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Abstract

We present Integrated Multimodal Perception (IMP), a simple and scalable mul-
timodal multi-task training and modeling approach. IMP integrates multimodal
inputs including image, video, text, and audio into a single Transformer encoder
with minimal modality-specific components. IMP makes use of a novel design that
combines Alternating Gradient Descent (AGD) and Mixture-of-Experts (MoE) for
efficient model & task scaling. We conduct extensive empirical studies and reveal
the following key insights: 1) performing gradient descent updates by alternating
on diverse modalities, loss functions, and tasks, with varying input resolutions,
efficiently improves the model. 2) sparsification with MoE on a single modality-
agnostic encoder substantially improves the performance, outperforming dense
models that use modality-specific encoders or additional fusion layers and greatly
mitigates the conflicts between modalities. IMP achieves competitive performance
on a wide range of downstream tasks including video classification, image clas-
sification, image-text, and video-text retrieval. Most notably, we train a sparse
IMP-MoE-L focusing on video tasks that achieves new state-of-the-art in zero-shot
video classification: 77.0% on Kinetics-400, 76.8% on Kinetics-600, and 68.3% on
Kinetics-700, improving the previous state-of-the-art by +5%, +6.7%, and +5.8%,
respectively, while using only 15% of their total training computational cost.

1 Introduction

The human perception system is profoundly multimodal. We perceive the world through the integra-
tion of a vast array of sensory systems across domains — visual, auditory, olfactory, somatic, etc.
Neurons for multimodal integration have been found in both multisensory convergence zones Calvert
[2001] and unimodal regions Driver and Noesselt [2008] in the human brain. Studies in developmental
psychology also suggest that interrelating simultaneous multimodal sensations is key for perceptutal
learning Smith and Gasser [2005]. Inspired by these findings, we see an opportunity for combined
multisensory learning in machine learning systems as well.

The rapid rise of large-scale multitask frameworks and models [Raffel et al., 2020, Roberts et al.,
2022, Radford et al., 2021, Yu et al., 2022, Wang et al., 2022] provides foundations for integrating
capabilities that unify many disparate tasks under one model. However, given the vast quantity
of independent variables involved in designing such a system, achieving an integrated multimodal
machine learning model still remains an open research direction. More specifically, designing a
multi-task model that integrates many multimodal signals is challenging due to various reasons: i.
Different modalities require structurally different I/O signatures to properly train. ii. When training
across multiple datasets, some modalities or objectives may not exist or cannot be applied, depending
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on the input data and the task to perform. iii. The presence of multiple input modalities calls for
careful considerations on the architectural design and allocation of parameters to certain modalities,
often requiring extensive hyperparameter tuning to find the best use of computational resources.

Intuitively, as we scale a model, it becomes increasingly expensive to redesign the architecture or
search for a better training objective. The issue is exacerbated in multimodal multi-task modeling,
where we need to consider the combination of input modalities or datasets, loss functions, and tasks
at large scales. Therefore, we would like to find a training approach that can be scaled incrementally:
for any new task or objective, regardless of its input shape or output loss, we should be able to add it
to the existing pretraining without compromising the previous tasks.

We navigate this problem by exploring ways in which we could train one multimodal model such that
it (1) leverages as many existing datasets as possible, (2) can train on any combination of tasks or loss
functions, and (3) does not slow down with the addition of any new dataset, task, or loss function.
By solving all of these points simultaneously, a multimodal model could scale with an increasingly
diverse and rich set of training data without needing to redesign the training framework when new
tasks get integrated.

We observe in our empirical results that the combination of diverse, heterogeneous tasks that have
been previously established as strong objectives individually (e.g., supervised classification and
self-supervised contrastive learning) across multiple modalities are not only complementary, but can
offer better convergence than training on individual tasks. By implementing Alternating Gradient
Descent (AGD) and Mixture-of-Experts (MoE) via recently developed JAX primitives, we enable
our model to use a fraction of the computational cost and memory required by similar large-scale
perception models [Radford et al., 2021, Jia et al., 2021, Yu et al., 2022], despite the addition of
multiple modalities which would normally require 2-8× compute at similar batch sizes.

Given this context, our contributions and findings are as follows:

1. We define an integrated modality-agnostic encoder model, and leverage a strong combi-
nation of image-text contrastive, video-text contrastive, video-audio contrastive, and im-
age/video/audio classification losses during pretraining to create an Integrated Multimodal
Perception (IMP) model, as shown in Figure 1.

2. Contrasting the conventional approach of summing the losses of multiple objectives, we
show that alternating between objectives results in a design that allows seamless integration
of virtually any number of tasks and datasets without significant memory overhead and
results in better downstream evaluations.

3. We show that optimization between multiple heterogeneous multimodal tasks is comple-
mentary and results in a higher quality model than trained on any individual task.

4. To train on large batches of video and audio modalities without reducing training efficiency
or loss of accuracy, we design a dynamic mixture of various resolutions, sequence lengths,
and batch sizes throughout pretraining, and alternate training on all input variations.

5. We enable our model with MoE, showing strong performance gains compared to a more
conventional multi-tower contrastive model, even when appplying MoE to both towers.

6. We scale our resulting MoE-IMP model to 2B sparse parameters with similar compute to
ViT-L (300M parameters), resulting in state-of-the-art performance on several large-scale
multimodal video understanding datasets.

2 Related Work

The optimality of AGD optimization vs. averaging the losses (or gradients) has been explored in
prior work [Jain et al., 2017, Pascal et al., 2021]. Alternating multimodal multi-task training with
AGD has been explored in PolyViT [Likhosherstov et al., 2021], which analyzes different methods to
combining heterogeneous task in a single model. The work reports similar findings to our own, that
combining objectives can be mutually beneficial and alternating between datasets weighted by the
number of examples provides one of the best methods for optimization. Our work extends this to a
much more generic setup supporting virtually any combination of modalities, tasks, resolutions, etc.

The use of sparse MoE for multimodal modeling can be seen in recent works like LIMoE [Mustafa
et al., 2022], which uses a single MoE encoder for image-text tasks, and VL-MoE [Shen et al., 2023],
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(a) The IMP model architecture.
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(b) The AGD-based multi-data multi-objective training overview.

Figure 1: An overview of the IMP Training and Architecture. A mixture of datasets with varying
modalities, resolutions, and objectives are randomly sampled at each optimization step and fed into
the model. The model is updated alternatingly given the data-objective pairs. We use jax.jit to
compile and cache computation graphs to keep each step efficient while also allowing I/O shapes to
change for every optimization step without requiring any costly padding or masking strategies.

which uses modality-specific experts for image-text modeling. Our work extends this concept further,
introducing video and audio modalities with alternating training on multiple tasks and resolutions
without requiring modality-specific experts.

Due to the inherent complexities of integrating modalities in one model, work has been done
by simplifying the problem and focusing on a small set of universal objectives applicable to all
modalities [Yu et al., 2022, Wang et al., 2022]. Alternatively, some works focused on applying
padding or masking strategies to handle the incompatible I/O signatures from different tasks. We
found in either case, this severely limits the ability for a model to leverage pre-existing large-scale
datasets or to scale to entirely new modalities. The historical reasons are that: (i) most existing
models are designed for specific input modalities e.g., language [Brown et al., 2020, Chowdhery
et al., 2022], vision [Dosovitskiy et al., 2020], or audio [Baevski et al., 2020]; (ii) different modalities
are typically delegated to separate network weights for the best performance [Radford et al., 2021, Jia
et al., 2021]; (iii) optimization difficulty with multiple modalities [Wu et al., 2022, Chen et al., 2022].

3 Method

3.1 Alternating Gradient Descent (AGD)

One of the core pillars of our approach to multimodal understanding is task scalability. I.e., different
combinations of data and loss objectives should be interchangeable throughout training, while the
addition of any new data or objective should not cause memory or computation overhead. We found
that a common issue in training large-scale foundation models in a distributed setting is that input
signatures and loss objectives need to be static to avoid major inefficiencies. Accelerated graph
compilation APIs allow for low-level graph optimizations that maximize hardware FLOPs utilization
on distributed devices such as GPUs and TPUs, but come at a cost of requiring static I/O signatures.
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Algorithm 1 Accelerated Multimodal AGD Algorithm
Input: M (model), T (training steps), X (dataset-objective pairs), f (sampling function)
Initialize: Model state St

while t ≤ T do
Sample data-objective pair (Dt, Lt) ∈ X according to sampling function f(t, St)
Compute forward pass predictions Pt = jit(M(Dt))
Compute backwards pass on loss jit(Lt(Pt, Dt))
Update model state St

end while

One approach to handle the issue with the static input signature would be to use mixed batching,
where all possible inputs are constructed, and inapplicable inputs for a given dataset are padded and
outputs are masked accordingly at each training step. However, this comes at a great efficiency cost,
since the more tasks that are added the more time is spent computing on padded inputs. The issue
with having multiple objective functions is usually resolved by mixed mini-batching, where a batch is
divided to multiple mini-batches with their corresponding objective functions. The gradients for each
mini-batch and objective function pair are accumulated across multiple mini-batches and the model
weights are updated once using an aggregated gradient. However, this approach is also difficult to
scale since the gradients across multiple mini-batches are accumulated in memory and per-task batch
size naturally reduces as we add more tasks.

We propose a more generic solution based on AGD [Jain et al., 2017], allowing any changes to the
three elements of the optimization system: inputs, model, and objective. AGD can be seen as a
superset of the conventional SGD, where at each gradient step, a different objective may be optimized
given different sets of model weights and/or input modalities. More specifically, any input modality
with arbitrary shape could consume any subset of the model while focusing on minimizing any
specific combination of the objective functions. According to Jain et al. [2017] it is proven that if each
of such optimization steps are convex individually, an alternation between them leads to a guaranteed
convergence; as opposed to mini-batching where gradient accumulation could result in sub-optimal
results. From a technical point of view, this approach requires compiling multiple computation
graphs, one for each unique optimization step. To enable efficient execution of multiple computation
graphs, JAX offers native Just-in-Time (JIT) compilation with the jax.jit API2, which compiles
the graph-of-interest at runtime and compiles a new graph if a change in structure is seen in any of
the next optimization steps. Graphs themselves are cached by JAX in an in-memory lookup table so
that tasks only need to be compiled once. We empirically observe that graph memory consumption
constitute a negligible portion of the entire training. In our experiments, we tested up to 20 unique
task structures with no significant reduction in training speed, with compilation taking only 0.34% of
the total training time, up to the largest scales.

The main AGD algorithm for our multimodal framework is provided in Algorithm 1. We note that
we carefully design the loop to be as agnostic as possible with respect to the data-model-objective
triplet. This allows for greater flexibility in defining logic inside the model to handle the processing
of individual modalities and input shapes. The sampling function can also incorporate state from the
optimization process itself. E.g., the loss value of a given step can be used as a reward signal to affect
the sampling behavior in the next samplings [Piergiovanni et al., 2023, Mindermann et al., 2022].
In our default setup, we sample each unique task on a given step from a (single trial) Multinomial
distribution with probabilities directly proportional to the number of examples in each task. We defer
more complicated or reward-based settings to future studies.

3.1.1 AGD-Specific Efficiency Considerations

We notice that in each forward call, certain model states such as activations are stored by default
to be used later in the backward call for gradient calculation. This is an established compute
optimization at the low-level graph compilation in XLA and similar APIs. Although this trick helps a
lot with the training time, it significantly consumes memory and creates memory overhead if more
than one graph is compiled and used during training. To reduce memory overhead, we use JAX’s

2https://jax.readthedocs.io/en/latest/jax-101/02-jitting.html
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native rematerialization API, jax.checkpoint3 to save memory by not checkpointing any of the
intermediate model states. In our experiments, we observe an average reduction of 70-80% TPU
HBM usage while resulting in only 18-20% longer step times.

We also notice that large models with many different objectives may still incur long compilation
times. Therefore, we apply scan-over-layers with jax.lax.scan, a method which rolls all of the
Transformer layers into a single layer that is called multiple times using different weights (instead of
compiling the same function multiple times). This alone results in 15-30x faster compilation time
depending on the model length. We observe increasing relative time savings with larger model sizes.

Furthermore, we accomplish these across distributed accelerators through the jax.pjit API4, which
distributes JIT compilation across multiple accelerators.

3.2 Objectives

Our goal in designing the IMP model is to reuse objectives that have been shown to be robust for
learning each modality. Hence, we choose the two most established supervised and unsupervised
learning objectives: i. Supervised Classification using Softmax/Binary Cross-Entropy(SCE/BCE),
ii. Cross-Modal Noise-Contrastive Estimiation (NCE). Unless otherwise specified, we do not sum
any of the above losses or accumulate gradients as would be done traditionally. Instead we apply
backprop on each objective individually with AGD.

3.3 Architecture

Figure 1 shows a high-level overview of the architecture of IMP, which consists of three main modules:
i. The Embedder, which accepts specific modalities and embeds them in a shared modality-agnostic
space; ii. The MoE Encoder, which computes semantic contextual embeddings from the embedded
tokens; iii. The Heads, which produce all the final predictions from the Encoder by re-projecting its
embeddings back into a modality-specific space. We briefly explain each module here and provide
more details in Appendix.

One design decision important to multimodal modeling is how to allocate parameters to each modality.
As seen in works like BASIC [Pham et al., 2021], an asymmetric modality-specific design can be
more optimal than using a similar-sized model for each modality. However, this comes at the cost of
requiring additional hyperparameter tuning to find the optimal parameterization. As we show later in
the next section, we observe that through the use of model sparsification with MoE, a unified encoder
design coupled with certain modality-specific pre- and post-encoder layers is more optimal than a
traditional multi-encoder setup as seen in CLIP model variants.

We follow VATT [Akbari et al., 2021], AudioMAE [Huang et al., 2022], and T5 [Raffel et al.,
2020] to extract the vision, audio, and text embeddings, respectively. We add learnable 3D/2D/1D
positional encodings to the embeddings and project them to a space with the same dimensionality as
the model’s. We pass these embedded inputs regardless of modality as-is through the shared encoder,
which is a standard Transformer architecture equipped with Mixture-of-Experts FFN layers. We
follow V-MoE [Riquelme et al., 2021] and LIMoE [Mustafa et al., 2022] for expert allocation. This
can be seen as an inductive bias, allowing each expert to be allocated to multiple modalities if the
optimization benefits. One immediate benefit is that the addition of new modalities for fine-tuning
does not need any specific changes to the encoder, unlike modality-specific experts which require
additional modifications and input handling [Wang et al., 2022, Shen et al., 2023].

We apply modality-specific heads on the encoder representations to produce the final outputs for loss
and prediction calculations. For classification objectives, we apply a dataset-specific linear classifier
to the average-pooled outputs. For noise-contrastive estimation (NCE), we closely follow the CLIP
architecture, applying separate feedforward heads for each modality-to-common-space projection.

3.4 Multi-Resolution Training

One major issue when training Transformers on video data is that computation and memory efficiency
are usually bottlenecked due to Transformer’s quadratic complexity as a function of the input length.

3https://jax.readthedocs.io/en/latest/_autosummary/jax.checkpoint.html
4https://jax.readthedocs.io/en/latest/notebooks/Distributed_arrays_and_automatic_parallelization.html
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To counteract this, we propose to adjust batch size or resolution to compensate the additional temporal
tokens, hence achieving a similar total number of input tokens compared to a single-frame still image.

We first fix a set tokens per batch T = B × TF × TH × TW , which is factorized by the batch size
B, frame tokens TF , height tokens TH , and width tokens TW representing each patchified video.
We observe that we can further factorize each batch by trading off different dimensions such that
the total number of input tokens per step are roughly equal so that peak memory usage is preserved.
For example, we can halve the spatial resolution while quadrupling the number of frames. This can
increase convergence especially at the start of training, and provide a more memory efficient encoding
of each objective. Furthermore, we leverage DropToken [Akbari et al., 2021] as an additional method
to reduce tokens per batch by randomly dropping a fixed ratio of tokens per example. We find that for
TF temporal frame tokens, we can randomly drop a ratio of 1− 1

TF
tokens per example to match the

same tokens per batch as images. For certain objectives we find that a different mix of trade-offs is
more optimal. For example, contrastive objectives favor large batch sizes, so we reduce the resolution
or apply DropToken to be more memory efficient. On the other hand, classification objectives do not
need as large batch sizes for optimal convergence, hence we reduce the batch size while increasing
the spatiotemporal tokens.

4 Experiments and Results

4.1 Training Setup

Datasets. Our datasets consist of a diverse set of learnable signals across multiple modalities. We
use WebLI [Chen et al., 2022], LAION-400M [Schuhmann et al., 2021], WIT [Srinivasan et al.,
2021], CC12M [Changpinyo et al., 2021], and VCC [Nagrani et al., 2022] for vision-text contrastive
learning; JFT-3B [Zhai et al., 2022], I21K [Ridnik et al., 2021], and WTS-70M [Stroud et al.,
2020] for both supervised classification and label-based vision-text contrastive estimation (similar to
BASIC [Pham et al., 2021]); HT100M [Miech et al., 2019] and AudioSet [Gemmeke et al., 2017] for
vision-audio-text triplet contrastive loss (similar to VATT [Akbari et al., 2021]).

We use a proportionally weighted sampling algorithm, executing each task in succession. To ensure
that datasets are evenly sampled, we weight each task by the number of examples, normalized to a
probability distribution. For each dataset variant with different resolution sizes, we apply the same
weight. For a fair evaluation on downstream tasks, we filter all near-domain examples from our
pretraining datasets (about 5M examples total).

Multi-Resolution Strategy. In our experiments, we always configure the input parameters so that
the number of frame tokens are always equal to 4. This will result in the base tokens per video batch
being exactly 4x of image’s. For video datasets, we construct three variants and uniformly sample
from each variant during training: i. Reduce the resolution by half in each dimension, ii. Reduce the
batch size by 4x, iii. Apply DropToken d = 1 − 1

TF
= 0.75. For image datasets, we also apply a

similar strategy but for the purpose of high-resolution learning. In addition to the base resolution, we
have two extra variants: i. Reduce the batch size by 4x and double each spatial dimension, ii. Apply
DropToken d = 1− 1

4 = 0.75.

Training Parameters. For our final experiments, we train with a patch size of 4x16x16 on base
input resolutions of 16x256x256 and 4x256x256 on video and image modalities respectively, resulting
in a total of 1024 and 256 patches per sample. The text inputs in ImageNet21K and JFT are truncated
to 16 tokens to improve step efficiency with no loss of information, while keeping the text length of
the rest of the datasets to a maximum of 256 tokens. We use a base batch size of 65536 and train
using the Adam optimizer, a peak learning rate of 1e-3 with a cosine schedule, and apply no weight
decay. For MoE parameters, we apply experts-choose routing with a top-c capacity factor of 1.0
and do not apply any jittering to the routing or other auxiliary losses. Training results in roughly
16B examples seen, or about 5T tokens. Taken together, these datasets represent about 11B unique
image-text and video-audio-text examples.

During inference, we evaluate on the largest available resolution that the model was trained on, i.e.,
16x512x512, and use a total of 8 clips per video at approximately 12.5 fps on all evaluated datasets.
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MODEL PPT TPU-DAYS IN1K C100 K400 K600 K700 UCF101 HMDB51 ESC-50

CLIP [Radford et al., 2021] 400M - 76.2 - - - - - - -
CoCa-B [Yu et al., 2022] 380M 1.8k 82.6 - - - - - - -
X-CLIP [Ni et al., 2022] 400M - - - 65.2 - - 72.0 - -
BIKE [Wu et al., 2022] 230M - - - - 68.5 - 80.8 52.8 -
Text4Vis [Wu et al., 2022] 230M - - - 68.9 - - 85.8 - -
AudioCLIP [Gowda et al., 2021] 430M - - - - - - - - 69.4
IMP-B 86M 120 80.5 82.4 63.6 62.1 49.9 64.2 39.7 32.8
IMP-MoE-B 90M 150 83.2 84.9 68.2 65.7 52.1 88.7 46.6 47.8
IMP-MoE-L 350M 1.5k 83.9 87.0 77.0 76.8 68.3 91.5 59.1 65.1

Large-scale models
LIMoE [Mustafa et al., 2022] 680M - 84.1 - - - - - - -
LiT ViT-g [Chen et al., 2022] 2B - 84.5 83.6 - - - - - -
CoCa [Yu et al., 2022] 2B 10k 86.3 - - - - - - -
VideoCoCa [Yan et al., 2022] 2B 10.5k - - 72.0 70.1 62.5 86.6 58.6 -

Table 1: Zero-Shot Classification (top-1) results on image, video, and audio datasets. IMP achieves
a new state-of-the-art on zero-shot video action recognition by a wide margin with significantly low
training cost. Considering the total number of Parameters Per Token (PPT), IMP also significantly
outperforms comparable models on zero-shot image classification.

4.2 Main Results

We scale up and tune IMP for best performance on video datasets and evaluate it on a variety of
downstream tasks and datasets to understand how it generalizes to other modalities. Table 1 shows
the zero-shot classification capabilities of the model on several image, video, and audio datasets.

We note that IMP significantly outperforms previous state-of-the-art regardless of the model size and
sets new record on Kinetics [Kay et al., 2017, Carreira et al., 2018, 2019], UCF101 [Soomro et al.,
2012], and HMDB-51 [Kuehne et al., 2011] top-1 accuracy. Compared to the previous state-of-the-art,
VideoCoCa [Yan et al., 2022], we train IMP-MoE-L on 256 TPU v4 chips for 6 days, representing
only 15% of the total training cost of VideoCoCa. Considering the total number of parameters
per token (PPT), IMP also outperforms the previous comparable state-of-the-art model, CoCa, on
ImageNet [Russakovsky et al., 2015] and CIFAR-100 with a relatively large margin. However, we
observe that the model falls behind the state-of-the-art in zero-shot audio classification on ESC-
50 [Piczak, 2015]. This might be explained by the fact that the total training examples for audio
modality are almost negligible compared to image and video. Hence, the model has a very strong
performance on video and image. We argue that this could be resolved by simply introducing more
samples and a more balanced train scheduling method, which we differ to future studies.

4.3 Ablation

In this section, we hightlight experimentation with some key results which motivate the chosen set of
features for our final IMP model. We refer the reader to Appendix for more ablation on several other
aspects of the model. The experiments in this section use IMP-S or IMP-B trained for 250k steps
with a base batch size of 8192. We set a fixed video/image resolution of 16x224x224/4x224x224
using a patch size of 4x16x16. Unless otherwise specified, we do not apply multi-scale resolution.

Combined objectives are mutually beneficial. We train the model on ImageNet21k with two
objectives: Noise-Contrastive Estimation (NCE) and Softmax Cross-Entropy (SCE) and explore
the following: i. train on the objectives separately, ii. combine the objectives by summing them,
and iii. alternating (AGD) between the objectives on each step. In the case of alternating, for
a fair comparison so that training time is equivalent, we fix the same number of steps (250k) so
that each objective only optimizes 50% of the total steps (125k). We evaluate on ImageNet1k and
CIFAR-100 by image-to-text retrieval and linear probing on the frozen model’s features and report
the results in Table 2. It is not a surprise that classification objective benefits fine-tuning evals the
most, while contrastive objective benefits open vocabulary classification. However, we observe that
combining both objectives is better than optimizing on them individually. And alternating between
the objectives is better than non-AGD objective mixing. These results are similar to the findings of
PolyViT [Likhosherstov et al., 2021], which report optimal performance on alternating the objectives,
weighted by the size of each dataset. This motivates us to fix one objective per training step and
alternate optimization between them.

7



IMAGENET1K CIFAR-100
OBJECTIVE LINEAR I → T LINEAR I → T

NCE 39.8 46.7 84.0 49.8
Softmax 41.1 - 82.6 -
NCE + Softmax, Sum 47.6 46.7 82.4 51.6
NCE + Softmax, Alternating 49.9 48.0 84.1 52.4

Table 2: Combining multiple objectives during pre-training.. Alternating between both objectives
offer the best performance, despite training on the same number of total steps.
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Figure 2: Combining multiple datasets and objectives using AGD. We integrate CC, I21k, and
LAION with NCE and SCE using AGD and observe consistent improvement in downstream results.
We also observe that NCE and SCE are mutually beneficial. Further optimality is provided by adding
larger and more diverse datasets like LAION.
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Figure 3: Combining multiple input sizes using AGD. We sample each variant with equal
probability. Downstream results improve as we add more variants to the training mixture.

Multi-task multi-dataset AGD is also mutually beneficial. In Figure 2, we compare the result
of adding additional datasets to the pretraining mixture. We additionally compare results across
Flickr30k [Young et al., 2014] and COCO [Lin et al., 2014] datasets. We start with CC12M dataset
and gradually add new datasets and objectives. Most notably, we compare the addition of I21K
dataset, showing complementary improvement when combining NCE and SCE objectives. Similar to
I21K isolated experiments, adding SCE benefits the entire pretraining mixture. While SCE benefits
zero-shot results, NCE benefits linear probing results too. Certain dataset combinations (CC+I21K,
CC+LAION) cause instability at the beginning of training. Adding a classification objective has a
stabilizing effect, significantly reducing the chance of slow convergence. Optimizing on LAION
directly is difficult, but benefits training a lot more when mixed in with other datasets. This motivates
us to further integrate a larger set of diverse datasets and objectives.

Multi-scale resolution provides universal improvement. Figure 3 shows a comparison of using
different combinations of resolution, batch size, and DropToken as input. In all settings, we fix the
total tokens per batch, and we ensure that all training runs use the same number of total steps. We
see that certain types of datasets respond well to DropToken while others may not. CC with double
the batch size and DropToken 0.5 improves zero-shot image classification. Droptoken + 320x320
image on I21K SCE pretrain is better for linear probing and image-text retrieval. Adding multiple
versions of smaller batch size + higher res, DropToken + higher res, larger batch size + lower res, can
significantly improve downstream results. We find that dynamic mixtures of resolution, batch size,
and DropToken are always helpful.
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Figure 4: IMP with Mixture-of-Experts. Results show that using a modest 4 experts increases the
model’s accuracy substantially on ImageNet zero-shot evaluation. When we scale up the experts to
16, we see a consistent and significant improvement across all downstream evaluations.
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Figure 5: Improved multimodal perception using MoE. Results show significant improvement on
diverse multimodal perception when we use the MoE variant of IMP. The addition of audio reduces
accuracy on image and video metrics across the board, but is much less prominent when using MoE.
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Figure 6: Comparison of single-tower vs. multi-tower designs on IMP-B. A single-tower MoE
model is both parameter efficient and compute efficient compared to multi-tower dense variants.

MoE provides universal improvement across modalities, and resolves the single-tower encoder
parameter bottleneck. The main challenge in designing a unified encoder tower as we have
described is that parameters must be split between multiple modalities, thus harming accuracy.
Compared to a two-tower contrastive model, the encoder of a unified image-text model contains half
the parameters, while keeping training efficiency the same. One direction we explore is whether a
large increase in parameters from MoE is sufficient to resolve parameter bottlenecks. In Figure 4,
we observe that simply replacing a dense model with an equivalent MoE model with just 4 experts,
we can provide a large gain in accuracy, especially for zero-shot metrics. This provides a promising
indication that MoEs can be used to bridge the multimodal gap. We observe that with the addition
of MoE, we can significantly close the gap between multiple modalities as seen in Figure 5. Since
experts are free to choose which tokens are allocated to different experts, we observe strong alignment
between experts and modalities.

Single-tower MoE outperforms multi-tower dense variants. We find that out of all the variants
we tested, a unified MoE encoder provided the most parameter and compute efficient design, while
significantly outperforming a multi-encoder modality-specific model in downstream results, as seen
in Figure 6. When comparing two-tower models, we can either split the parameters to be roughly
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equal in size to a single tower, or duplicate the towers to double the parameter count while providing
equivalent computation. We observe that multi-tower dense models are more compute efficient
than single-tower dense models, but less parameter efficient. However, a single-tower MoE model
is both more compute and parameter efficient than all variants, showing improved generalization
and using fewer parameters with the same compute budget as a multi-tower dense model. These
results show universal superior parameter and compute efficiency and higher accuracy by using
just 4 experts. This observation suggests that our method can be used for integrated multimodal
multi-task modeling without worrying about the complications of modality-specific design choices or
downstream performance degradation as observed in previous modality-agnostic designs [Akbari
et al., 2021].

5 Conclusion

In this paper we presented an integrated training and modeling approach for multimodal perception
using AGD and MoE. We observed that AGD enables task scalability and multi-resolution training,
which improves the training convergence and the model’s generalization capabilities. On the other
hand, we found that MoE can play a very important role in integrating multiple modalities into one
unified model. Given these findings, we scaled the model with hyperparamters tuned specifically for
video understanding and achieved state-of-the-art performance in zero-shot video action recognition
with a significant margin. Furthermore, we observed that the model also generalizes on other
modalities and achieves competitive downstream results. In a nutshell, IMP opens a door to data (e.g.,
modality, resolution, etc.) and task scalability — two important directions that have been neglected
in many multimodal understanding works due to the inherent technical limitations. Due to the vast
range of elements involved in this system, we defer multiple directions to be explored in future work:
1. generative objectives and model architectures, 2. causal MoE for generation, 3. sophisticated
methods for data-objective sampling, 4. more downstream evaluations.
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