
A Related Works318

Private inference has been a promising solution to protect both data and model privacy during deep319

learning inference. In recent years, there has been an increasing amount of literature on efficient320

private inference. According to the optimization technique, these works can be categorized into three321

types, i.e., 1) protocol optimization; 2) network optimization; and 3) joint optimization.322

In protocol optimization, ABY [7] provides a highly efficient conversion between arithmetic sharing,323

boolean sharing and Yao’s sharing, and construct mixed protocols. As an extension, ABY3 [34]324

switches back and forth between three secret sharing schemes using three-party computation (3PC).325

CypTFlow2 [39] proposes a new protocol for secure and comparison and division which enables326

effecient non-linear operations such as ReLU. SiRNN [38] further proposes 2PC protocols for327

bitwidth extension, mixed-precision linear and non-linear operations. CrypTen [27] proposes a328

software framework that provides a flexible machine learning focused API. More recently, SecFloat329

[37] proposes the crypto-friendly precise functionalities to build a library for 32-bit single-precision330

floating-point operations and math functions. These works lack consideration for neural network331

architecture and has limited communication reduction.332

In network optimization, DeepReDuce [24] proposes to manually remove ReLUs with a three-step333

optimization pipline. SNL [6] proposes ReLU-aware optimization that leverages gradient-based334

NAS to selectively linearize a subset of ReLUs. CryptoNAS [18] uses ReLU budget as a proxy335

and leverages NAS to tailor ReLUs. PolyMPCNet[36] and SAFENet [33] replace ReLUs with336

MPC-friendly polynomial, while Sphynx [5] proposes an MPC-friendly ReLU-efficient micro-search337

space. SENet [30] innovatively measures the ReLU importance via layer pruning sensitivity and338

automatically optimize the network to meet the target ReLU budget. DeepReShape [24] finds that339

wider networks are more ReLU-efficient than the deeper ones and designs ReLU-efficient baseline340

networks with with FLOPs-ReLU-Accuracy balance. Network optimization mainly focuses on ReLU341

reduction which dominates the online communication, but total communication including convolution342

and truncation cannot be optimized.343

Unluckily, only using either protocol or network optimization just leads to limited efficiency improve-344

ment. Delphi [44] jointly optimizes cryptographic protocols and network by gradually replacing345

ReLU with quadratic approximation. COINN [23] simultaneously optimizes quantized network and346

protocols with ciphertext-aware quantization and automated bitwidth configuration. Recently, [16]347

proposes to use Winograd convolution for reducing the number of multiplications and design the348

efficient convolution operation to reduce the communication cost. However, it does not take private349

inference into consideration for Winograd algorithm, and still suffers tremendous communication350

overhead. In this work, we jointly optimize the network and protocol and fully consider their coupling351

properties.352

B Details of Experiment Setup353

Private inference framework CoPriv adopts CypTFlow2 [39] protocol for private inference. We354

leverage the Athos [39] tool chain to convert both input and weight into fixed-point with the bit-width355

41 and scale 12. We measure the communication and latency under a LAN setting [39] with 377356

MBps bandwidth and 80ms echo latency. All of our experiments are evaluated on the Intel Xeon357

Gold 5220R CPU @ 2.20GHz.358

Implementation of Winograd-based convolution protocol The convolution protocol with Wino-359

grad transformation and optimization is implemented in C++ with Eigen and Armadillo matrix360

calculation library [41] in the CrypTFlow2 [39] framework. We implement F (2 × 2, 3 × 3) and361

F (4× 4, 3× 3) transformation for convolution with stride of 1 and F (2× 2, 3× 3) transformation362

when stride is 2. For CIFAR-100 dataset, we use F (2× 2, 3× 3) transformation as the image resolu-363

tion is small and for ImageNet dataset, we use F (4× 4, 3× 3). We only apply F (2× 2, 3× 3) for364

stride of 2 on ImageNet dataset. When evaluating CoPriv, we determine the optimal sender according365

to the analysis in Table 3 before inference. Winograd implementation enables us to measure the366

communication cost and latency of each convolution module.367

Networks and datasets We apply our proposed CoPriv to the widely used lightweight mobile368

network MobileNetV2 [42] with different width multipliers, e.g., 0.75, 1.0 and 1.4 to trade off the369
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model accuracy and efficiency. We evaluate the top-1 accuracy and online and total communication370

on both CIFAR-100 and ImageNet dataset.371

Differentiable pruning and finetuning setups We first search and prune redundant ReLUs for 90372

epochs and then finetune the pruned network for 180 epochs with SGD optimizer, cosine learning373

scheduler and 0.1 initial learning rate. We train our proposed CoPriv with self-distillation.374

C Network Re-Parameterization Algorithm375

Network/Structural re-parameterization is a useful technique proposed by RepVGG [13], and is376

extended to [10, 9, 12, 15, 11]. The core idea of re-parameterization is to decouple the training-time377

architecture (with high performance and low efficiency) and inference-time network architecture378

(with high efficiency). Re-parameterization is realized by converting one architecture to another via379

equivalently merging parameters together. Therefore, during inference time, the network architecture380

is not only efficient but also has the same high performance as the training-time architecture.381

In this work, we can also leverage this technique to merge adjacent convolutions together after382

ReLU removal. For the network re-parameterization mentioned in Section 4.2, here we provide the383

following detailed algorithm 1 to equivalently merge the inverted residual block into a single dense384

convolution as shown in Figure 3. With the help of network re-parameterization, we further optimize385

the total communication including convolution and truncation.386

Algorithm 1: Network Re-parameterization for Inverted Residual Block
Input :An inverted residual block with weights W1×1, W3×3, and W ′

1×1. The number of input and
output channels Nin, Nout. The size of re-parameterized weights r.

Output :Regular convolution with re-parameterized weights Wr .

1 Wr = torch.eye(Nin);
2 Wr = Wr.unsqueeze(2).unsqueeze(2);
3 Wr = torch.nn.functional.pad(Wr , pad=( r−1

2
, r−1

2
, r−1

2
, r−1

2
));

4 Wr = torch.nn.functional.conv2d(Wr,W1×1);
5 Wr = torch.nn.functional.conv2d(Wr,W3×3, padding= r−1

2
);

6 Wr = torch.nn.functional.conv2d(Wr,W
′
1×1);

7 Wres = torch.zeros(Nout, Nin, r, r);
8 for i ∈ [0, . . . , Nout − 1] do
9 Wres[i, i, ⌊r/2⌋, ⌊r/2⌋] = 1;

10 Wr = Wr +Wres;
11 return Wr;

D Details of Winograd Convolution387

D.1 Comparison between Regular Convolution and Winograd Convolution388

To help readers better understand the multiplication reduction of Winograd convolution, we demon-389

strate regular convolution and Winograd convolution in Figure 10. Given an input I ∈ R4×4 and390

a filter F ∈ R3×3, regular convolution requires 9 × 4 = 36 times multiplications (implemented391

using GEMM with im2col algorithm [4]) while F (2 × 2, 3 × 3) Winograd transformation only392

requires 16× 1 = 16 times multiplications (EWMM), which achieves 2.25× reduction. Moreover,393

F (4× 4, 3× 3) with a larger tile size, i.e., 6 can further achieve 4× multiplication reduction. The394

improvement gets benefit from the Winograd’s ability to convert im2col to EWMM and calculate the395

whole tile in Winograd domain at once.396

D.2 Details of Input Tiling and Padding397

Given a large 2D input I ∈ Rl×l, where l > m + r − 1, the core technique for ensuring the398

equivalence of regular convolution and Winograd convolution is input tiling and padding. The output399

size l′ = l − r + 1, the input tile size n = m + r − 1 and the total tile number T per channel is400
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Figure 10: Comparison between (a) regular convolution and (b) Winograd convolution.

computed as401

T = ⌈ l
′

n
⌉2 = ⌈ l − r + 1

m+ r − 1
⌉2,

where ⌈·⌉ denotes taking the upper bound value. For each tile, Winograd convolution is individually402

performed and results an output tile with m×m size. After all the tiles are computed with Winograd403

convolution, the output tiles are concatenated together to form the final output.404

For some input size, the input cannot be covered by tiles. For instance, when leveraging F (2×2, 3×3)405

on the input I ∈ R7×7, the rightmost and bottom pixels cannot be divided into a complete tile. To406

solve this problem, we pad these positions with 0 to enable the tiles totally cover the whole input.407

The correctness and equivalence can be proved with Eq. 1. Also, [16] shows the overhead caused by408

padding is negligible.409

D.3 Support for Stride of 2 Winograd Convolution410

Conventional Winograd convolution only supports stride s = 1 convolution filter. However, in recent411

efficient neural networks, e.g., MobileNetV2, EfficientNet has several stride of 2 layers to reduce412

the feature map size by half. To enable extreme optimization for efficient networks, we introduce413

F (2× 2, 3× 3) for stride of 2 Winograd convolution for private inference.414

There are various methods to construct stride of 2 Winograd kernel such as dividing input and415

convolution filter into different groups [46]. However, it is not a simple way to implement stride of 2416

Winograd kernel. [21] is an extremely convenient method using unified transformation matrices.417

Based on [21], even positions of input and filter are computed by F (2, 2) while odd positions418

are computed by regular convolution. Transformation matrices are derived as follows and can be419

computed using Eq. 1:420

B⊤ =


1 0 −1 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 −1 0 1

 , G =


1 0 0
0 1 0
1 0 1
0 1 0
0 0 1

 , A⊤ =

[
1 1 1 0 0
0 0 1 1 1

]
.

Correctness analysis. Here, we take a 1D algorithm as an example to prove the correctness421

Winograd convolution for stride of 2. The algorithm can be nested with itself to obtain a 2D algorithm422

[31].423

Given input X and filter F as424

X =


x0

x1

x2

x3

x4

 , F =

[
y0
y1
y2

]
, Y = X ⊛ F =

[
z0
z1

]
.

13



First, we calculate regular convolution with stride of 2 using im2col algorithm [4] as425

Y1 =

[
x0 x1 x2

x2 x3 x4

]
·

[
y0
y1
y2

]
=

[
x0y0 + x1y1 + x2y2
x2y0 + x3y1 + x4y2

]
,

thus, z0 = x0y0 + x1y1 + x2y2 and z1 = x2y0 + x3y1 + x4y2.426

Then, we calculate Winograd convolution for stride of 2 as427

Y = A⊤ · [(GF )⊙ (B⊤X)],

and then428

Y2 =

[
1 1 1 0 0
0 0 1 1 1

]
· [(


1 0 0
0 1 0
1 0 1
0 1 0
0 0 1

 ·

[
y0
y1
y2

]
)⊙ (


1 0 −1 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 −1 0 1

 ·


x0

x1

x2

x3

x4

)],
and further simplify the calculation as429

Y2 =

[
1 1 1 0 0
0 0 1 1 1

]
· [(


y0
y1

y0 + y2
y1
y2

)⊙ (


x0 − x2

x1

x2

x3

x4 − x2

)] =
[
1 1 1 0 0
0 0 1 1 1

]
·


x0y0 − x2y0

x1y1
x2y0 + x2y2

x3y1
x4y2 − x2y2

 ,

therefore, the convolution result is430

Y2 =

[
x0y0 + x1y1 + x2y2
x2y0 + x3y1 + x4y2

]
= Y1.

D.4 Transformation Matrices for Winograd Convolution431

We provide the transformation matrices A,B,G for F (2× 2, 3× 3) and F (4× 4, 3× 3) Winograd432

transformation based on polynomial Chinese remainder theorem (CRT) or Lagrange interpolation433

[31].434

For F (2× 2, 3× 3), we have435

B⊤ =

1 0 −1 0
0 1 1 0
0 −1 1 0
0 1 0 −1

 , G =

 1 0 0
1/2 1/2 1/2
1/2 −1/2 1/2
0 0 1

 , A⊤ =

[
1 1 1 0
0 1 −1 −1

]
.

For F (4× 4, 3× 3), we have436

B⊤ =


4 0 −5 0 1 0
0 −4 −4 1 1 0
0 4 −4 −1 1 0
0 −2 −1 2 1 0
0 2 −1 −2 1 0
0 4 0 −5 0 1

 , G =


1/4 0 0
−1/6 −1/6 −1/6
−1/6 1/6 −1/6
1/24 1/12 1/6
1/24 −1/12 1/6
0 0 1

 ,

437

A⊤ =

1 1 1 1 1 0
0 1 −1 2 −2 0
0 1 1 4 4 0
0 1 −1 8 −8 1

 .

The correctness analysis is the same with Section D.3.438
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