
A Some elementary facts

We first list some useful inequalities for  p and  �1
p . Note that the estimates may not be the sharpest,

but they suffice for our needs.
Proposition A.2. For p � 1 and x � 0, let  p(x) = exp(xp)�1 and let  �1

p (x) = (log(x+1))1/p

be its inverse. Then we have the following:

(i)  2
p(x/2

1/p)   p(x).

(ii) x p(x/41/p)  21/p p(x/21/p).

(iii) for x � 0 and q � 1,  �1
p (xq)  q

1/p
 
�1
p (x).

(iv) For x � 1,  �1
p (x)  (log(x))1/p + 1.

Proof.

(i) For any x � 0,
 p(x) = exp(xp)� 1 = (exp(xp

/2)� 1)(exp(xp
/2) + 1) � (exp(xp

/2)� 1)2

=  
2
p(x/2

1/p).

(ii) We only need to consider the case x � 1 since otherwise the inequality is obvious. Since
y  2(exp(y/4) + 1) for all y � 1, we have

x  21/p(exp(xp
/4) + 1)1/p  21/p(exp(xp

/4p) + 1)  21/p(exp(xp
/4) + 1).

Then
x p(x/4

1/p) = x(exp(xp
/4)� 1)

 21/p(exp(xp
/4) + 1)(exp(xp

/4)� 1)

= 21/p(exp(xp
/2)� 1)

= 21/p p(x/2
1/p).

(iii) Since x � 0 and q � 1,

 
�1
p (xq) = (log(1 + x

q))1/p  (log(1 + x)q)1/p = q
1/p
 
�1
p (x).

(iv) When x � 1,

ex � x+ 1 =) log x+ 1 � log(x+ 1) =) log1/p(x) + 1 �  
�1
p (x).

The following simple result is for converting between sums and integrals:
Proposition A.3. For any r � 2, K 2 N, and a continuous nonincreasing f : (0,+1) ! (0,+1),
we have

KX

k=1

r
�k

f(r�k)  r

Z 1

0
f(") d"  r

2
1X

k=0

r
�k

f(r�k) (A.1)

Proof. Using the monotonicity of f , we have
KX

k=1

r
�k

f(r�k) 
KX

k=1

r
�k(r � 1)f(r�k)  r

KX

k=1

Z r�k

r�k�1

f(") d"

 r

Z 1

0
f(")d"  r

1X

k=0

Z r�k+1

r�k

f(✏) d"  r
2

1X

k=0

r
�k

f(r�k).
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B Omitted proofs

B.1 Proofs for Section 2

Proof of Proposition 1. It follows from the inequality x log(x+ 1)  x log x+ 1, x � 0, that

dµ

d⌫
log
⇣dµ
d⌫

+ 1
⌘
 dµ

d⌫
log

dµ

d⌫
+ 1.

Using this and Jensen’s inequality, we get
D
µ, 

�1
p

⇣dµ
d⌫

⌘E
=
D
µ,

⇣
log
⇣dµ
d⌫

+ 1
⌘⌘1/pE


⇣D

µ, log
⇣dµ
d⌫

+ 1
⌘E⌘1/p

=
⇣D
⌫,

dµ

d⌫
log
⇣dµ
d⌫

+ 1
⌘E⌘1/p


⇣D
⌫,

dµ

d⌫
log

dµ

d⌫

E
+ 1
⌘1/p

=
�
D(µk⌫) + 1

�1/p
.

B.2 Proofs for Section 3

Proof of Lemma 1. To prove (4), we start with the Young-type inequality

xy   
⇤
p(x) +  p(y), x, y � 0

where

 
⇤
p(x) := sup

y�0

�
xy �  p(y)

�

is the (one-sided) Legendre–Fenchel conjugate of  p. While a closed-form expression for  ⇤
p is not

available, we claim that we can bound it from above as  ⇤
p(x)  21/px �1

p (x), resulting in

xy  21/px �1
p (x) +  p(y). (B.1)

To establish the claim, we write

sup
y�0

�
xy �  p(y)

�
= sup

y�0

�
xy � (ey

p/2 � 1)(ey
p/2 + 1)

�

and consider two cases:

• if y  21/p �1
p (x), then

xy � (ey
p/2 � 1)(ey

p/2 + 1)  21/px �1
p (x).

• if y > 21/p �1
p (x), then

xy � (ey
p/2 � 1)(ey

p/2 + 1)  (ey
p/2 � 1)(y � (ey

p/2 + 1))  0.

Applying (B.1) with x = dµ
d⌫ and y = g gives

g
dµ

d⌫
 21/p

dµ

d⌫
 
�1
p

⇣dµ
d⌫

⌘
+  p(g),

so that

hµ, fgi =
D
⌫, fg

dµ

d⌫

E


D
⌫,

⇣
21/pf

dµ

d⌫
 
�1
p

⇣dµ
d⌫

⌘
+ f p(g)

⌘E

= 21/p
D
µ, f 

�1
p

⇣dµ
d⌫

⌘E
+ h⌫, f p(g)i.
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To prove (5), define the event

E :=

(
dµ

d⌫
� exp(gp/4)� 1

h⌫, exp(gp)i

)
.

Then, since h⌫, exp(gp)i � 1,
Z

E
fg dµ  41/p

Z
f

⇣
log
⇣dµ
d⌫

h⌫, exp(gp)i+ 1
⌘⌘1/p

dµ

 41/p
Z

f

⇣
log
⇣dµ
d⌫

+ 1
⌘
+ logh⌫, exp(gp)i

⌘1/p
dµ

 41/p
Z

f

⇣
log
⇣dµ
d⌫

+ 1
⌘⌘1/p

dµ+ 41/p
Z

f dµ ·
⇣
logh⌫, exp(gp)i

⌘1/p

= 41/p
D
µ, f 

�1
p

⇣dµ
d⌫

⌘E
+ 41/pkfkL1(µ)

�
logh⌫, exp(gp)i

�1/p
.

On the other hand,
Z

Ec

fg dµ 
Z

fg
exp(gp/4)� 1

h⌫, exp(gp)i d⌫

 21/p
Z

f
exp(gp/2)

h⌫, exp(gp)i d⌫

 21/pkfkL2(⌫),

where the first inequality is by the definition of E, the second inequality follows from Proposi-
tion A.2(ii), and the third inequality is by Cauchy–Schwarz. Putting everything together, we get
(5).

B.3 Proofs for Section 4

Proof of Theorem 1. It follows from the independence of Z1, . . . , Zn that gen(w, S) is (�/
p
n)-

subgaussian, so

E

"
 2

 
|gen(w, S)|
�
p

6/n

!#
 1, 8w 2 W. (B.2)

Using Lemma 1 with µ = PW |S , ⌫ = QW , f(w) = �
p

6/n, and g(w) = |gen(w,S)|
�
p

6/n
, we have

hPW |S , |gen(·, S)|i 
r

12�2

n

 *
PW |S , 

�1
2

 
dPW |S

dQW

!+
+

*
QW , 2

 
|gen(·, S|
�
p

6/n

!+!
.

Taking expectations of both sides w.r.t. PS and using Fubini’s theorem and (B.2), we get (6).

Proof of Corollary 1. Applying Proposition 1 conditionally on S gives
D
PW |S , 

�1
2

⇣dPW |S

dQW

⌘E

q
D(PW |SkQW ) + 1,

where the divergence D(PW |SkQW ), being a function of S, is a random variable. Substituting
this into (6) and using Jensen’s inequality, the definition of conditional divergence, and

p
a+ b p

a+
p
b 

p
2(a+ b), we get

E[|gen(W,S)|] 
r

24�2

n

⇣
D(PW |SkQW |PS) + 4

⌘
.

Taking the infimum of both sides w.r.t. QW and using (2), we get (7).
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Proof of Theorem 2. For each fixed (w, s̃), the random variable �(w, s̃, ") := |
Pn

i=1 "i(`(w, z
0
i)�

`(w, zi))| is �(w, s̃)-subgaussian, where �(w, s̃) :=
�Pn

i=1(`(w, z
0
i)� `(w, zi))2)1/2. Thus,

E"[⇣(w, s̃, ")] := E"

"
 2

 
�(w, s̃, ")p
6�(w, s̃)

!#
 1, 8(w, s̃). (B.3)

Applying Lemma 1 conditionally on (S̃, ") with µ = P̄W |S̃", ⌫ = QW |S̃ , f(w) = �(w, S̃), g(w) =
⇣(w, S̃, "), we obtain

⌦
P̄W |S̃",�(·, S̃)⇣(·, S̃, ")

↵


p
2

*
P̄W |S̃",�(·, S̃) 

�1
2

 
dP̄W |S̃,"

dQW |S̃

!+
+
D
QW |S̃ ,�(·, S̃) 2(⇣(·, S̃, "))

E


p
2k�(S̃)k`2

0

@
*
P̄W |S̃", 

�1
2

 
dP̄W |S̃,"

dQW |S̃

!+
+
D
QW |S̃ , 2(⇣(·, S̃, "))

E
1

A .

Taking expectations of both sides w.r.t. S̃ and ", then using Fubini’s theorem, (B.3), and the inequality
EP [|gen(W,S)|]  1

nEP̄ [�(W, S̃, ")], we obtain (8).

Proof of Corollary 2. For any QW |S̃ , using Proposition 1, Cauchy–Schwarz, and the independence
of (Z 0

i, Zi), we have

EP̄

"
k�(S̃)k`2 �1

2

 
dP̄W |S̃,"

dQW |S̃

!#


q
EP̄ [k�(S̃)k2`2 ]

�
D(P̄W |S̃"kQW |S̃ |P̄S̃") + 1

�

=
q
nE[�(Z,Z 0)2]

�
D(P̄W |S̃"kQW |S̃ |P̄S̃") + 1

�
.

Substituting this estimate into (8), taking the infimum of both sides w.r.t. QW |S̃ , and using (3), we
get (9).

B.4 Proofs for Section 5

Proof of Theorem 3. Let
�(u, v, z, z0) :=

�
`(u, z0)� `(v, z0)

�
�
�
`(u, z)� `(v, z)

�
,

�(u, v, s̃) :=
nX

i=1

�(u, v, zi, z
0
i),

⇣(u, v, s̃) :=
|�(u, v, s̃)|p
6�(u, v, s̃)

.

For each fixed (u, v) 2 W2, �(u, v, Zi, Z
0
i), 1  i  n, are i.i.d. symmetric random variables.

Therefore, introducing a tuple " = ("1, . . . , "n) of i.i.d. Rademacher random variables indepen-
dent of everything else and using the fact that the joint distributions of

�
�(u, v, Zi, Z

0
i)
�n
i=1

and�
"i�(u, v, Zi, Z

0
i)
�n
i=1

are the same, we see that

E[ 2(⇣(u, v, S̃))] = ES̃E"

"
 2

✓
|
Pn

i=1 "i�(u, v, Zi, Z
0
i)|p

6�(u, v, S̃)

◆#
 1,

where the inequality follows from the fact that, conditionally on S and S
0, the random variablesPn

i=1 "i�(u, v, Zi, Z
0
i) are �(u, v, S̃)-subgaussian.

Now, given QW 2 P(W) and a family of couplings PUV |S=s 2 ⇧(PW |S=s, QW ), it follows from
the above definitions and from (10) that

E[gen(W,S)]  1

n
E[|�(U, V, S̃)|] =

p
6

n
E[�(U, V, S̃)⇣(U, V, S̃)]. (B.4)
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Picking any ⇢UV 2 P(W ⇥W) such that PUV |S=s ⌧ ⇢UV for all s 2 Zn and applying Lemma 1,
we get

hPUV |S ,�(·, S̃)⇣(·, S̃)i

 2

⌧
PUV |S ,�(·, S̃) �1

2

✓
dPUV |S

d⇢UV

◆�
+

p
2

⌧
⇢UV ,�(·, S̃) 2

✓
⇣(·, S̃)p

2

◆�
.

Using the inequality  2
2(x/

p
2)   2(x) (see Proposition A.2(i)), Cauchy–Schwarz, and (B.4), we

have

E


�(u, v, S̃) 2

✓
⇣(u, v, S̃)p

2

◆�

q
E[�2(u, v, S̃)], 8(u, v) 2 W ⇥W .

Putting everything together and taking expectations w.r.t. S and S
0, we obtain (12).

Proof of Corollary 3. For � defined in Theorem 3, we have

�
2(u, v, S̃)  2

nX

i=1

⇣�
`(u, Z 0

i)� `(v, Z 0
i)
�2

+
�
`(u, Zi)� `(v, Zi)

�2⌘
.

Taking conditional expectations given U, V, S and using Jensen’s inequality gives

E[�(U, V, S̃)|U, V, S] 
q
E[�2(U, V, S̃)|U, V, S]


p
2n
�
d`(U, V ) + dS,`(U, V )

�
.

An analogous argument gives
q

E[�2(Ū , V̄ , S̃)|Ū , V̄ ]  2
p
nd`(Ū , V̄ ).

Substituting these estimates into (12) gives the desired result.

B.5 Proofs for Section 6

Proof of Theorem 5. Using the definition of ¯̀, we have

E[gen(W,S)] =
1

n

KX

k=1

E

"
nX

i=1

�
¯̀(Wk, Zi)� ¯̀(Wk�1, Zi)

�
#
.

Applyng Lemma 1 conditionally on S with f(u, v) = d(u, v), g(u, v) = |
Pn

i=1(
¯̀(u,,Zi)�¯̀(v,Zi))|p

nd(u,v)
,

µ = PWkWk�1|S and ⌫ = ⇢WkWk�1 , taking expectations w.r.t. PS , and using (13) gives the desired
result.

Proof of Corollary 4. For each k � 1, let ⇢WkWk�1 = PWkWk�1 . Then
dPWkWk�1|S

dPWkWk�1

=
dPWkWk�1S

d(PWkWk�1 ⌦ PS)
=

dPS|WkWk�1

dPS
=

dPS|Wk

dPS
,

where we have made use of Bayes’ rule and the fact that S ?? Wk�1|Wk. Using this in (14) together
with Proposition 1 gives (15). An application of Cauchy–Schwarz and Jensen gives (16).

Proof of Corollary 5. For each k � 1, let ⇢WkWk�1 = PWkWk�1 . Notice that, by disintegration
and the choice of couplings,

E[d(W̄k, W̄k�1)] = E
h Z

d(u, v)PWkWk�1|S(du, dv)
i
 E[W2(PWk|S , PWk�1|S)],

where we have used the fact that W2(·, ·) dominates W1(·, ·) [23]. Since PWk|S are points on the
geodesic connecting PW |S and PW , we have

KX

k=1

W2(PWk|S , PWk�1|S) =
KX

k=1

(tk � tk�1)W2(PW |S , PW ) = W2(PW |S , PW ).

Using this together with Cauchy-Schwarz and Proposition 1, we obtain (17).
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B.6 Proofs for Section 7

Proof of Theorem 6. Applying (5) conditionally on S with f(w) = �
p
6/n, g(w) = |gen(w,S)|

�
p

6/n
,

µ = PW |S , and ⌫ = QW , we have
hPW |S , |gen(W,S)|i


r

24�2

n

 
1 +

*
PW |S , 

�1
2

⇣dPW |S

dQW

⌘+
+

 
log

*
QW , exp

⇣gen2(·, S)
6�2/n

⌘+!1/2!
.

Since `(w, S) is (�/
p
n)-subgaussian for all w, Markov’s inequality gives, for any 0 < � < 1,

P

"D
QW , exp

⇣gen2(·, S)
6�2/n

⌘E
>

2

�

#
 �

2

D
PS ⌦QW , exp

⇣gen2(·, ·)
6�2/n

⌘E
 �,

which concludes the proof.

Proof of Theorem 7. The argument is almost identical to the proof of Theorem 3, with the
difference that (5) is used for decorrelation.

To lighten the notation, let ⇡S
k := PWkWk�1|S and ⇢k := ⇢WkWk�1 . Use the same definitions of

�,�, ⇣ as in the proof of Theorem 3. Then, applying (5) with f(·) = �(·, S̃), g(·) = ⇣(·, S̃), µ = ⇡
S
k ,

⌫ = ⇢k, we have

h⇡S
k ,�(·, S̃)⇣(·, S̃)i 

p
2k�(·, S̃)kL2(⇢k) + 2

D
⇡
S
k ,�(·, S̃) �1

2

⇣d⇡S
k

d⇢k

⌘E

+ 2k�(·, S̃)kL1(⇡S
k )

q
logh⇢k, exp

�
⇣2(·, S̃)

�
i.

By Markov’s inequality and the union bound, for any 0 < � < 1,

P
h
9k s.t.

D
⇢k, exp

�
⇣
2(·, S̃)

�E
>

2

pk�

i

X

k

pk�

2

D
PS̃ ⌦ ⇢k, exp

�
⇣
2(·, ·)

�E
 �.

Using this together with the estimate �(·, S̃)  2
p
ndS̃,`(·) yields the result in the statement.

B.7 Proofs for Section 8

Proof of Theorem 8. Without loss of generality, we assume diam(T ) = 1. Let Q be the Markov
kernel from ⌦ to T defined by Q(·|!) = �⌧(!)(·); in particular, ⌫(·) =

R
⌦ P(d!)Q(·|!).

Fix some r � 2. For each k � 0 and each t 2 T , let Bk(t) := B(t, r�k). Since T is finite, there
exists some K 2 N, such that BK(t) = {t} for all t 2 T . Let µ 2 P(T ) be given. Define the
following sequence of Markov kernels from ⌦ to T :

Qk(·|!) :=
µ(· \Bk(⌧(!)))

µ(Bk(⌧(!)))
, k = 0, . . . ,K.

Observe that Q0 = µ and QK = Q. Then, since

hP⌦ µ,Xi =
Z

⌦⇥T
P(d!)µ(dt)Xt(!) =

Z

T
µ(dt)E[Xt] = 0,

we can write
E[X⌧ ] = hP⌦Q,Xi � hP⌦ µ,Xi

= hP⌦QK , Xi � hP⌦Q0, Xi

=
KX

k=1

hP⌦Qk � P⌦Qk�1, Xi

=
KX

k=1

Z

⌦

✓Z

T
Xt(!)Qk(dt|!)�

Z

T
Xt(!)Qk�1(dt|!)

◆
P(d!)


KX

k=1

Z

⌦

Z

T⇥T
|Xu(!)�Xv(!)|Qk(du|!)Qk�1(dv|!)P(d!).
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Applying (4) conditionally on ! with

f(u, v) = 1Bk(⌧(!))(u)1Bk�1(⌧(!))(v)d(u, v),

g(u, v) =
|Xu(!)�Xv(!)|

d(u, v)
,

µ(du, dv) = Qk(du|!)⌦Qk�1(dv|!),
⌫(du, dv) = µ(du)⌦ µ(dv),

and using the fact that Qk(·|!) is supported on Bk(⌧(!)) and Bk(⌧(!)) ✓ Bk�1(⌧(!)), we have
Z

T⇥T
|Xu(!)�Xv(!)|Qk(du|!)Qk�1(dv|!)

 21/pr�k+1
 
�1
p

✓
1

µ(Bk(⌧(!)))2

◆
+ r

�k+1

Z

T⇥T
 p

✓
|Xu(!)�Xv(!)|

d(u, v)

◆
µ(du)µ(dv)

 22/pr�k+1
 
�1
p

✓
1

µ(Bk(⌧(!)))

◆
+ r

�k+1

Z

T⇥T
 p

✓
|Xu(!)�Xv(!)|

d(u, v)

◆
µ(du)µ(dv),

where the first term in the last step is due to Proposition A.2(iii). Then, using the increment condition
and Proposition A.3, we have

E[X⌧ ]  22/p
KX

k=1

r
�k+1

Z

T
 
�1
p

✓
1

µ(B(t, r�k))

◆
⌫(dt) +

KX

k=1

r
�k+1

 1 + 22/pr2
Z

T

Z 1

0
 
�1
p

✓
1

µ(B(t, "))

◆
d" ⌫(dt).

Since 1/µ(B(t, ")) � 1, we can apply Proposition A.2(iv) to obtain the inequality

E[X⌧ ]  22/pr2
 
2 +

Z

T

Z 1

0

✓
log

1

µ(B(t, "))

◆1/p

d" ⌫(dt)

!
.

We can now take r = 2 to get the desired result when diam(T ) = 1; the general finite-diameter case
follows by straightforward rescaling.
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