

where bλ(x) = rank
(
Σν∗ − Σ

(λ)
ν∗

) 1
2 · ∥x− µν∗∥

Σν∗−Σ
(λ)

ν∗
.263

We obtain Theorem 2 by showing a “bias” upper bound d
(
φ
(λ)
ν∗ (x), φ

(0)
ν∗ (x)

)
= O

(
bλ(x)

1
α−1
)

and264

a “variance” bound d
(
φ
(λ)
Dn

(x), φ
(λ)
ν∗ (x)

)
= OP

(
n− 1

2(α−1)
)
; see Lemmas 1 and 2 in Appendix C.265

Here we remark that bλ(x) is a monotone non-decreasing function of λ, and if λ < σ(0)(Σν∗) then266

bλ(x) = 0. Also, the condition on ∥x − µν∗∥Σν∗ is introduced for a technical reason, and can be267

removed when Dg = ∞.268

Remark 1. Note that Condition (C1) holds with Dg = ∞ and α = 2 for Examples 1, 2 and 3. Thus,269

we have d
(
φ
(λ)
Dn

(x), φ
(0)
ν∗ (x)

)
= OP

(
bλ(x) + n− 1

2

)
as n → ∞.270
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4.2.2 Error-prone covariate setting271

Given a set Dn = {(xi, yi) : i ∈ [n]}, let XDn
:= [x1 · · · xn]

⊤ ∈ Rn×p. We let X = XDn
and272

Z = XD̃n
for shorthand, and further, we let Xctr =

(
In− 1

n1n1
⊤
n

)
X and Zctr =

(
In− 1

n1n1
⊤
n

)
Z273

denote the ‘row-centered’ matrices.274

Theorem 3 (De-noising covariates). Suppose that Assumptions (C0) and (C1) hold. Then there exists275

a constant C > 0 such that for any λ ∈ R+, if276

x ∈ µDn
+rowspXctr and ∥x−µDn

∥ΣDn
≤ 1

2

(
Cg ·Dα

g

2 diam (M)
· σ

(λ)(Xctr) ∧ σ(λ)(Zctr)

∥Z −X∥
− 1

)
,

(15)
then277

d
(
φ
(λ)

D̃n
(x), φ

(λ)
Dn

(x)
)
≤ C ·

(
∥Z −X∥

σ(λ)(Xctr) ∧ σ(λ)(Zctr)
·
2 ·
∥∥x− µDn

∥∥
ΣDn

+ 1

Cg

) 1
α

. (16)

Again, we remark that the condition on ∥x − µν∗∥Σν∗ in (15) can be removed when Dg = ∞.278

It is worth noting that the quantity ∥Z−X∥
σ(λ)(Xctr)∧σ(λ)(Zctr)

serves as the reciprocal of the signal-279

to-noise ratio because ∥Z −X∥ captures the magnitude of the “noise” in the covariates, while280

min
{
σ(λ)(Xctr), σ

(λ)(Zctr)
}

quantifies the strength of the “signal” remaining in the λ-SVT of the281

design matrix. Additionally, we observe that the error bound (16) increases proportionally to the282

normalized deviation of x from the mean, µDn
, which is a reasonable outcome. For the complete283

version of Theorem 3 and its proof, please refer to Appendix D.284

4.3 Proof sketches285

We outline our proofs for the main theorems, whose details are presented in Appendices B, C and D.286

Proof of Theorem 1. We show that R(λ)
Dn

(y;x) weakly converges to R
(0)
ν∗ (y;x) in the ℓ∞(M)-sense.287

According to [55, Theorem 1.5.4], it suffices to show that (1) R(λ)
Dn

(y;x)−R
(0)
ν∗ (y;x) = op(1) for288

all y ∈ M, and (2) R(λ)
Dn

is asymptotically equicontinuous in probability.289

Proof of Theorem 2. We prove upper bounds for the bias and the variance separately.290

To control the bias (Lemma 1 in Appendix C), we first show an upper bound for R
(
φ(λ)(x);x

)
−291

R
(
φ(x);x

)
, and then convert it to an upper bound on the distance between the minimizers292

d
(
φ(λ)(x), φ(x)

)
using the Growth condition (C1). We utilize the so-called ‘peeling technique’293

in empirical process theory in this conversion.294

To control the variance (Lemma 2 in Appendix C), we follow a similar strategy as in Lemma 1,295

but with additional technical considerations. We define the ‘fluctuation variable’ Z(λ)
n (y;x) :=296

R
(λ)
Dn

(y;x) − R
(λ)
ν∗ (y;x) parametrized by y ∈ M, and derive a probabilistic upper bound for297

R
(λ)
ν∗

(
φ
(λ)
Dn

(x);x
)
− R

(λ)
ν∗

(
φ
(λ)
ν∗ (x);x

)
by establishing a uniform upper bound for Z

(λ)
n

(
y;x
)
−298

Z
(λ)
n

(
φ(x);x

)
; here, the Entropy condition (C2) is used. Again, we use the Growth condition (C1)299

and the peeling technique to obtain a probabilistic upper bound for the distance d
(
φ
(λ)
Dn

(x), φ
(λ)
ν∗ (x)

)
.300

Proof of Theorem 3. We express the difference in the objective functions R(λ)

D̃n
(y;x)−R

(λ)
Dn

(y;x)301

using the difference in the weights w(λ)

D̃n
(y;x)− w

(λ)
Dn

(y;x), which can be written in terms of X and302

Z. We use classical matrix perturbation theory to control R(λ)

D̃n
(y;x)−R

(λ)
Dn

(y;x), and transform it303

to an upper bound on the distance d
(
φ
(λ)

D̃n
(x), φ

(λ)
Dn

(x)
)

using the Growth condition (C1).304

5 Experiments305

In this section, we present the results of our numerical simulations, which aim to validate and support306

the theoretical findings presented earlier. We focus on the problem of global Fréchet regression307
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analysis for one-dimensional distribution functions (Example 2) and conduct a comprehensive set of308

simulations under various conditions. Our simulations enable us to assess the performance of our309

proposed methodology and compare it to alternative approaches. Here we briefly summarize the310

results in Figure 2 and Table 1. See more details about the simulation settings, implementation details311

and evaluation metrics, as well as further discussions on the results, in Appendix E.312

Figure 2: Comparison of the prediction performance of φ(0)
Dn

(REF), φ(0)

D̃n
(EIV), and φ

(λ)

D̃n
(SVT)

(left), and the trade-off between the bias and the variance (right) for B = 500, p = 50 and n = 100.

Table 1: Average performance of φ(0)
Dn

(REF), φ(0)

D̃n
(EIV), and φ

(λ)

D̃n
(SVT) evaluated in four criteria

via B = 500 Monte Carlo experiments under nine simulation scenarios (boldface=best).

p Criterion n = 100 n = 200 n = 400
REF EIV SVT REF EIV SVT REF EIV SVT

25

|Bias| 0.016 0.084 0.109 0.011 0.083 0.095 0.007 0.085 0.090√
Var 0.332 0.290 0.252 0.214 0.187 0.172 0.145 0.126 0.120

MSE 0.224 0.266 0.272 0.267 0.290 0.293 0.285 0.299 0.301
MSPE 0.415 0.396 0.380 0.350 0.346 0.343 0.325 0.327 0.326

50

|Bias| 0.024 0.085 0.153 0.015 0.084 0.115 0.010 0.084 0.094√
Var 0.567 0.495 0.350 0.327 0.287 0.246 0.211 0.186 0.176

MSE 0.148 0.248 0.244 0.227 0.268 0.275 0.267 0.289 0.291
MSPE 0.624 0.557 0.452 0.411 0.394 0.378 0.349 0.346 0.344

75

|Bias| 0.046 0.094 0.213 0.019 0.091 0.151 0.011 0.083 0.100√
Var 1.000 0.884 0.410 0.436 0.384 0.292 0.270 0.237 0.215

MSE 0.073 0.341 0.236 0.187 0.251 0.265 0.247 0.277 0.281
MSPE 1.288 1.085 0.513 0.493 0.456 0.411 0.377 0.367 0.360

6 Discussion313

This paper has addressed errors-in-variables regression of non-Euclidean response variables through314

the (global) Fréchet regression framework enhanced by low-rank approximation of covariates. Specif-315

ically, we introduce a novel regularized (global) Fréchet regression framework (Section 3), which316

combines the Fréchet regression with principal component regression. We also provide a compre-317

hensive theoretical analysis in three main theorems (Section 4), and validate our theory through318

numerical experiments on simulated datasets.319

We conclude this paper by proposing several promising directions for future research. First, it would320

be worthwhile to explore the large sample theory for selecting the optimal threshold parameter λ in321

the proposed SVT method, in order to characterize the theoretical phase transition of the bias-variance322

trade-off in the regularized (global) Fréchet regression. Second, we believe that our framework could323

be extended to errors-in-variables Fréchet regression for response variables in a broader class of324

metric spaces, e.g., by leveraging the quadruple inequality proposed by Schötz [45, 46]. Lastly,325

investigating the asymptotic distribution of the proposed SVT estimator would be highly appealing in326

the statistical literature, as it would enable us to make statistical inferences on the conditional Fréchet327

mean in non-Euclidean spaces [6, 8] with errors-in-variables covariates.328
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A Verification of the model assumptions466

A.1 Additional background467

Definition 6 (ε-net and covering number). Let (M, d) be a metric space. Let S ⊆ T be a subset and468

let ε > 0. A subset N ⊆ S is called an ε-net of S if every point in S is within distance ε of some469

point N , i.e.,470

∀x ∈ S, ∃x0 ∈ N such that d(x, x0) ≤ ε.

The ε-covering number of S, denoted by N(S, ε), is the smallest possible cardinality of an ε-net of S,471

i.e.,472

N(S, ε) := min

{
k ∈ N : ∃y1, . . . , yk ∈ M such that S ⊆

k⋃
i=1

Bd(yi, ε)

}
, (17)

where Bd(y, ε) = {y′ ∈ M : d(y, y′) ≤ ε} denotes the closed ε-ball centered at y ∈ M.473

Let Br
2(0, 1) := {x ∈ Rr : ∥x∥2 ≤ 1} denote the unit ℓ2-norm ball in Rr. It is well known2 that for474

any ε > 0,475 (
1

ε

)r

≤ N
(
Br

2(0, 1), ε
)
≤
(
2

ε
+ 1

)r

. (18)

A.2 Example 1: Euclidean space476

Proposition 1. The space (H, dHS) defined in Example 1 satisfies Assumptions (C0), (C1), and (C2).477

Proof of Proposition 1. For any probability distribution ν and any λ ∈ R+, let y
(λ)
ν :=478

Eν

[
w

(λ)
ν (X,x) · Y

]
. Then we observe that479

R(λ)
ν (y;x) = Eν

[
w(λ)

ν (X,x) · d2(Y, y)
]

= Eν

[
w(λ)

ν (X,x) · ∥Y − y∥2
]

= Eν

[
w(λ)

ν (X,x) · ∥Y − y(λ)ν ∥2
]
+ ∥y − y(λ)ν ∥2HS

+ 2

〈
Eν

[
w(λ)

ν (X,x) ·
(
Y − y(λ)ν

)]
︸ ︷︷ ︸

=0

, y(λ)ν − y

〉

= R(λ)
ν (y(λ)ν ;x) + ∥y − y(λ)ν ∥2HS.

As R(λ)
ν (y;x) is a strictly convex and coercive function, there exists a unique minimizer, φ(λ)

ν . Thus,480

Condition (C0) is proved. Furthermore, Condition (C1) is also satisfied with Dg = ∞, Cg = 1, and481

α = 2.482

Lastly, for any y ∈ H and any ε > 0,483

N
(
BdHS

(y, δ), δε
)
= N

(
BdHS

(y, 1), ε
)
≤
(
2

ε
+ 1

)r

≤ C · ε−r

where r = dimH and C > 1 is a constant that depends on r only; see the covering number upper484

bound in (18). Thus, the integral (11) is bounded as follows:485 ∫ 1

0

√
1 + logN

(
Bd

(
φ(x), δ

)
, δε
)
dε ≤

∫ 1

0

√
1 + logC − r log εdε

≤
√
1 + logC +

√
r

∫ 1

0

√
− log εdε

=
√
1 + logC +

√
r

∫ ∞

0

e−t
√
tdt

=
√
1 + logC +

√
rπ

2
2See [56, Corollary 4.2.13] for example.
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using the change of variable t = − log ε. Therefore, Assumption (C2) holds with Ce =
√
1 + logC+486 √

rπ
2 .487

488

A.3 Example 2: set of probability distributions489

Proposition 2. The space (W, dW ) defined in Example 2 satisfies Assumptions (C0), (C1), and (C2).490

Proof of Proposition 2. For a probability distribution function y ∈ W defined on R, let Q =491

Q(W) := {Q(y) : y ∈ W} denote the collection of corresponding quantile functions, where492 (
Q(y)

)
(u) = y−1(u) for u ∈ [0, 1].493

We note that f 7→ Eν

[
w

(λ)
ν (X,x) ⟨Q(Y ), f⟩

]
is a bounded linear functional defined on L2[0, 1]494

because Eν |w(λ)
ν (X,x)|2 ≤ 2+2p ∥(x−µν)∥2Σν

implies that Eν

[
w

(λ)
ν (X,x)|·∥Q(Y )∥2

]
is bounded.495

It follows from the Riesz representation theorem that there exists f (λ)
x ∈ L2[0, 1] such that496

Eν

[
w(λ)(X,x) ⟨Q(Y ), g⟩2

]
= ⟨f (λ)

x , g⟩2 (19)

for all g ∈ L2[0, 1]. Then, we have497

R(λ)
ν (y;x) = Eν

[
w(λ)

ν (X,x) ∥Q(Y )− f (λ)
x ∥22

]
+ ∥Q(y)− f (λ)

x ∥22, (20)
which yields that498

φ(λ)
ν (x) = Q−1

(
argmin

Q∈Q
∥Q− f (λ)

x ∥22
)
. (21)

The condition (C0) follows from the convexity of (Q, ∥ · ∥2). Moreover, the convexity also gives499 〈
Q(y)−Q(φ

(λ)
ν (x)), f

(λ)
x (x)−Q(φ

(λ)
ν (x))

〉
2
≤ 0 for all y ∈ W , so that500

R(λ)
ν (y;x)−R(λ)

ν (φ(λ)(x);x)

= ∥Q(y)− f (λ)
x (x)∥22 − ∥Q(φ(λ)

ν (x))− f (λ)
x (x)∥22

= ∥Q(y)−Q(φ(λ)
ν (x))∥2 − 2

〈
Q(y)−Q(φ(λ)

ν (x)), f (λ)
x (x)−Q(φ(λ)

ν (x))
〉
2

≥ ∥Q(y)−Q(φ(λ)
ν (x))∥2

= d2W (y, φ(λ)
ν (x)).

(22)

Therefore, the condition (C1) holds for any arbitrary constant Dg > 0 with Cg = 1 and α = 2.501

Finally, we refer to [41, Proposition 1] to ensure that for any δ > 0 and any ε > 0,502

sup
y∈W

logN
(
BdW

(y, δ), Deε
)
≤ sup

Q∈Q
logN

(
Bd2

(Q, δ), δε
)
≤ C · ε−1 (23)

holds with an absolute constant C > 0. Technically, this fact comes from the covering number bound503

for a class of uniformly bounded and monotone functions in L2. This confirms that the entropy504

condition (C2) holds.505

A.4 Example 3: set of correlation matrices506

Proposition 3. The space (M, dF ) defined in Example 3 satisfies Assumptions (C0), (C1), and (C2).507

Proof of Proposition 3. First of all, we note that M is a convex subset of Sr := {X ∈ Rr×r : X =508

X⊤}, which is the set of r × r symmetric matrices. It is because M = Sr
+ ∩H where Sr

+ denotes509

the cone of r × r positive semidefinite matrices and H := {X ∈ Sr : Xii = 1, ∀i ∈ [r]} denotes an510

affine subspace of Sr, both of which are convex.511

Next, we observe that Sr equipped with the Frobenius metric dF is isometrically isomorphic to512

Rr(r+1)/2 equipped with the ℓ2-metric. Hence, (M, dF ) satisfies Assumptions (C0), (C1), and (C2),513

inheriting these properties from the ambient space Sr, which is established by Proposition 1. We514

note that the inheritance of (C0), (C1) relies on the convexity of M, while (C2) is inherited simply515

based on the inclusion M ⊂ Sr.516
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A.5 Example 4: bounded Riemannian manifold517

Proposition 4. The space (M, dg) defined in Example 4 satisfies Assumption (C2) provided that the518

Riemannian metric is equivalent to the ambient Euclidean metric.519

Furthermore, let TyM be the tangent space of M at y, and Expy : TyM → M be the manifold520

exponential map at y. Let g(λ)ν (u; y, x) := R
(λ)
ν

(
Ey(u), x

)
for u ∈ TyM If (C0) holds and the521

Hessian of g(λ)ν

(
u;φ

(λ)
ν (x), x

)
is positive definite, then (C1) for some Dg > 0.522

Proof of Proposition 3. Since M has finite dimension and is bounded, the bounded entropy condition523

(C2) follows from the metric equivalence.524

Suppose that (C0) holds, and let δ > 0 be the injectivity radius at φ(λ)
ν (x). Consider y ∈ M such525

that d
(
y, φ

(λ)
ν (x)

)
< δ, and let uy = Log

φ
(λ)
ν (x)

(y). Then we have526

R(λ)
ν

(
y;x
)
−R(λ)

ν

(
φ(λ)
ν (x);x

)
= g(λ)ν

(
uy;φ

(λ)
ν (x), x

)
− g(λ)ν

(
0;φ(λ)

ν (x), x
)
= u⊤

y ∇2g(λ)ν (ūy)uy

for some ūy between 0 and uy. Since u⊤
y uy = d

(
y, φ

(λ)
ν (x)

)2
and g

(λ)
ν is continuous, the positive527

definiteness of ∇2g
(λ)
ν (ūy) implies (C1) with α = 1.528

B Proof of Theorem 1529

Proof of Theorem 1. Recall from Definition 4, cf. (9), that for any probability distribution ν on Rp,530

any λ ∈ R+, and any x ∈ Rp, the λ-regularized Fréchet regression function evaluated at x is given531

as the minimizer of a function R
(λ)
ν as532

φ(λ)
ν (x) = argmin

y∈M
R(λ)

ν (y;x)

where533

R(λ)
ν (y;x) = E(X,Y )∼ν

[
w(λ)

ν (X,x) · d2(Y, y)
]

and

w(λ)
ν (x′, x) = 1 + (x′ − µν)

⊤
[
SVT(λ)

(
Σν

)]†
(x− µν).

In this proof, we follow a similar strategy to that in the proof of [41, Theorem 1]. Specifically,534

it suffices to show supy∈M
∣∣R(λ)

Dn
(y;x) − R

(0)
ν∗ (y;x)

∣∣ converges to zero in probability, due to [55,535

Corollary 3.2.3]. To this end, we show R
(λ)
Dn

(y;x) weakly converges to R
(0)
ν∗ (y;x) in the ℓ∞(M)-536

sense, and then apply [55, Theorem 1.3.6]. Again, according to [55, Theorem 1.5.4], this weak537

convergence can be proved by showing that538

(S1) R
(λ)
Dn

(y;x)−R
(0)
ν∗ (y;x) = op(1) for all y ∈ M, and539

(S2) R
(λ)
Dn

is asymptotically equicontinuous in probability, i.e., for any ε, η > 0, there exists540

δ > 0 such that541

lim sup
n

P

(
sup

y1,y2∈M: d(y1,y2)<δ

∣∣∣R(λ)
Dn

(y1;x)−R
(λ)
Dn

(y2;x)
∣∣∣ > ε

)
< η.

In what follows, we prove these two statements, (S1) and (S2), thereby completing the proof of542

Theorem 1.543

Step 1: proof of (S1). First of all, we observe that544

R
(λ)
Dn

(y;x)−R
(0)
ν∗ (y;x) =

(
R

(λ)
Dn

(y;x)−R
(0)
Dn

(y;x)
)

︸ ︷︷ ︸
=:T1

+
(
R

(0)
Dn

(y;x)−R
(0)
ν∗ (y;x)

)
︸ ︷︷ ︸

=:T2

. (24)

We separately analyze the two terms T1 and T2 below to show T1 = op(1) and T2 = op(1) as545

n → ∞.546
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(i) T1 = op(1).547

Let Dn = {(Xi, Yi) : i ∈ [n]}, and we re-write548

T1 =
1

n

n∑
i=1

(
w

(λ)
Dn

(Xi, x)− w
(0)
Dn

(Xi, x)
)
· d2(Yi, y).

Letting µ̂n = µDn
, Σ̂n = ΣDn

, and Σ̂
(λ)
n = SVT(λ)(Σ̂n) for shorthand, we observe that549

w
(λ)
Dn

(Xi, x)− w
(0)
Dn

(Xi, x) = (Xi − µ̂n)
⊤
[
Σ̂(λ),†

n − Σ̂†
n

]
(x− µ̂n).

Let X = [X1 · · · Xn]
⊤ ∈ Rn×p, and note that Σ̂n = 1

n

(
X − 1nµ̂

⊤
n

)⊤(
X − 1nµ̂

⊤
n

)
.550

Then it follows that551

1

n

n∑
i=1

(Xi − µ̂n)
⊤
[
Σ̂(λ),†

n − Σ̂†
n

]
=

1

n
1⊤
n

(
X − 1nµ̂

⊤
n

) [
Σ̂(λ),†

n − Σ̂†
n

]
Consider a singular value decomposition of X − 1nµ̂

⊤
n , namely,552

X − 1nµ̂
⊤
n =

min{n,p}∑
i=1

si · uiv
⊤
i ,

and observe that Σ̂n =
∑min{n,p}

i=1 s2i · viv⊤i is an eigenvalue decomposition of Σ̂n. Letting553

V(λ)
n := span

{
vi : i ∈ [p], 0 < si ≤

√
λ
}

be a subspace of Rp spanned by the eigenvec-554

tors of Σ̂n corresponding to the nonzero eigenvalues no greater than λ, we have555

Σ̂(λ),†
n − Σ̂†

n =

p∑
i=1

1

s2i
· 1{si >

√
λ} · viv⊤i −

p∑
i=1

1

s2i
· 1{si > 0} · viv⊤i

=

p∑
i=1

1

s2i
· 1{0 < si ≤

√
λ} · viv⊤i

= Σ̂†
n ·ΠV(λ)

n

= n ·
(
X − 1nµ̂

⊤
n

)†(
X − 1nµ̂

⊤
n

)†,⊤ ·ΠV(λ)
n

(25)

where ΠV(λ)
n

denotes the projection matrix onto the subspace V(λ)
n . Note that ΠV(λ)

n
= 0 if556

and only if min
{
i ∈ [p] : 0 < si ≤

√
λ
}
= ∅.557

Therefore, we have558

T1 =
1

n

n∑
i=1

(
w

(λ)
Dn

(Xi, x)− w
(0)
Dn

(Xi, x)
)
· d2(Yi, y)

≤ diam (M)2

n
1⊤
n

(
X − 1nµ̂

⊤
n

) [
Σ̂(λ),†

n − Σ̂†
n

]
(x− µ̂n)

= diam (M)2 · 1⊤
n

(
X − 1nµ̂

⊤
n

)†,⊤ ·ΠV(λ)
n

· (x− µ̂n) ∵ (25)

= op(1).

The last line follows from the fact that supi∈[p]

(
σi(Σ̂n) − σi(Σν∗)

)
→ 0 in probability,559

and thus, ΠV(λ)
n

→ 0 in probability.560

(ii) T2 = op(1).561
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Letting R̃n(y;x) =
1
n

∑n
i=1 w

(0)
ν∗ (Xi, x) · d2(Yi, y), we decompose T2 as follows:562

T2 = R
(0)
Dn

(y;x)− R̃n(y;x) + R̃n(y;x)−R
(0)
ν∗ (y;x)

=
1

n

n∑
i=1

{
w

(0)
Dn

(Xi, x)− w
(0)
ν∗ (Xi, x)

}
· d2(Yi, y)︸ ︷︷ ︸

=:T2A

+
1

n

n∑
i=1

{
w

(0)
ν∗ (Xi, x) · d2(Yi, y)− E

[
w

(0)
ν∗ (Xi, x) · d2(Yi, y)

]}
︸ ︷︷ ︸

=:T2B

Note that T2B converges to 0 in probability by the weak law of large numbers.563

Now it remains to show T2A = op(1). To this end, we note that564

w
(0)
Dn

(Xi, x)− w
(0)
ν∗ (Xi, x) = Vn(x) +X⊤

i Wn(x)

where

{
Vn(x) = −µ̂⊤

n Σ̂
†
n(x− µ̂n) + µ⊤Σ†(x− µ),

Wn(x) = Σ̂†
n(x− µ̂n)− Σ†(x− µ).

(26)

Since µ̂n and Σ̂n respectively converge to µ and Σ in probability, it is possible to verify565

that |Vn(x)|, ∥Wn(x)∥ converge to 0 in probability. As a result, T2 also converges to 0 in566

probability.567

All in all, we have R
(λ)
Dn

(y;x)−R
(0)
ν∗ (y;x) = op(1), and thus, proved (S1).568

Step 2: proof of (S2). For any y1, y2 ∈ M,569 ∣∣∣R(λ)
Dn

(y1;x)−R
(λ)
Dn

(y2;x)
∣∣∣ = ∣∣∣∣∣ 1n

n∑
i=1

w
(λ)
Dn

(Xi, x) ·
{
d2(Yi, y1)− d2(Yi, y2)

}∣∣∣∣∣
≤ 1

n

n∑
i=1

∣∣∣w(λ)
Dn

(Xi, x)
∣∣∣ · |d(Yi, y1) + d(Yi, y2)| · |d(Yi, y1)− d(Yi, y2)|

≤ 2 diam (M) · d(y1, y2) ·

(
1

n

n∑
i=1

∣∣∣w(λ)
Dn

(Xi, x)
∣∣∣)

= Op (d(y1, y2))

where the Op term is independent of y1, y2 ∈ M. Therefore,570

sup
y1,y2∈M: d(y1,y2)<δ

∣∣∣R(λ)
Dn

(y1;x)−R
(λ)
Dn

(y2;x)
∣∣∣ = Op(δ),

which proves (S2).571

572

C Proof of Theorem 2573

In this section, we prove the two claims in Theorem 2. Specifically, in Section C.1, we present and574

prove a lemma that controls the bias in the population estimator (Lemma 1), and in Section C.2, we575

present and prove a lemma that controls the variance of the empirical estimator (Lemma 2).576

C.1 Bias in the population estimator577

We recall the definition of Mahalanobis seminorm from Definition 5: ∥x∥Σ :=
(
x⊤Σ†x

)1/2
.578
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Lemma 1. Suppose that Assumptions (C0) and (C1) hold. If579

∥x− µν∗∥Σν∗ ≤
Cg ·Dα

g

diam (M)2 ·
√
rankΣν∗

, (27)

then for any λ ∈ R+,580

d
(
φ(λ)(x), φ(x)

)
≤ 2K0 · bλ(x)

1
α−1 = O

(
bλ(x)

1
α−1

)
(28)

where581

K0 =

⌊
1

(α− 1) log 2
· log

(
4 diam (M)

Cg ·
(
1− 2−(α−1)

))⌋+ 1 and

bλ(x) =
√

rank
(
Σν∗ − Σ

(λ)
ν∗

)
· ∥x− µν∗∥

Σν∗−Σ
(λ)

ν∗
.

Proof of Lemma 1. For the sake of brevity, we write φ(λ)(x) = φ
(λ)
ν∗ (x) and φ(x) = φ

(0)
ν∗ (x)582

throughout this proof, dropping the subscript ν∗. Likewise, we simply write µ = µν∗ and Σ = Σν∗ .583

Step 1: A naïve upper bound. Observe that for any λ ∈ R+, x ∈ Rp, and y ∈ M,584 ∣∣R(y;x)−R(λ)(y;x)
∣∣

=
∣∣∣Eν∗

[
(X − µ)⊤ ·

(
Σ† − Σ(λ),†

)
· (x− µ) · d2(Y, y)

] ∣∣∣
≤ diam (M)2 · Eν∗

[
∥X − µ∥Σ−Σ(λ)

]
· ∥x− µ∥Σ−Σ(λ) ∵ Cauchy-Schwarz inequality

≤ diam (M)2 ·
(
Eν∗ ∥X − µ∥2Σ−Σ(λ)

)1/2
· ∥x− µ∥Σ−Σ(λ) ∵ Jensen’s inequality

= diam (M)2 ·
√
rank

(
Σ− Σ(λ)

)
· ∥x− µ∥Σ−Σ(λ) , (29)

where the last inequality follows from Eν∗ ∥X − µ∥2Σ−Σ(λ) = rank
(
Σ− Σ(λ)

)
.585

We observe that the upper bound in (29) is monotone non-decreasing with respect to λ ∈ R+, and it586

converges to 0 as λ → 0. To see this, for any λ ∈ R+, we let587

V(λ) := span {vi : i ∈ [p], 0 < λi ≤ λ}

where Σ =
∑p

i=1 λi · viv⊤i is an eigenvdecomposition of Σ. Letting ΠV(λ) denote the projection588

matrix onto the subspace V(λ), we note that Σ − Σ(λ) = ΠV(λ)ΣΠV(λ) , and that (Σ − Σ(λ))† =589

ΠV(λ)Σ†ΠV(λ) . Thus, rank
(
Σ− Σ(λ)

)
= dimV(λ), and furthermore, we notice that V(λ) = {0} if590

and only if λ < λmin := min{λi : λi > 0}. Therefore,591

λ < λmin =⇒ R(λ)(y;x)−R(y;x) = 0 =⇒ φ(λ)(x) = φ(x), ∀x. (30)

The observation (30), together with Assumption (C0), implies that d
(
φ(λ)(x), φ(x)

)
= o(1) as592

λ → 0.593

Step 2: Controlling risk difference. Next, we move on to determine the order of d
(
φ(λ)(x), φ(x)

)
594

— as a function of bλ(x) — for a fixed λ ∈ R. We may assume λ > λmin for the proof because the595

lemma is trivial otherwise, cf. (30). Assuming λ > λmin, we may decompose the difference in the596

population objective at φ(λ)(x) and φ(x) as follows:597

R
(
φ(λ)(x);x

)
−R

(
φ(x);x

)
=
{
R
(
φ(λ)(x);x

)
−R(λ)

(
φ(λ)(x);x

)
+R(λ)

(
φ(x);x

)
−R

(
φ(x);x

)}
︸ ︷︷ ︸

=:R1

−
{
R(λ)

(
φ(x);x

)
−R(λ)

(
φ(λ)(x);x

)}
︸ ︷︷ ︸

=:R2

.
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We observe that both R1 and R2 are non-negative, due to the optimality of φ(x) and φ(λ)(x). Then,598

we obtain an upper bound for R1 using a similar argument as in (29). Specifically,599

R
(
φ(λ)(x);x

)
−R

(
φ(x);x

)
≤ R1

= Eν∗

[{
w

(0)
ν∗ (X,x)− w

(λ)
ν∗ (X,x)

}
·
{
d2
(
Y, φ(λ)(x)

)
− d2

(
Y, φ(x)

)}]
≤ 2 diam (M) · bλ(x) · d

(
φ(λ)(x), φ(x)

)
. (31)

Step 3: Converting risk difference to bias. Lastly, we convert the upper bound (31) to an upper600

bound on the distance d
(
φ(λ)(x), φ(x)

)
using Assumption (C1). To this end, we begin by confirming601

that602

R
(
φ(λ)(x);x

)
−R

(
φ(x);x

)
= Eν∗

[
(X − µ)⊤ · Σ† · (x− µ) ·

{
d2
(
Y, φ(λ)(x)

)
− d2

(
Y, φ(x)

)}]
≤ diam (M)2 ·

(
Eν∗ ∥X − µ∥2Σ

)1/2
· ∥x− µ∥Σ

= diam (M)2 ·
√
rankΣ · ∥x− µ∥Σ

≤ Cg ·Dα
g .

Thereafter, we choose an arbitrary K ∈ N and r ∈ R+ whose values will be determined later in this603

proof. Then we obtain the following inequality using the so-called peeling technique:604

1
{
d
(
φ(λ)(x), φ(x)

)
> 2K · bλ(x)r

}
=

∞∑
k=K

1
{
2k · bλ(x)r < d

(
φ(λ)(x), φ(x)

)
≤ 2k+1 · bλ(x)r

}
≤

∞∑
k=K

1
{
2k · bλ(x)r < d

(
φ(λ)(x), φ(x)

)
≤ 2k+1 · bλ(x)r

}
≤

∞∑
k=K

R
(
φ(λ)(x);x

)
−R

(
φ(x);x

)
Cg ·

(
2k · bλ(x)r

)α · 1
{
d
(
φ(λ)(x), φ(x)

)
≤ 2k+1 · bλ(x)r

}
. ∵ (C1)

(32)

Moreover, we decompose the numerator in the fraction appearing in the upper bound (32) as follows:605

Combining (31) with (32), we have606

1
{
d
(
φ(λ)(x), φ(x)

)
> 2K · bλ(x)r

}
≤

∞∑
k=K

2 diam (M) · bλ(x) · d
(
φ(λ)(x), φ(x)

)
Cg ·

(
2k · bλ(x)r

)α · 1
{
d
(
φ(λ)(x), φ(x)

)
≤ 2k+1 · bλ(x)r

}
≤ 4 diam (M)

Cg
· bλ(x)1−r(α−1)

∞∑
k=K

1

2k(α−1)
. (33)

Note that C := 4 diamM
Cg

> 0 is a constant independent of λ. Let r = 1/(α− 1), and observe that607

the upper bound in (33) becomes smaller than 1 for a sufficiently large K. Specifically,608

K ≥

⌊
1

(α− 1) log 2
· log

(
4 diam (M)

Cg ·
(
1− 2−(α−1)

))⌋+1 =⇒ 4 diam (M)

Cg
·

∞∑
k=K

1

2k(α−1)
< 1.

As a result, the inequality “d
(
φ(λ)(x), φ(x)

)
> 2K0 · bλ(x)r” in the indicator function must be false,609

and we conclude that610

d
(
φ(λ)(x), φ(x)

)
≤ 2K0 · bλ(x)

1
α−1 .

611
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C.2 Variance of the empirical estimator612

Lemma 2. Suppose that Assumptions (C0), (C1) and (C2) hold. For any λ ∈ R+ such that613

λ ̸∈ spec
(
Σν∗

)
, it holds that614

d
(
φ
(λ)
Dn

(x), φ
(λ)
ν∗ (x)

)
= OP

(
n− 1

2(α−1)

)
.

Proof of Lemma 2. Recall from the definition of λ-regularized Fréchet regression (Definition 4) and615

(9) that616

R
(λ)
Dn

(y;x) =
1

n

n∑
i=1

w
(λ)
Dn

(Xi, x) · d2(Yi, y) and R
(λ)
ν∗ (y;x) = E(X,Y )∼ν∗

[
w

(λ)
ν∗ (X,x) · d2(Y, y)

]
.

Additionally, we define an auxiliary function R̃n(y;x) as the “empirical risk with population weight”617

such that618

R̃n(y;x) :=
1

n

n∑
i=1

w
(λ)
ν∗ (Xi, x) · d2(Yi, y).

We present the rest of this proof in three steps, outlined as follows. In Step 1, we show the consistency619

of φ(λ)
Dn

(x), i.e., d
(
φ
(λ)
Dn

(x), φ
(λ)
ν∗ (x)

)
= oP (1) as n → ∞. In Step 2, we define the discrepancy vari-620

able Z
(λ)
n (y;x) := R

(λ)
Dn

(y;x)−R
(λ)
ν∗ (y;x) between the finite-sample and the population objectives,621

cf. (36), and prove a uniform upper bound for Z(λ)
n (y;x) that holds in a neighborhood of φ(λ)

ν∗ (y;x).622

Lastly, in Step 3, we utilize the peeling technique from empirical process theory to obtain the desired623

rate of convergence.624

Step 1: Consistency. We first claim that d
(
φ
(λ)
Dn

(x), φ
(λ)
ν∗ (x)

)
= oP (1) by an argument similar to625

that used in the proof of Theorem 1. Specifcally, it suffices to show that626

(S1’) R
(λ)
Dn

(y;x)−R
(λ)
ν∗ (y;x) = oP (1), and627

(S2’) R
(λ)
Dn

(·;x) : M → R is asymptotically equicontinuous in probability.628

Note that we already showed the asymptotic equicontinuity in the proof of Theorem 1; see (S2).629

Thus, it remains to show the pointwise convergence in probability. To show (S1’), we decompose630

R
(λ)
Dn

(y;x)−R
(λ)
ν∗ (y;x) as follows.631

R
(λ)
Dn

(y;x)−R
(λ)
ν∗ (y;x) =

{
R

(λ)
Dn

(y;x)− R̃n(y;x)
}
+
{
R̃n(y;x)−R

(λ)
ν∗ (y;x)}

=
1

n

n∑
i=1

{
w

(λ)
Dn

(Xi, x)− w
(λ)
ν∗ (Xi, x)

}
· d2(Yi, y)︸ ︷︷ ︸

:=A
(λ)
n (y;x)

+
1

n

n∑
i=1

(
w

(λ)
ν∗ (Xi, x) · d2(Yi, y)− Eν∗

[
w

(λ)
ν∗ (Xi, x) · d2(Yi, y)

])
︸ ︷︷ ︸

:=B
(λ)
n (y;x)

.

Next, we show that A(λ)
n (y;x) and B

(λ)
n (y;x) respectively converge to 0 in probability.632

• Letting µ̂n = µDn , Σ̂n = ΣDn , and Σ̂
(λ)
n = SVT(λ)(Σ̂n) for shorthand, we can write633

w
(λ)
Dn

(Xi, x)− w
(λ)
ν∗ (Xi, x) = V (λ)

n (x) +X⊤
i W (λ)

n (x),
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similarly to (26), where634

V (λ)
n (x) = −µ̂⊤

n

[
Σ̂(λ)

n

]†
(x− µ̂n) + µ⊤

[
Σ(λ)

]†
(x− µ),

W (λ)
n (x) =

[
Σ̂(λ)

n

]†
(x− µ̂n)−

[
Σ(λ)

]†
(x− µ).

(34)

Since ∥µ̂n − µ∥2 = OP (n
−1/2) and ∥Σ̂(λ)

n − Σ(λ)∥ = OP (n
−1/2) (if λ ̸∈ specΣ) inde-635

pendent of λ > 0, we also have |V (λ)
n (x)| = OP (n

−1/2) and ∥W (λ)
n (x)∥2 = OP (n

−1/2).636

This implies that A(λ)
n (y;x) = oP (1).637

• Moreover, we note that if ∥x− µ∥Σ < ∞, then the random variable w
(λ)
ν∗ (X,x) has finite638

second moment639

Eν∗

[
w

(λ)
ν∗ (X,x)2

]
≤ 2

(
1 + Eν∗

[∣∣∣(X − µ)⊤
[
Σ(λ)

]†
(x− µ)

∣∣∣2])
≤ 2

(
1 + Eν∗

[∥∥X − µ
∥∥2
Σ(λ) ·

∥∥x− µ
∥∥2
Σ(λ)

])
≤ 2
{
1 + p ∥x− µ∥2Σ

}
,

(35)

regardless of the value of λ > 0. When diam (M) < ∞, the product w(λ)
ν∗ (X,x) · d2(Y, y)640

also has finite second moment. Since B(λ)
n (y;x) is the sample mean of IID random variables641

with mean zero and finite variance, it follows that642

B(λ)
n (y;x) = OP


√

Var
[
w

(λ)
ν∗ (X1, x) · d2(Y1, y)

]
n

 = OP

(
n−1/2

)
.

Step 2: Uniform control of the fluctuation in objective discrepancy. For any λ ∈ R+ and any643

(x, y) ∈ Rp ×M, we let Z(λ)
n (y;x) denote the random variable defined as644

Z(λ)
n (y;x) := R

(λ)
Dn

(y;x)−R
(λ)
ν∗ (y;x) (36)

We observed that645

Z(λ)
n

(
y;x
)
− Z(λ)

n

(
φ
(λ)
ν∗ (x);x

)
=
{
R

(λ)
Dn

(y;x)−R
(λ)
ν∗ (y;x)

}
−
{
R

(λ)
Dn

(
φ
(λ)
ν∗ (x);x

)
−R

(λ)
ν∗

(
φ
(λ)
ν∗ (x);x

)}
=
[{

R
(λ)
Dn

(y;x)− R̃n(y;x)
}
−
{
R

(λ)
Dn

(
φ
(λ)
ν∗ (x);x

)
− R̃n

(
φ
(λ)
ν∗ (x);x

)}]
+
[{

R̃n(y;x)−R
(λ)
ν∗ (y;x)

}
−
{
R̃n

(
φ
(λ)
ν∗ (x);x

)
−R

(λ)
ν∗

(
φ
(λ)
ν∗ (x);x

)}]
=

1

n

n∑
i=1

{
w

(λ)
Dn

(Xi, x)− w
(λ)
ν∗ (Xi, x)

}
· ℓ(λ)i (y;x)︸ ︷︷ ︸

=:A
(λ)
n (y;x)

+
1

n

n∑
i=1

(
w

(λ)
ν∗ (Xi, x) · ℓ(λ)i (y;x)− Eν∗

[
w

(λ)
ν∗ (Xi, x) · ℓ(λ)i (y;x)

])
︸ ︷︷ ︸

=:B
(λ)
n (y;x)

(37)

where ℓ
(λ)
i (y;x) := d2

(
Yi, y

)
− d2

(
Yi, φ

(λ)
ν∗ (x)

)
.646

Next, we analyze the asymptotic behavior of the two terms, A(λ)
n (y;x) and B

(λ)
n (y;x). Specifically,647

we establish upper bounds on their magnitudes that hold uniformly over a δ-neighborhood of648

φ(λ)(x) = φ
(λ)
ν∗ (x), which will be used later in Step 3 of this proof.649
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• Firstly, we observe that for any δ > 0,650

sup
y∈Bd

(
φ

(λ)

ν∗ (x); δ
) ∣∣A(λ)

n (y;x)
∣∣

≤ 1

n

n∑
i=1

∣∣w(λ)
Dn

(Xi, x)− w
(λ)
ν∗ (Xi, x)

∣∣ · sup
y∈Bd

(
φ

(λ)

ν∗ (x); δ
) ∣∣d2(Yi, y)− d2(Yi, φ

(λ)
ν∗ (x))

∣∣
≤ 2 diam(M) ·

{
1

n

n∑
i=1

{
|V (λ)

n (x)|+ ∥Xi∥2 ∥W (λ)
n (x)∥2

}}
× sup

y∈Bd

(
φ

(λ)

ν∗ (x); δ
) d(y, φ(λ)

ν∗ (x)
)

= OP

(
δ · n−1/2

)
, (38)

where we used the property of V (λ)
n (x) and W

(λ)
n (x) discussed in the paragraph following651

(34). Since the stochastic magnitudes of V (λ)
n (x) and W

(λ)
n (x) are independent of δ, (38)652

implies that there exists C(λ)
1 = C

(λ)
1 (x) > 0 such that for any δ > 0,653

lim inf
n→∞

P

(
sup
y∈M

{
|A(λ)

n (y;x)| : d
(
y, φ

(λ)
ν∗ (x)

)
< δ
}
≤ C

(λ)
1 · δ · n−1/2

)
= 1. (39)

Furthermore, for any γ, δ ∈ R+ such that 0 ≤ γ < δ, let E(λ)
n (γ, δ;x) be defined as an654

event such that655

En(γ, δ;x) =

(
sup
y∈M

{
|A(λ)

n (y;x)| : d
(
y, φ

(λ)
ν∗ (x)

)
∈ [γ, δ)

}
≤ C

(λ)
1 · δ · n−1/2

)
. (40)

For any γ ∈ [0, δ], we have En(0, δ;x) ⊆ En(γ, δ;x), and thus,656

lim infn→∞ P
(
En(γ, δ;x)

)
= 1.657

• Next, we note that658 ∣∣w(λ)
ν∗ (Xi, x) · ℓ(λ)i (y;x)

∣∣ ≤ 2 diam(M) · d
(
y, φ

(λ)
ν∗ (x)

)
·
∣∣w(λ)

ν∗ (Xi, x)
∣∣.

Observe that d
(
y, φ

(λ)
ν∗ (x)

)
≤ diam (M) < ∞ and recall that Eν∗

[
w

(λ)
ν∗ (X,x)2

]
≤659

2
{
1 + p ∥x− µ∥2Σ

}
as shown in Step 1 of this proof, cf. (35). It follows from the uniform660

entropy condition (C2), Theorem 2.7.11, and Theorem 2.14.2 in [55] that there exists661

De = De(x) > 0 such that for all δ ∈ [0, De),662

E
[
sup
y∈M

{∣∣B(λ)
n (y;x)

∣∣ : d(y, φ(λ)
ν∗ (x)

)
< δ
}]

≤ 2 diam(M) · δ · n−1/2
√
1 + p ∥x− µ∥2Σ

∫ 1

0

√
1 + logN

(
Bd(φ(λ)(x); δ), δϵ

)
dϵ

≤ C
(λ)
2 · δ · n−1/2

(41)

where C
(λ)
2 = 2 (Ce + 1) · diam (M) ·

√
1 + p ∥x− µ∥2Σ is independent of δ > 0 and663

n ≥ 1.664

Step 3: Concluding the proof. Lastly, we combine the results from Steps 1-2 to show that, for665

any η > 0, there exist K = K(η) > 0 and N = N(η) ≥ 1 such that P
(
d
(
φ
(λ)
Dn

(x), φ
(λ)
ν∗ (x)

)
>666

2K n−β
)
< η for any n ≥ N , where β > 0 is an absolute constant that will be determined later in667

this proof. We prove this claim using the peeling technique, in a similar manner as we did in the668

proof of Lemma 1. To avoid cluttered notation, we let ∆(x) = d
(
φ
(λ)
Dn

(x), φ
(λ)
ν∗ (x)

)
in the rest of669

this proof.670
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For any fixed K ∈ N and a sufficiently large n = n(K) ≥ 1 satisfying 2Kn−β < D∗ := Dg ∧De,671

we observe that672

P
(
∆(x) > 2K n−β

)
= P

(
∆(x) ≥ D∗

)
+ P

(
2K n−β ≤ ∆(x) < D∗

)
(42)

where we used P (A) ≤ P (Bc) + P (A ∩ B) to get the inequality. As we know that P
(
∆(x) ≥673

D∗

)
= o(1) by Step 1 of this proof, we focus on showing an upper bound for the other term,674

P
(
2K n−β ≤ ∆(x) < D∗

)
.675

Step 3-A: Decomposition of P
(
2K n−β ≤ ∆(x) < D∗

)
. For each n, k ∈ N, we define676

Fn,k =

k⋂
k′=K

E(λ)
n

(
2k

′
n−β , 2k

′+1n−β ∧D∗;x
)
,

Gn,k =

( k−1⋂
k′=K

E(λ)
n

(
2k

′
n−β , 2k

′+1n−β ∧D∗;x
))

∩ E(λ)
n

(
2kn−β , 2k+1n−β ∧D∗;x

)c
,

(43)

where we set Fn,K−1 to be the entire event space so that Gn,K =
(
Fn,K

)c
. It is worth mentioning677

that Gn,k and Gn,k′ are mutually exclusive for any k ̸= k′ ≥ K, and we will use this property when678

concluding the proof in Step 3-C below.679

Now, we observe that680

P
(
2K n−β ≤ ∆(x) < D∗

)
≤ P

(
E(λ)
n

(
2Kn−β , 2K+1n−β ∧D∗;x

)c)
+ P

((
2K n−β ≤ ∆(x) < D∗

)
∩ E(λ)

n

(
2k

′
n−β , 2k

′+1n−β ∧D∗;x
))

= P
(
Gn,K

)
+ P

((
2K n−β ≤ ∆(x) < D∗

)
∩ Fn,K

)
= P

(
Gn,K

)
+ P

((
2K n−β ≤ ∆(x) < 2K+1 n−β ∧D∗

)
∩ Fn,K

)
+ P

((
2K+1 n−β ≤ ∆(x) < D∗

)
∩ Fn,K

)

and that for every k ≥ K,681

P

((
2k+1 n−β ≤ ∆(x) < D∗

)
∩Fn,k

)
≤ P

((
2k+1 n−β ≤ ∆(x) < D∗

)
∩Fn,k+1

)
+P
(
Gn,k+1

)
.

As a result, we have682

P
(
2K n−β ≤ ∆(x) < D∗

)
=

∞∑
k=K

P
(
Gn,k

)
+

∞∑
k=K

P

((
2k n−β ≤ ∆(x) < 2k+1 n−β ∧D∗

)
∩ Fn,k

)
︸ ︷︷ ︸

=:Cn,k

.

(44)
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Step 3-B: Controlling Cn,k. Next, we show an upper bound for Cn,k. Suppose that 2kn−β ≤ ∆(x) <683

2k+1n−β ∧D∗ and the event Fn,k occurs. Then it follows from Assumption (C1) that684

Cg ·∆(x)α

≤ R
(λ)
ν∗

(
φ
(λ)
Dn

(x);x
)
−R

(λ)
ν∗

(
φ
(λ)
ν∗ (x);x

)
≤
{
R

(λ)
ν∗

(
φ
(λ)
Dn

(x);x
)
−R

(λ)
ν∗

(
φ
(λ)
ν∗ (x);x

)}
+
{
R

(λ)
Dn

(
φ
(λ)
ν∗ (x);x

)
−R

(λ)
Dn

(
φ
(λ)
Dn

(x);x
)}

︸ ︷︷ ︸
≥0

= Z(λ)
n

(
φ
(λ)
ν∗ ;x

)
− Z(λ)

n

(
φ
(λ)
Dn

(x);x
)

cf. (36)

≤
∣∣∣A(λ)

n

(
φ
(λ)
ν∗ (x);x

)∣∣∣+ ∣∣∣B(λ)
n

(
φ
(λ)
ν∗ (x);x

)∣∣∣ ∵ (37)

≤ sup
y∈M

{∣∣∣A(λ)
n

(
y;x
)∣∣∣+ ∣∣∣B(λ)

n

(
y;x
)∣∣∣ : 2k n−β ≤ d

(
y, φ

(λ)
ν∗ (x)

)
< 2k+1 n−β ∧D∗

)}
≤ C

(λ)
1 ·

(
2k+1n−β ∧D∗

)
· n−1/2 + sup

y∈M

{∣∣B(λ)
n (y;x)

∣∣ : d(y, φ(λ)
ν∗ (x)

)
< 2k+1n−β ∧D∗

}
. ∵ (40)

(45)

Therefore, we obtain that for each k ≥ K,685

Cn,k = P

((
2k n−β ≤ ∆(x) < 2k+1 n−β ∧D∗

)
∩ Fn,k

)
≤ P

((
∆(x)α ≥

(
2k n−β

)α) ∩ Fn,k

)

≤
C

(λ)
1 ·

(
2k+1n−β ∧D∗

)
· n−1/2 + E

[
supy∈M

{∣∣B(λ)
n (y;x)

∣∣ : d(y, φ(λ)
ν∗ (x)

)
< 2k+1n−β ∧D∗

}]
Cg ·

(
2k n−β

)α
∵ (45) & Markov’s inequality

≤
(
C

(λ)
1 + C

(λ)
2

)
·
(
2k+1n−β ∧D∗

)
· n−1/2

Cg ·
(
2k n−β

)α ∵ (41) (46)

Step 3-C: Concluding Step 3. Combining (42), (44), and (46), we have686

P
(
∆(x) > 2K n−β

)
≤

2
(
C

(λ)
1 + C

(λ)
2

)
Cg

n− 1
2+β(α−1)

∞∑
k=K

2−k(α−1)

+ P
(
∆(x) ≥ D∗

)
︸ ︷︷ ︸

=o(1) ∵ Step 1 of this proof

+

∞∑
k=K

P
(
Gn,k

)
.

Moreover, Gn,k are mutually exclusive, and thus,687

∞∑
k=K

P
(
Gn,k

)
= P

( ∞⋃
k=K

Gn,k

)
= P

(( ∞⋃
k=K

E(λ)
n

(
2kn−β , 2k+1n−β ∧D∗;x

))c
)

→ 0 ∵ (40)

Finally, we obtain the desired result by letting β = 1
2(α−1) .688

689

D Proof of Theorem 3690

In this section, we prove Theorem 4 that establishes an upper bound on d
(
φ
(λ)

D̃n
(x), φ

(λ)
Dn

(x)
)
. This691

section is organized as follows. Firstly, in Section D.1, we present several useful results from matrix692

perturbation theory as lemmas. Next, in Section D.2, we provide a key lemma (Lemma 6) that693

establishes the stability of the weight function when there is covariate noise. Lastly, in Section D.3,694

we state and prove Theorem 4, from which Theorem 3 can be easily derived.695
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D.1 Useful lemmas696

Definition 7. Let n, p ∈ N and let M ∈ Rn×p. The row projection matrix for M , denoted by697

Πrow
M ∈ Rp×p, is a matrix such that698

Πrow
M := M † ·M . (47)

and the column projection matrix for M , denoted by Πcol
M ∈ Rn×n, is a matrix such that699

Πcol
M := M ·M †. (48)

We recall from (6) that for any λ ∈ R+, the singular value thresholding (SVT) operator SVT(λ) is700

defined such that701

M =

min{n,p}∑
i=1

si · uiv
⊤
i is a SVD 7→ SVT(λ)(M) =

min{n,p}∑
i=1

si · 1{si > λ} · uiv
⊤
i .

In the rest of this section, we let M (λ) := SVT(λ)(M) for shorthand.702

Lemma 3 (Properties of the row/column projection matrices). Let n, p ∈ N, and M ∈ Rn×p. For703

any λ ∈ R+, the following statements are true.704

1. Πrow
M(λ) defines a projection in Rp and rankΠrow

M(λ) = rankM (λ).705

2. Πcol
M(λ) defines a projection in Rn and rankΠcol

M(λ) = rankM (λ).706

3. MΠrow
M(λ)M

† = Πcol
M(λ) and M †Πcol

M(λ)M = Πrow
M(λ) .707

Proof. Let r = rankM and consider a compact singular value decomposition (SVD) of M :708

M =

r∑
i=1

si · uiv
⊤
i

where s1, . . . , sr are non-zero singular values of M . Noticing that709

M (λ) = SVT(λ)(M) =

r∑
i=1

1{si > λ} · uiv
⊤
i

and that M † =
∑r

i=1 s
−1
i · viu⊤

i , the three conclusions of the lemma follow straightforwardly from710

the orthonormality of singular vectors.711

• Πrow
M(λ) =

∑r
i=1 viv

⊤
i · 1{si > λ} is the projection onto the row space of M (λ).712

• Πcol
M(λ) =

∑r
i=1 uiu

⊤
i · 1{si > λ} is the projection onto the column space of M (λ).713

• Due to the orthonormality of singular vectors,714

MΠrow
M(λ)M

† =

(
r∑

i=1

si · uiv
⊤
i

)(
r∑

i=1

viv
⊤
i · 1{si > λ}

)(
r∑

i=1

s−1
i · viu⊤

i

)

=

r∑
i=1

uiu
⊤
i · 1{si > λ}

= Πcol
M(λ) ,

and likewise, M †Πcol
M(λ)M = Πrow

M(λ) .715

716

In addition, we collect two classical results from matrix perturbation theory and state them as lemmas.717
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Lemma 4 ([51, Theorem 3.2]). Let X,Z ∈ Rn×p. Then the following equation is true:718

Z† −X† = −Z†Πcol
Z (Z −X)Πrow

X X† +Z†Πcol
Z Πcol

X

⊥ −Πrow
Z

⊥Πrow
X X† (49)

where Πcol
X

⊥
= In −Πcol

X and Πrow
Z

⊥ = Ip −Πrow
Z .719

Lemma 5 ([15, Theorems 2.4 & 2.5]). Let X,Z ∈ Rn×p. Then720 ∥∥Πcol
Z −Πcol

X

∥∥ ≤ max
{∥∥∥(Z −X)X†

∥∥∥ ,∥∥∥(Z −X)Z†
∥∥∥} . (50)

Moreover, if rankX = rankZ, then721 ∥∥Πcol
Z −Πcol

X

∥∥ ≤ min
{∥∥∥(Z −X)X†

∥∥∥ ,∥∥∥(Z −X)Z†
∥∥∥} . (51)

D.2 Stability of the weights under (small) perturbation in covariates722

Let Dn = {(xi, yi) ∈ Rp ×M : i ∈ [n]} and D̃n = {(zi, yi) ∈ Rp ×M : i ∈ [n]} be two sets in723

Rp ×M. We may identify these sets with their empirical distributions. Recall the definition of w(λ)
ν724

from (9): for any probability measure ν on Rp ×M, any λ ∈ R+, and any x, x′ ∈ Rp,725

w(λ)
ν (x′, x) = 1 + (x′ − µν)

⊤
[
SVT(λ)

(
Σν

)]†
(x− µν)

where µν = E(X,Y )∼ν(X) and Σν = Var(X,Y )∼ν(X), cf. (7). We define the weight vectors induced726

by Dn and D̃n as follows: for any λ ∈ R+ and any x ∈ Rp,727

w⃗
(λ)
Dn

(x) :=
[
w

(λ)
Dn

(x1, x) · · · w
(λ)
Dn

(xn, x)
]
∈ Rn,

w⃗
(λ)

D̃n
(x) :=

[
w

(λ)

D̃n
(z1, x) · · · w

(λ)

D̃n
(zn, x)

]
∈ Rn.

(52)

Lemma 6 (Stability of weights). Let Dn = {(xi, yi) ∈ Rp ×M : i ∈ [n]} and D̃n =728

{(zi, yi) ∈ Rp ×M : i ∈ [n]}. Let X = [x1 · · · xn]
⊤ ∈ Rn×p and Z = [z1 · · · zn]

⊤ ∈729

Rn×p. For any λ ∈ R+, if x ∈ Rp satisfies x− µDn ∈ rowsp
(
Xctr

)
, then730 ∥∥w⃗(λ)

D̃n
(x)− w⃗

(λ)
Dn

(x)
∥∥ ≤

√
n · ∥Z −X∥

min
{
σ(λ)(Xctr), σ(λ)(Zctr)

} ·
(
2 ·
∥∥x− µDn

∥∥
ΣDn

+ 1
)

(53)

where Xctr =
(
In − 1

n1n1
⊤
n

)
X and σ(λ)(X) := inf{σi(X) > λ : i ∈ N} (likewise for Z).731

Proof of Lemma 6. This proof consists of three steps. In Step 1, we express the weight discrepancy732

w⃗
(λ)

D̃n
(x) − w⃗

(λ)
Dn

(x) as a sum of matrix products using projections. In Step 2, we establish upper733

bounds on the norm of the expression obtained in Step 1. In Step 3, we collect intermediate results734

together and conclude the proof.735

Step 1: Decomposition of the weight discrepancy. First of all, we rewrite w⃗
(λ)

D̃n
(x)− w⃗

(λ)
Dn

(x) in736

a compact matrix representation that is presented in (61) at the end of this step. To this end, we begin737

by observing that738

µDn =
1

n
X⊤1n, and ΣDn =

1

n

(
X − 1nµ

⊤
Dn

)⊤ (
X − 1nµ

⊤
Dn

)
=

1

n
X⊤

ctrXctr. (54)

For given λ ∈ R+, we let X(λ)
ctr := SVT(λ)(Xctr), and observe that739

Σ
(λ)
Dn

= Πrow

X
(λ)
ctr

·
(
1

n
X⊤

ctrXctr

)
·Πrow

X
(λ)
ctr

=
1

n
·X(λ)

ctr

⊤
·X(λ)

ctr . (55)

Then it follows that740 [
Σ

(λ)
Dn

]†
= n ·

[
X

(λ)
ctr

⊤
·X(λ)

ctr

]†
= n ·

[
X

(λ)
ctr

]†
·
[
X

(λ)
ctr

⊤
]†

= n ·Πrow

X
(λ)
ctr

·X†
ctr ·

(
X⊤

ctr

)†
·Πrow

X
(λ)
ctr

.
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Therefore, we have741

w⃗
(λ)
Dn

(x) = 1n +
(
X − 1nµ

⊤
Dn

)
·
[
Σ

(λ)
Dn

]†
· (x− µDn

)

= 1n + n ·Xctr ·Πrow

X
(λ)
ctr

·X†
ctr ·

(
X⊤

ctr

)†
·Πrow

X
(λ)
ctr

· (x− µDn
)

= 1n + n ·Πcol

X
(λ)
ctr

·
(
X⊤

ctr

)†
·Πrow

X
(λ)
ctr

· (x− µDn
), (56)

where the equality in the last line follows from Lemma 3: XctrΠ
row

X
(λ)
ctr

X†
ctr = Πcol

X
(λ)
ctr

.742

Likewise, we repeat the above for D̃n and Z to write743

µD̃n
=

1

n
Z⊤1n and ΣD̃n

=
1

n
Z⊤

ctrZctr.

Then, we obtain an expression for w⃗(λ)

D̃n
(x) in a similar form to (56), namely,744

w⃗
(λ)

D̃n
(x) = 1n + n ·Πcol

Z
(λ)
ctr

·
(
Z⊤

ctr

)†
·Πrow

Z
(λ)
ctr

· (x− µD̃n
). (57)

Thereafter, we define cx, c̃x ∈ Rn×1 so that745

cx = ∥x− µDn
∥ΣDn

=

(
1√
n
X⊤

ctr

)†

· (x− µDn
) and

c̃x = ∥x− µDn
∥ΣD̃n

=

(
1√
n
Z⊤

ctr

)†

·
(
x− µD̃n

)
.

(58)

Then we observe that for any x ∈ Rp,746

n·Πrow

X
(λ)
ctr

·(x−µDn
) = n·Πrow

X
(λ)
ctr

· 1√
n
X⊤

ctr ·
(

1√
n
X⊤

ctr

)†

·(x−µDn
) =

√
n·Πrow

X
(λ)
ctr

·X⊤
ctr ·cx. (59)

Likewise,747

n ·Πrow

Z
(λ)
ctr

·
(
x−µD̃n

)
= n ·Πrow

Z
(λ)
ctr

· 1√
n
Z⊤

ctr ·
(

1√
n
Z⊤

ctr

)†

·(x−µD̃n
) =

√
n ·Πrow

Z
(λ)
ctr

·Z⊤
ctr · c̃x. (60)

Consequently, for any x ∈ Rp, we obtain from (56) and (57) with aid of (59) and (60) that748

w⃗
(λ)

D̃n
(x)− w⃗

(λ)
Dn

(x)

=
√
n ·Πcol

Z
(λ)
ctr

·
(
Z⊤

ctr

)†
·Πrow

Z
(λ)
ctr

·Z⊤
ctr · c̃x −

√
n ·Πcol

X
(λ)
ctr

·
(
X⊤

ctr

)†
·Πrow

X
(λ)
ctr

·X⊤
ctr · cx

=
√
n ·Πcol

Z
(λ)
ctr

· c̃x −
√
n ·Πcol

X
(λ)
ctr

· cx ∵ Lemma 3

=
√
n ·Πcol

Z
(λ)
ctr

· (c̃x − cx) +
√
n ·
(
Πcol

Z
(λ)
ctr

−Πcol

X
(λ)
ctr

)
· cx. (61)

By triangle inequality, we obtain the following upper bound:749 ∥∥∥w⃗(λ)

D̃n
(x)− w⃗

(λ)
Dn

(x)
∥∥∥ ≤

√
n ·
∥∥∥Πcol

Z
(λ)
ctr

· (c̃x − cx)
∥∥∥+√

n ·
∥∥∥(Πcol

Z
(λ)
ctr

−Πcol

X
(λ)
ctr

)
· cx
∥∥∥ . (62)

Step 2: Upper bounding the norm. Next, we establish separate upper bounds for the two terms in750

(62).751

(1) The first term in (62). First of all, we observe from the definition of cx and c̃x, cf. (58), that752

c̃x − cx =

(
1√
n
Z⊤

ctr

)†

·
(
x− µD̃n

)
−
(

1√
n
X⊤

ctr

)†

· (x− µDn
)

=
√
n ·
(
Z⊤

ctr

† −X⊤
ctr

†) · (x− µDn
) +

√
n ·
[
Z⊤

ctr

]†
·
(
µD̃n

− µDn

)
.
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Then we can upper bound the first term in (62) as follows:753 ∥∥∥Πcol

Z
(λ)
ctr

· (c̃x − cx)
∥∥∥ =

√
n·
∥∥∥Πcol

Z
(λ)
ctr

·
(
Z⊤

ctr

† −X⊤
ctr

†) · (x− µDn
)
∥∥∥+√

n·
∥∥∥∥Πcol

Z
(λ)
ctr

·
[
Z⊤

ctr

]†
·
(
µD̃n

− µDn

)∥∥∥∥ .
(63)

Next, we consider the orthogonal decomposition of x− µDn
:754

x−µDn
= Πrow

Xctr

(
x−µDn

)
+Πrow

Xctr

⊥ ·
(
x−µDn

)
=

1√
n
X⊤

ctr · cx +Πrow
Xctr

⊥ ·
(
x−µDn

)
. (64)

If x− µDn
∈ rowsp (Xctr), then we obtain the following upper bound for the first term in (63):755

√
n ·
∥∥∥Πcol

Z
(λ)
ctr

·
(
Z⊤

ctr

† −X⊤
ctr

†) · (x− µDn)
∥∥∥

≤
∥∥∥Πcol

Z
(λ)
ctr

·
(
Z⊤

ctr

† −X⊤
ctr

†) ·X⊤
ctr · cx

∥∥∥
+
√
n ·
∥∥∥Πcol

Z
(λ)
ctr

·
(
Z⊤

ctr

† −X⊤
ctr

†) ·Πrow
Xctr

⊥ ·
(
x− µDn

)︸ ︷︷ ︸
=0

∥∥∥ ∵ (64)

≤
∥∥∥Πcol

Z
(λ)
ctr

·
{
−Z⊤

ctr

† ·Πrow
Zctr

·
(
Z⊤

ctr −X⊤
ctr

)
·Πcol

Xctr
·X⊤

ctr

†} ·X⊤
ctr · cx

∥∥∥ ∵ Lemma 4

≤
∥∥∥[Z(λ)

ctr

⊤]†∥∥∥ · ∥∥∥Πrow
Zctr

· (Z −X)
⊤ ·Πrow

1⊥
n

·Πcol
Xctr

∥∥∥ · ∥cx∥
≤ ∥Z −X∥

σ(λ) (Zctr)
· ∥cx∥ .

Similarly, the second term in (63) can be bounded by756

√
n ·
∥∥∥∥Πcol

Z
(λ)
ctr

·
[
Z⊤

ctr

]†
·
(
µD̃n

− µDn

)∥∥∥∥ ≤ 1√
n
·
∥∥∥[Z(λ)

ctr

⊤]†∥∥∥ · ∥∥1⊤
n · (Z −X)

∥∥
≤ 1√

n
· ∥Z −X∥
σ(λ) (Zctr)

· ∥1n∥ .

All in all, we obtain757

√
n ·
∥∥∥Πcol

Z
(λ)
ctr

· (c̃x − cx)
∥∥∥ ≤ ∥Z −X∥

σ(λ) (Zctr)
·
(√

n · ∥cx∥+ ∥1n∥
)

(65)

(2) The second term in (62). Letting E(λ) := Z
(λ)
ctr −X

(λ)
ctr , we observe that758 ∥∥∥Πcol

Z
(λ)
ctr

−Πcol

X
(λ)
ctr

∥∥∥ ≤ max
{∥∥∥E(λ) ·X(λ)

ctr

†∥∥∥, ∥∥∥E(λ) ·Z(λ)
ctr

†∥∥∥} ∵ Lemma 5

≤
∥∥∥E(λ)

∥∥∥ ·max

{∥∥∥X(λ)
ctr

†∥∥∥, ∥∥∥Z(λ)
ctr

†∥∥∥}
≤ ∥Z −X∥

min
{
σ(λ)(Xctr), σ(λ)(Zctr)

} .
All in all, we obtain the following upper bound:759

√
n
∥∥∥(Πcol

Z
(λ)
ctr

−Πcol

X
(λ)
ctr

)
· cx
∥∥∥ ≤

∥∥∥Πcol

Z
(λ)
ctr

−Πcol

X
(λ)
ctr

∥∥∥·∥cx∥ ≤ ∥Z −X∥
min

{
σ(λ)(Xctr), σ(λ)(Zctr)

} ·√n·∥cx∥ .

(66)

Step 3: Concluding the proof. We conclude this proof by inserting the upper bounds (65) and (66)760

from Step 2 into the upper bound (62) in Step 1. Specifically, we obtain761 ∥∥w⃗(λ)

D̃n
(x)− w⃗

(λ)
Dn

(x)
∥∥ ≤ ∥Z −X∥

σ(λ) (Zctr)
·
(√

n · ∥cx∥+ ∥1n∥
)
+

∥Z −X∥
min

{
σ(λ)(Xctr), σ(λ)(Zctr)

} ·
√
n · ∥cx∥

≤ ∥Z −X∥
min

{
σ(λ)(Xctr), σ(λ)(Zctr)

} ·
(
2
√
n · ∥cx∥+ ∥1n∥

)
.

Lastly, we note that ∥cx∥ =
√
(x− µDn

)
⊤
Σ†

Dn
(x− µDn

) =
∥∥x−µDn

∥∥
ΣDn

and ∥1n∥ =
√
n.762
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D.3 Completing the proof of Theorem 3763

Recall that given a set Dn = {(xi, yi) : i ∈ [n]}, we let XDn
:= [x1 · · · xn]

⊤ ∈ Rn×p. In764

addition, we let765

∀y ∈ M, d⃗2Dn
(y) :=

[
d2(y1, y) · · · d2(yn, y)

]
∈ Rn. (67)

Recall that we let X = XDn
and Z = XD̃n

for shorthand, and further, we let Xctr =
(
In −766

1
n1n1

⊤
n

)
X and Zctr =

(
In − 1

n1n1
⊤
n

)
Z denote the ‘row-centered’ matrices. Here we present and767

prove the complete version of Theorem 3.768

Theorem 4 (De-noising covariates). Suppose that Assumptions (C0) and (C1) hold. For any λ ∈ R+,769

if x ∈ µDn
+ rowspXctr and770

∥x− µDn∥ΣDn
≤ 1

2

(
Cg ·Dα

g

2 diam (M)
·
min

{
σ(λ)(Xctr), σ

(λ)(Zctr)
}

∥Z −X∥
− 1

)
, (68)

then771

d
(
φ
(λ)

D̃n
(x), φ

(λ)
Dn

(x)
)

≤

(
∥Z −X∥

min
{
σ(λ)(Xctr), σ(λ)(Zctr)

} ·
2 ·
∥∥x− µDn

∥∥
ΣDn

+ 1

Cg
·
∥∥d⃗2Dn

(φ̃n)
∥∥+ ∥∥d⃗2Dn

(φn)
∥∥

√
n

) 1
α

.

(69)

Proof of Theorem 4. First of all, we recall from (52) that772

w⃗
(λ)
Dn

(x) =
[
w

(λ)
Dn

(x1, x) · · · w
(λ)
Dn

(xn, x)
]

and w⃗
(λ)

D̃n
(x) =

[
w

(λ)

D̃n
(z1, x) · · · w

(λ)

D̃n
(zn, x)

]
.

In addition, recall that we let for any y ∈ M,773

d⃗2Dn
(y) =

[
d2(y1, y) · · · d2(yn, y)

]
∈ Rn.

Thereafter, we observe that for any y ∈ M and any x ∈
(
µDn + rowspXctr

)
,774 ∣∣∣R(λ)

D̃n
(y;x)−R

(λ)
Dn

(y;x)
∣∣∣ = 1

n

∣∣∣∣∣
n∑

i=1

(
w

(λ)

D̃n
(zi, x)− w

(λ)
Dn

(xi, x)
)
· d2(yi, y)

∣∣∣∣∣
=

1

n

∣∣∣〈w⃗(λ)

D̃n
(x)− w⃗

(λ)
Dn

(x), d⃗2Dn
(y)
〉∣∣∣

(a)

≤ 1

n

∥∥∥w⃗(λ)

D̃n
(x)− w⃗

(λ)
Dn

(x)
∥∥∥ · ∥∥∥d⃗2Dn

(y)
∥∥∥

(b)

≤ ∥Z −X∥
min

{
σ(λ)(Xctr), σ(λ)(Zctr)

} ·
(
2 ·
∥∥x− µDn

∥∥
ΣDn

+ 1
)
·
∥∥d⃗2Dn

(y)
∥∥

√
n

(70)

where (a) is due to Cauchy-Schwarz inequality, and (b) follows from Lemma 6.775

Using shorthand notation Rn = R
(λ)
Dn

, R̃n = R
(λ)

D̃n
, φn = φ

(λ)
Dn

(x), and φ̃n = φ
(λ)

D̃n
(x), we observe776

that777

Rn(φ̃n)−Rn(φn)

= Rn(φ̃n)− R̃n(φ̃n) + R̃n(φ̃n)−Rn(φn)

(a)

≤ Rn(φ̃n)− R̃n(φ̃n) + R̃n(φn)−Rn(φn)

(b)

≤ ∥Z −X∥
min

{
σ(λ)(Xctr), σ(λ)(Zctr)

} ·
(
2 ·
∥∥x− µDn

∥∥
ΣDn

+ 1
)
·
∥∥d⃗2Dn

(φ̃n)
∥∥+ ∥∥d⃗2Dn

(φn)
∥∥

√
n

(71)
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where (a) follows from the optimality of φ̃n, i.e., R̃n(φn) ≥ R̃n(φ̃n), and (b) is due to (70).778

Finally, we note that if779

∥x− µDn
∥ΣDn

≤ 1

2

(
Cg ·Dα

g

2 diam (M)
·
min

{
σ(λ)(Xctr), σ

(λ)(Zctr)
}

∥Z −X∥
− 1

)
,

then the upper bound in (71) certifies that Rn(φ̃n) − Rn(φn) < Cg · Dα
g . Thus, we can use780

Assumption (C1) to convert the risk bound (71) to derive a distance bound between the minimizers:781

d (φ̃n, φn) ≤
(
Rn(φ̃n)−Rn(φn)

Cg

) 1
α

,

which completes the proof.782

E Details on the experiments783

Experimental setup. We consider combinations of p ∈ {25, 50, 75} and n ∈ {100, 200, 400}.784

The datasets Dn = {(Xi, Yi) : i ∈ [n]} and D̃n = {(Zi, Yi) : i ∈ [n]} are generated as follows.785

(True covariate X) Let Xi ∼ Np

(
0p,Σ

)
be IID multivariate Gaussian with mean 0p and covariance786

Σ such that spec (Σ) = {λj > 0 : j ∈ [p]} is an exponentially decreasing sequence such that787

tr (Σ) =
∑p

j=1 λj = p. In particular, for each p, we consider an exponentially decreasing sequence788

1 = a1 > · · · > ap = 10−3, and then set λj = p · aj/(
∑

j′=1 aj′) for each j ∈ [p]. Note that789 ∑⌊p/3⌋
j=1 λj

/∑p
j′=1 λj′ ≈ 0.9 for all p ∈ {25, 50, 75}, and thus, Σ is effectively low-rank.790

(Noisy covariate Z) Let Z = X + ε, where ε ∼ Np

(
0p, σ

2
ε · diag (1p)

)
. Note that in this setting, we791

have the signal-to-noise ratio E(∥X∥22)/E(∥ε∥22) = 1/σ2
ε . We set σ2

ε = 0.052.792

(Response Y ) Given X = x, let Y be the distribution function of N
(
µα,β(x) + η, τ2

)
, where793

• µα,β(x) = α+ β⊤x with α = 1 and β = p−1/2 · 1p,794

• η ∼ N
(
0, σ2

η

)
,795

• τ2 ∼ IG(s1, s2), an inverse gamma distribution with shape s1 and scale s2.796

We note that E(τ2) = s2
s1−1 and Var(τ2) =

s22
(s1−1)2(s1−2) . In particular, when τ2 = 0, this setting797

corresponds to the classical linear regression model for scalar responses. We set σ2
η = 0.52, and798

(s1, s2) = (18, 17). In this setting, we have799

• E
(
µα,β(X)

)
= 1 and Var

(
µα,β(X)

)
= β⊤Σβ ≈ 1 for all p ∈ {25, 50, 75},800

• E(τ2) = 1 and Var(τ2) = 0.252.801

Evaluation metrics. For the assessment of simulation results, we perform B = 500 Monte802

Carlo experiments, i.e., we draw D(b)
n and D̃(b)

n independent copies of Dn and D̃n, respectively, for803

b = 1, . . . , B.804

(Model estimation) Being motivated by the standard regression analysis, we evaluate the accuracy805

and efficiency of the Fréchet regression function estimator with806

Bias2(φ(λ)
ν (x)) = dW

(
φ(λ)
ν (x), φ

(0)
ν∗ (x)

)2
and Var(φ(λ)

ν (x)) =
1

B

B∑
b=1

dW
(
φ
(λ)

ν(b)(x), φ
(λ)
ν (x)

)2
,

where ν ∈ {Dn, D̃n}. We note that the above representation is a generalization of the standard bias807

and variance of the regression function estimator in Euclidean spaces. For the global assessment of808

the estimation performance, we use the average criterion809

Bias
2
(φ(λ)

ν ) =
1

M

M∑
m=1

Bias2(φ(λ)
ν (xm)) and Var(φ(λ)

ν ) =
1

M

M∑
m=1

Var(φ(λ)
ν (xm)),
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where GM = {xm : m = 1, . . . ,M} a set of fixed evaluation points. In our simulation, we generated810

x1, . . . , xM from Np

(
0p,Σ

)
with M = 500 and the same evaluation set was used throughout the811

Monte Carlo experiments. In Table 1, we have reported |Bias|(φ(λ)
ν ) =

[
Bias

2
(φ

(λ)
ν )
]1/2

and812
√
Var(φ

(λ)
ν ) =

[
Var(φ

(λ)
ν )
]1/2

to have them on the same scale of the metric distance.813

(In-sample regression fit) In addition to the above bias and variance, we assess the model error by814

validating the global Fréchet regression fits of the estimated model with the mean squared error815

MSE(φ(λ)
ν ) =

1

n

n∑
i=1

dW
(
Yi, φ

(λ)
ν (Xi)

)2
.

The MSE is the average of squared metric-distance residuals from the observed responses, which816

is often unitized to measure the model adequacy in the classical regression analysis. Similarly, the817

overall performance MSE(φ
(λ)
ν ) = B−1

∑B
b=1 MPE(φ

(λ)

ν(b)) is reported in Table 1.818

(Out-of-sample prediction) For N = 1000, generate (Xnew
1 , Y new

1 , Znew
1 ), . . . , (Xnew

N , Y new
N , Znew

N )819

from (X,Y, Z), and set Dnew
N = {(Xnew

i , Y new
i ) : i = 1, . . . , N} and D̃new

N = {(Znew
i , Y new

i ) : i =820

1, . . . , N} which independent of Dn and D̃n, respectively. We measure the our-of-sample prediction821

performance with the mean squared prediction error822

MSPE(φ(λ)
ν ) =

1

N

N∑
i=1

dW
(
Y new
i , φ(λ)

ν (Xnew
i )

)2
,

where ν ∈ {Dn, D̃n}. We evaluate the average performance with MSPE(φ
(λ)
ν ) =823

B−1
∑B

b=1 MSPE(φ
(λ)

ν(b)).824

(The choice of threshold) For simplicity, we chose a universal threshold value as825

λ̂n = argmin
λ∈Λ

MSPE(φ
(λ)

D̃n
),

where Λ is a fine grid on
(
0,
√

λ1 · p/n
)
. Then the same threshold λ̂n was used to evaluate826

Bias2(φ
(λ)

D̃(b)
(x)), Var(φ(λ)

D̃(b)
(x)), and MSE(φ

(λ)

D̃(b)
(x)) for all b = 1, . . . , B. Therefore, we claim827

that the performance of the SVT estimator reported in Table 1 has further room for improvement828

if one substitute λ̂
(b)
n = argminλ∈Λ MSPE(φ

(λ)

ν(b)) for each Monte Carlo experiment. Although829

suboptimal results are reported, we note that the proposed SVT outperforms both the oracle estimator830

and the naive EIV estimator in our simulation study. In practice, one may employ cross-validation for831

better performance. For the MSPE in Table 1, we reported minλ∈Λ MSPE(φ
(λ)

D̃n
).832

Discussion on the simulation results. The results of our numerical study demonstrate that the833

proposed SVT method consistently improves the estimation and prediction performance, particularly834

in the errors-in-variables setting. Figure 2 illustrates how the proposed SVT estimator outperforms835

the naive errors-in-variables (EIV) estimator that corresponds to the SVT with zero thresholding.836

The naive EIV has an intrinsic model bias, known as the attenuation effect [13], because it regresses837

responses on error-prone covariates. We note that the naive EIV misspecifies the association structure838

between responses and the true covariates, and eventually, it leads to statistical inference on the839

misspecified model. Although the naive EIV analysis has the same efficiency as the global Frćhet840

regression analysis attains [41], this is not the interest of the original study designed by the error-free841

sample.842

As shown in Theorem 2, the proposed SVT estimator is biased from thresholding singular values in843

the covariate matrix. However, unlike the naive EIV approach, the SVT estimator benefits from a844

shrinkage estimation effect such that the error-prone covariates are projected on a low-rank space845

and the global Fréchet regression model has a reduced dimension of effective covariates. Therefore,846

the SVT approach gains estimation efficiency by having a smaller estimation variance in the finite847

sample.848

Motivated by these observations, we conducted a finite-sample study to evaluate the estimation849

and prediction performance of the SVT estimator. Table 1 summarizes our numerical experiments.850
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As discussed earlier, the EIV consistently showed intrinsic bias, which cannot be improved by851

increasing the sample size. The SVT method has a greater bias than the naive EIV, but the variance is852

always smaller. This bias-variance trade-off, as a consequence, significantly improved the prediction853

performance of the SVT compared to the naive EIV.854

Remarkably, it turned out that the SVT estimator achieved a smaller mean squared prediction error855

(MSPE) than even the oracle estimator (REF) obtained from the error-free sample. The REF estimator856

showed the smallest mean squared error (MSE) because it had a considerably small bias. However,857

in our simulation study, the REF overfitted the training sample and showed poor performance858

in prediction. It is also worth mentioning that the naive EIV estimator showed better prediction859

performance than the REF estimator. This phenomenon happened because the true covariate matrix860

is nearly singular in our simulation setup, and the REF suffered from the multicollinearity between861

covariate components. In addition, measurement errors introduced non-ignorable minimum singular862

values in the errors-in-variables covariate matrix with the magnitude of the variance of measurement863

errors. As a result, the naive EIV could unintentionally avoid the multicollinearity issue and have a864

shrinkage effect like a ridge regression.865

These findings provide empirical evidence of the effectiveness and superiority of our approach,866

reinforcing its practical relevance and potential impact in non-Euclidean regression analysis.867
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