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We present the detailed related work about the denoising diffusion models including the marginal1

discussion in Appendix A. The high-dimensional space properties and lemmas are introduced in2

Appendix B, and we explicitly describe how those established theoretical theorems are used and3

connected to our analysis in the main paper Sec. 3. In Appendix C, we provide the theoretical4

foundations of the Markov mixing study, which inspires us to formulate the mixing step problem for5

DDMs. More details about the mixing step problem, formulation, proof and discussion are included6

in Appendix D. Appendix E includes details about our semantic boundary search method and further7

discussions in terms of two latent space levels (e.g., generic ϵ-space and h-space from the U-Neu8

bottleneck [21]). We show the algorithm of our proposed boundary-guided mixing trajectory method9

in Appendix F. More randomly selected and non cherry-picked experimental results, details about10

user study, and some failure cases analysis are shown in Appendix G. Final discussions about the11

limitations, time and resource cost, as well as an extended broader impact are included in Appendix H.12

A Detailed Related Work13

A.1 Denoising Diffusion Models14

While we have briefly introduced the preliminaries on DDPMs [15] and DDIMs [32] in the main15

paper, we re-organize and present more details here. We note that the relevant background is mainly16

from the original papers, we only include the relevant background information to better illustrate our17

ideas in this work.18

The key idea for generative tasks is to approximate a data distribution q(x0) with a model learned19

distribution pθ(x0) that can be easily sampled from. The original Denoising Diffusion Probabilistic20

Models (DDPMs) [31] propose to use latent variable models to fulfill the goal with the following21

specific form:22

pθ :=

∫
pθ(x0:T )dx1:T , (1)

where x1, ..., xT are variables modeled by the latent states of a Markov chain, which have the same23

dimensionality as the actual data x0 ∼ q(x0). Specifically, we have:24

pθ(x0:T ) := pθ(xT )

T∏
t=1

p
(t)
θ (xt−1|xt). (2)
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Figure 1: Non-Cherry-Picked randomly selected results for add smiling and remove smiling editing
operations from our proposed BoundaryDiffusion, Asyrp [21], and DiffusionCLIP [20].
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The training objective is the variational lower bound on negative log likelihood:25

L := E[−log pθ(x0)]

≤ E[−log
pθ(x0:T )

q(x1:T |x0)
]

= Eq[−log p(xT )−
∑
t≥1

log
pθ(xt−1|xt)

q(xt|xt−1)
].

(3)

The above formulation indicates that the DDPMs can be learned with a pre-defined inference26

procedure q(x1:T |x0). In the case of [15], the authors propose to model the Markov chain with27

Gaussian transitions parameterized by a decreasing sequence α1:T ∈ (0, 1]T as follows:28

q(x1:T |x0) :=

T∏
t=1

q(xt|xt−1), (4)

where q(xt|xt−1) := N (
√

αt

αt−1
xt−1, (1− αt

αt−1
)I).29

We often refer to the above-mentioned processes from x0 to xT and from xT to x0 as forward process30

and reverse process (or generative process), respectively. Intuitively, the forward process adds noise31

to data x0, while the reverse process denoises a noisy latent variable x1:T . The reverse denoising is32

stochastic based on this formulation.33

A.2 Marginal Discussion for Deterministic Inversion34

Motivated to reduce the iteration numbers from the original DDPMs [31, 15], Denoising Diffusion35

Implicit Models (DDIMs) [32] propose to generalize the inference process (i.e., forward process) from36

a Markov chain to a Non-Markov one. The theoretical support for the proposed generalization lies37

within the fact the learning objective of DDPMs only depends on the conditional (on x0) marginals38

q(xt|x0), instead of the conditional (on x0) joint q(x1:T |x0).39

Based on the previous fact, DDIMs consider a family of inference distribution Q, indexed by a real40

vector σ ∈ RT
≥0:41

qσ(x1:T |x0) := qσ(xT |x0)

T∏
t=2

qσ(xt−1|xt, x0), (5)

where qσ(xT |x0) = N (
√
αTx0, (1− αT )I). Specifically, the qσ(xt−1|xt, x0) is carefully designed42

in a way that the mean function satisfies the above Gaussian kernel as:43

qσ(xt−1|xt, x0) = N (
√
αt−1x0 +

√
1− αt−1 − σ2

t

xt −
√
αtx0√

1− αt
, σ2

t I). (6)

Using the Bayes’ rule, Eq. 6 can be further rewritten as:44

qσ(xt|xt−1, x0) =
qσ(xt−1|xt, x0)qσ(xt|x0)

qσ(xt−1|x0)
. (7)

The above Eq. 6 and Eq. 7 show that the Non-Markov process qσ considered in DDIMs is marginal45

and also Gaussian (but not a standard one).46

After having specified the forward process, DDIMs propose a different variant of the sampling process47

where the model is expected to first predict the corresponding noiseless x0 given a noisy observation48

xt, and use the prediction to obtain xt−1 through Eq. 7. Specifically, the iteration can be written as49

follows:50

xt−1 =
√
α− 1(

xt −
√
1− αtε

(t)
θ (xt)√

αt
) +

√
1− αt−1 − σ2

t ε
(t)
θ (xt) + σtεt, (8)

where εt ∼ N (0, I). By choosing the σt = 0 for all steps t, the random noise induced by the last51

term from Eq. 8 is removed, and therefore changing the stochastic process from the original DDPMs52

formulation to a deterministic one.53
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By connecting the Eq. 8 to the Euler integration for solving ordinary differential equations (ODEs), it54

can be further rewritten as:55

xt−1√
αt−1

=
xt√
αt

+

(√
1− αt−1

αt−1
−
√

1− αt

αt
)

)
ϵt(xt), (9)

which is the Euler solution for the following:56

dx̄(t) = ε
(t)
θ (

x̄(t)√
σ2 + 1

)dσ(t). (10)

Therefore, when we adopt the deterministic inversion method to convert x0 to xT , we preserve57

the marginal property of the considered family of inference distribution Q. Intuitively, extending58

this distribution family to the d-dimensional space, it ensembles a group of Gaussian distributions59

parameterized by the defined α sequence. Given the denoising process can be considered as a60

trajectory, the deterministic inversion follows and stays at the border of the space ensemble.61

A.3 Other Related Works62

Other studies related to this work include the areas of GANs inversion, image editing and manipula-63

tions.64

GAN Inversion. GAN inversion problem [35] is proposed to tackle the lack of inference capability in65

GANs [12]. As another powerful model other than DMs for data generation, many GAN models [17,66

9, 18, 19] have been proposed for high-quality image synthesis. With high-level objectives to invert67

a given image and to apply it in downstream tasks like image editing, the two problems are often68

studied separately. Specifically, due to the intractability of GAN generation, many works have been69

focused solely on the first objective to invert an image to the latent space and to reconstruct from70

the latent encoding, which corresponds to the initial and primary goal of GAN inversion. There71

are three main technical directions for the inversion and reconstruction problem, which consists72

of learning an additional deterministic encoder [38, 28, 34, 3], directly solving the optimization73

problem [1, 2, 16, 11], or a hybrid way that combines the above two techniques [37, 7, 6].74

Different from existing GAN inversion works, we leverage the better tractability of DMs and use75

the deterministic property from the denoising diffusion implicit models (DDIMs) [32] to achieve the76

inversion and reconstruction when studying the diffusion direction.77

Image Manipulation and CLIP Guidance. Image manipulation based on generative models mainly78

covers two categories. While one branch of existing works often requires retraining of a generative79

model (e.g., GANs [12]) [26, 33, 22, 5], others are studied as a downstream task application for80

GAN inversion works [37, 30, 18, 1]. For image manipulation using the GAN inversion technique, a81

prerequisite for effective editing is a disentangled understanding of latent spaces from pre-trained82

GAN models. The analysis on the latent space addresses several different separate latent spaces83

such as the Z space for generic GANs [12] and the W space from StyleGAN [18]. The current84

SOTA methods for diffusion-based editing like DiffusionCLIP [20] and Aysrp [21] all adopt the CLIP85

guidance as part of their loss function during the learning process.86

In this work, we adopt a similar semantic disentanglement idea as the tool to interpret and understand87

the latent space along the chain. At the same time, we are able to leverage our analysis and a better88

understanding of the latent space to achieve real-face image editing.89

B High Dimensional Space90

In this section, we provide the necessary theoretical foundations for understanding the geometric91

and probabilistic properties of high-dimensional spaces. The majority of the properties and lemmas92

we describe here are established theorems from high-dimensional space studies in mathematics and93

statistics from [8]. We omit the detailed proofs for the following properties and lemmas, and kindly94

ask readers to refer to the original book if interested.95

Property B.1. For a unit-radius sphere in high dimensions, as the dimension d increases, the volume96

of the sphere goes to 0, and the maximum possible distance between two points stays at 2.97
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Lemma B.2. The surface area A(d) and the volume V (d) of a unit-radius sphere in d-dimensions98

are given by:99

A(d) =
2πd/2

Γ(d/2)
, V (d) =

πd/2

d
2Γ(d/2)

, (11)

100

where Γ(x) is a generalization of the factorial function for noninteger values of x.101

The above Property B.1 and Lemma B.2 are generic geometric properties for high-dimensional102

spheres, but also applicable to high-dimensional Gaussian in which we are interested in the context103

of DDMs. To draw the connections with our context for studying the latent spaces of DMMs, with104

higher dimensionality, the latent Gaussian spaces of pre-trained DDMs become more difficult to105

operate due to decreased volume and mass concentration, as empirically suggested in [20, 21].106

Property B.3. The volume of a high-dimensional sphere is essentially all contained in a thin slice at107

the equator and is simultaneously contained in a narrow annulus at the surface, with essentially no108

interior volume. Similarly, the surface area is essentially all at the equator.109

The Property B.3 implies the connection with the standard Gaussian in ϵT from direct sampling. In110

Fig.2 (b) of the main paper where we illustrate the geometric and probabilistic properties of samples111

in the ϵT space, the inverted ones locate in the inner border area of the narrow annulus, which is also112

empirically verified in our Tab. 1 in the main paper. As those inverted latent encodings have a smaller113

radius than the expected standard Gaussian case.114

Lemma B.4. For any c > 0, the fraction of the volume of the hemisphere above the plane x1 = c√
d−1

115

is less than 2
c e

− c2

2 .116

The above Lemma B.4 explains the volume range we show in Fig.2 (b) of the main paper in the left117

side of the Gaussian sphere to show the concentration mass, which is in the order of O( r√
d
).118

Lemma B.5. The maximum likelihood spherical Gaussian for a set of samples is the one over center119

equal to the sample mean and standard deviation equal to the standard deviation of the sample.120

The above Lemma B.5 provides the theoretical justifications for using the mean of squared distance121

to estimate the radius of Gaussian high-dimensional space.122

C Markov Mixing123

The mixing time defines a parameter that measures the time required by a Markov chain for the124

distance to stationary to be small [23]. The study of Markov mixing time aims to quantify the speed125

of convergence for Markov chains, and requires some other necessary preliminary knowledge on the126

total variance distance and the Convergence Theorem, which we will briefly describe below.127

Firstly, to quantify the convergence characteristic of Markov chains, an appropriate distance measure128

metric is a prerequisite. In the literature, the total variation distance is the metric used to define the129

distance.130

Definition C.1. The total variation distance between two probability distributions µ and ν on X is131

defined by:132

||µ− ν||TV = maxA⊆X |µ(A)− ν(A)|. (12)

In the above definition, A is a probabilistic event, indicating that the distance between µ and ν is133

the maximum difference between probabilities assigned to a single event by the two distributions.134

This initial definition is not very practical to estimate the actual distance, which further induces the135

following propositions.136

Proposition C.2. Let µ and ν to be two probability distributions on X . Then137

||µ− ν||TV =
1

2

∑
x∈X
|µ(x)− ν(x)|. (13)

138
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Proof. Let B = {x : µ(x) ≥ ν(x)} and let A ⊂ X be any event. Then we have139

µ(A)− ν(A) ≤ µ(A ∩B) ≤ µ(B)− ν(B). (14)

The first inequality holds since any x ∈ A ∩Bc satisfies µ(x)− ν(x) < 0, and thus the difference in140

probability cannot decrease when such elements of B are eliminated. For the second inequality, we141

note that including more elements of B can not decrease the difference in probability.142

By the same reasoning, we have:143

ν(A)− µ(A) ≤ ν(Bc)− µ(Bc). (15)

The upper bounds on the right sides of Equation (14) and (15) are the same. Furthermore, by taking144

A = B or A = Bc, then |µ(A)− ν(A)| is equal to the upper bound. Therefore, we arrive at:145

||µ− ν||TV =
1

2
(µ(B)− ν(B) + ν(Bc)− µ(Bc)) =

1

2

∑
x∈X
|µ(x)− ν(x)|. (16)

146

The above proposition reduces total variance distance to a simple sum over the state space, which is147

an important theoretical support to formulate our mixing step problem and empirical search method.148

The proof process also reveals the following remark.149

Remark C.3. ||µ− ν||TV =
∑

x∈X ,µ(x)≥ν(x)[µ(x)− ν(x)].150

We then proceed to introduce the convergence theorem, which claims that aperiodic Markov chains151

converge to their stationary distributions at a key step, which is the direct theoretical foundation for152

us to introduce the mixing step problem for DDMs.153

Theorem C.4. Convergence Theorem Suppose that P is irreducible and aperiodic, with stationary154

distribution π. Then there exit constants α ∈ (0, 1) and C > 0 such that:155

maxx∈X ||P t(x, .)− π||TV ≤ Cαt. (17)

There exist multiple mathematical versions for the proof of the convergence theorem, which we omit156

in this appendix. Note that the assumptions for P to be irreducible and aperiodic are essential. We157

recall here the definition of an irreducible chain P .158

Definition C.5. A chain P is called irreducible if for any two states x, y ∈ X , there exists an integer159

t (possibly depending on x and y) such that P t(x, y) > 0.160

Intuitively, this means that it is possible to get from any state to any other state using only transitions161

of positive probability. This is verified in the current formulation of DDMs, indicating that DDMs162

satisfy the pre-requite to be an irreducible Markov chain.163

Next, we recall the definition of period for a Markov chain.164

Definition C.6. Let τ(x) := {t ≥ 1 : P t(x, x) > 0} be the set of times when it is possible for the165

chain to return to starting position x. The period of state x is defined to be the greatest common166

divisor of τ(x).167

For an irreducible chain, the period of the chain is defined to be the period that is common to all states,168

and the chain is aperiodic if all states have period 1. Intuitively, the above definition and property169

match the actual formulation and implementations of DDMs, given the fact that plenty of existing170

DDMs [32, 4, 13, 39] propose an auxiliary loss to predict directly the denoised x0 at arbitrary step.171

Having introduced the above definitions, we are now ready to present the formal definition of mixing172

time in Markov chain studies.173

Definition C.7. Definition of Mixing Time The mixing time is a parameter that measures the time174

required by a Markov chain for the distance to the stationary distribution to be small, following the175

definition below:176

tmix(ϵ) := min{t : d(t) ≤ ϵ} and tmix := tmix(1/4). (18)
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In particular, taking ϵ = 1
4 above yields177

d(ltmix) ≤ 2−l and tmix(ϵ) ≤
⌈
log2 ϵ

−1
⌉
tmix. (19)

In addition to the initial definition of mixing time, we also need the background knowledge on the178

time reversal to search for the actual mixing step in a more practical way.179

Definition C.8. For a distribution µ on a group G, the reversed distribution µ̂ is defined by µ̂(g) :=180

µ(g−1) for all g ∈ G.181

The time reversal is directly related to the two-direction design of DDMs, and ensures that the mixing182

step remains at a fixed position in two directions for both diffusion and generative processes. This183

property is also critical to better understand the DDMs, and provides theoretical justifications for us184

to search for the mixing step along the generative direction using the Gaussian radius estimation. In185

fact, the Gaussian radius estimation search method can only be valid and applied in the generative186

direction but not the inverse diffusion process. The reasons are discussed in the following section187

when we show more empirical results.188

Lemma C.9. Let P be the transition matrix of a random walk on a group G with increment189

distribution µ and let P̂ be that of the walk on G with increment distribution µ̂. Let π be the uniform190

distribution on G. Then for any t ≥ 0,191

||P t(id, ·)− π||TV = ||P̂ t(id, ·)− π||TV . (20)

192

The lemma above implies the remark below, which will be used in our proof for the Property ??.193

Remark C.10. If tmix is the mixing time of a random walk on a group and ˆtmix is the mixing time of194

the reversed walk, then tmix = ˆtmix.195

We hereby finish introducing the necessary background on Markov mixing studies, and continue to a196

more detailed discussion of the mixing step problem of DDMs.197

D More Discussion on Mixing Step198

Inspired by the Markov mixing studies, we remark that the current formulation of DDMs satisfies199

several key assumptions as described in Appendix C, including most importantly, DDMs model an200

irreducible and aperiodic chain. Note that our current exploration and formulation for the mixing step201

of DDMs are not absolutely thorough and complete, which can be considered as an approximate and202

adapted version of the mathematical Markov mixing time.203

D.1 Proof for Property of Mixing Step204

We rewrite the Property of mixing step for DDMs here before going to the detailed proof.205

Property D.1. Under the total variation distance measure || · ||TV , the mixing step tm for a DDM206

with data dimensionality d is formed during training (i.e., irrelevant to the sampling methods). tm207

is mainly related to the transition kernels and the stationary distribution (i.e., datasets), and less208

dependant on the dimensionality d.209

Proof. The proof for the above property consists of several steps.210

Existence justification. Firstly, we have shown that DDMs model a group of chains that are irreducible211

and aperiodic, and thus the convergence theorem holds for DDMs. This fact establishes the theoretical212

foundation to find such a critical convergent step that theoretically characterizes the convergence of213

pre-trained DDMs.214

Directions to approach. Secondly, we show that the mixing step is large and mostly dependent on the215

transition kernel. Here, we have to clarify the direction of the DDMs we are tackling. Fortunately,216

based on the time reversal from Lemma C.9 and Remark C.10, whichever direction gives the same217

mixing step, provides us with the flexibility to study either direction. However, in practice, the easiest218

way to approach the mixing step is to theoretically infer the transition kernel in the diffusion direction,219
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and then empirically search for it in the denoising direction. We will first provide the method and220

explain the reasons for such a design.221

Theoretical based transition kernel study. We hereby restrict ourselves in considering the diffusion222

process. Given pre-trained DDMs, according to Lemma C.9, we have an irreducible transition matrix223

P on space X . In the current scenario of diffusion direction from x0 to xT , the stationary distribution224

is the standard Gaussian N (0, Id) in ϵT . The transition matrix is a pre-defined Gaussian with known225

mean value and variance, thus we have226

P = q(xt|xt−1) := N (xt;
√
1− βtxt−1, βtI). (21)

For an irreducible transition matrix P with stationary distribution π, define:227

σt(x, y) :=
P t(x, y)

π(y)
, (22)

with σt(x, y) = σt(y, x) when P is reversible with respect to π. We also have:228

< σt(x, ·), 1 >π=
∑
y

qt(x, y)π(y) = 1. (23)

Next, we have the definition of lp-distance d(p) as:229

d(p)(t) := maxx∈X ||σt(x, ·)− 1||p. (24)

To replace the above notations with the notations from DDMs, we have:230

d(1)(t) := maxx∈X ||σt(x, y)− 1||1, (25)
and231

σt(x, y) =
P t(x, y)

π(y)
=

x ∼ N (xt;
√
1− βtxt−1, βtI)

y ∼ N (0, Id)
. (26)

Based on the definition of mixing time in 18, we then have:232

t
(1)
mix(ε) := inf{t ≥ 0; d(1)(t) ≤ ε}. (27)

We take the value ε to be 1
2 , and thus arrive at:233

t
(1)
mix := inf{t ≥ 0; d(1)(t) ≤ 1

2
}. (28)

Now, we return back to Equation 26 and replace the Equation 28 with:234

maxx∈X ||
x ∼ N (xt;

√
1− βtxt−1, βtI)

y ∼ N (0, Id)
− 1|| ≤ 1

2
. (29)

By using the Proposition C.2, we can now substitute the above Equation 29 using the approximation235

as follows:236

||x ∼ N (xt;
√
1− βtxt−1, βtI)|| ≤ 4. (30)

This above gives an approximation of the transition kernel at the mixing step in the diffusion direction237

we would expect, with a radius change at approximately 4.238

We observe that there is no explicit dependency on the dimensionality of the latent spaces, but directly239

related to the formulation of the transition kernel, which is mostly the Gaussian as used in existing240

DDMs implementations. In the meanwhile, we note the intermediate latent encodings xt are actually241

dataset dependent. Therefore, we verify our claim that the mixing step is more dependent on the242

transition kernel and dataset. However, despite no explicit dependency between the mixing step and243

dimensionality, we empirically observe that the appearance of mixing step still differs in pre-trained244

diffusion models on different resolutions as in Tab. 2.245

246

Interestingly, the above proof gives us a numerical approximation for the transition kernel when the247

mixing step appears, which is the radius variation at approximately 4. We hereby finish demonstrating248

the fact that the mixing step appears at around diffusion step t = 500 in our main paper. In the249

meanwhile, other related works [20, 21] report similar conclusions that editing on step 500 shows250

better empirical performance in different experimental settings.251

8



Table 1: Gaussian radius estimation for empirical search of the mixing step for pre-trained DDPM on
CelebA-64.

Steps 1000 900 800 700 600 500 400 300
xs
T + ps 110.84 110.82 110.83 110.58 109.83 107.85 103.22 94.64
| △ r| 0.02 0.01 0.25 0.75 1.98 4.63 8.58 -
xs
T + pi 110.88 110.86 110.84 110.63 109.89 107.86 103.10 94.45
| △ r| 0.02 0.02 0.21 0.74 2.03 4.76 8.65 -

xi
T + ps 95.06 93.30 91.56 90.14 88.69 86.61 82.80 76.46
| △ r| 1.76 1.74 1.42 1.45 2.08 3.81 6.36 -
xi
T + pi 95.06 93.34 91.61 90.16 88.75 86.57 82.87 76.53
| △ r| 1.72 1.73 1.45 1.41 2.18 3.70 6.34 -

Table 2: More results on Gaussian radius estimation for the empirical search of the mixing step for
pre-trained DDMs

Model Setting 1000 900 800 700 600 500 400
DDPM-CelebA-HQ-256 xs

T + ps 443.42 443.36 443.30 442.49 440.16 432.55 416.77
| △ r| 0.06 0.06 0.81 2.33 7.61 15.78 -

DDPM-CelebA-HQ-256 xs
T + pi 443.40 443.29 443.06 442.22 439.44 431.66 413.96
| △ r| 0.11 0.23 0.84 2.78 7.78 17.70 -

iDDPM+AFHQ-256 xs
T + pi 443.34 443.21 442.84 441.72 439.31 429.16 408.69
| △ r| 0.13 0.37 1.12 2.41 10.15 20.47 -

D.2 More Empirical Results on Mixing Step252

For the empirical verification of the mixing step, we use a pre-trained DDPM model [15] on the253

CelebA dataset [24] with 3 × 64 × 64 resolution. Therefore, for a standard Gaussian space in the254

dimensionality of d = 3× 64× 64 = 12, 288, the expected Gaussian radius is r = σ
√
d = 110.85.255

The full radius estimation results are listed in Tab. 1, we also show the difference in Gaussian radius256

between consecutive 100 steps. Note we are slightly “abusing" the estimation results for steps after257

the mixing step, since the distributions of the latent spaces after ϵtm are no longer considered as258

Gaussian, but rather converge to the actual data distributions in X , therefore, estimating the Gaussian259

radius of those latent spaces are not theoretically sound. This also explains the reason why we do not260

report the numbers for step numbers less than 300. The above also explains our design to derive the261

theoretical proof in the diffusion direction, but proposes to empirically search for the mixing step via262

the denoising direction.263

D.3 Connection with Existing Works264

We notice that existing SOTA methods [20, 21] have proposed similar ideas in their works, by265

empirically exploring the diffusion steps that obtain better qualitative results. However, the mixing266

step has been studied as a hyper-parameter (i.e., “return step" in [20] and “edit step” [21]) that267

influences the downstream qualities without formal definition. In this work, we formally define and268

introduce the concept of the mixing step, which originated from sound mathematical studies on the269

Markov mixing time, and provide a comprehensive perspective to re-think this “hyper-parameter".270

More excitingly, we discover that the theoretically driven deviation and our Gaussian radius estimation271

method come to a consistent conclusion and echo with previous literature in actual experimental tests.272

E Boundary Search Discussion273

In this section, we present more details about our proposed boundary search method, and discuss the274

connections between different latent space levels from the perspective of the Projection theorem.275

E.1 Implementations276

We use the linear SVM classifier for searching the semantic boundary. We implement the SVM via277

the sklearn python package with the number of parameters equal to the total dimensionality of the278
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latent spaces. For ϵ-space, the dimensionality dϵ = 3× 256× 256 = 196, 608. For the h-space, the279

dimensionality depends on the pre-trained DDMs architecture implementation for the U-Net [29]. In280

our experiments, we use the same level of latent spaces as in [21], which have a dimensionality of281

dh = 8× 8× 512 = 32, 768. In practice, we observe approximately 100 images are sufficient for282

finding an effective semantic boundary.283

E.2 Projection Theorem284

In theory, we expect the projected lower-dimensional subspace to preserve the same properties of285

its original higher-dimension space such as the projected distances between pairs of samples should286

have the same ordering in two spaces. In mathematics, we can ensure the validity of this projection287

design using the existing projection theorems.288

Theorem E.1. Theorem of the Random Projection. Let v be a fixed unit length vector in a d-289

dimensional space and let W be a random k-dimensional subspace. Let w be the projection of v290

onto W . For any 0 ≤ ϵ ≤ 1, Prob(||w|w − k
d | ≥ ϵkd ) ≤ 4e−

kϵ2

64 .291

One way to interpret the random projection theorem is that if one chooses a random k-dimensional292

subspace from a higher-dimensional space in d-dimension, then indeed all the projected distances293

in the k-dimensional space are approximately within a known scale factor of the distances in the294

d-dimensional space.295

We present the projection theorem here to draw connections between the above boundary search and296

different operational latent space levels (i.e., ϵ-space and h-space). As we describe in the main paper,297

the classification results from Tab. 3 show that even though the accuracy score is generally lower298

in ϵ-space, it does carry meaningful semantic boundaries. This above observation and claim differ299

from the previous literature [27], where the latent spaces of DDMs are considered to lack semantic300

meaning. In fact, given the recent study from [21], which first reveals the semantic behaviors of301

pre-trained DDMs in h-space, it provides evidence to imply that the same semantic meanings might302

also exist in the higher-dimensional ϵ-space. As h-space is a subspace of corresponding ϵ-space with303

higher dimensionality.304

F Mixing Trajectory305

We show the algorithm implementation for our proposed boundary-guided mixing trajectory under306

the conditional application scenario in Algo. 1. For the unconditional scenario, the only difference is307

that we can directly sample the latent encodings from the Gaussian distribution as the initial xT , and308

get the corresponding h-level latent encoding hT from the given DDPM at T step.309

G More Experimental Results310

We present more experimental results and discussion in this section.311

G.1 Pre-trained Models and Datasets312

The pre-trained DDMs we use for experiments mainly include the DDPM [15] and the improved313

DDPM (iDDPM) [25]. The main difference between the original DDPM and the improved version314

lies within the fact that iDDPMs use a hybrid learning objective that obtains better log-likelihoods315

than directly optimizing it.316

We conduct experiments on multiple datasets, which includes CelabA-64 [24], CelebA-HQ-256 [17],317

AFHQ-dog-256 [10], LSUN-church-256 [36], LSUN-bedroom-256 [36]. Different from existing318

works that usually pay little attention to the image resolutions in the experiments, the resolutions play319

an important role in our experiments since they define the actual dimensionality of the latent spaces320

for pre-trained DDMs. However, the 642 resolution model is mainly used in the high-dimensional321

analysis and interpolation observations, for the image editing and semantic control experiments, we322

use 2562 as the default resolution for visualization quality.323
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Algorithm 1 Boundary Guided Mixing Trajectory (Conditional)
Input: input image x0, target boundaries bϵ and bh for the editing attribute m, pre-trained DDM
p, inversion steps Sinv , denoising steps Sgen, mixing step tm, user defined editing distance ζϵ and
ζh, and editing space steps K.
// Step 1: Inversion via DDIMs to get the latent encoding at tm
Define {τs}Sinv

s=1 s.t. τ1 = 0, τSinv = tm
for s = 1, 2, ..., Sinv − 1 do
ϵ← p(xτs , τs)
xτs+1

=
√
ατsxτs +

√
1− ατsϵ

end for
htm ← extract h feature map from ϵ
// Step 2: Boundary guidance
// Step 2.1: Define initial editing space in ϵ and h latent levels
{djϵ}K s.t. d1ϵ = −ζϵ, dKϵ = ζϵ
{djh}K s.t. d1h = −ζh, dKh = ζh
// Step 2.2: Compute projection distance to the boundaries
{dp,ϵ} = {dϵ} − bT

ϵ xtm

{dp,h} = {dh} − bT
hhtm

// Step3: Denoising with mixing trajectory
for k = 1, 2, ..., K do
x′
tm = xtm + dkϵbϵ

h′
tm = htm + dkhbh

xs ← x′
tm

hs ← h′
tm

for s = Sgen, Sgen − 1, ..., 2 do
ϵ← ps(xs,hs, s)
z ∼ N (0, Id)

xs−1 =
√
αs−1(

xs−
√
1−αsϵ√
αs

) +
√
1− αs−1 − σ2ϵ+ σsz

end for
end for

G.2 Semantic Boundary Validation324

We search the semantic boundaries via linear classifiers on both ϵ-space and h-space using 100 images,325

and we show the semantic behaviors via the testing classification accuracy on different attributes326

in Tab. 3. We observe from the classification results that the boundaries in h-space are in general327

better defined compared to the ϵ-space, which is consistent with previous findings from [21]. Notably,328

for certain attributes such as glass and mustache, both space levels perform well in defining the329

boundaries, which implies and aligns with our empirical finding that guidance on both levels of latent330

spaces helps for more effective semantic control.331

Table 3: Classification accuracy on separation boundaries in different latent spaces at the mixing step.

Latent space Smile Glass Age Mustache
ϵ 0.86 0.95 0.87 0.96
h 0.98 0.95 0.93 0.96

G.3 User Study332

As subjective evaluations, we conduct user study to compare our proposed method with Asyrp [21]333

and DiffusionCLIP [20] on CelebA-HQ-256 [24]. We use the official codebases from previous works334

and follow the exact default commands, using the smile attribute as the editing target, either to add or335

remove smiles from 100 raw images that are randomly selected from the dataset.336

We interviewed 20 human evaluators and asked similar questions as in previous works. Specifically,337

we asked the evaluators to pick the best edited result in terms of two main aspects: 1) General quality:338

which image quality do you think is the best? (clear, fidelity, photorealistic) 2) Attribute: which image339
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𝑥𝑇
𝑠 + 𝑝𝑖

𝑥𝑇
𝑖 + 𝑝𝑖

𝑥𝑇
𝑖 + 𝑝𝑖

𝑥𝑇
𝑖 + 𝑝𝑠

𝑥𝑇
𝑖 + 𝑝𝑠

𝑥𝑇
𝑠 + 𝑝𝑖

Figure 2: More interpolation results from different combinations of latent encoding sources and
sampling methods on CelebA-64.

Editing strength 

Figure 3: More qualitative results for editing strength modification. We use the CelabA-HQ-256
dataset and the attributes glass and age as examples. In particular, we also show samples with
distortions and lower quality when the editing distance becomes too large. The optimal editing
distance range is also related to the properties of the high-dimensional spaces.

do you think achieve the best attribute editing effect? (natural, identity preservation with respect to340

the given raw image)341

More non-cherry picky editing results from three different methods are included in Fig. 1.342
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Figure 4: More qualitative results for text-based conditional editing on the LSUN-Bedroom-256
dataset.

Figure 5: More qualitative results for text-based conditional editing on the LSUN-Church-256 dataset.

G.4 More Qualitative Results343

H Further Discussion344

H.1 Limitations345

We discuss several limitations of our current work, which also bring insights for future research346

directions.347

Firstly, while our work well preserves the original properties and potential of pre-train DDMs, we348

have not yet well tested its ability to achieve multiple attributes of semantic editing at one time.349

However, we believe this is also feasible by leveraging the technique of multi-hyperplane projections.350
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Figure 6: More qualitative results for unconditional semantic control on AFHQ-Dog-256 and CelabA-
HQ-256 datasets with smile semantic.

At the same, we find it rather difficult to apply our current boundary-guided mixing trajectory to351

unseen domain transfer problems without changing any parameters or learning extra neural network352

modules. Despite we have shown some qualitative results for unseen style transfer with reasonable353

quality for the transfer such as “dog-to-zombie" and “dog-to-fox", it is more challenging for pre-trained354

DDMs on AFHQ-Dog to capture a clear boundary and find the appropriate trajectory to generate a355

human face. However, we are still optimistic about this direction, given the fact that Aysrp [21] has356

shown the ability to perform unseen domain transfer tasks well using frozen pre-trained DDMs, the357

remaining challenge is about finding a more sophisticated way to do improved optimization.358

H.2 Time and Resource359

Compared to previous works that require either fine-tuning the pre-trained DDMs [20], or learning an360

extra editing network [21], our approach seeks to find an existing semantic boundary with frozen361

DDMs without learning any additional extra neural networks. In practice, the hyperplanes are found362

via linear SVMs [14], with almost negligible learning time of about 1 second on a single RTX3090363

GPU. The number of parameters in an SVM classifier is the same as the dimensionality.364

For the inference, the time cost remains at the same level as other SOTA methods. Specifically, by365

using the skipping step techniques, we can already generate high-quality denoised images using366

approximately 40-100 steps, which take from 1.682 - 13.272 seconds, respectively on a single367

RTX-3090 GPU.368

H.3 Broader Impact369

We discuss the broader impact of this work. Firstly, the primary goal of this work is not to create new370

generative models or generate synthetic data, but to explore the potential of the current generative371

models for better usage. To do so, we also propose a new perspective to better understand and372

interpret the DDMs, which is the analysis of high-dimensional latent space behaviors using the373

theoretical tools from mathematics and statistics. In the meanwhile, during the process of exploring374

and separating the semantic boundary, we leverage the current popular cross-modality generative375

models to synthesize images with a text prompt. However, all the generated images are only used for376

boundary detection.377
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We believe our work brings valuable insights to the research community in terms of a better under-378

standing and further exploration via training-free methods to apply diffusion generative models.379
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