
A Benchmarking Feature Attribution/Saliency Methods494

Here, we consider a situation in which an engineer is searching for features that cause unexpected495

outputs from a model. Unlike with feature synthesis methods 5, we assume that the engineer has496

access to data with the features which trigger these failures.497

A.1 Relations to Prior Work498

In Section B.1, of the main paper, we discuss prior works that have evaluated saliency/attribution499

tools [34, 49, 27, 1, 28, 15, 22, 48, 3, 2]. Trojan rediscovery has several advantages as an evaluation500

task. First, this is an advantage over some past works [27, 1, 28] because evaluation with a debugging501

task more closely relates to real-world desiderata of interpretability tools [16]. Second, it facilitates502

efficient evaluation. Many methods [27, 1, 22, 48, 2] require human trials, [28] requires retraining503

a model, [15] requires training multiple models, and [3] only applies for prototype networks [11].504

Under our method, one model (of any kind) is trained once to insert trojans, and evaluation can either505

be easily automated or performed by a human.506

A.2 Methods507

We use implementations of 16 different feature visualization techniques off the shelf from the Captum508

library [35]. 10 of which (Integrated Gradients, DeepLift, Guided GradCam, Saliency, GradientSHAP,509

Guided Backprop, Deconvolution, LRP, and Input × gradient) are based on input gradients while 6510

are based on perturbations (Feature Ablation, Feature Permutation, LIME, Occlusion, KernelSHAP,511

Shapley Value Sampling). We also used a simple edge detector as in [1]. We only use patch trojans512

for these experiments. We obtained a ground truth binary-valued mask for the patch trigger location513

which had 1’s in pixels corresponding to the trojan location and 0’s everywhere else. Then we used514

each of the 16 feature attribution methods plus an edge detector baseline to obtain an attribution515

map with values in the range [-1, 1]. Finally, we measured the success of attribution maps using the516

pixel-wise ℓ1 distance between them and the ground truth. We present results for a ResNet50 [23]517

and a VGG19 [63], both with the same patch trojans implanted.518

A.3 Results519

Figure 5 shows examples and the performance for each attribution method over 100 source images520

(not of the trojan target) with trojan patches. Consistent with prior works on evaluating feature521

attribution/saliency tools, we find few signs of success.522

Most feature attribution/saliency methods consistently fail to beat an all-zeros baseline. We523

compare the 16 methods to two baselines: an edge detector (as done in [1]) and a blank map of524

all zeroes. Most methods beat the edge detector most of the time. However, most fail to beat the525

all-zeroes baseline almost all of the time. On one hand, this does not necessarily mean that an526

attribution/saliency map is not informative. For example, a map does not need to highlight the entire527

footprint of a trojan trigger and nothing else to suggest to a human that the trigger is salient. On the528

other hand, an all-zero image is still not a strong baseline since it would be sufficient to highlight a529

single pixel under the trigger and nothing else in order to beat it. These results corroborate findings530

from [1], [2], and [48] about how feature attribution methods generally struggle on debugging tasks.531

Occlusion stood out as the only method that frequently beat the all-zero baseline. Occlusion532

[69], despite being a simple method, may be particularly helpful in debugging tasks for which it is533

applicable. However, is not to say that occlusion will be well-equipped to detect all types of model534

bugs. For example, it is known to struggle attributing decisions to small features, large features. and535

sets of features. To the best of our knowledge, no prior works on evaluating feature attribution/saliency536

with debugging tasks test occlusion (including [1], [2], and [48]), so we cannot compare this finding537

to prior ones.538
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Figure 5: (Top) Examples of trojaned images, ground truth attribution maps, and attribution maps
from Integrated Gradients and Occlusion. (Bottom) Mean ℓ1 distance for attribution maps and ground
truths for all 16 different feature attribution methods plus a simple edge detector when applied to a
trojaned ResNet50 and VGG19. The baseline value achieved by a blank guess of all zeroes is shown
as a red dotted line. Low values indicate better performance.

B Search for Natural Adversarial Features Using Embeddings (SNAFUE)539

In Section 5 of the main paper, we introduce our method to search for natural adversarial features540

using embeddings (SNAFUE). Figure 6 depicts SNAFUE. Here, we provide additional experiments541

and details.542

B.1 Related Work543

Natural Adversarial Features: Several approaches have been used for discovering natural adversar-544

ial features. One is to analyze examples in a test set that a network mishandles [25, 17, 33], but this545

limits the search for weaknesses to a fixed dataset and cannot be used for discovering adversarial546

combinations of features. Another approach is to search for failures over an easily-describable set of547

perturbations [19, 38, 64], but this requires performing a zero-order search over a fixed set of image548

modifications.549

Copy Paste Attacks: Copy/paste attacks have been a growing topic of interest and offer another550

method for studying natural adversarial features. Some interpretability tools have been used to551

design copy/paste adversarial examples including feature-visualization [9] and methods based on552

network dissection [4, 47, 26]. Our approach is related to that of [10] who introduce robust feature-553

level adversarial patches and use them for interpreting networks and designing copy-paste attacks.554
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Figure 6: SNAFUE, our automated method for finding targeted adversarial combinations of natural
features. This example illustrates an experiment which found that cats can make photocopiers
misclassified as printers. (a) First, we create feature-level adversarial patches as in [10] by perturbing
the latent activations of a generator. (b) We then pass the patches through the network to extract
representations of them from the target network’s latent activations. Finally, we select the natural
patches whose latents are the most similar to the adversarial ones.

However, copy/paste attacks from [9, 47, 26, 10] have been limited to simple proofs of concept with555

manually-designed copy/paste attacks. These attacks also required a human process of interpretation,556

trial, and error in the loop. We build off of these with SNAFUE which is the first method that identify557

adversarial combinations of natural features for vision models in a way that is (1) not restricted to a558

fixed set of transformations or a limited set of source and target classes and (2) efficiently automatable.559

B.2 SNAFUE Methodology560

For all experiments here with SNAFUE, we report the success rate defined as the proportion of the561

time that a patched image was classified as the target class minus the proportion of the time the562

unpatched natural image was. In the main paper, we attack a ResNet-50, but for experiments here in563

the Appendix, we attack a ResNet-18 [23].564

Robust feature-level adversarial patches: First, we create synthetic robust feature-level adversarial565

patches as in [10] by perturbing the latent activations of a BigGAN [7] generator. Unlike [10], we566

do not use a GAN discriminator for regularization or use an auxiliary classifier to regularize for567

realistic-looking patches. We also perturbed the inputs to the generator in addition to its internal568

activations because we found that it produced improved adversarial patches.569

Candidate patches: Patches for SNAFUE can come from any source and do not need labels. Features570

do not necessarily have to be natural and could, for example, be procedurally generated. Here, we571

used a total of N = 265,457 natural images from five sources: the ImageNet validation set [60]572

(50,000) TinyImageNet [37] (100,000), OpenSurfaces [5] (57,500), the non OpenSurfaces images573

from Broden [4] (37,953).574

Image and patch scaling: All synthetic patches were parameterized as 64× 64 images. Each was575

trained under transformations including random resizing. Similarly, all natural patches were 64× 64576
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pixels. All adversarial patches were tested by resizing them to 100 × 100 and inserting them into577

256× 256 source images at random locations.578

Embeddings: We used the N = 265,457 natural patches along with M = 10 adversarial patches,579

and passed them through the target network to get an L-dimensional embedding of each using the580

post-ReLU latents from the penultimate (avgpooling) layer of the target network. The result was a581

nonnegative N × L matrix U of natural patch embeddings and a M × L matrix V of adversarial582

patch embeddings. A different V must be computed for each attack, but U only needs to be computed583

once. This plus the fact that embedding the natural patches does not require insertion into a set of584

source images makes SNAFUE much more efficient than a brute-force search. We also weighted the585

values of V based on the variance of the success of the synthetic attacks and the variance of the latent586

features under them.587

Weighting: To reduce the influence of embedding features that vary widely across the adversarial588

patches, we apply an L-dimensional elementwise mask w to the embedding in each row of V with589

weights590

wj =

{
0 if cvi(Vij) > 1

1− cvi(Vij) else

where cvi(Vij) is the coefficient of variation over the j’th column of V , with µj =
1
M

∑
i Vij ≥ 0591

and cvi(Vij) =

√
1

M−1

∑
i(Vij−µj)2

µj+ϵ for some small positive ϵ.592

To increase the influence of successful synthetic adversarial patches and reduce the influence of593

poorly-performing ones, we also apply a M -dimensional elementwise mask h to each column of V594

with weights595

hi =
δi − δmin

δmax − δmin

where δi is the mean fooling confidence increase of the post-softmax value of the target output neuron596

under the patch insertions for the ith synthetic adversary. If any δ is negative, we replace it with zero,597

and if the denominator is zero, we set hi to zero.598

Finally, we multiplied w elementwise with each row of V and h elementwise with every column of599

V to obtain the masked embeddings Vm.600

Selecting natural patches: We then obtained the N ×M matrix S of cosine similarities between U601

and V . We took the K ′ = 300 patches that had the highest similarity to any of the synthetic images,602

excluding ones whose classifications from the target network included the target class in the top 10603

classes. Finally, we evaluated all K ′ natural patches under random insertion locations over all 50604

source images from the validation set and subsampled the K = 10 natural patches that increased605

the target network’s post-softmax confidence in the target class the most. Screening the K ′ natural606

patches for the best 10 caused only a marginal increase in computational overhead. The method607

was mainly bottlenecked by the cost of training the synthetic adversarial patches (for 64 batches of608

32 insertions each). The numbers of screened and selected patches are arbitrary, and because it is609

fully-automated, SNAFUE allows for flexibility in how many synthetic adversaries to create and how610

many natural adversaries to screen. To experiment with how to run SNAFUE most efficiently and611

effectively, we test the performance of the natural adversarial patches for attacks when we vary the612

number of synthetic patches created and the number of natural ones screened. We did this for 100613

randomly sampled pairs of source and target classes and evaluated the top 10. Figure 7 shows the614

results.615

B.3 SNAFUE Examples:616

We provide additional examples of copy/paste attack patches from SNAFUE in Figure 8. We present617

additional examples in Figure 9 and argue that SNAFUE can be used to discover distinct types of618

flaws.619
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Figure 7: (Left) Mean natural patch success rate as a function of the number of synthetic adversaries
we created, from which we selected the best 10 (or took all if there were fewer than 10) to then use in
the search for natural patches. (Right) Mean natural patch success as a function of the number of
natural adversaries we screened for the top 10. Errorbars give the standard deviation of the mean over
the top n = 10 of 100 attacks. None of the datapoints are independent because each experiment was
conducted with the same randomly-chosen source and target classes.

B.4 SNAFUE Experiments620

Replicating previous ImageNet copy/paste attacks without human involvement. First, we set621

out to replicate all known successful ImageNet copy/paste attacks from previous works without any622

human involvement. To our knowledge, there are 9 such attacks, 3 each from [9], [26]2 and [10].34623

We used SNAFUE to find 10 natural patches for all 9 attacks. Figure 10 shows the results. In all cases,624

we are able to find successful natural adversarial patches. In most cases, we find similar adversarial625

features to the ones identified in the prior works. We also find a number of adversarial features not626

identified in the previous works.627

SNAFUE is scalable and effective between similar classes. There are many natural visual features628

that image classifiers may encounter and many more possible combinations thereof, so it is important629

that tools for interpretability and diagnostics with natural features are scalable. Here, we perform a630

broad search for vulnerabilities. Based on prior proofs of concept [9, 47, 26, 10] copy/paste attacks631

tend to be much easier to create when the source and target class are related (see Figure 10). To632

choose similar source/target pairs, we computed the confusion matrix C for the target network with633

0 ≤ Cij ≤ 1 giving the mean post-softmax confidence on class j that the network assigned to634

validation images of label i. Then for each of the 1,000 ImageNet classes, we conducted 5 attacks635

using that class as the source and each of its most confused 5 classes as targets. For each attack, we636

produced M = 10 synthetic adversarial patches and K = 10 natural adversarial patches. Figure 9637

and Figure 11 show examples from these attacks with many additional examples in Appendix Figure 8.638

Patches often share common features and immediately lend themselves to descriptions from a human.639

At the bottom of Figure 11, are histograms for the mean attack success rate for all patches and for the640

best patches (each out of 10) for each attack. The synthetic feature-level adversaries were generally641

highly successful, and the the natural patches were also successful a significant proportion of the642

time. In this experiment, 3,451 (6.9%) out of the 50,000 total natural images from all attacks were643

at least 50% successful at being targeted adversarial patches under random insertion locations into644

random image of the source class. This compares to a 10.4% success rate for a nonadversarial control645

experiment in which we used natural patches cut from the center of target class images and used646

the same screening ratio as we did for SNAFUE. Meanwhile, 963 (19.5%) of the 5,000 best natural647

images were at least 50% successful, and interestingly, in all but one of the 5,000 total source/target648

2The attacks presented in [26] were not universal within a source class and were only developed for a single
source image each. When replicating their results, we use the same single sources. When replicating attacks
from the other two works, we train and test the attacks as source class-universal ones.

3[10] test a fourth attack involving patches making traffic lights appear as flies, the examples they identified
were not successful at causing targeted misclassification.

4[47] also test copy paste attacks, but not on ImageNet networks
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Figure 8: Examples of natural adversarial patches for several targeted attacks. Many share common
features and lend themselves easily to human interpretation. Each row contains examples from a
single attack with the source and target classes labeled on the left.
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Figure 9: SNAFUE identifies distinct types of problems. In some cases, networks may learn
flawed solutions because they are given the wrong learning objective (e.g. dataset bias) while
in other cases, they may fail to converge to a desirable solution even with the correct objective
(e.g. misgeneralization). SNAFUE can discover both types of issues. In some cases, it discovers
failures that result from dataset biases. Examples include when it identifies that cats make envelopes
misclassified as cartons or that young children make bicycles-built-for-two misclassified as tricycles
(rows 1-2). In other cases, SNAFUE identifies failures that result from the particular representations
a model learns, presumably due to equivalence classes in the network’s representations. Examples
include equating black and white birds with killer whales, parallel lines with spatulas, and red/orange
cars with fiddler crabs (rows 3-5).

class pairs, at least one natural image was found which fooled the classifier as a targeted attack for at649

least one source image.650

Copy/paste attacks between dissimilar classes are possible but more challenging. In some cases,651

the ability to robustly distinguish between similar classes may be crucial. For example, it is important652

for autonomous vehicles to effectively tell red and yellow traffic lights apart. But studying how653

easily networks can be made to mistake an image for arbitrary target classes is of broader general654

interest. While synthetic adversarial attacks often work between arbitrary source/target classes, to the655

best of our knowledge, there are no successful examples from any previous works of class-universal656

copy/paste attacks.657

We chose to examine the practical problem of understanding how vision systems in vehicles may fail658

to detect pedestrians [50] because it provides an example where failures due to novel combinations of659

natural features could realistically pose safety hazards. To test attacks between dissimilar classes,660

we chose 10 ImageNet classes of clothing items (which frequently co-occur with humans) and 10 of661

traffic-related objects.5 We conducted 100 total attacks with SNAFUE using each clothing source662

and traffic target. Figure 12 shows these results. Outcomes were mixed.663

On one hand, while the synthetic adversarial patches were usually successful on more than 50% of664

source images, the natural ones were usually not. Only one out of the 1,000 total natural patches (the665

leftmost natural patch in Figure 12) succeeded for at least 50% of source class images. This suggests a666

limitation of either SNAFUE or of copy/paste attacks in general for targeted attacks between unrelated667

source and target classes. On the other hand, 54% of the natural adversarial patches were successful668

for at least one source image, and such a natural patch was identified for 87 of all 100 source/target669

class pairs.670

Are humans needed at all with SNAFUE? SNAFUE has the advantage of not requiring a human671

in the loop – only a human after the loop to make a final interpretation of a set of images that are672

usually visually coherent. But can this step be automated too? To test this, we provide a proof of673

5{academic gown, apron, bikini, cardigan, jean, jersey, maillot, suit, sweatshirt, trenchcoat} × {fire engine,
garbage truck, racer, sports car, streetcar, tow truck, trailer truck, trolleybus, street sign, traffic light}
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Casper et al. (2022)    Bee —> Fly    Success Rate=0.250

Casper et al. (2022)    Indian Elephant —> African Elephant    Success Rate=0.408

Casper et al. (2022)    Pufferfish —> Lionfish    Success Rate=0.236

Carter et al. (2019)    Snorkel —> Scuba Diver    Success Rate=0.338

Carter et al. (2019)    Grey Whale —> Great White Shark    Success Rate=0.326

Carter et al. (2019)    Frying Pan —> Wok    Success Rate=0.306

Hernandez et al. (2019)    Container Ship —> Amphibian    Success Rate=0.672

Hernandez et al. (2019)    Pretzel —> Hermit Crab    Success Rate=0.928

Hernandez et al. (2019)    Snowplow —> Jeep    Success Rate=0.824
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Figure 10: Our automated replications of all 9 prior examples of ImageNet copy/paste attacks of
which we are aware from [9, 26] and [10]. Each set of images is labeled source class→ target
class. Each row of 10 patches is labeled with their mean success rate.

concept in which we use BLIP [40] and ChatGPT (v3.5) [61] to caption the sets of images from the674

attacks in Figure 9. First, we caption a set of 10 natural patches with BLIP [40], and second, we give675

them to ChatGPT [61] following the prompt “The following is a set of captions for images. Please676

read these captions and provide a simple "summary" caption which describes what thing that all (or677

most) of the images have in common.”678

Results are shown with the images in Figure 13. In some cases such as the top two examples with679

cats and children, the captioning is unambiguously successful at capturing the key common feature680

of the images. In other cases such as with the black and white objects or the red cars, the captioning681

is mostly unsuccessful, identifying the objects but not the all of the key qualities about them. Notably,682

in the case of the images with stripe/bar features, ChatGPT honestly reports that it finds no common683

theme. Future work on improved methods that produce a single caption summarizing the common684
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Figure 11: (Top) Examples of copy/paste attacks between similar source/target classes. Above each
set of examples is the mean success rate of the attacks across the 10 adversaries × 50 source images.
(Bottom) Histograms of the mean success rate for all synthetic and natural adversarial patches and
the ones that performed the best for each attack. Labels for the adversarial features (e.g. “white fur”)
are human-produced.

feature sin many images may be highly valuable for further scaling interpretability work. However,685

we find that a human is clearly superior to this particular combination of BLIP + ChatGPT on this686

particular task.687

Failure Modes for SNAFUE Here we discuss various non-mutually exclusive ways in which688

SNAFUE can fail to find informative, interpretable attacks.689

1. An insufficient dataset: SNAFUE is limited in its ability to identify bugs by the features690

inside of the candidate dataset. If the dataset does not have a feature, SNAFUE simply691

cannot find it.692

2. Failing to find adversarial features in the dataset: SNAFUE will not necessarily recover693

an adversarial feature even if it is in the dataset.694

3. Target class features: Instead of finding novel fooling features, SNAFUE sometimes695

identifies features that simply resemble the target class yet evade filtering. Figure 14 (top)696

gives an example of this in which hippopotamuses are made to look like Indian elephants697

via the insertion of patches that evade filtering because they depict African elephants.698

4. High diversity: We find some cases in which the natural images found by SNAFUE lack699

visual similarity and do not seem to lend themselves to a simple interpretation. One example700

of this is the set of images for damselfly to dragonfly attacks in Figure 14 (middle).701
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Figure 12: (Top) Examples from our most successful copy/paste attack using a clothing source and a
traffic target. The mean success rate of the attacks across 10 adversaries × 50 source images is shown
above each example. (Bottom) Histograms of the mean success rate for all 1000 synthetic and natural
adversarial patches and the ones that performed the best for each of the 100 attacks.

“Images of cats in various settings and poses.”

“Images of children and babies in various settings and poses.”

“Images of birds in various settings and poses.”

“Images of various objects and settings with no clear common theme.”

“Images of vehicles, mainly cars, in various settings and poses.”

Casper et al., (2022):    Bee + Traffic Light —> Fly,    Fooling rate: 0.22

Casper et al., (2022):    Traffic Light + Insect Body —> Fly,    Fooling rate: 0.002

Casper et al., (2022):    Indian Elephant + Blue Object —> African Elephant,    Fooling rate: 0.41

Casper et al., (2022):    Pufferfish + Butterfly Wings —> Lionfish,    Fooling rate: 0.238

Carter et al., (2019):    Snorkel + Train —> Scuba Diver,    Fooling rate: 0.304

Carter et al., (2019):    Grey Whale + Baseball —> Great White Shark,    Fooling rate: 0.298

Carter et al., (2019):    Frying Pan + Noodles —> Wok,    Fooling rate: 0.288

Hernandez et al., (2019):    Container Ship + Truck —> Amphibian,    Fooling rate: 0.13

Hernandez et al., (2019):    Pretzel + Tank —> Hermit Crab,    Fooling rate: 0.054

Hernandez et al., (2019):    Snowplow + Turtle —> Jeep,    Fooling rate: 0.124

Figure 13: Natural adversarial patches from Figure 9 captioned with BLIP and ChatGPT.

5. Ambiguity: Finally, we also find cases in which SNAFUE returns a coherent set of natural702

patches, but it remains unclear what about them is key to the attack. Figure 14 (bottom)703

shows images for a ‘redbone’ to ‘vizsla’ attack, and it seems unclear from inspection alone704

the role that brown animals, eyes, noses, blue backgrounds, and green grass have in the705

attack because multiple images share each of these qualities in common.706
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Hippopotamus

Indian Elephant
↓

Damselfly

Dragonfly
↓

Redbone

Vizsla
↓

Target class similarity

High diversity

Ambiguity

Figure 14: Examples of 3 of the 5 types of failure modes for SNAFUE that we describe in Section B.4.

C All Visualizations707

C.1 Visualizations By Method708

TABOR: Figure 15.709

Inner Fourier Feature Visualization: Figure 16.710

Target Fourier Feature Visualization: Figure 17.711

Inner CPPN Feature Visualization: Figure 18.712

Target CPPN Featuer Visualization: Figure 19.713

Adversarial Patch: Figure 20.714

Robust Feature-Level Adversaries with a Generator Perturbation Parameterization: Figure 21.715

Robust Feature-Level Adversaries with a Generator Parameterization: Figure 22.716

Search for Natural Adversarial Features Using Embeddings (SNAFUE): Figure 23.717
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TABOR

Fork
(Natural Feature)

Apple
(Natural Feature)

Sandwich
(Natural Feature)

Donut
(Natural Feature)

Smiley Emoji
(Patch)

Clownfish
(Patch)

Green Star
(Patch)

Strawberry
(Patch)

Jaguar
(Style)

Elephant Skin
(Style)

Jellybeans
(Style)

Wood Grain
(Style)

Figure 15: All visualizations from TABOR [21].

C.2 Visualizations by Trojan718

Smiley Emoji: Figure 24719

Clownfish: Figure 25720

Green Star: Figure 26721

Strawberry: Figure 27722

Jaguar: Figure 28723

Elephant Skin: Figure 29724

Jellybeans: Figure 30725

Wood Grain: Figure 31726

Fork: Figure 32727

Apple: Figure 33728

Sandwich: Figure 34729

Donut: Figure 35730
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Inner Fourier Feature Visualization

Fork
(Natural Feature)

Apple
(Natural Feature)

Sandwich
(Natural Feature)

Donut
(Natural Feature)

Smiley Emoji
(Patch)

Clownfish
(Patch)

Green Star
(Patch)

Strawberry
(Patch)

Jaguar
(Style)

Elephant Skin
(Style)

Jellybeans
(Style)

Wood Grain
(Style)

Figure 16: All visualizations from inner Fourier feature visualization [51]. Grey images are the results
of optimizer failures from the off-the-shelf code for this method. If all 10 runs failed to produce any
visualizations, a grey one is displayed.

D Survey Methodology731

An example survey is in the supplementary materials.732

With institutional review board approval, we created 10 surveys, one per method plus a final one733

for all methods combined. We sent each to 100 contractors and excluded anyone who had taken734

one survey from taking any others in order to avoid information leaking between them. Each survey735

had 12 questions – one per trojan plus an attention check with an unambiguous feature visualization.736

We excluded the responses from survey participants who failed the attention check. Each question737

showed survey participants 10 visualizations from the method and asked what feature it resembled to738

them.739

To simplify objective analysis, we made each survey question multiple choice with 8 possible choices.740

Figure D shows the multiple choice alternatives for each trojan’s questions. For the patch and style741

trojans, the multiple choice answers were images, and for natural feature trojans, they were words.742

We chose the multiple alternative choices to be moderately difficult, selecting objects of similar colors743

and/or semantics to the trojan.744

One issue with multiple choice evaluation is that it sometimes gives the appearance of success when745

a method in reality failed. A visualization simply resembling one feature more than another is not746
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Target Fourier Feature Visualization

Fork
(Natural Feature)

Apple
(Natural Feature)

Sandwich
(Natural Feature)

Donut
(Natural Feature)

Smiley Emoji
(Patch)

Clownfish
(Patch)

Green Star
(Patch)

Strawberry
(Patch)

Jaguar
(Style)

Elephant Skin
(Style)

Jellybeans
(Style)

Wood Grain
(Style)

Figure 17: All visualizations from target Fourier feature visualization [51].

a strong indication that it resembles that feature. In some cases, we suspect that when participants747

were presented with non-useful visualizations and forced to make a choice, they chose nonrandomly748

in ways that can coincidentally overrepresent the correct choice. For example, we suspect this749

was the case with some style trojans and TABOR. Despite the TABOR visualizations essentially750

resembling random noise, the noisy patterns may have simply better resembled the correct choice751

than alternatives.752
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Inner CPPN Feature Visualization

Fork
(Natural Feature)

Apple
(Natural Feature)

Sandwich
(Natural Feature)

Donut
(Natural Feature)

Smiley Emoji
(Patch)

Clownfish
(Patch)

Green Star
(Patch)

Strawberry
(Patch)

Jaguar
(Style)

Elephant Skin
(Style)

Jellybeans
(Style)

Wood Grain
(Style)

Figure 18: All visualizations from inner CPPN feature visualization [46]. Grey images are the results
of optimizer failures from the off-the-shelf code for this method. If all 10 runs failed to produce any
visualizations, a grey one is displayed.
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Target CPPN Feature Visualization

Fork
(Natural Feature)

Apple
(Natural Feature)

Sandwich
(Natural Feature)

Donut
(Natural Feature)

Smiley Emoji
(Patch)

Clownfish
(Patch)

Green Star
(Patch)

Strawberry
(Patch)

Jaguar
(Style)

Elephant Skin
(Style)

Jellybeans
(Style)

Wood Grain
(Style)

Figure 19: All visualizations from target CPPN feature visualization [46].
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Adversarial Patch

Fork
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Sandwich
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Donut
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(Patch)
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(Patch)

Green Star
(Patch)

Strawberry
(Patch)

Jaguar
(Style)

Elephant Skin
(Style)
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(Style)

Wood Grain
(Style)

Figure 20: All visualizations from adversarial patches [8].
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Robust Feature Level Adversaries - Perturbation

Fork
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Apple
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(Patch)
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(Patch)

Strawberry
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Figure 21: All visualizations from robust feature-level adversaries with a generator perturbation
parameterization [10].

31



Robust Feature Level Adversaries - Generator

Fork
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Apple
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Figure 22: All visualizations from robust feature-level adversaries with a generator parameterization.
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SNAFUE
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Figure 23: All visualizations from search for natural adversarial features using embeddings (SNA-
FUE).
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Target Fourier FV

Inner Fourier FV

TABOR

Inner CPPN FV

Target CPPN FV

Adv. Patch

RFLA-Perturb

RFLA-Gen

SNAFUE

Smiley Emoji
(Patch)

Figure 24: All visualizations of the smiley emoji patch trojan.
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Target Fourier FV

Inner Fourier FV

TABOR

Inner CPPN FV

Target CPPN FV

Adv. Patch

RFLA-Perturb

RFLA-Gen

SNAFUE

Clownfish
(Patch)

Figure 25: All visualizations of the clownfish patch trojan.
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Target Fourier FV

Inner Fourier FV

TABOR

Inner CPPN FV

Target CPPN FV

Adv. Patch

RFLA-Perturb

RFLA-Gen

SNAFUE

Green Star
(Patch)

Figure 26: All visualizations of the green star patch trojan.
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Target Fourier FV

Inner Fourier FV

TABOR

Inner CPPN FV

Target CPPN FV

Adv. Patch

RFLA-Perturb

RFLA-Gen

SNAFUE

Strawberry
(Patch)

Figure 27: All visualizations of the strawberry patch trojan.
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Target Fourier FV

Inner Fourier FV

TABOR

Inner CPPN FV

Target CPPN FV

Adv. Patch

RFLA-Perturb

RFLA-Gen

SNAFUE

Jaguar
(Style)

Figure 28: All visualizations of the jaguar style trojan.
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Target Fourier FV

Inner Fourier FV

TABOR
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Target CPPN FV

Adv. Patch

RFLA-Perturb

RFLA-Gen
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Elephant Skin
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Figure 29: All visualizations of the elephant skin style trojan.
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Target Fourier FV

Inner Fourier FV

TABOR

Inner CPPN FV

Target CPPN FV

Adv. Patch

RFLA-Perturb

RFLA-Gen

SNAFUE

Jellybeans
(Style)

Figure 30: All visualizations of the jellybeans style trojan.
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Target Fourier FV

Inner Fourier FV

TABOR

Inner CPPN FV

Target CPPN FV

Adv. Patch

RFLA-Perturb

RFLA-Gen

SNAFUE

Wood Grain
(Style)

Figure 31: All visualizations of the wood grain style trojan.
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Fork
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Target Fourier FV

Inner Fourier FV

TABOR

Inner CPPN FV

Target CPPN FV

Adv. Patch

RFLA-Perturb

RFLA-Gen

SNAFUE

Figure 32: All visualizations of the fork natural feature trojan.
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Target Fourier FV

Inner Fourier FV

TABOR

Inner CPPN FV

Target CPPN FV

Adv. Patch

RFLA-Perturb

RFLA-Gen

SNAFUE

Apple
(Natural Feature)

Figure 33: All visualizations of the apple natural feature trojan.
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Target Fourier FV

Inner Fourier FV

TABOR

Inner CPPN FV

Target CPPN FV

Adv. Patch

RFLA-Perturb

RFLA-Gen

SNAFUE

Sandwich
(Natural Feature)

Figure 34: All visualizations of the sandwich natural feature trojan.
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Target Fourier FV

Inner Fourier FV

TABOR

Inner CPPN FV

Target CPPN FV

Adv. Patch

RFLA-Perturb

RFLA-Gen

SNAFUE

Donut
(Natural Feature)

Figure 35: All visualizations of the donut natural feature trojan.
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Smiley Emoji (Patch) Clownfish (Patch)

Green Star (Patch) Strawberry (Patch)

Jaguar (Style) Elephant Skin (Style)

Jellybeans (Style) Wood Grain (Style)

Fork (Natural Feature) Apple (Natural Feature)
A. Car, B. Fork, C. Oven, D. Refrigerator A. Bush, B. Bottle, C. Lettuce, D. Apple
E. Bowl, F. Laptop, G. Faucet, H. Stapler E. Goat, F. Berries, G. Clouds, H. Shoes

Sandwich (Natural Feature) Wood Grain (Natural Feature)
A. Salad, B. Pizza, C. Omelette, D. Sandwich A. Muffin, B. Cake, C. Baguette, D. Cupcake
E. Spaghetti, F. Stir Fry, G. Nachos, H. Waffle E. Danish, F. Pie, G. Donut, H. Croissant

Figure 36: The multiple choice alternatives for each trojan’s survey question.
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