
Appendix606

A Ethics Statement607

While our text pair alignment model achieves state-of-the-art performance on many downstream608

tasks, like all models, it does make mistakes. For example, when used for fact verification or factual609

consistency evaluation, it could misidentify factually correct statements as incorrect and vice versa.610

Additionally, as we use publicly available datasets to train the alignment model, it might have learned611

biases inherent to those datasets. Thus, one should proceed with caution when using the alignment612

model for purposes other than NLP research.613

B Comparison with Other Model Types614

We illustrate the major differences between our approach, LLMs, multitask learning models, and615

task-specific finetuned models in Table 6. Compared with LLMs, our alignment model is more616

efficient but less versatile. In contrast to task-specific finetuned models, our alignment model is more617

general and can handle more types of tasks. Unlike multitask learning models, we unify language618

tasks into a single text pair alignment problem, and share model components across multiple tasks (as619

apposed to using dataset-specific prediction heads). As a result, our alignment model can be directly620

applied to a wide range of tasks out-of-the-box, without any finetuning.621

Table 6: Comparison between our alignment model and other types of models.

Type Model Example Efficient Out of the box General

LLM T5, PALM, UL2, GPT % " "
Multitask learning MT-DNN, MUPPET " % "
Task specific LM Finetuned RoBERTa/BERT " % %

Text pair alignment Ours " " "

C Training Details622

C.1 Trainig Setup623

We choose RoBERTa [11] as the backbone for the alignment model. Alignment-base and Alignment-624

large are based on RoBERTa-base and RoBERTa-large, respectively. For the experiments in Section625

4, we train the alignment model for 3 epochs with a batch size of 32, following common practice626

[11, 15]. Other hyperparameters are listed in Table 7. For the finetuned RoBERTa and RoBERTa-NLI627

model in Section 4.1, we set batch size to 16 and 32, respectively.628

Table 7: The hyperparameters for training the alignment model.

Hyperparameter ALIGN-base ALIGN-large
Parameters 125M 355M
Batch Size 32 32
Epochs 3 3
Optimizer AdamW AdamW
Learning Rate 1e-5 1e-5
Weight Decay 0.1 0.1
Adam ✏ 1e-6 1e-6
Warmup Ratio 0.06 0.06
Random Seed 2022 2022
GPU 2⇥3090 4⇥A5000
GPU Hour 152h 620h
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C.2 Training Datasets629

We collect datasets that falls into the scope of alignment as mentioned in Section 3. Table 8 lists the630

datasets we use for training the alignment model. The size of these datasets ranges from 4k samples631

to 5M. Most of the datasets are used for binary classification task except some NLI, fact verification632

and STS datasets.633

We only use the first 500k samples in each dataset due to limited computation resource, which results634

in 5.9M training samples in total. During training, the samples are randomly sampled from the entire635

adapted training sets.636

Table 8: The training datasets of our alignment model. Note due to resource constraints, we only use
at most 500k samples from each dataset to train the alignment model.

NLP Task Dataset Training Task Sample Count

NLI

SNLI [32] 3-way classification 550k
MultiNLI [7] 3-way classification 393k
Adversarial NLI [31] 3-way classification 163k
DocNLI [70] binary classficiation 942k

Fact Verification NLI-style FEVER [33, 31] 3-way classification 208k
VitaminC [16] 3-way classification 371k

Paraphrase

QQP [35] binary classficiation 364k
PAWS-Wiki [17] binary classficiation 695k
PAWS-QQP [17] binary classficiation 12k
WikiText-103 [25] binary classficiation 8M

STS SICK [71] regression 4k
STSB [34] regression 6k

QA

SQuAD v2 [21] binary classficiation 130k
RACE [20] binary classficiation 351k
Adversarial QA [72] binary classficiation 60k
BoolQ [37] binary classficiation 19k
DROP [73] binary classficiation 155k
MultiRC [36] binary classficiation 24k
HotpotQA [74] binary classficiation 362k
NewsQA [75] binary classficiation 161k
QuAIL [38] binary classficiation 41k
Quoref [76] binary classficiation 39k
ROPES [77] binary classficiation 22k
SciQ [78] binary classficiation 47k
StrategyQA [79] binary classficiation 5k

Information Retrieval MS MARCO [19] binary classficiation 5M

Summarization WikiHow [80] binary classficiation 157k

Coreference GAP [22] binary classficiation 4k

D Additional Experiment Details637

D.1 Natural Language Understanding Tasks638

Prompts For FLAN models, we use the same prompts as Longpre et al. [40]. For datasets that do639

not appear in Longpre et al. [40], we use prompts of similar tasks. The prompt used for each dataset640

is listed below.641

MNLI, NLI-FEVER, VitaminC:642

"Premise: {premise}\n\nHypothesis: {hypothesis}\n\nDoes the premise643

entail the hypothesis?\n\nA yes\nB it is not possible to tell\nC no"644
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ANLI:645

"{context}\n\nBased on the paragraph above can we conclude that646

\"{hypothesis}\"?\n\nA Yes\nB It’s impossible to say\nC No"647

SNLI:648

"If \"{premise}\", does this mean that \"{hypothesis}\"?\n\nA yes\nB it is649

not possible to tell\nC no"650

SICK, STSB:651

"{sentence1}\n{sentence2}\n\nRate the textual similarity of these two652

sentences on a scale from 0 to 5, where 0 is \"no meaning overlap\" and653

5 is \"means the same thing\".\n\nA 0\nB 1\nC 2\nD 3\nE 4\nF 5"654

PAWS, PAWS-QQP:655

"{sentence1}\n{sentence2}\n\nDo these sentences mean the same thing?\nA656

no\nB yes"657

QQP:658

"{question1}\n{question2}\nWould you say that these questions are the659

same?\nA no\nB yes"660

RACE, QuAIL, SciQ:661

"{fact}\n{question}\n\nA {option 1}\nB {option 2}\nC {option 3} ..."662

Multi-RC:663

"{paragraph}\n\nQuestion: \"{question}\"\n\nResponse:664

\"{response}\"\n\nDoes the response correctly answer the question?\n\nA665

no\nB yes"666

BoolQ:667

"{text}\n\nCan we conclude that {question}?\n\nA no\nB yes"668

GAP:669

"Context: {context}\n Given the context, which option is true? \n\nA670

{option 1}\nB {option 2}\nC {option 3} ..."671

Results We provide additional results on the in-domain datasets of the alignment model. We672

show the performance of finetuned RoBERTa and FLAN-Alpaca on these datasets in Table 9. We673

have compared the alignment model with finetuned RoBERTa on these datasets in Figure 2. When674

comparing FLAN-T5 and FLAN-Alpaca, we notice FLAN-T5 consistently outperforms FLAN-675

Alpaca on all scales. Thus, we compare our alignment model with FLAN-T5 in Table 1.676

D.2 Factual Consistency Evaluation for Language Generation677

In this section, we report the detailed results associated with Figure 4. We list the performance of each678

metric on SummaC Benchmark and TRUE Benchmark in Table 11 and Table 12, respectively. We679

also show the Pearson Correlation, Spearman Correlation and Kendall’s tau Correlation coefficients680

on other datasets in Table 13, 14 and 15, respectively.681

D.3 Question Answering with Unanswerable Question682

Simplified Natural Questions For this experiment, we construct a new SQuAD-style QA dataset683

with unanswerable questions, Simplified Natural Questions (Simplified NQ), base on Natural Ques-684

tions [68]. For each sample (an search query and a Wikipedia article) in Natural Questions, [68]685

ask five annotators to find 1) an HTML bounding box (the long answer; e.g., paragraphs, tables, list686

items, or whole list) containing enough information to infer the answer to the query (long answer),687

and 2) a short span within the long answer that answers the question (the short answer). For both688

short and long answers, the annotators can alternatively indicate that an answer could not be found.689

For the purpose of constructing Simplified NQ, we consider a sample to be answerable if at least 2690

annotators identified both long and short answers. In this case, we use the most popular (among the691

annotators) short answer as the ground truth answer, and the most popular long answer containing the692

selected short answer as the context. Conversely, if less than 2 annotators identified any long answer,693
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Table 9: The performance of finetuned RoBERTa and FLAN-Alpaca on the in-domain datasets. We
report the average performance of each model and we also include the average without RACE and
QuAIL.

Finetuned RoBERTa FLAN-Alpaca

base large base large xlarge

Model Parameters 125M 355M 220M 770M 3B

NLI

MNLI-mm 87.2 90.3 79.9 86.4 89.3
MNLI-m 87.9 90.6 80.0 87.2 89.4
ANLI-1 62.8 72.7 47.4 65.7 74.8
ANLI-2 44.5 48.3 38.2 46.6 57.6
ANLI-3 42.8 47.0 37.7 46.4 54.6
SNLI 91.0 91.4 82.9 88.1 90.2

Fact Verification NLI-FEVER 76.1 77.7 69.6 73.0 72.1
VitaminC 89.3 91.6 63.3 72.5 77.4

STS SICK 88.9 84.7 37.7 66.4 70.1
STSB 89.8 90.6 33.4 52.5 79.5

Paraphrase
PAWS 92.3 92.5 68.1 92.0 93.0
PAWS-QQP 94.7 94.2 57.6 85.1 87.1
QQP 91.1 92.0 75.5 81.6 86.5

QA

RACE-m 74.6 24.0 64.3 78.5 87.8
RACE-h 67.8 23.9 57.3 71.9 82.9
Multi-RC 77.5 85.5 64.2 84.3 87.1
BoolQ 79.1 85.7 71.7 82.0 87.2
QuAIL 57.7 27.0 56.7 78.2 84.2
SciQ 93.4 95.5 90.8 83.1 95.6

Coreference GAP 74.3 89.8 58.4 65.6 80.7

Average 78.1 74.7 61.7 74.4 81.4

Average w/o RACE, QuAIL 80.2 83.5 62.1 74.0 80.7

Table 10: The performance of RoBERTa-NLI and FLAN-Alpaca on the zero-shot datasets (of
alignment model). The gray number shows the specific dataset is appeared in the training set of
FLAN-T5. We report the average performance of each model in the last row.

RoBERTa-NLI FLAN-Alpaca

base large base large xlarge

Model Parameters 125M 355M 220M 770M 3B

AXB 75.2 79.2 53.6 72.3 77.2
AXG 59.6 73.6 49.4 72.5 88.8
CB 85.7 87.5 78.6 78.6 87.5
RTE 81.2 88.1 72.9 79.8 87.0
WNLI 52.1 50.7 40.8 62.0 71.8

NLI

SE14T1 91.2 93.1 65.0 72.4 77.3

Paraphrase MRPC 38.7 42.3 66.7 75.4 83.1

DREAM 63.9 73.0 63.5 76.8 89.5QA Quartz 54.6 65.6 68.1 87.4 90.2

Average 66.9 72.6 62.1 75.2 83.6
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Table 11: The ROC AUC of each metric on the SummaC benchmark. CGS and XSF are abbreviations
of CogenSumm and XSumFaith, respectively. The strongest performance on each dataset is shown in
bold. The last column shows the average performance on each dataset in the SummaC benchmark.

SummaC Benchmark

CGS XSF PolyTope FactCC SummEval FRANK AVG

BERTScore 63.1 49.0 85.3 70.9 79.6 84.9 72.1
BLEURT 60.8 64.7 76.7 59.7 71.1 82.5 69.2
BARTScore 74.3 62.6 91.7 82.3 85.9 88.5 80.9
CTC 76.5 65.9 89.5 82.6 85.6 87.3 81.2
UniEval 84.7 65.5 93.4 89.9 86.3 88.0 84.6
QAFactEval 83.4 66.1 86.4 89.2 88.1 89.4 83.8

Alignment-base (Ours) 80.6 76.1 87.5 93.1 88.6 89.5 85.9
Alignment-large (Ours) 88.4 74.6 92.5 94.9 92.3 91.3 89.0

Table 12: The ROC AUC of each metric on the TRUE benchmark. The datasets with asterisks(*)
appear in the training set of the alignment model. We compute both the overall average on all datasets
(Average) and average without PAWS, FEVER, VitaminC datasets (Average-ZS). The latter shows
the zero-shot performance of the alignment model. Bold indicates the best performance on a dataset.

BERTScore BLEURT BARTScore CTC UniEval QAFactEval
Alignment

-base
(Ours)

Alignment
-large
(Ours)

FRANK 84.0 81.6 87.8 87.1 88.1 88.5 79.6 83.2
SummEval 72.3 68.0 78.9 79.8 81.2 80.9 81.3 81.1
MNBM 52.5 65.5 63.5 65.0 66.8 67.3 83.3 85.1
QAGS-C 70.6 71.2 83.9 77.3 86.5 83.9 94.7 94.9
QAGS-X 44.3 56.2 60.2 67.7 76.7 76.1 97.6 98.4
BEGIN 86.4 86.6 86.7 72.0 73.6 81.0 77.2 79.2
Q2 70.2 72.9 65.1 66.8 70.4 75.8 80.3 89.0
DialFact 68.6 73.0 60.8 63.7 80.4 81.8 90.4 91.4
PAWS* 78.6 68.4 77.1 63.1 80.1 86.1 79.5 83.8
FEVER* 54.2 59.5 66.1 72.5 92.1 86.0 76.4 74.4
VitaminC* 58.2 61.8 64.2 65.0 79.1 73.6 97.8 98.3
Average 67.2 69.5 72.2 70.9 79.5 80.1 85.3 87.2

TRUE
Benchmark

Average-ZS 68.6 71.9 73.4 72.4 78.0 79.4 85.5 87.8

Table 13: The Pearson correlation coefficients of various metrics on other datasets mentioned in
Section 4.2.1. Q-XSum and Q-CNNDM are abbreviations of QAGS-XSum and QAGS-CNNDM,
respectively. F-XSum and F-CNNDM are abbreviations of FRANK-XSum and FRANK-CNNDM,
respectively. The last column shows the average performance on each dataset. The best performance
is shown in bold.

Other Datasets - Pearson

XSumFaith SummEval Q-Xsum Q-CNNDM F-Xsum F-CNNDM SamSum AVG

BERTScore 13.0 33.1 -10.6 51.7 13.0 51.7 10.9 23.3
BLEURT 38.7 23.8 13.2 45.2 15.6 37.5 8.1 26.0
BARTScore 29.3 35.5 16.3 71.5 23.7 51.9 15.0 34.7
CTC 27.2 54.7 30.6 64.5 20.0 54.5 16.9 38.3
UniEval 23.9 57.8 45.5 66.7 27.2 58.3 23.2 43.2
QAFactEval 30.3 61.6 44.2 68.4 32.1 64.6 38.9 48.6

Alignment-base (Ours) 33.2 57.8 51.1 60.9 31.2 61.8 21.1 45.3
Alignment-large (Ours) 28.8 66.7 53.9 76.1 38.9 68.9 47.7 54.4
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Table 14: The Pearson correlation coefficients of various metrics on other datasets mentioned in
Section 4.2.1. The format in this table follows Table 13.

Other Datasets - Spearman

XSumFaith SummEval Q-Xsum Q-CNNDM F-Xsum F-CNNDM SamSum AVG

BERTScore 13.4 31.5 -8.9 46.2 12.7 45.1 13.1 21.9
BLEURT 37.0 23.6 12.4 43.4 13.9 37.6 6.7 24.9
BARTScore 29.8 39.1 17.0 68.1 20.0 53.3 16.3 34.8
CTC 29.8 41.7 30.6 57.3 20.4 49.4 17.7 35.3
UniEval 25.3 44.3 50.0 67.6 26.7 54.0 22.8 41.5
QAFactEval 31.9 42.8 44.1 63.1 25.5 53.7 35.9 42.4

Alignment-base (Ours) 38.8 42.0 52.7 56.1 25.5 56.4 22.3 42.0
Alignment-large (Ours) 32.1 47.9 57.4 71.6 30.0 61.8 46.7 49.7

Table 15: The Kendall’s tau correlation coefficients of various metrics on other datasets mentioned
in Section 4.2.1. The format in this table follows Table 13.

Other Datasets - Kendall’s tau

XSumFaith SummEval Q-Xsum Q-CNNDM F-Xsum F-CNNDM SamSum AVG

BERTScore 9.2 24.9 -7.3 36.3 10.4 34.7 10.7 17.0
BLEURT 25.3 18.6 10.1 33.9 11.4 28.8 5.5 19.1
BARTScore 20.2 31.0 13.9 55.6 16.3 41.4 13.3 27.4
CTC 20.2 33.2 25.1 45.7 16.6 38.2 14.4 27.6
UniEval 17.0 35.3 40.9 54.4 21.8 42.4 18.7 32.9
QAFactEval 23.2 34.0 36.2 50.5 22.4 42.2 30.1 34.1

Alignment-base (Ours) 26.6 33.4 43.1 45.5 20.8 44.4 18.2 33.1
Alignment-large (Ours) 21.9 38.4 47.0 59.6 24.5 49.5 38.2 39.9

and less than 2 annotators identified any short answer, we consider the sample to be unanswerable694

and use a random paragraph from the article as the context. We discard all remaining samples to695

avoid ambiguity (e.g., some samples might only have long answers but not short answers). This696

results in a total of 3336 answerable samples and 3222 unanswerable samples in the validation set.697

Prompts and QA Inference For FLAN T5, we follow [40] and use the following prompt:698

Context: {context}\nQuestion: {question}\nAnswer:699

For GPT-3.5, we use a prompt with additional instructions:700

Find the answer to the question from the given context. When the question701

cannot be answered with the given context, say "unanswerable". Just say702

the answer without repeating the question.\nContext: {context}\nQuestion:703

{question}\nAnswer:704

At inference time, we truncate the context if necessary such that the entire input is at most around705

2000 tokens long (2000 for FLAN T5, 2040 for GPT-3.5 to account for the longer prompt). We706

use greedy decoding for FLAN T5, a the default chat completion settings for GPT-3.5. When707

FLAN T5 outputs "unanswerable", we interpret it as predicting the sample to be not answerable.708

Similarly, if GPT-3.5’s output contains any of "unanswerable", "no answer", "context does709

not provide an answer", we consider the prediction to be unanswerable.710

Additional Results In addition to FLAN T5 and GPT-3.5, we also experiment with Electra [81],711

one of the top performing single models on the SQuAD v2 leaderboard, for reference. Specifically,712

we reproduce Clark et al. [81]’s design that use a QA prediction head to jointly predict the answer713

span and unanswerable probability. As shown in Table 16, while Electra is a strong performer on714

SQuAD v2 and Simplified NQ, adding the alignment verifier to GPT-3.5 and FLAN T5 greatly715

reduces the performance gap. Additionally, on ACE-whQA, our design (both FLAN T5 and GPT-3.5716

with alignment verifiers) outperforms Electra.717

D.4 Ablation Study718

We present the additional ablation result on factual consistency evaluation tasks in Table 17. This part719

follows Section 4.4, where we use the same checkpoints that are trained on incrementally added tasks.720
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Table 16: Additional experiment results on QA with unanswerable questions including Electra. The
best model for each task/metric is shown in bold.

SQuAD v2 ACE-whQA Simplified NQ

EM F1 AUC EM F1 AUC EM F1 AUC

Electra 86.47 89.37 0.97 52.32 55.59 0.87 70.81 74.13 0.88
GPT-3.5 52.53 63.96 0.76 67.98 71.98 0.77 58.37 68.61 0.81
Flan T5 75.72 79.01 0.83 26.29 29.24 0.51 38.24 44.98 0.58

GPT-3.5 + Verifier (Ours) 67.19 77.63 0.93 79.02 80.91 0.84 56.16 57.40 0.86
FLAN T5 + Verifier (Ours) 83.72 86.55 0.95 75.75 77.60 0.90 64.93 67.99 0.83

Result shows the training tasks are generally compatible and effective, though we notice adding fact721

verification and paraphrase detection tasks lead to a slightly performance drop. We speculate it is due722

to the paraphrase detection task, where a text pair is expected to have exactly the same information.723

The Alignment-base model, which uses all the possible training data, gets the best performance on724

every factual consistency evaluation task.725

Table 17: Ablation results on factual consistency evaluation tasks. Each row corresponds with a
model trained with data adapted from incrementally more types of tasks. For example, the model on
the second row is trained with NLI, Fact Verification and Paraphrase tasks. The model on the last row
is the same as Alignment-base. We report the average performance for each evaluation tasks. The last
column shows the overall average for the factual consistency evaluation tasks. The best performance
for each task is shown in bold.

Factual Consistency Evaluation Tasks
Training Tasks SummaC TRUE Other-Pearson Other-Spearman Other-Kendall Average

+NLI 78.1 77.5 32.6 33.6 26.3 49.6
+FV, Para 74.9 80.3 27.6 27.2 21.1 46.2
+Coref, Sum, IR, STS 84.2 83.7 39.4 36.8 28.8 54.6
+QA (Alignment-base) 85.9 85.3 45.3 42.0 33.1 58.3
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