Supplementary Materials for the paper
“Preconditioning Matters: Fast Global Convergence
of Non-convex Matrix Factorization via Scaled
Gradient Descent”

We first rewrite the main update formulation of both ScaledGD and AltScaledGD

-1
{Uk+1 = Ui — 1Vu, f(Ur, Vi) (Vi Vi) o
-1
Vieer = Vi = Vv, (U, Vi) (U Us)
U1 = Ux = 1V, f (U, Vi) (Vi Vi) ! 2
Vi1 = Vi = Vv f (Ukgr, Vi) (U Up 1) ™
where Uj, € R™*4 and V}, € R**4,
1 Proofs of the lemmas and theorem in Section 4 (rank-1 case).
If d = 1, then Uy, V}, are all vectors.
Lemma 1. If (M,U,V,") > ||U.V,"||% # 0, then there is constant C,, > 0 such that
|| M || pcosB;cosb, T
1— v < Cu Mllr— UV, ||F (3)
Proof. Since (M,U,V,") > |U,V,"||%. it follows directly that
||M||Fcosz}jcos% > 1 @
UV, |7
In consequence,
‘ | M || pcosBiicosBy | || M| pcosBicoshy
UV UV Il 5)
LY A
- UV, I
According to Lemma |4 and together with % > 1, it is thus suffice to prove that
Vi
|UV," ||+ is monotonically increasing, meanwhile as | U}, V, || is bounded below, which guarantees
that there exists constant C,, such that the result in Eq. (3) is true. O

Lemma 2. (Convergence of the distance between subspaces) For the ScaledGD (|I)) with d = 1, if
| M || peos@icos8y > UV, ||, then the following holds

et Ursallz < (1= IU Ull2, (VS Virallz < 0=V V2 (©)
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Proof. Since U1 € R™*1, we have

U, Uryall2
[Uk+1ll2

Meanwhile, Uy 1 = (1 — n)Uy + nM Vi(V,[ V)71, thus

U, U1 l2 =

Ul Uyl r
U Upall2 = (1 — n)u
U417

— (1 _ 77) ||u:LUkH2 ||Uk||F

[Ukllz U417

Uilr

A o L L

t st o T

According to Lemma and the condition that || M || pcos@icos@p > |UxV,"|| r, then

Ukl 7 <1 and A\l <1
[Uk+1llF Vi1l F

)

it is thus suffice to guarantee that

4] Userall2 < (1 = m)lled] Uil

Similarly, we can guarantee

VI Verallz < (1 =)V Vill2.
Thus, we finish the proof.

Theorem 5. (Convergence of the matrix norm) For the ScaledGD with d =

| M || pcosBicos®? > [|[ULV, || for all k > 0, then we have
IMI|F = [Uk+1 Vi llr < (1= 0)**kCa

where C., is a constant and 1 is the step length 0 < n < 1.

Proof. By ScaledGD Eq. (I)), we have

| M || pcos@¥cosb? |U|| » o | M ||%-cos?6}

[Uk1l3 = (1 = 2| U]13 + 20(1 =)
? ’ V|7 Vil %

and

| M || pcosB}cos || Vil r o | M||%-cos®6}

IVisalld = (1 =) Vil3 + 2n(1 = n)
? ? 10|l Uk 1%

which implies
| M || pcosB}icosby,
UV, I

Uks1llr > (1 —n+n

) Ul

and
|| M || pcosB}icosby,

UV, e

Vil > (177+77 ) Vil s

In consequence, one obtains

Uk Vil llF UV, llr | 5 || M| reos®jicos® 0}

)

®)

©))

(10)

Y
O

1L if

12)

13)

(14)

15)

(16)

>(1-n) 7 + 2n(1 — n)cos cosby,
M| 1M || UV Il e
U.Vv,'
>(1- 7])2w + n?cos@cosfr + 2n(1 — n)cos@*cosO”
1M ||
21UV, e

=(1-7n) + (207 — 7?) cosBcosO?

1M ||

a7)



then it follows

HU’H'leTHHF 2 < |Ul~ch-T||F) 2 k k
- < (1=n)* (1= —— | + (2n —n*)(1 — cosB, cosb;), (18)
M| 1M]|
which implies

IMlp = U1 Vil le < 1=0)? (IM | r — 10V, [[7) + (20 —0%) | M| (1 *C089500891’59)-
Meanwhile, according to Lemma we have sin@**! < (1 — 7)sin@* and sin@*+! < (1 — n)sir(101’f),
thus it is suffice to prove that
(1 — cos@ T lcos@ 1) < (1 —n)%(1 — cos@FcosBF) < (1 —n)* (1 — cos2cos0°).  (20)
Together with Eq. (19), the following inequality holds
k

IMlp = U Vilalle < (20 = 7*) | MI|r Y (1= n)* (1 = cosy " cosdy ")
i=1

+ (L =) (IM]lr — UV 1)
2 : 21 2(k—1 0 0 (2])
< @ — ) IMe 3 (1= 0)%(1 = )25 (1 — cos6cos?)
i=1
+ (L =) (IM]lr — UV 1)
S (1 - n)QkaOm

where C,, = max{(1 — cos0%cos0%)(2n — n?)||M||F, W} which finishes our
proof. O

Lemma 3. Lern < ¢, < 1 with ¢, a small constant, if || M || pcos@fcos@f > U0V, || then the

following is true T

|| M || pcosBicosty, > ULV, || r, VE > 0. (22)
Proof. We prove this result by induction. Since || M || rpcos@3cos@y > |UgV,' ||, we assume
that || M| rcos@i_jcos8y_; > ||[Ux—1V," | r, then we need to prove || M| rcos@icos@y >
|UxV," || . We first show that

Uk 7 u v
UV 17 = (1= 0)?|Ux VLo |1 F + 20(1 — 1) U lr [UxViLy | Pl M || eosB;_ cosh)
HUk”Q u
+?72||Uk 1ﬁ2 HMH%COSQOk—l
—LlIF

2
M||p .
AN ((1 S n””cos0k1>

[Up-1 VLol P
2
UV 2 1M
= M27 1— + —COSOU_
e v T K U TR A
mQ

(23)
To prove the result in Eq. (130)), we need to guarantee that 9t < cos@};cosf}, which is equivalent to
ensure that
W Vilille | UV e

(1-n) 7
M| F U1V, e

cosOr_; < cosB} cosy, (24)

Meanwhile, since | M || pcos8¥_ cos0P | > ||[Ux—1V; | r, according to Lemmait is easy to
verify

cos?0 > (1 —n)%cos?0_ | +2n—n? > (1 — n?)cos?0_| + 12, (25)



together with

Uy u " | M ||%.cos?6? _
Ul = (1= 21Ul + 200 = et g ooy cosey, + 2 Ll Tt
[Vi—1llr [Vie—1ll%
M ||%.cos26?
< (L= P U} + 201~ n)eos?B}, + ) =S Dt
[Vi-1l1%
(26)
and
UV 7 < (1 =) |Us1 Vi[5 + 20(1 = n)cos®05_y + n?)[| M || Feos®6}
< (1= n)?|| M| Feos®0)_ cos®0;_; + (2n(1 — n)cos’03_; + n*)|| M ||cos’6;_,
= ((1—m)%cos®@3_y + (2n(1 — n)cos®0;_y +1°)) | M|[fcos”0}_,
= ((1 = n*)cos®0_; +1%)) | M| Fcos’6y
(27)
We obtain
| M || pcosBicosy > |[UnVi || F. (28)
By the condition || M || pcos@y_,cos0?_, > |[Uy-1V, || and according to Lemma we have
cosB; > cosB;_q, (29)
and thus
| M || peosBicosd? > UV, || F, (30)
with equality holds if and only if cos@} = cos@}_,. Denote by
H]\ﬁufc‘c;se}jﬁosez ~1
_ kVE—1|F
3 - HMHF‘COSBE,l 1 ) (31)
U1V, e o

then it can be easily verified that 3 > 0. As a result

3 <|M||F6059}i_1

m - 1) UL Vi—1l|r = || M| rcos8;cost; — [|[Ux Vi1l F, (32)

which is equivalent to

| M || pcos@y_, w
3| 1) U Viu1llr = || M||rcos;icosO; — |[UxVi_1|F, (33)

[RANTE
and thus
Uk || Fl| M || peos@}_ } )
3 ( A = UV 7 ) < | M| Fcos@icos8y — |Up Vi1l - (34)

If n < ¢, < 3 with ¢, sufficiently small, then we can guarantee that

( |Uk 11| p|| M| pcosB;:

- ||Uk+1vJ|F) < | M| peostf 088y — [Un Vil (39)

10k 7
By simple reformulation, one obtains
1TVl [UV,Ly
1- cosO}_; < cos@}cosO; (36)
( 77) ||M||F n||Uk_1Vk—£1||F k—1 k k
which is exactly the inequality we need in Eq. (I32)), thus we finish the proof. O

Lemma 4. [f the condition || M || r max{cos@¥, cos8?} < | U V," ||  is satisfied then we have
1Uksalle < |Ukllp and  [[Vigal[r < [[Vill e (37
Furthermore, if the condition || M || pcos@¥cos@p > UV, || is satisfied then we have

[Uk+1llp = [|Ukllr and  [[Vigallr = [ Vil r. (38)



Proof. By Eq. (), we have

Ukl F M ||%cos?0k
[Uesalit = (1= Ul + 201~ ) [EE 0| rcos@leosel + 7 ILEE g
Vil IVill®

If | M || p max{cos@Y, cosO?} < |U,V,' ||F, then it is easy to verify that

U117 < UKl (40)
Similarly, we have

IVeesallE < IVill, @1
if the condition || M || p max{cos@}, cos@} < ||UiV,' || is satisfied.
By contrast, if || M || p{cos0}cos@?} > ||U.V, | r, then we can obtain from Eq. that

Uk 117 > 101, (42)
and similarly,

[VierllF > | ViallF, 43)
which finishes our proof. O

Lemma 5. After T} iterations of ScaledGD Eq. with d = 1, the following inequalities hold
vk >T

et Ui allz < (1 — xi) lJed] U |2 (44)
VS Verallz < (1= xw) V)LVl (45)
1 —cos@,cosOy,, < (1— xi)? (1 — cosBcoshy) (46)
where x, = % <land T, = ”Mllllgi(’% €[1/2,1].

Proof. According to the analysis in Section 4.1.2 of the main paper, we know that after T} iterations,
we have
ULV, = Ml|p < ||M]|r, vk > Ty, (47)
which implies
UV |7 < 2| M || peosBcosf? (48)
Since the results for Uy V,"||r < || M| rcos@¥cosB} is easy to analyze according to Lemma
therefore we mainly focus on
| M || peosBicosy < |ULV, || F < 2||M || pcos@icosOr. (49)

By Eq. (I), we have

U, M ||%cos?0k
Uil = (=m0 + 2001~ ) IO g cosolcongl + 2 IMIECOE - s
Vil IVill7
and consequently
1UkllE 1 651
U, 2 N2 . || M || pcos@¥cosO? o [|M]|2.cos20}
Whsrllz (1= )2 + 2001 — ) A A5 7n T
thus
A | o
< = = . (52)
Uk 11| \/( —n)2+2n(1 =) +n?rg L—n+nm
It is easy to verify 73, = % € [1/2,1],Vk > T} (according to Eq .) then
Uk |12
4] Uy |2 = (1= m) U]y UkHan T
1- 53
<UL Ul &3

1+ 17k
(1= x) U Ul



and x; = 7—F%— < 1. Similarly, we can guarantee that

1—n(1—7x)
[V l2
IV Vkillz = @ =)V Vel o Vi,
[Vitall2
1- . (54)
<——L v
< T VI
= (L= xi) VL Vell2
The above inequalities Eq. (53) and Eq. (54) further imply that
cosQH}jJrl >(1- Xk)200829;; + 2xk — Xi, (55)
cos?0p 1 > (1 — xx)*cos®0) + 2xk — X7, (56)
thus
,20u ,201} > _ 2 2 v _ _ 2nu 2 v
cos?0}, 1 cos”0) 1 > (1 — xi)*cos®Ofcos® 0 + (2xkx — Xi) (1 — xk)? (cos® 0} + cos*6})
+ (QX]C - Xk) )
> ((1- Xk )ZcosBicos@? + 2xi — X%)Q
(57)
which is suffice to guarantee that
1 —cosB}, cosb;,; < (1 — x&)? (1 = cosBcosh?) . (58)
Therefore we have finish our proof. [

Lemma 6. (Convergence of the distance between subspaces) For AltScaledGD (2),
| M || pcosBicos®? > ||[ULV, || and 0 < n < 1, then the following holds

et U all < (1= U Uiz, IV Vigallz < (1 =)V Vel (59

Proof. The proof of Lemma [f]is similar to that of Lemma[2] It is straightforward that

U
T Uil = (1 — )T U o eI (60)
Uks1ll2”
and
V;
VT Verlle = (1= VT Vella |' ’“”ﬁ 61)
By Eq. (I) and Eq. (@), we have
U M ||2.cos?0k
Wil = (1= [ Ul + 2001 — ) 502y costlcosst 12 1M IS0y )
Vil Vil
and
Vi M ||%cos?0k+1
IWViial2 = (1= 1Vil2 + 2001 — ) AV arcosoitcosgt 4 2 IIIECos GuT
A A

respectively. If | M || pcos@icos@? > U V,"| r, then

Usllr M||? COSQHff
Uil = (U= 20l + 200~ ) I g cospheosels 4 2 IELECOS 00
Vil Vil 64)
> (1= 0)?|Ull% + 20(1 = n)l|Uk % + 0*||U[%
> || O[3
thus
I Ui ]2 < (1= )AL U] (65)
which implies
cos?0p ., > (1 —n?)cos®O} + n?, (66)



Meanwhile, we have

U1 Vi 17 = (1= 0)*|U VT I + 20(1 = 0) |UR VAT || || M || pcosicos. + 0 || M |[cos”6}
< (1= n)?|| M|[F-cos® B cos® 6}, + 2n(1 — n)|| M |[f:cos* 0} cos? 0, + n?|| M ||7.cos*6}
< (1 —=n?)||M||%cos?0 cos’? + ncos?6Y

< |M||Fcos?0},  cos® 0},

(67)
Together with Eq. (63), the following result holds
IVeesrllE = [IVill- (68)
According to Eq. (61)), and Eq. (63), we have the results in Eq. (59), which finishes our proof.
O

Lemma 7. For AltScaledGD , if || M || peos@icosOy > ||[UgVy' ||F and 0 < 1 < 1, then the
following is true

| M || pcosBicos} > ULV, ||, Yk > 0. (69)

Proof. We prove the results by induction. Since || M ||pcos@%cos@y > [|[UgV,' ||F, we assume
that || M||pcos@pcosdy > UiV, ||p. holds, we need to prove o,.(M)cosb}, | cosOy ,, >
or(Uk41 Vk:_l) According to Lemma we have

cos?0p, ;1 > (1 —n)cos®O}, + 2n —n? (70)
Similarly, we have cos?6}_ , > (1 — 1)*cos?6}, + 21 — n*. Then
cos?0, ;cos’07 | > (1 —n)3cos?0Y 207 + (217 — 1?)cos? 0 71
k+1 k1 2 n)~cos 0}, cos 0} + (21 — n”)cos Oy, (71)

Meanwhile, according to Equation (2), we have

U u M ||%cos?6?
1Uee )2 = 102 + 2001 — ) Dy ) pcosopcosy + o IANECOS08 40 o7 2
A Vil
||M||%(30520%

< (]- - 77)2||Uk||2 + (277(1 - 77)(70520% + 772) H‘/kHQ
(72)

Similarly, we have

[ V|l
|Uk41]]

o | M| Feos®6}
1 Uk 11

[Viesrl* = IVill* + 2n(1 — ) +(” = 20) Vi %,

(73)

| M || pcos@}., cosOy + 1

thus
Uk 1 Vil [l

< (1 =2 Ua Vi 7 + 2001 = ) [U 1 Vi | p[| M| peosBi ., cos6f, + 772||M||%COS295(+714~)
According to Equation (72)), we have

Uk Vi 17 < (L =0)* UV, 1 F + 20(1 = n)cos® 65 +n?) || M || Feos®6},
< (1 —n)?||M||%cos?0icos?0} + (2n(1 — n)cos?0) + n?) || M ||Fcos?0p (75)
— (1= ?)cos?0) + 1)) | M [}c0s26}
According to Equation (@), if 0 <n <1, we have
cos?0p,, > (1 —n?)cos?0) + n?. (76)

Thus
| U1 Vi 113 < 1|1 M|3cos%6} cos?6}, (77



in consequence we have the following result

Uk Vil 1%
< (1= n)?|| M ||%cos?0},  cos?0; + 2n(1 — )| M||3:cos?0}.,  cos*0} + 0| M ||%.cos?6}:,
< (1—0)?||M || %0505, cos®0}, + 2n(1 — )| M || %cos?0}, + n?|| M || %cos*}.,

< cos?0cos?) | M}
(78)
where the last inequality is due to Equation (71)), then we finish the proof. O

2 Proofs of the theorems in Section 3 (rank-d case).

2.1 Proofs for the results of ScaledGD.

Theorem 1 (General random initialization). Let Uy € R™*? and Vi, € R"*¢ be random Gaussian
that follow N (0, o) for ¢ > cinit (Cinit is a positive constant), and Uy, V}, are updated by Eq. . If
1 < ¢, < 1 for small constant c,), we have that the objective function of the LRMF problem decreases
linearly after Ty = O (ln %) iterations, namely

T k
1Okt Vi, = Mlp < a2 (1 = xprm)” [ M| (79)
2
where X, is monotonically increasing from (227)2 to m, § is a sufficiently small constant, o is a
constant.

Proof. Let cinit be constant such that o > cini¢ indicates [|[UgVy' |3 > (UpV,', M). The proof
follows the proof sketch presented in Section 4 of the main paper, specifically, we can upper-bound
the objective by four terms as

M Vi |lF
HUkJerk-lJ—rl ~M|r <1 -n?|UV, — M|r+(1 —W)WW I M| r
@
@
1— ||ul;rJ_MHF M 2 MYV, VTV -1 UTU 71UTM*M
+( n)iHMHF AIM|lp+n7|MVi(V,, Vi)™ (U, Uy) ™ Uy, Es
@ @
(80)
According to Lemma|[T4] we know that
M | M
||MV<VTV>-1<UTU>-1UTM—M|F<C||M||F]1— IMVellrthe Mile |,

| M| p||UV, ||

MVl rllty Mllr
MUV, I
thus with sufficiently small 77 one can guarantee that all the three terms ), 3) and @) are smaller than

|| M || . Furthermore, it is easy to prove for small 7 that

IOV = M|p < (1 =)*[U V" = Ml|r + | M|, (82)

It is easy to verify that ’1 - is bounded as | UV, || r is strictly greater than zero,

and in consequence if k > T} = O(In¢) for sufficiently small 4, the following holds
Uk, Viyr, = Ml|p < | M]|p, Yk >0, (83)
which implies
%HUkJrTlvale”%‘ < (Upsr, Vk1T17M> ,Vk > 0. (84)
Since
1Ukc1Vilalle < (1= 02| UV |1 e+ n(1 = n) Uy M||p + (1 = n)|[M Vi r

3 _ (85)
+ 2| M ViV, Vi) (U Up) ' U/ M|, Yk > 0.



Similar to Eq. (83), we can guarantee that |U, V," || < || M || after T} iterations, yet still satisfy
IMVellpllt Mir S
MUV e = 1,Vk > T,.

Let us define
| MV

4 M|
IM]r

) (86)
M|
MVl r iU M| . u v
HMHFHUA}/JHF < (1 — cosB}cosBy),Vk > Ty. Therefore

AV __ AU —
cos), = cosl), =

then we have |1 —

[MViir, 1 lF
|\Uk+Tl+1Vk1T1+1 —Mlr<(1- 77)2||Uk+T1Vk1T1 —M|p+(1—-n)n W | M| r
@

@
U, M
ot ) U 20 (0 — ot o0,

—_————
3 @

(87)

According to Lemma[I0] Lemma|[I3]and Lemma [T T} we know that the three terms @), ) and @) are

upper-bounded by linearly decreasing functions, therefore we have the upper-bound of the objective
as

Uk, 41 Vil 11 = Mlp < (1= 0)?|Ussr, Vider, — Mle + (1= n)n(1 = xeqn) ¥ 1M 2V Voll2
+ (1 =01 = xepr)FIM | p U Uollz + 0° (1 = xer, ) CIM || (1 — CLCy)
< (1 =02 Uksn, Vilyr, — Mlp + (2= n)n(1 = xeqn)* | M| pa

k
=@2-nn > (1=0)*1 = xper) M| pa+ (1 —n)*FNU VT - Mg
i=1

< (1= xugr)FIM || pac+ (1 = )2 U VT — M|
< (1= Xprm) " IM || pay

(88)

Yk 2 0 and a; = max{a, UV, — M||r/|M||F,} o = max{||V, VOHQ, U, Upll2, C(1 -

C,Cy)}. Meanwhile, according to Lemma |10} one can deduce that xt7, is lower-bounded by
2

(2 B which indicates the linear convergence of the objective function. With the decrease of the

objective function, we know that 74, is increasing from 1/2 to 1 and correspondingly x+1
2
increasing from (2277])2 to 7).

Furthermore, if | U, V;' |2 < (UyV,", M) and % > 1,Vk > Ty, then according to
Lemma 8l and Theorem[6] we know that

1Uks7 11 Vi a1 = Mlle < (1= 0)?([Ussm, Vily, = Ml + (1= n)n(1 = n)*(| M| £ [V Voll2
+ (1 =) (1 =) | M| p U Ull2 + 17 (1 —n)*Cq

< (1 =n)?|Uks1, Viir, = Mlle + (2 =m0l = )" | M||r8

k
= 2=y (1=n*1-n)"|IM|r8+ 1 —n)* UV, — M| r
i=1

< (=¥ IM||pB+ (1 —n)*FTUV — M| g
< (1 =n)¥IM]| pay

(89)
where ay = max{||UpVy' —~M||r/|| M ||, 8} and 8 = max{[|[V,[ Vol|z, |l Uo||2. Ca(2—1*)}.
Both Eq. (88) and Eq. (OT) guarantee the linear convergence of the objective function. Since
Xk+1y < 17, thus the result in Eq. (79) is proved. O

Theorem 2 (Small initialization). Let Uy € R™*% and Vy € R™*? be random Gaussian that follow
N(0,0), with o < ciniy and Uy, V. are updated by Eq. . Ifn < ¢, < 1 for small constant c,, we



have that the objective function of the LRMF problem decreases linearly, namely
UV = Mlp < az (1= n)" [ M]|r (90)

where Cipit Is a small constant and o is a constant.

Proof. Let ciniy be a small constant such that if & < cipi¢, then we have |[UgVy' |12 > (U V,', M)

[ﬂ Therefore, according to Lemma Lemma@] and Theorem@ we know that the objective function
is upper-bounded by

U1 Vi = Mlp < (1= 02UV, — Mg + (1= n)n(1 —n)* | M||£]|V, Vol2
+n(L =) —n)*|M||p U U2 +n*(1 —n)*Cq
< (L=n)?|UV, = M||p+ (2= n)n(1 = n)"| M| B

b . . 2]
=(2- n)nZ(l —)*1 =) M| pB+ (1 —n)**|UV, — M||p
< (1—n)t ||M\|Fﬁ+<1— UV, — M| p
< (1=n)¥|M||pay

where oy = max{|UoV," — M||p/|M|p,5} and B = max{|[V,] Voll2, U] Upll2, (1 -
c0s6%cos6Y)(2n — n?)}. Thus we finish the proof. O

2.2 Proofs for the results of AltScaledGD.

Theorem 3 (General random initialization). Let Uy € R™*¢ and V; € R™*¢ be random Gaussian
that follow N (0, ) for any o > cing, Uy, Vi are updated by Eq. , we have that the objective
Sunction of LRMF problem decreases linearly after Ty = O(In %) iterations, namely

1Uk1, Vilyr, = Mlp < (1 — Xtry)" | M ||, VE > 0 (92)

where X +1, is monotonically increasing from 2 )2 ton, 0 <n <1and o is a constant.

Proof. The proof follows the proof sketch given in Section 4.2 of the main paper, while different to
Section 4.2, the Theorem focuses on the case rank(M) = d. We decompose the proof into three
phases: initial phase, saddle avoid phase and linear convergence phase. Specifically, the objective
function is upper-bounded by three terms as

1Uk41Vihs = Mllp < (1= 0)? UV, — M||p +(—0°) VLM || p 0 U0 M| F,

@ @ ©)
93)
1) Initial phase. It can be easily verified that
ULV, = M|p < (1 =0)*" [UV" = M||p + | M]|, (94)
and in consequence if k > T = O(ln%) for sufficiently small J, the following holds
U+, Vi, = M|p < | M]|p, Yk > 0. ©5)
The initial phase lasts at most 77 iterations.
2) Saddle avoid phase. The Eq. (95) implies that
*HUk+T1Vk+T1 [ < (M, Upsn, Vilir,), (96)
and furthermore
u' . My Ui, Vi . .M
Uy, T1<:+T1 113 . (Uksr, ey ) _ e > 1 ©7)
U+, Vi, IP U+, Vi, I 2

It <U0V0T, M> < 0 we can simply reset Uy = —Up or Vo = —Vj

10



p
<UK‘+T1 Vk+T1 ’M>
HUk+T1 Vk1T1 H%“

U1 Vi 17 = (1 = 0)*[U VI I + (20 = 20°) (U Vi, M) + 17 (MY, MV

If furthermore < 1, and according to Eq. , we have Vk > 0

(98)
> (L= UV, % + (20 = 20°) UV M) + 0? U MV |7
together with Eq. (97), the following holds
Uk, Vil 17 1 . 99)
U111 Vilir 13— (L =) + Togery (1= n) + 027y
Similarly, one obtains
U, VT 2
|| k+T1+1 _I;-&-TlHFQ < . 1 — : (100)
||Uk+T1+1V;c+T1+1HF (I =m)?+ 7ot (1 —m) +n Tty
thus we can guarantee
1Uk+1, Vk1T1 13 < 1 (101
1Uksri 41Vl alle = (1 =0+ n7epry )?
Meanwhile, according to Lemma we can upper-bound the terms ) and 3) by
(24, Upsr, ||
4y, L Ml < |M]|pLu. (102)
+h Uk, Vilop 17 “
and T
V., Vi
Vi M e < WIIMllFsv (103)

Uiy, Vil IF
respectively. Then we show that the upper-bound Eq. (I02) and Eq. (I73) decreases linearly. Specifi-
cally,

U, Uiz, || U Uiir,—1llp 1Uksri-1Vilir, e

ot =(1-n)
Uk, Vilir, I 7 Ui -1 Vi, e Ui, Vilig e
1- Ul Uy, -
< n i 14, 2% illF 7 (104)
(I =n+n07+1,)? |Upsr, 1 Vi 1 llF
U] Upsr, 1|7
= (1= Xx+7y) :
VU Vil e
similarly, we have
VL Visr e _ (1—n) IV Vier—ille Uk -1 Vil lle
1Uk+1, Vi, e 1Uk+ri 1 Vi, llr |Uks Vil Ip
1- V] Virr, -
< n ! [LZAN CCest 1llr ’ (105)
(I =n+07+1,)? Uk -1V, 1 lle
IV Vigr, allr
= (1 = Xk+11) -
U NUkr, Vil o llr
. 772(1*Tk+T1)2+2777'k+T1 —n
where 711, € [1/2,1] and correspondingly 1 > Xkt = Ao )? >0.
When
(Uk+T1V;;rT1,M> B S 1 |
- T 2 - Tk-‘rTl = a5 ( 06)
||Uk+T1 Vk+T1 HF 2

according to Eq. (98) it is easy to verify that || Ux11, 41V, gy 11113 < Uk, Vil [|3- Meanwhile,
the objective function is monotonically decreasing according to Eq. (I04) and Eq. (105). Together
with Eq. (95), we have

Uk, Vi, = M7 < IM[% — ey (107)

11



and (7, is monotonically increasing. In consequence, we have
1 1
(Upsr, Vilyry, M) > 10k, Viin 1%+ FCk+TL (108)

as [|[Ugsry V,;TIHQF is monotonically decreasing and (x.7, is monotonically increasing, we
can obtain that 74,7, is monotonically increasing from 1/2 to 1 until (Ugyr, V, !y, M) >

2
|Uk41, Vilir, 13- Therefore x7, is monotonically increasing from (122 2/2> to 7).

3) Linear convergence phase. If (Uy. .1, V! 1, M) > ||[Ups1, V.1, |3 for k > 0, then according
to Lemma[12] we have

Uirr, Vi, M) > Ui, Vg |5,V > &, (109)

together with Eq. (98), we can easily prove that ||Uxr, 11Viip I3 > Uk, Vil |17 and
similarly |Uk+7, 41V 117 2 Uk 41 Vil | %, which yields

1Uksm 1 Vidiry s1llF > Ukr Vilir, [l - (110)
According to Eq. (T04), Eq. (I05) and Eq. (TT6) we know

14 Uk, || <(1-n U\ Unsr, 1|

< , (111)
Uk, Vilir, I 7 Uk, -1 Vi), 1P
and
IV Virr lIr VI Vi -1l
e < (1 - 1) . . (112)
||Uk+T1Vk+T1||F ||Uk+T171Vk+T171||F
Holding all these results, we are guarantee to prove that
1Uks7+1Vihrs1 = Mlr < (1= 0)? U, Vi, — Ml|r
V. Vollr kU Uollr
+ (=01 = xwem) T M Lo+ 0(1 = Xirry )t = [ M| L
VUV I VUV e
k
< (2n—7n? Z )2 (1= Xam) TCAM 7+ (1= )*EFN TV — Mg
<(1- ch—&-Tl)kCCHMHF + (1= xisry) |0V, — M|p
< a1(1 = xper) | M|
(113)
2
where  Xgi1y < 7 is monotonically increasing from (237”)2 to n, C¢ =
T T
max{”u**UO”F ”V**VOHF}and a1 = max{C¢, 7”%‘“/ M”F} thus we finish the proof. O

BB AR

Theorem 4 (Small initialization). Let Uy € R™*? and Vi € R™*? be random Gaussian that follow
N(0,0), with o < cinit, Uy, Vi are updated by Eq. then we have that the objective function of
LRMF problem decreases linearly, namely

UV — M||p < az(1—n)" | M| r (114)

where 0 < n < 1 is the step size, oo is a constant and ¢yt is a small constant.

Proof. Let cipi; be small enough such that (U V', M) > Uy V' ||%. According to Lemma [12]the
following holds

UV, M) > UV, 1%, V. (115)

together with Eq. , we can prove that Uy Vi'||Z2 > ||[UxV,'||% and similarly
1Uk+1Viha 3 > |Uk41 V3 [|3, which yields

1Ukc1Vilallr > UV - (116)

12



According to Eq. (T04), Eq. (I03) and Eq. (TT6) we have

uLu uLu
LUl _ () LUl )
ULV 7 1Uk—-1 Vil
and T T
V. Vi V, Vi—
|| * L _’;”F S(I*T}) || * L leHF . (118)
ULV, 7 [Uk-1V,_1llp
together with Eq. (I02)) and Eq. (I73), we are guarantee to prove
VAR %
Dk Vil — Ml < (- 2OV~ M+ (g — o) (1 - ) ot O g,
UV, |17
U Us|lr
+n(1 =) M Ly,
UV, ||
k . .
<@n—1") Y _(1=n)>(1 =) " Cc| M| p+ (1 —n)* UV, — M||p
i=1
< (1 =n)fCe|IM|lr+ (1= n)* UV, — M||r
< az(1—n)*(|M| r
(119)
U u Vv,V UV, —M
where C¢ = max{ ||“[J*0Ji/0—? H? HUO*VOTO ” = }and ay = max{C, ”””7‘”} We thus finish the
proof. O
2.3 Lemmas and some preliminary results.
Lemma 8. For the ScaledGD (!) 1), if (UpV,", M) > UV, |2, then the following holds
ulu Ul u TV Vv
WL Ule _ (BT VL Vile g VOVl
1Uk41Viiallp UV P Uk Vilalle ULV 7
Proof. Since Ugy1 = (1 — n)Uy + 77MV;€(V,€TV;€)*1 it is obvious that
T T
UL Uialle _ UL Ule | UV L o)

U1 Vil UV e U1 Vi llF

Since <Uk VkT, M> > HUkaT ||%., according to Lemma|17|we know that w < 1, which

NUk+1V, e

I, Ukyillr ), Uklle
guarantees that m <(1- n)m
Meanwhile, Vi1 = (1 — ) Vi, + nM TU, (U, U;) ™1, we have

V) Vgl <(- 77)”V Vile UV e
|Uks1Villle — UV, F UVl F

(122)

s IV Vgl < (1— [PARA R :
similarly we can also guarantee that CARANEE (1—n) AR Thus, we finish the proof. [J

Theorem 6. (Convergence of the matrix norm) For the ScaledGD (l) 1), if (UsV,", M) > UV 1%,
then we have
M|l = [Up1Vilalle < (1= 0)*Ca,Vk >0 (123)

where C., is a constant and 1 is the step length 0 < n < 1.

Proof. By ScaledGD Eq. (I)), we have

OVl ol IE (VM) | MY
M7 M M7 PR
||UkaT||%“ 2 2
> (1 —n?) =k 2E 4 n?cos?)
| M||%
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the second inequality is due to (U V", M) > ||U,V,||%. In consequence,

HUk+1Vk11H2F ||Uk+1VkTH% > (1—1?) HUka—r”%D + nQCOSQOE
M5 T IMIE 1M 123,
> (1 o 77) ||UkaTH% +7]2C0820v
- 1M |3 g
where we define | | | . I
MV U, M| r
0?) — eu —
O T My T M
In consequence, one obtains
U1V, 17 ULV, ||% 2k
11— —— 2 < (1—p) (1 - 22k 2E ) 4 (1 — cos?0F), (126)
| M|% | M||%
Meanwhile, according to Lemma |8} Lemma[TT]and Lemma[T5] we have
U M || ke IMVidllp !
LI < (1 —p)ke,, “=2HE 0 < (1 —p)koy,,VE > 0 (127)
| M|l p M| F
As T 2 2
2gu U, M= 290 MV |7
cos“0; =1 — —=—=——=cos“0), =1 - —————
g | M||% g | M||%

which guarantees that
1 —cos?0y < (1 — n** o,

Together with Eq. (126)), the following inequality holds

U1 Vil _ ||U0V0T|%>

k
1= B lE <2 Y- ) (1 o0l + (1= ) 1
I 2 IV

k
) » U, VT 2 (128)
i=1 1 F

< (1 - n)kcm»
— 2 UV, IIr : T
where C,, = max C,n°, 1 — M [ which further implies that
Uk Vil e K | M][% k

IM|[p— =7 < (1—=n)"Cq < (1 =n)"Ca. (129)

M| HIMIE + UV e
thus we finish our proof. O
Lemma 9. Let n < ¢, < 1 with ¢, a small constant, if (UyVy", M) > UV, ||% then the

llowing is t

Jollowing is true (UV,|, M) > [UGV, |[%,Vk > 0. (130)

Proof. We prove this result by induction. Since (UgV,", M) > |UsV,'||%, we assume that
(Up-1V,_1, M) > ||U,_1V, ., ||%. then we need to prove (U, V,', M) > UV, ||%.. We first
show that

UV 17 = (1= n)?IUVL 1 F + 20(1 = 0) (Up VL, Uk (U Uk 1)~ U M)
+ P | UL(U_ U 1) U M3
U/_\Ui-1) 'U_ M||r i
UV, lIr )

[Ux(
< UV 1E (1 =0+
_|| EVi 1F< n-n (131)

2
1M UVl
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.
To prove the result in Eq. li we need to guarantee that 91 < %, which is equivalent to
F
ensure that
_ T
1YLl | OO U UL M MUVE )
M| r | M|l - | M|l p

Meanwhile, since (U1 V,";, M) > |Ux_1V," ,[|%, and

IUViLy I = 11 = U Vil + MV Vi |7

(133)
= 1 =)’ Us—1 VLol E + 20(1 = 0) (Up—1 Vily, M) + 57| MV |7
it is easy to verify
1UViLy1E < (1= 5%) (U1 VLo, M) + 0P | MV ||
= (1= n) (Ut ViLy, M) + (= ) (U=t ViLy, M) + 02| MV I3 (134)
< (1=n) (U1 Vily, M) + (0 = ) |MVsa |7 + 0P | MV |7
= <Uka—Elv M> B
where the second inequality is due to Lemma|[I3] In consequence, one can verify that
(M, UV,") = (M, UV,L,) > UV, |7, (135)

as
(M, UV, —-UV,L)) = (M, Uy(U_ Uy 1) "' UL M) — (M, U, VL)
> (M, Us_1(U/_Up_1)"'U_ M) — (M,U;_1V;,), (136)
>0

which is due to Lemmal[I3]

NIRRT ATl
3 ( KV, ) = lUV, e 137

1U(U,_Us1) U M || — U1V, | 7

Denote by

then it can be easily verified that 3 > 0. As a result

310U, U) ' UL M |p = U1 Vi lp) = (ML UV = [UVL [l (138)
If n < ¢, < 3 with ¢, sufficiently small, then we can guarantee that

0 (|U(Uf_\Up—1) " 'U_ M| p = Uk VL |1 7)
<0 (|U(U{_\Ur—1) 'UL M| p = U1 Vi llF)

- 139
<3 (VUL Uiet) U M p = [Us-1 Vil 1) (13
= (M. UV,T) = UV, |
By simple reformulation, one obtains
=
1 UV, I nIIUk(U;LUk—l)”UzLMIIF - (M. UV) (140)
M| r IM]|[r - IMlr
which is exactly the inequality we need in Eq. (I132), thus we finish the proof. O
Lemma 10. Let us define
[ MV F 4y M|
cosf) = ————— coslj = —L——— (141)
o IMllr " IME



then after Ty = O(In %) iterations of ScaledGD, the following inequalities hold

U Upir ||

Uy, Vi o ||

IV Viir llp
S =Xotn) oy
Uksr41Vi o a7 1|

1—cosOl, g, 1cos0, 1 < (1= xkemy)™" (1 — CuCy), Yk > 0. (144)

.
(Ukyry Vi oy - M)
[ A

ul,u
1 Ukiriallr (1— Xber) Yk > 0. (142)

Uk -1 Vil gl —

IV Vs 41 llF

Yk > 0. (143)

Uk 41, Vi, I

0> (1—7hgry )2 +20T0s1 —1
(I—=n+nTr+1; )2

€ [1/2,1].

where Xk+1, = >0, Ty, =

Proof. According to the analysis in the proof of the Theorem [I]and Eq. (84), we know that after T}
iterations, we have
Ui, Vi, = Mllp < | M|, ¥k >0, (145)
which implies
<Uk+T1 V;chTl ’ M>

||Uk‘+T1 Vk:rle ||%

>1/2 (146)

Tk+T, =

Since the results for 7,4, > 1 is easy to analyze according to Lemma|g] therefore we mainly focus
onl> 7 >1/2.
According to the results in Lemmal[I8] if 1 > 7.7, > 1/2, we have
T
Uk+7, Vi, I F 1

1Ukr1, 11 Vil = (L =0+ 071, )?

(147)

therefore,

(2R o/ 2 — (- WU Usinille Uksn Vil Il
Uk -1 Vil 41l P Uk, Vil le - 10k 11 Vil lle
< (I—n) U4, Upes, || 7
= =0+ 07412 Ui, Vi I 7

(148)

U, Upyr, |l 7
=1 = xptn) T
NUk 1, Vil le

7’ (A=7g 1) > +20761 1 —1
A=n+nTrr1,)?

with x g1, = and 0 < xx+1, < 1whenl > 701, >1/2.
In the same way, we can prove

V. Viir1llr

.
< (1= xpor) et ey (149)

Uk 41 Vil llr Uk, Vilor, I 7

P (I=Tkar) > +207k s —n
(I=n+n7Tr11y )2

with Xk+T, = and 0 < Xk+T, < 1.

According to Lemma([T3] we know that there exists bounded value 0 < b such that
L Unlle U Mlr
IOVl — IMr

Together with Lemma([TT] Eq. (I48) and Eq. (T49), we have

by 410 M
M|

Yk > 0.

< (1= xpar,)¥CW,VE >0 (150)
for bounded constant C,,. The same is true for V as

MV
IMYirriille o g\ ke, s 0 (151)
[ M|
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for bounded C,. One can simply assume that C,, < 1 and C, < 1, since (1 — xpi1,)*Cy =
(1 — Xk—i—Tl)kl (1 — Xk+T1)kZCu such that (1 — Xk+T1)k2Cu <1.

As T 2

e, MJ
[ M[3

together with Eq. (I50) and Eq. (I51)) one obtains

o801 > 1— (1= xurr)F C2 = (1= (1= xpyr)?F) + (1 = xaymy) (1 - C2)

2k
08’0 g1 > 1= (1= xoamy)™ Cp = (1= (1= xagr,)*F) + (1= xrry)*H(1 = CF)
consequently, we have

[ MVl

cos?0 =1 M
F

2nv _
,co8“0; =1 —

L ) 2k
1= cosby 1, 1100808, 41 < (1= Xiwry )™ (1= CuCy)
O
Lemma 11. Let {x}}72 , and {y; } 72, be two sequences such that xj, < (1—()xp_1 with0 < { <1,

and
oz <y < By, Yk

then we have that
Yk S (1 - C)kCOaVk > 07
where cq = Bxg and «, 8 are bounded positive values.

Proof. The proof is trivial since 2, < (1 — ¢)* g, thus (1 — )*axy <y < (1 — ¢)*Buy. O
Lemma 12. [f there exits t € Ny such that Uy and V; € R"*" in Eq. satisfy <UtVtT, M> >
UV, ||%, then we have

(UrttVili M) > U Vil (152)
forany k € N,.

Proof. Without loss of generality, we assume ¢ = 0, thus we prove the result by induction. We
assume that the result is true for &, then we prove

(Unt1 Vi, M) > |[Upa VL |15 (153)

We first need to prove that <UkaT, M> > ||UkaT||% implies <Uk+1VkT7 M> > HUk+1VkT||%-
Note that o - T
Uk+1Vi 7 = (1 =n)UrV), +nMVeVy ||

= (1L=0)?|UV," %+ 20(1 = 0) (U V,,", M) + 17| | M V|,
According to Lemma we know (U,V,", M) < ||[MVy]||%, together with (U, V,", M) >
|U:V,"||% therefore

Ukt Vi 1F < (1 =0%) (U V', M) + 0 | MV |7

= (L= (UxV,", M) + (n—n*) (UV,", M) + 1* | MV 7

< (L =) (UV3|, M) + (n — )| MV || F + 0| MV || %

= (Up1V, M)

Again, according to Lemma([13] we have (U1 V,", M) < |[t4;,, M ||%. In the same way, we can
prove that

(154)

(155)

U1 Vil 17 < (1= 0?) (Upa Vi, M) + 0 U1 M|
= (1 =n){(Up1V} , M) + (n — *) (U1 V},| , M) + 1% MV |3

(156)
< (1= n0) Ukt Vi s M) + (n = 0*) U1 M |[F + 0 |[Uses1 M [
= (Up1 Vi1, M),
which finishes our proof. O
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Lemma 13. For any matrix A € R™*" and B € R™*", such that (A, B) > || A||%, then we have
(A, B) < [UsBli, (A, B) < ||BVali (157)

where U 4 is the left singular vector matrix of A.

Proof. Let A =UaY 4V be the SVD of A, the following holds

(A,B) = (Ua¥aVa, B)
= (Sa,UpBVa)

(158)
< |AllrlUs BVl r
< || Allr|UrB|F
According to (A, B) > || A||%, we have
(A.B)* < | AIZ|ULBIE )
< (A, B)|lUsB|%
which implies
(A,B) < |UABI%- (160)
O

Lemma 14. Let U, € R™*? and V;, € R"*? be given by Eq. , there exists a bounded constant
C such that

MVl M|

IMV(VIV)" L\ (UTU)'U "M — M||r < C|M|r|1
| M| r|UV, || F

(161)

when rank(M ) = 1 and d = 1, the constant C becomes 1.

Proof. According the pseudo inverse theorem, we have

MVVV) Y UTU)'U™™M = MVZ, ' UM,

thus
IMV(VTV)"H UTU)'U ™M — M||p < |M||p|MTMV,E, ' UM — I|j,.  (162)
Meanwhile,
|MTMVE; UM —I||5 < max {| M MV, ' UM|2 — 1,1 — o, (MTMV,S ' UM)} .
(163)
On one hand,
M U, M M U M
1M {|a| ULV la IM||r||ULV, (|
where & = K1koksgks and k1 = 01(M) /oq(M)...
Since UV, || is greater than zero, in consequence, we have
- [ M V|| Fllt, M| r
|MTMV.E UM, —1 < C ( -1
’ EIRCAAE
and similarly, we have
- IM V|| p Uy M|
1 — o, (MTMV,S U M) < C,y (1 -
: IM|[F UV, |
together with Eq. and Eq. (163), we finish our proof. O
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Lemma 15. Let Uy and Vj, are given by Eq. (1) or Eq. (2) and U}, Zk]},: = UkaT, UV =M
are the SVD of Uy, VkT and M respectively, then we have

T T
Uy, M| r < “U*J_U:/rc||Fgu' (165)
| M| r ULV, || F

and

IM|r  ~ UV, P
where £,, and £, are bounded values.
Proof. LetU, U, = A, cos0,;B, be the SVD decomposition. Then ||i4,], Uy||% becomes
Trace (Euku,juuuiukzuk) = Trace (EukAukSiIP@ukAZkEuk) = ||Sin®ukAIk2ukH%‘
(167)

Similarly, we have

Uy M |3 = Trace (S.U, U U US1)

(168)
= Trace (E*BuksiHQQUkBIkE*) = |sin®, B, Z.||%
The Eq. and Eq. (I68) indicate that
4, M| p = [|sin®@ux By S| p and U Uy Bkl p = [sin@ur Ay Burllp,  (169)

which implies
U, M| p = |[sin®@u A3 Sk E o Aue B Bl p < U Ukllpl|Z,) Auk By B p. (170)

In consequence

UL UZ U Ukl |1 T UV, ||
< 12k Au B Zillp— 1 (171)
127 A i 12.]lr
L
thus we obtain . .
M
Il Ml U2 Uil o 1)
| M|l UV, |Ir
where £,, is bounded value. Let V,;r Vi = Avkcos(-)kaka, in the same way, we have
= T v
| M|l UV, [P
where €, = |3, A, B, 2. 17552 is bounded value.
O
Lemma 16. Ler Uy, V;, be updated by Eq. , then with the learning rate 1) < c,,, we have
KUV, ) <m, k(Us) <u,k5(V3) <o,Vk (174)

where k(X)) outputs the condition number of a matrix X, u, v, m are bounded positive constant.

Proof. With Eq. (I)), the product of the matrix U and V" are updated by
U1 Vil = 1=0)?Up Vi +n(1—n)Ul] M +n(1—n)MVV, +0> MV S, U, M (175)

To guarantee that the condition number (U V,.") of the matrix U, V,", Vk are bounded, we only
need to guarantee that o,.(Uj, VkT) is strictly greater than 0 according to Eq. . Next, we prove
by contradiction. If we assume that there exists & such that o.(Uj VJ) < ¢e,Ve > 0, then we have
that YO > 0, 01 (Ux11V,)} ;) > 9 according to Eq. (175), which indicates that |Ux 11V, |7 >
M, VI > 0.
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Meanwhile, we have
Uk Vil = 11 = 0)*Ue V" + (1 = mthdyy M+ (1 = n) MV, + 0> MV S U, M|

< (L= [UVi |p +20(1 = 0) [ M||p + 0* | MV S U M| p
(176)
which indicates that the upper-bound of || UV, || » will decrease with the increase of k if | UV, ||
is greater than some constant related to | MV, 'Y, M||r. The result is in contradict to that
| Uk+1 V,;l | > 9N, V9 > 0, which proves that 0. (U, V") is strictly greater than zero. Therefore,
we can guarantee that there exist bounded constant value m such that k(U V") < m.

Meanwhile, since

o1 (UV') < 01(Uk)o1(Vi), 00 (U Vi) > 00 (Ui) o (Vi) (177)

we can guarantee that there exist bounded constant u and v such that
KU <, 5(Vi) < b,k (178)
thus we finish the proof. O

Lemma 17. Let U}, and Vj, be updated by Eq. , if (UyV,' M) > |U,V,|
that

%, then we have

U1 Vi llr > [0V, e (179)

Proof. Based on the update Eq. (I)), we have
U1 Vi I1E = (1= )10V, 1 + 20(1 = n) (Uk Vi, Uk (U Un)~'U M)
+7?|UL(U, Uy)~'U M |7

Meanwhile, according to Lemma we have that | Uy, (U, U,)~'U,] M ||% > ||ULV;" || %, together
with (U, V,”, M) > |U,V,"||% the following holds

U Vi I > UV, [

(180)

On the other hand,
U1 Vil I = (1= )2 Uk Vi 1[5 + 20(1 = 0) (Upa V[, U (U Uy) 'O M)
+ 0P| Us 2 (U Up)~'U, M |3

(181)
and Uy (U Up)'U M7 > UV 7 (Usni V1 U (U UR) 'O M) >
|UV,"||% we have the result in Eq. (179). O

T
Lemma 18. Ler 7, = %, if 1 > 1, > 1/2, then we have that
U1 Viliille = (1 —n+n7m)?
Proof. Note that
k+1 Ve lp =1 —7 Vi |+ 201 —n) (UkVy, ,Up (U, Ug) Uy
O il = (1= P UV +200 =) (U U7 U U M)
+7° U (U, Up) ' U, M ||3
thus
HUkJrlvaH%‘ =(1- n)2 +2n(1 —n) <UkaT’M> + 772 ”Uk(Ul;rUk)ilUle”%‘
UV, I3 UV, 1% ULV, I
TM 2 T2
— (1 _ 77)2 + 277(1 _ n)Tk + 7]2 Hukuk ||F|_|‘_l—j;ka HF
UV, [
(U M) (184)
> (L—n)?+2n(1 — p)7p + 7° st
UV, 1%

> (1—n)*+2n(1 — )7 + 0’77
= (1 —n+nm%)
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In the same vein

1Uk11Vila 17 = (=020 Vi 15 + 20(1 = 0) (Uk 1 V1, U (U Uy) 'O M)

+ 12 |[Uk1 (U, Un) " U M|

(185)

If (UyVi,, M) < |[UyV,"||% we know that the norm of UV, decreases and ||Uy .V, ||% >

[Uk+¢V,\ 1 |7, therefore

(U1 V|, U1 (U U)'U M) S (U1 V,| U1 (U Uy) "' U/ M)

U1V, 1% B UV, 1%
(UL, U Uy M)
> =T
UV, I3

and similarly, we have
Uk 1 (U Ui) U M5 |[Uk 1 (U, Ur) U M7
U1V, I3 - UV, 1%
U (U Ux)~'U, MJ3
ULV, 17
AR

In consequence, we have the result

Uk Vil
Uk 1 Vi1

Together with Eq. (I84) and Eq. (I88)), we have the result in Eq. (I82).
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>(1- 17)2 +2n(1 — ) + 7727,3 =(1-n+ 7]Tk)2.

(186)

(187)

(188)
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