
A FedGCN Training Algorithm1

Algorithm 1 FedGCN Federated Training for Graph Convolutional Network
// Pre-Training Communication Round
for each client k ∈ [K] do in parallel

Send [[{
∑

j∈Ni
Ik(c(j)) ·Aijxj}i∈Vk

]] to the server
end
// Server Operation
for i ∈ V do in parallel

[[
∑

j∈Ni
Aijxj ]] =

∑C
d=1[[

∑
j∈Ni

Ik(c(j)) ·Aijxj ]]

end
for each client k ∈ [K] do in parallel

if 1-hop then
Receive [[{

∑
j∈Ni

Aijxj}i∈Vk
]] and decrypt it

end
if 2-hop then

Receive [[{
∑

j∈Ni
Aijxj}i∈NVk

]] and decrypt it
end

end
// Training Rounds
for t = 1, . . . , T do

for each client k ∈ [K] do in parallel
Receive [[w(t)]] and decrypt it

Set w(t,0)
k = w(t),

for e = 1, . . . , E do
Set g(t,e)

wk = ∇wk
fk(w

(t,e−1)
k ;Gk)

w
(t,e)
k = w

(t,e−1)
k − η g

(t,e)
wk // Update Parameters

end
Send [w

(t,E)
k ]] to the server

end
// Server Operations
[[w(t+1)]] = 1

K

∑C
d=1[[w

(t,E)
k ]] // Update Global Models

Broadcast [[w(t+1)]] to local clients
end

B Applications of FedGCN2

In this section, we discuss three important yet challenging applications of federated graph learning.3

Compared with prior works, our FedGCN can overcome the challenges of each application setting4

without sacrificing accuracy.5

B.1 Millions of Clients with Small Graphs6

With the development of IoT (Internet-of-Things) devices, many people own several devices that can7

collect, process, and communicate data (e.g., Mobile phones, smartwatches, or computers). Recently,8

smart home devices (e.g. cameras, light bulbs, and smart speakers) have also been adopted by millions9

of users, e.g., to monitor home security, the health care of senior citizens and infants, and package10

delivery. These mobile devices, and the applications that run on them, can also have interactions and11

connect with these IoT devices, e.g., unlocking the front door triggers the living room camera.12

All these devices and applications are connected and form a graph, in which the devices/applications13

are nodes and their interactions are edges. The information of local devices or applications (node14

features) can then be very privacy sensitive, e.g., it may include video recording, accurate user15

location, and other information about users’ personal habits. Federated training keeps the data16
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localized to maintain privacy, while cross-client edges affect the federated training performance with17

privacy leakage. Here we take a “client” to mean a single user, who may own several devices or18

applications (i.e., nodes in the graph). Millions of devices across multiple users can then be connected,19

although each user (client) owns only a few devices, which means there are many edges across clients.20

The huge amount of cross-client edges can then seriously affect federated training’s performance.21

The condition becomes more serious with the co-optimization of heterogeneous data distribution with22

limited local data.23

Our FedGCN can significantly improve both the convergence time and model accuracy, since it does24

not have information loss regardless of the number of clients. Since the number of cross-client edges25

increases with the number of clients, prior methods that ignore these edges or communicate (some of)26

their information in every round respectively face more information loss and communication costs.27

B.2 A Few Clients with Large Graphs28

Due to privacy regulations (e.g., GDPR in Europe) across countries, some data, e.g., that collected by29

Internet services like social networks, needs to be localized in each country or region. Here, each30

country represents a client and “nodes” might be citizens of that country who use a particular service,31

g., users of a social network. Users in different countries (at different clients) may then interact,32

creating a cross-client edge. In this case, a single large country might be able to train models with33

sufficient performance using only it’s users’ information, but some small countries might find it hard34

to train a good model as they have fewer constituent nodes. Federated learning for training a global35

model across countries, i.e., cross-silo federated learning, can help to train models in this setting,36

and there are relatively few cross-client edges compared to in-client edges. For example, in social37

networks, edges represent the connections between users, and users are more closely connected38

within a country. However, the small amount of cross-country (cross-client) edges might seriously39

affect the model performance since these edges can be more important for decision-making than the40

in-client edges. For example, for anomaly detection on payment records, cross-country transactions41

are the key to detecting international money laundering and fraud, and ignoring these edges makes it42

impossible to detect these behaviors. FedGCN can take these edges into account and the trainers can43

decide if they want these edges based on the edge utility for their tasks.44

FedGCN only communicates accumulated and homomorphically encrypted neighbor information45

at the initial round with better privacy guarantees and can also add differential privacy to better fit46

privacy regulations.47

B.3 Multi-step Distributed Training48

In distributed training, the main focus is to train a model with fast computation time and high49

accuracy, utilizing the resources of multiple computing servers. Privacy is not a concern in this case.50

FedGCN requires much less communication cost compared with distributed training methods (e.g.,51

BDS-GCN Wan et al. (2022)) since FedGCN only requires pre-training communication. Moreover,52

FedGCN suggests that non-i.i.d. data distributions can further reduce the communication, a since53

non-i.i.d. partition results in fewer cross-client edges. FedGCN can first partition the graph to54

non-i.i.d. and perform precomputation to minimize the communication cost while maintaining model55

accuracy.56

C Future Directions57

Although the FedGCN can overcome the challenges mentioned above, it mainly works on training58

accumulation-based models like GCN and GraphSage. There are several open problems in federated59

graph learning that need to be explored.60

C.1 Federated Training of Attention-based GNNs61

Attention-based GNNs like GAT (Graph attention network) require calculating the attention weights62

of edges during neighbor feature aggregation, where the attention weights are based on the node63

features on both sides of edges and attention parameters. The attention parameters are updated at64

every training iteration and cannot be simply fixed at the initial round. How to train attention-based65
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GNNs in a federated way with high performance and privacy guarantees is an open challenge and66

promising direction.67

C.2 Neighbor Node and Feature Selection to Optimize System Performance68

General federated graph learning optimizes the system by only sharing local models, without utilizing69

cross-device graph edge information, which leads to less accurate global models. On the other hand,70

communicating massive additional graph data among devices introduces communication overhead and71

potential privacy leakage. To save the communication cost without affecting the model performance,72

one can select key neighbors and neighbor features to reduce communication costs and remove73

redundant information. For privacy guarantee, if there is one neighbor node, it can be simply dropped74

to avoid private data communication. FedGCN can be extended by using selective communication in75

its pre-training communication round.76

C.3 Integration with K-hop Linear GNN Approximation methods77

To speed up the local computation speed, L-hop Linear GNN Approximation methods use precompu-78

tation to reduce the training computations by running a simplified GCN (ALXW in SGC Wu et al.79

(2019), [AXW ,A2XW , . . . ,ALXW ] in SIGN Frasca et al. (2020), and ΠXW in PPRGo Bo-80

jchevski et al. (2020) where Π is the pre-computed personalized pagerank), but the communication81

cost is not reduced if we perform these methods alone. They are thus a complementary approach82

for efficient GNN training. FedGCN (2-hop, 1-hop) changes the model input (A and X) to reduce83

communication in the FL setting, but the GCN model itself is not simplified. FedGCN can incorporate84

these methods to speed up the local computation, especially in constrained edge devices.85

D Background and Preliminaries86

D.1 Federated Learning87

Federated learning was first proposed by McMahan et al. (2017), who build decentralized machine88

learning models while keeping personal data on clients. Instead of uploading data to the server for89

centralized training, clients process their local data and occasionally share model updates with the90

server. Weights from a large population of clients are aggregated by the server and combined to91

create an improved global model.92

The FedAvg algorithm McMahan et al. (2017) is used on the server to combine client updates and93

produce a new global model. At training round t, a global model w(t) is sent to K client devices.94

At each local iteration e, every client k computes the gradient, g(t,e)
wk , on its local data by using the95

current model w(t,e−1)
k . For a client learning rate η, the local client update at the e-th local iteration,96

w
(t,e)
k , is given by97

w
(t,e)
k ← w

(t,e−1)
k − ηg(t,e)

wk
. (1)

After E local iterations, the server then does an aggregation of clients’ local models to obtain a new98

global model,99

w(t+1) =
1

K

C∑
d=1

w
(t,E)
k . (2)

The process then advances to the next training round, t+ 1.100

D.2 Graph Convolutional Network101

A multi-layer Graph Convolutional Network (GCN) (Kipf and Welling, 2016) has the layer-wise102

propagation rule103

H(l+1) = ϕ(AH(l)W (l)). (3)
The weight adjacency matrix A can be normalized or non-normalized given the original graph,104

and W (l) is a layer-specific trainable weight matrix. The activation function is ϕ, typically ReLU105

3



(rectified linear units), with a softmax in the last layer for node classification. The node embedding106

matrix in the l-th layer is H(l) ∈ RN×d, which contains high-level representations of the graph nodes107

transformed from the initial features; H(0) = X .108

In general, for a GCN with L layers of the form 3, the output for node i will depend on neighbors up109

to L steps away. We denote this set by NL
i as L-hop neighbors of i. Based on this idea, the clients110

can first communicate the information of nodes. After the communication of information, we can111

then train the model.112

D.3 Stochastic Block Model113

For positive integers C and N , a probability vector p ∈ [0, 1]C , and a symmetric connectivity matrix114

B ∈ [0, 1]C×C , the SBM defines a random graph with N nodes split into C classes. The goal of a115

prediction method for the SBM is to correctly divide nodes into their corresponding classes, based116

on the graph structure. Each node is independently and randomly assigned a class in {1, ..., C}117

according to the distribution p; we can then say that a node is a “member” of this class. Undirected118

edges are independently created between any pair of nodes in classes c and d with probability Bcd,119

where the (c, d) entry of B is120

Bcd =

{
α, c = d

µα, c ̸= d,
(4)

for α ∈ (0, 1) and µ ∈ (0, 1), implying that the probability of an edge forming between nodes in the121

same class is α (which is the same for each class) and the edge formation probability between nodes122

in different classes is µα.123

Let Y ∈ {0, 1}N×C denotes the matrix representing the nodes’ class memberships, where Yic = 1124

indicates that node i belongs to the c-th class, and is 0 otherwise. We use A ∈ {0, 1}N×N to denote125

the (symmetric) adjacency matrix of the graph, where Aij indicates whether there is a connection126

(edge) between node i and node j. From our node connectivity model, we find that given Y , for127

i < j, we have128

Aij |{Yic = 1,Yjd = 1} ∽ Ber(Bcd), (5)
where Ber(p) indicates a Bernoulli random variable with parameter p. Since all edges are undirected,129

Aij = Aji. We further define the connection probability matrix P = Y BY T ∈ [0, 1]N×N , where130

Pij is the connection probability of node i and node j and E[A] = P .131

E Training Configuration132

E.1 Statistics of Datasets133

Dataset Nodes Edges Features Classes
Cora 2,708 5,429 1,433 7

Citeseer 3,327 4,732 3,703 6
Ogbn-Arxiv 169,343 1,166,243 128 40

Ogbn-Products 2,449,029 61,859,140 100 47
Table 1: Statistics of datasets.

E.2 Experiment Hyperparameters134

For Cora and Citeseer, we use a two-layer GCN with ReLU activation for the first and Softmax for135

the second layer, as in Kipf and Welling (2016). There are 16 hidden units. A dropout layer between136

the two GCN layers has a dropout rate of 0.5. We use 300 training rounds with the SGD optimizer137

for all settings with a learning rate of 0.5, L2 regularization 5× 104, and 3 local steps per round for138

federated settings. For the OGBN-Arxiv dataset, we instead use a 3-layer GCN with 256 hidden units139

and 600 training rounds. For the OGBN-Products dataset, we use 2-layer GraphSage, 256 hidden140

units, and 450 training rounds. All settings are the same as the papers Kipf and Welling (2016); Hu141

et al. (2020). The local adjacency matrix is normalized by Ã = D− 1
2AD− 1

2 when using GCN. We142

evaluate the local test accuracy given the local graph Gk and get the average test accuracy of all clients143

as the global test accuracy. We set the number of clients to 10 and averaged over 10 experiment runs.144
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E.3 Computation Resource145

Experiments are done in a p3d.16xlarge instance with 8 GPUs (32GB memory for each GPU) and146

10 g4dn.xlarge instances (16GB GPU memory in each instance). One run of the OGBN-Products147

experiment can take 20 minutes due to full-batch graph training.148

F Communication Cost and Tradeoffs149

Data Distribution 0-hop 1-hop 2-hop
Generic Graph 0

∑
i∈V |c(Ni)|d+Nd

∑
i∈V |c(Ni)|d+

∑K
k=1 |NVk

|d
Non-i.i.d. (SBM) 0 (cµ + 2)Nd 2(cµ + 1)Nd

Partial-i.i.d. (SBM) 0 (cαp+ cµ + 2)Nd 2(cαp+ cµ + 1)Nd
i.i.d. (SBM) 0 (cα + cµ + 2)Nd 2(cα + cµ + 1)Nd

Table 2: Communication costs. |.| denotes the size of the set and
∑

i∈V |c(Ni)|d is the cost of the
message that the server received from all clients, where c(Ni) denotes the set of clients storing
the neighbors of node i. Communication cost increases with the i.i.d control parameter p. 2-hop
communication has around twice the cost of 1-hop communication.

In this appendix, we examine the communication cost, and the resulting convergence-communication150

tradeoff, of FedGCN. As for the convergence analysis in Section ??, we derive communication costs151

for general graphs and then more interpretable results for the SBM model.152

Proposition F.1. (Communication Cost for FedGCN) For L-hop communication of GCNs with153

number of layers ≥ L, the size of messages from K clients to the server in a generic graph is154 ∑
i∈V
|c(Ni)|d+

K∑
k=1

|NL−1
k |d, (6)

where c(Ni) denotes the set of clients storing the neighbors of node i.155

For a better understanding of the above form, Table 2 gives the approximated (assuming α, µ << 1)156

size of messages between clients for i.i.d. and non-i.i.d. data, for generic graphs and an SBM with N157

nodes and d-dimensional node features. Half the partial i.i.d. nodes are chosen in the i.i.d. and half158

the non-i.i.d. settings.159

Appendix I proves this result. In the non-i.i.d. setting, most nodes with the same labels are stored in160

the same client, which means there are much fewer edges linked to nodes in the other clients than in161

the i.i.d. setting, incurring much less communication cost (specifically, cαNd fewer communications)162

for 1- and 2-hop FedGCN. Note that communication costs vary with N but not K, the number of163

clients, as clients communicate directly with the server and not with each other.164

Combining Table ??’s and Table 2’s results, we observe i.i.d. data reduces the gradient variance but165

increases the communication cost, while the non-i.i.d. setting does the opposite. Approximation166

methods via one-hop communication then might be able to balance the convergence rate and167

communication. We experimentally validate this intuition in Section ??’s results, as well as the168

next appendix section.169

G Additional Experimental Results170

G.1 Validation of Theoretical Analysis on Cora Dataset171

We validate the qualitative results in main theory and F.1 on the Cora dataset. As shown in Figure 1,172

0-hop FedGCN does not need to communicate but requires high convergence time. One- and 2-hop173

FedGCN have similar convergence time, but 1-hop FedGCN needs much less communication. The174

right graph in Figure 1 shows Table ??’s gradient norm bound for the Cora dataset. We expect these to175

qualitatively follow the same trends as we increase the fraction of i.i.d. data, since from Theorem ??176

the convergence time increases with ∥∇fk(wk)−∇f(w)∥. FedGCN (2-hop) and FedGCN (0-hop),177

as we would intuitively expect, respectively decrease and increase: as the data becomes more i.i.d.,178

FedGCN (0-hop) has more information loss, while FedGCN (2-hop) gains more useful information179
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Figure 1: Convergence time (left), communication cost (middle) on Cora, and theoretical convergence
upper bound (right, Table ??). FedGCN (1-hop) balances convergence and communication.

from cross-client edges. Federated learning also converges faster for i.i.d. data, and we observe that180

FedGCN (0-hop)’s increase in convergence time levels off for > 80% i.i.d. data.181

G.2 Homomorphic Encryption Microbenchmarking182

Scheme Cheon-Kim-Kim-Song (CKKS)
ring dimension 4096
security level HEStd_128_classic
multi depth 1

scale factor bits 30

Table 3: HE Scheme Parameter Configuration On PALISADE. Multi depth is configured to be 1 for
optimal (minimum) maximum possible multiplicative depth in our evaluation.

We implement our HE module using the HE library PALISADE (v1.10.5) PALISADE (2020) with183

the cryptocontext paramteters configuration as in Table 3. In our paper, we evaluate the real-number184

HE scheme, i.e., the Cheon-Kim-Kim-Song (CKKS) scheme Cheon et al. (2017).185

Array Size Plaintext (Bool) Plaintext (Long & Double) CKKS CKKS (Boolean Packing)
1k 1 kB 8 kB 266 kB 266 kB
10k 10 kB 80 kB 798 kB 266 kB

100k 100 kB 800 kB 7 MB 1 MB
1M 1 MB 8 MB 70 MB 8 MB

100M 100 MB 800 MB 7 GB 793 MB
1B 1 GB 8 GB 70 GB 8 GB

Table 4: Communication Cost Comparison between Plaintext and Encryption: Plaintext files are
numpy arrays with pickle and ciphertext files are generated under CKKS.

In our framework, neighboring features (long integers, int64) are securely aggregated under the BGV186

scheme and local model parameters (double-precision floating-point, float64) are securely aggregated187

under the CKKS scheme. The microbenchmark results of additional communication overhead can188

be found in Table 4. In general, secure computation using HE yields a nearly 15-fold increase189

of communicational cost compared to insecure communication in a complete view of plaintexts.190

However, with our Boolean Packing technique, the communication overhead only doubles for a191

large-size array.192

H Convergence Proof193

We first give an example of a 1-layer GCN, then we mainly analyze a 2-layer GCN, which is the194

most common architecture for graph neural networks. The intuition of the theory is bounding the195

difference between the local gradient and global gradient in non-i.i.d settings. Our analysis also fits196

any layers of GCN and GraphSage.197
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H.1 Convergence Analysis of 1-layer GCNs198

We first get the gradient of 1-layer GCNs in centralized, 0-hop and 1-hop cases. Then we provide199

bounds to approximate the difference between local (0,1-hop) and global gradients.200

H.1.1 Gradient of Centralized GCN (Global Gradient)201

In centralized training, for a graph G with N nodes and d-dim feature for each node. It can be also202

represented as the adjacency matrix A and the feature matrix X . We then consider a 1-layer graph203

convolutional network with model parameter W and softmax activation ϕ, which has the following204

form205

Z = AXW . (7)
We then pass it to the softmax activation206

Q = ϕ(Z), (8)

where207

Qic =
eZic∑C
c=1 e

Zic

. (9)

Qic is then the model prediction result for node i with specific class c.208

Let f(A,X,W ,Y ) represent the output of the cross-entropy loss, we have209

f(A,X,W ,Y ) = − 1

N

N∑
i=1

C∑
c=1

Yic logQic. (10)

Equation 1 Gradient to the input of softmax layer ∂f
∂Z = 1

N (Q− Y )210

Proof. At first, we calculate the gradient of f given the element Zic of the matrix Z, ∂f
∂Zic

,211

∂f

∂Zic
=

∂(− 1
N

∑N
i=1

∑C
c=1 Yic logQic)

∂Zic

=
∂(− 1

N

∑N
i=1

∑C
c=1 Yic log

eZic∑C
d=1

eZid
)

∂Zic

=
∂(− 1

N

∑C
c=1 Yic log

eZic∑C
d=1

eZid
)

∂Zic

= − 1

N

∂(
∑C

c=1 Yic log
eZic∑C

d=1
eZid

)

∂Zic

= − 1

N

∂(
∑C

c=1(YicZic − Yic log
∑C

d=1 e
Zid))

∂Zic

= − 1

N
(Yic −

∂(
∑C

c=1(Yic log
∑C

d=1 e
Zid))

∂Zic
)

= − 1

N
(Yic −

∂(log
∑C

d=1 e
Zid))

∂Zic
)

= − 1

N
(Yic −

eZic∑C
d=1 e

Zid

)

=
1

N
(

eZic∑C
d=1 e

Zid

− Yic)

=
1

N
(Qic − Yic)

(11)
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Given the property of the matrix, we have212

∂f

∂Z
=

1

N
(Q− Y ).

213

Lemma 1 If Z = AXB,
∂f

∂X
= AT ∂f

∂Z
BT .

Equation 2 The gradient over the weights of GCN214

∂f

∂W
=

1

N
XTAT (ϕ(AXW )− Y ). (12)

Proof.
∂f

∂W
= (AX)T

∂f

∂Z

= XTAT ∂f

∂Z

=
1

N
XTAT (Q− Y )

=
1

N
XTAT (ϕ(AXW )− Y )

(13)

215

H.1.2 Gradients of local models with 0-hop communication216

We then consider the federated setting. Let AN×N denote the adjacency matrix of all nodes and217

ANk×Nk

k denotes the adjacency matrix of the nodes in client k. Let fk represent the local loss function218

(without communication) of client k. Then the local gradient given model parameter W is219

∂fk
∂W

=
1

Nk
XT

k A
T
k (ϕ(AkXkW )− Yk) (14)

H.1.3 Gradients of local models with 1-hop communication220

With 1-hop communication, let ȦNk×|Nk|
k denotes the adjacency matrix of the nodes in client k221

and their 1-hop neighbors (Nk also includes the current nodes). The output of GCN with 1-hop222

communication (recovering 1-hop neighbor information) is223

ϕ(ȦkẊkW ). (15)

The local gradient with 1-hop communication given model parameter W is then224

∂ḟk
∂W

=
1

Nk
ẊT

k Ȧ
T
k (ϕ(ȦkẊkW )− Yk) (16)

H.1.4 Bound the difference of local gradient and global gradient225

Assuming each client has an equal number of nodes, we have Nk = N
K . The local gradient of 0-hop226

communication is then227

∂fk
∂W

=
K

N
XT

k A
T
k (ϕ(AkXkW )− Yk) (17)
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The difference between local gradient (0-hop) and global gradient is then228

∥ ∂fk
∂W

− ∂f

∂W
∥

= ∥K
N

XT
k A

T
k (ϕ(AkXkW )− Yk)−

1

N
XTAT (ϕ(AXW )− Y )∥

=
1

N
∥KXT

k A
T
k (ϕ(AkXkW )− Yk)−XTAT (ϕ(AXW )− Y )∥

=
1

N
∥KXT

k A
T
k ϕ(AkXkW )−KXT

k A
T
k Yk −XTATϕ(AXW ) +XTATY ∥

≤ 1

N
(∥KXT

k A
T
k ϕ(AkXkW )−XTATϕ(AXW )∥+ ∥XTATY −KXT

k A
T
k Yk∥)

=
1

N
(∥KXT

k A
T
k ϕ(AkXkW )−XTATϕ(AXW )∥+ ∥KXT

k A
T
k Yk −XTATY ∥)

≲ ∥KXT
k A

T
k ϕ(AkXkW )−XTATϕ(AXW )∥+ ∥KXT

k A
T
k Yk −XTATY ∥

(18)

Since model training is to make the model output ϕ(AXW ) close to label matrix Y , we provide an229

upper bound230

∥KXT
k A

T
k Yk −XTATY ∥ ≲ ∥KXT

k A
T
k ϕ(AkXkW )−XTATϕ(AXW )∥ (19)

Based on Equation 18 and Equation 19 , we then have231

∥ ∂fk
∂W

− ∂f

∂W
∥ ≲ ∥KXT

k A
T
k ϕ(AkXkW )−XTATϕ(AXW )∥ (20)

By assuming the function XTATϕ(AXW ) is λ-smooth w.r.t XTATAX , we have232

∥ ∂fk
∂W

− ∂f

∂W
∥ ≲ ∥KXT

k A
T
kAkXkW −XTATAXW ∥

≲ ∥KXT
k A

T
kAkXk −XTATAX∥

(21)

We can then provide the following bound to compare the local gradient with 0-hop communication233

and the global gradient given the same model parameter w234

∥∂fk
∂w
− ∂f

∂w
∥ ≲ ∥KXT

k A
T
kAkXk −XTATAX∥, (22)

where w is the vectorization of model parameters W .235

Similarly, let ḟk represent the loss function with 1-hop communication, the difference between local236

gradient with 1-hop communication and the global gradient is237

∥∂ḟk
∂w
− ∂f

∂w
∥ ≤ λ∥KẊT

k Ȧ
T
k ȦkẊk −XTATAX∥. (23)

H.2 Convergence Analysis of 2-layer GCNs238

Based on the same idea in 1-layer GCNs, we then provide the convergence analysis of 2-layer GCNs.239

We first derive the gradient of 2-layer GCNs in centralized, 0-hop, 1-hop and 2-hop cases. Then we240

provide bounds to approximate the difference between local (0, 1, 2-hop) and global gradients. Based241

on the Stochastic Block Model, we then be able to quantify the difference.242

H.2.1 Gradient of Centralized GCN (Global Gradient)243

Based on the analysis of 1-layer GCNs, for graph G with adjacency matrix A and feature matrix X244

in clients, we consider a 2-layer graph convolutional network with ReLU activation for the first layer,245

Softmax activation for the second layer, and cross-entropy loss, which has the following form246

Z = Aϕ1(AXW1)W2, (24)
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247
Q = ϕ2(Z), (25)

where248

Qic =
eZic∑C
d=1 e

Zid

(26)

The objective function is249

f(A,X,W1,W2,Y ) = − 1

N

N∑
i=1

C∑
c=1

Yic logQic. (27)

We then show how to calculate the gradient∇f(w) = [ ∂f
∂W1

, ∂f
∂W2

].250

Equation 1 ∂f
∂Z = 1

N (Q− Y )251

Equation 2 The gradient over the weights of the second layer252

∂f

∂W2
=

1

N
(ϕ1(W

T
1 XTAT ))AT (ϕ2(Aϕ1(AXW1)W2)− Y ) (28)

Proof.
∂f

∂W2
= (Aϕ1(AXW1))

T ∂f

∂Z

= (ϕ1(AXW1))
TAT ∂f

∂Z

=
1

N
(ϕ1(AXW1))

TAT (Q− Y )

=
1

N
(ϕ1(AXW1))

TAT (ϕ2(Aϕ1(AXW1)W2)− Y )

=
1

N
(ϕ1(W

T
1 XTAT ))AT (ϕ2(Aϕ1(AXW1)W2)− Y )

(29)

253

Equation 3 The gradient over the weights of the first layer.254

∂f

∂W1
=

1

N
(Aϕ′

1(AXW1)AX)T (ϕ2(Aϕ1(AXW1)W2)− Y )W T
2 (30)

Proof.
∂f

∂W1
= (Aϕ′

1(AXW1)AX)T
∂f

∂Z
W T

2

= (Aϕ′
1(AXW1)AX)T

∂f

∂Z
W T

2

=
1

N
(Aϕ′

1(AXW1)AX)T (Q− Y )W T
2

=
1

N
(Aϕ′

1(AXW1)AX)T (ϕ2(Aϕ1(AXW1)W2)− Y )W T
2

(31)

255

H.2.2 Gradient of local models (0, 1, 2-hop)256

For client k with local adjacency matrix Ak, let Ȧn×|Nk|
k denotes the adjacency matrix of the current257

nodes with complete edge information form their 1-hop neighbors (Nk also includes the current258

nodes), and Ä
|Nk|×|N 2

k |
k denotes the adjacency matrix of nodes with complete edge information form259

their 2-hop neighbors (N 2
k also includes the current nodes and 1-hop neighbors).260

The output of GCN without communication is261

ϕ2(Akϕ1(AkXkW1)W2). (32)
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The output of GCN with 1-hop communication is262

ϕ2(Akϕ1(ȦkẊkW1)W2). (33)

The output of GCN with 2-hop communication is263

ϕ2(Ȧkϕ1(ÄkẌkW1)W2). (34)

For 2-layer GCNs, output with 2-hop communication is the same as the centralized model.264

The gradient of GCNs with 2-hop communication (recover the 2-hop neighbor information) over the265

weights of the first layer is then266

∂f̈k
∂W1

=
1

Nk
(Ȧkϕ

′
1(ÄkẌkW1)ÄkẌk)

T (ϕ2(Ȧkϕ1(ÄkẌkW1)W2)− Yk)W
T
2 . (35)

H.2.3 Bound the difference of local gradient and global gradient267

Assuming each client has equal number of nodes, we have Nk = N
K . Based on the same process in268

1-layer case, we can then provide the following approximations between the local model and the269

global model.270

The difference between the local gradient without communication and the global gradient is271

∥∂fk
∂w
− ∂f

∂w
∥ ≲ ∥KXT

k A
T
kA

T
kAkAkXk −XTATATAAX∥. (36)

The difference between the local gradient with 1-hop communication and the global gradient is272

∥∂ḟk
∂w
− ∂f

∂w
∥ ≲ ∥KẊT

k Ȧ
T
kA

T
kAkȦkẊk −XTATATAAX∥. (37)

The difference between the local gradient with 2-hop communication and the global gradient is273

∥∂f̈k
∂w
− ∂f

∂w
∥ ≲ ∥KẌT

k Ä
T
k Ȧ

T
k ȦkÄkẌk −XTATATAAX∥. (38)

With more communication, the local gradient gets closer to the global gradient.274

H.3 Analysis on Stochastic Block Model with Node Features275

To better quantify the difference, we can analyze it on generated graphs, the Stochastic Block Model.276

H.3.1 Preliminaries277

Assume the node feature vector x follows the Gaussian distribution with linear projection H of node278

label y,279

x ∼ N (Hy, σ), (39)

we then have the expectation of the feature matrix280

E(X) = E(Y HT ). (40)

According to the Stochastic Block Model, we have281

E(A) = P = Y BY T . (41)

H.3.2 Quantify the gradient difference282

Based on above results, the expectation of the global gradient given the label matrix Y is283

E(XTATATAAX|Y ) = HY TY BY TY BY TY BY TY BY TY HT . (42)
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Notice that Y TY is counting the number of nodes belonging to each class. Based on this observation,284

we can better analyze the data distribution.285

For adjacency matrix without communication286

E(Ak) = YkBY T
k . (43)

The expectation of the former gradient given the label matrix Y is then287

E(XT
k A

T
kA

T
kAkAkXk|Y ) = HY T

k YkBY T
k YkBY T

k YkBY T
k YkBY T

k YkH
T . (44)

For adjacency matrix with 1-hop communication288

E(Ȧk) = YkBẎ T
k (45)

The expectation of the former gradient with 1-hop communication given the label matrix Y is then289

E(ẊT
k Ȧ

T
kA

T
kAkȦkẊk|Y )

= HẎ T
k ẎkBY T

k YkBY T
k YkBY T

k YkBẎ T
k ẎkH

T .
(46)

For adjacency matrix with 2-hop communication290

E(Ä) = Ẏ BŸ T . (47)

The expectation of the former gradient with 1-hop communication given the label matrix Y is then291

E(ẌT
k Ä

T
k Ȧ

T
k ȦkÄkẌk|Y )

= HŸ T
k ŸkBẎ T

k ẎkBY T
k YkBẎ T

k ẎkBŸ T
k ŸkH.

(48)

The difference of gradient can then be written as292

∥∂f̈k
∂w
− ∂f

∂w
∥ ≤ λ∥KŸ T

k ŸkBẎ T
k ẎkBY T

k YkBẎ T
k ẎkBŸ T

k Ÿk

−Y TY BY TY BY TY BY TY BY TY ∥
(49)

Notice that Y T
k Yk is counting the number of nodes in client k belonging to each class, Ẏ T

k Ẏk and293

Ÿ T
k Ÿk are respectively counting the number of 1-hop and 2-hop neighbors of nodes in client k294

belonging to each class. It can be decomposed as295

Y T
k Yk = Nkpk, (50)

We then have296

∥∂f̈k
∂w
− ∂f

∂w
∥ ≲ ∥KN 2

Vk
pkN 1

Vk
pkNkpkN 1

Vk
pkN 2

Vk
pk −N5p5∥∥B4∥

≲ ∥KNk(N 1
Vk
)2(N 2

Vk
)2(pk)

5 −N5p5∥
≲ ∥(KNk(N 1

Vk
)2(N 2

Vk
)2 −N5)(pk)

5∥+N5∥(pk)
5 − p5∥

(51)

(KNk(N 1
Vk
)2(N 2

Vk
)2 −N5) evaluates the difference between the number of nodes with communica-297

tion in local client and the number of nodes in total. ∥(pk)
5 − p5∥ evaluates the difference between298

local distribution and global distribution. The second term can be bouned by299

N5∥(pk)
5 − p5∥ ≤ N5(1− 1

C
)

5
2

(1− p)5. (52)

We then work on bounding the first term.300
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H.4 Number of 1-hop and 2-hop neighbors for clients301

We need to get the number of 1-hop neighbors N 1
Vk

and 2-hop neighbors N 2
Vk

in both i.i.d and302

non-i.i.d cases.303

H.4.1 Number of 1-hop and 2-hop neighbors in i.i.d304

For node i in other clients, the probability that it has at least one connection with the nodes in client i305

1− (1− α)
N

CK (1− µα)
(C−1)N

CK (53)

The expectation of 1-hop neighbor (including nodes in local client)306

N

K
+

K − 1

K
N(1− (1− α)

N
CK (1− µα)

(C−1)N

CK ) ≈ N

K
+

K − 1

K
N(1− (1− α

N

CK
)(1− µα

(C − 1)N

CK
))

≈ N

K
+

K − 1

K
N(1− (1− α

N

CK
− µα

(C − 1)N

CK
))

=
N

K
+

K − 1

K
N(α

N

CK
+ µα

(C − 1)N

CK
)

=
N

K
(1 + (K − 1)(α

N

CK
+ µα

(C − 1)N

CK
))

(54)

Notice that it is (1 + (K − 1)(α N
CK + µα (C−1)N

CK ) times the number of local nodes.307

Similarly, approximated expectation of 2-hop neighbor (including nodes in local client). This308

approximation is provided based on that in expectation there is no label distribution shift between309

2-hop nodes and 1-hop nodes.310

N

K
(1 + (K − 1)(α

N

CK
+ µα

(C − 1)N

CK
))2 (55)

H.4.2 Number of 1-hop and 2-hop neighbors in non-i.i.d.311

Expectation of 1-hop neighbor (including nodes in local client)312

N

K
+

K − 1

K
N(1− (1− µα)

N
K )

≈ N

K
(1 + µα

K − 1

K
N)

(56)

Approximated expectation of 2-hop neighbor (Including nodes in local client).313

N

K
(1 + µα

K − 1

K
N)2 (57)

H.4.3 Number of 1-hop and 2-hop neighbors in non-i.i.d.314

Expectation of 1-hop neighbor (including nodes in local client)315

N

K
+

K − 1

K
N(1− (1− α)

Np

CK (1− µα)
N(C−p)

CK ) ≈ N

K
+

K − 1

K
N(α

N

CK
((1− µ)p+ µC))

=
N

K
+

K − 1

K
N(α

N

CK
(1− µ)p+ α

N

CK
µC)

=
N

K
(1 + (K − 1)(α

N

CK
(1− µ)p+ µα

N

K
))

(58)
Approximated expectation of 2-hop neighbor (including nodes in local client)316

N

K
(1 + (K − 1)(α

N

CK
(1− µ)p+ µα

N

K
))2 (59)
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H.5 Data Distribution with Labels317

We assume each label have the same number of nodes. Each client k have the same number of nodes318

Nk = N
K .319

For global label distribution, we have320

p = diag(
1

C
, ...,

1

C
) (60)

H.5.1 i.i.d321

The local label distribution is the same as the global distribution in i.i.d condition.322

pk = diag(
1

C
, ...,

1

C
) (61)

For local gradient without communication and global gradient,323

∥∂fk
∂w
− ∂f

∂w
∥ ≲ ∥(K(Nk)

5 −N5)diag(
1

C
, ...,

1

C
)5B4∥

≲ (1−K
(Nk)

5

N5
)N5∥diag( 1

C
, ...,

1

C
)5B4∥

≲ (1−K
(Nk)

5

N5
)
N5

C5
∥B4∥

≲ (1− 1

K4
)
N5

C5
∥B4∥

(62)

For local gradient with 1-hop communication and global gradient,324

∥∂ḟk
∂w
− ∂f

∂w
∥ ≲ ∥(K(Nk)

3|Nk|2 −N5)diag(
1

C
, ...,

1

C
)5B4∥

≲ ∥(KN3

K3
(
N

C
+

C − 1

C
N(α

N

C
+ µα

(C − 1)N

CK
))2 −N5)diag(

1

C
, ...,

1

C
)5B4∥

≲ ∥(CN5

C5
(1 + (C − 1)(α

N

C
+ µα

(C − 1)N

CK
))2 −N5)diag(

1

C
, ...,

1

C
)5B4∥

≲ (1− 1

C4
(1 + (C − 1)(α

N

C
+ µα

(C − 1)N

CK
))2)

N5

C5
∥B4∥

(63)

For local gradient with 2-hop communication and global gradient,325

∥∂f̈k
∂w
− ∂f

∂w
∥ ≲ ∥(K(Nk)|Nk|2|N 2

k |2 −N5)diag(
1

C
, ...,

1

C
)5B4∥

≲ ∥(KN

C
(
N

C
+

C − 1

C
N(α

N

C
+ µα

(C − 1)N

CK
))2

((
N

C
+

C − 1

C
N(α

N

C
+ µα

(C − 1)N

CK
))2)2 −N5)diag(

1

C
, ...,

1

C
)5B4∥

≲ ∥(KN5

C5
(1 + (C − 1)(α

N

C
+ µα

(C − 1)N

CK
))6 −N5)diag(

1

C
, ...,

1

C
)5B4∥

≲ (1− 1

C4
(1 + (C − 1)(α

N

C
+ µα

(C − 1)N

CK
))6)

N5

C5
∥B4∥

(64)

For non-i.i.d, we can simply replace the number of 1-hop and 2-hop neighbors.326
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I Communication Cost under SBM327

Assume the number of clients K is equal to the number of labels types in the graph G. Table 5328

shows the communication cost of FedGCN and BDS-GCN Wan et al. (2022). Distributed training329

methods like BDS-GCN requires communication per local update, which makes the communication330

cost increase linearly with the number of global training round T and number of local updates E.331

FedGCN only requires low communication cost at the initial step.

Methods 1-hop L-hop BDS-GCN
Generic Graph C1 +Nd C1 +

∑K
k=1 |N

L−1
k |d LTEρd

∑K
k=1 |N 1

k /Vk|
Table 5: Communication costs of FedGCN and BDS-GCN on generic graph. BDS-GCN requires
communication at every local updates.

332

I.1 Server Aggregation333

We consider communication cost of node i in client c(i). For node i, the server needs to receive334

messages from c(i) (note that c(i) needs send the local neighbor aggregation) and other clients335

containing the neighbors of node i .336

I.1.1 Non-i.i.d.337

Possibility that there is no connected node in client j for node i is338

(1− µα)
N
K . (65)

Possibility that there is at least one connected node in client j for node i is339

1− (1− µα)
N
K . (66)

Number of clients that node i needs to communicate with is340

1 + (K − 1)(1− (1− µα)
N
K ). (67)

The communication cost of N nodes is341

N(1 + (K − 1)(1− (1− µα)
N
K ))d. (68)

1-order Approximation To better understanding the communication cost, we can expand the form to342

provide 1-order approximation343

(1− µα)
N
K ≈ 1− µα

N

K
(69)

Possibility that there is no connected node in client j for node i is344

1− (1− µα)
N
K ≈ 1− 1 + µα

N

K
= µα

N

K
. (70)

The number of clients that node i needs to communicate with is then345

1 + (K − 1)(1− (1− µα)
N
K ) ≈ 1 + (K − 1)µα

N

K
. (71)

I.1.2 i.i.d.346

Possibility that there is no connected node in client j for node i is347

(1− α)
N

CK (1− µα)
(C−1)N

CK . (72)
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Possibility that there is at least one connected node in client j for node i is348

1− (1− α)
N

CK (1− µα)
(C−1)N

CK . (73)

Number of clients that node i needs to communicate with is349

1 + (C − 1)(1− (1− α)
N

CK (1− µα)
(C−1)N

CK ). (74)

Node i needs to communicate with more clients in i.i.d. than the case in non-i.i.d.350

The communication cost of N nodes is351

N(1 + (C − 1)(1− (1− α)
N

CK (1− µα)
(C−1)N

CK ))d. (75)

1-order Approximation352

The number of clients that node i needs to communicate with is then353

1− (1− α)
N

CK (1− µα)
(C−1)N

CK ≈ 1− (1− α
N

CK
)(1− µα

(C − 1)N

CK
)

= 1− (1− α
N

CK
− µα

(C − 1)N

CK
+ α

N

CK
µα

(C − 1)N

CK
)

= α
N

CK
+ µα

(C − 1)N

CK
− α

N

CK
µα

(C − 1)N

CK

≈ α
N

CK
+ µα

(C − 1)N

CK
.

(76)

The number of clients that node i needs to communicate with is then354

(1 + (C − 1)(α
N

CK
+ µα

(C − 1)N

CK
)). (77)

I.1.3 Non-i.i.d.355

Similarly, let p denote the percent of i.i.d., we then have the communication cost356

N(1 + (C − 1)(1− (1− α)
Np

CK (1− µα)
N(C−p)

CK ))d. (78)

1-order Approximation357

The number of clients that node i needs to communicate with is then358

1− (1− α)
Np

CK (1− µα)
N(C−p)

CK ≈ 1− (1− α
Np

CK
)(1− µα

N(C − p)

CK
)

= 1− (1− α
Np

CK
− µα

N(C − p)

CK
+ α

Np

CK
µα

N(C − p)

CK

= α
Np

CK
+ µα

N(C − p)

CK
− α

Np

CK
µα

N(C − p)

CK

≈ α
Np

CK
+ µα

N(C − p)

CK

= α
N

CK
(p+ µ(C − p))

= α
N

CK
(p− µp+ µC)

= α
N

CK
((1− µ)p+ µC).

(79)

16



The communication cost of all nodes is then359

N(1 + (C − 1)α
N

CK
((1− µ)p+ µC))d. = (((1− µ)p+ µC)

αN(C − 1)

CK
+ 1)Nd.

= (((1− µ)p+ µC)
αN(C − 1)

CK
+ 1)Nd.

= (
(1− µ)αN(C − 1)

CK
p+

µαN(C − 1)

C
+ 1)Nd.

(80)

I.2 Server sends to clients360

Since the aggregations of neighbor features have been calculated in the server, it then needs to send361

the aggregations back to clients.362

For 1-hop communication, each client requires the aggregations of neighbors (1-hop) of its local363

nodes, which equals to the number of local nodes times the size of the node feature,364

K∑
k=1

|Vk|d = Nd. (81)

For 2-hop communication, each client requires the aggregations of 2-hop neighbors of its local nodes,365

which equals to the number of 1-hop neighbors times the size of the node feature,366

K∑
k=1

|NVk
|d (82)

The number of neighbors in partial i.i.id for client k367

N

C
+

C − 1

C
N(1− (1− α)

Np

CK (1− µα)
N(C−p)

CK ) ≈ N

C
+

C − 1

C
N(α

N

CK
((1− µ)p+ µC))

=
N

C
+

C − 1

C
N(α

N

CK
(1− µ)p+ α

N

C
µ)

(83)

Then the number of neighbors in partial i.i.id for for all clients368

N + (C − 1)N(1− (1− α)
Np

CK (1− µα)
N(C−p)

CK ) ≈ N + (C − 1)N(α
N

CK
(1− µ)p+ α

N

C
µ)

(84)

The communication cost is then369

(N + (C − 1)N(α
N

CK
(1− µ)p+ α

N

CK
µC))d = (1 + (C − 1)(α

N

CK
(1− µ)p+ α

N

C
µ))Nd

= (1 + (C − 1)α
N

CK
(1− µ)p+ µα(C − 1)

N

C
)Nd

(85)

For L-hop communication, each client requires the aggregations of L-hop neighbors of its local370

nodes, which equals to the number of (L− 1)-hop neighbors times the size of the node feature,371

K∑
k=1

|NL−1
Vk
|d. (86)

J Negative Social Impacts of the Work372

We believe that our work overall may have a positive social impact, as it helps to protect user privacy373

during federated training of GCNs for node-level prediction problems. However, by enabling such374

training to occur without compromising privacy, there is a chance that we could enable improved375

training of models with negative social impact. For example, models might more accurately classify376

17



users in social networks due to their ability to leverage a larger, cross-client dataset of users in the377

training. Depending on the model being trained, these results could be used against such users, e.g.,378

targeting dissidents under an authoritarian regime. We believe that such negative impacts are no379

more likely than positive impacts from improved training, e.g., allowing an advertising company to380

send better products to users through improved predictions of what they will like. This work itself is381

agnostic to the specific machine learning model being trained.382
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