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Abstract

Gaussian mixture models (GMMs) are fundamental to machine learning due to1

their flexibility as approximating densities. However, uncertainty quantification2

of GMMs remains a challenge as differential entropy lacks a closed form. This3

paper explores polynomial approximations, specifically Taylor and Legendre, to4

the GMM entropy from a theoretical and practical perspective. We provide new5

analysis of a widely used approach due to Huber et al. (2008) and show that the6

series diverges under simple conditions. Motivated by this divergence we provide a7

novel Taylor series that is provably convergent to the true entropy of any GMM.8

We demonstrate a method for selecting a center such that the series converges from9

below, providing a lower bound on GMM entropy. Furthermore, we demonstrate10

that orthogonal polynomial series result in more accurate polynomial approxima-11

tions. Experimental validation supports our theoretical results while showing that12

our method is comparable in computation to Huber et al. We also show that in13

application, the use of these polynomial approximations, such as in Nonparametric14

Variational Inference by Gershamn et al. (2012), rely on the convergence of the15

methods in computing accurate approximations. This work contributes useful16

analysis to existing methods while introducing a novel approximation supported by17

firm theoretical guarantees.18

1 Introduction19

Entropy is a natural measure of uncertainty and is fundamental to many information-theoretic quanti-20

ties such as mutual information (MI) and Kullback-Leibler (KL) divergence [8]. As a result, entropy21

plays a key role in many problems of ML including model interpretation [7], feature selection [6],22

and representation learning [27]. It is often used in the data acquisition process as in active learn-23

ing [25, 26], Bayesian optimal experimental design [17, 5, 3], and Bayesian optimization [13]. Yet,24

despite its important role entropy is difficult to calculate in general.25

One such case is the Gaussian mixture model (GMM), where entropy lacks a closed form and is the26

focus of this paper. GMMs are fundamental to machine learning and statistics due to their property as27

universal density approximators [18]. However, the lack of a closed-form entropy requires approxima-28

tion, often via Monte Carlo expectation. Such stochastic estimates can be undesirable as computation29

becomes coupled with sample size and a deterministic approach is often preferred. Simple determinis-30

tic bounds can be calculated via Jensen’s inequality or Gaussian moment matching [14]. Such bounds31

are often too loose to be useful, leading to other options such as variational approximations [21, 10]32

and neural network-based approximation [2]. Yet, these deterministic estimators do not allow a33

straightforward tradeoff of computation and accuracy as in the Monte Carlo setting.34

Polynomial series approximations are both deterministic and provide a mechanism for computation-35

accuracy tradeoff by varying the polynomial degree. In this paper we focus on three such polynomial36

approximations of the GMM entropy. We begin with the widely used approximation of Huber et37
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al. (2008). While this approximation yields good empirical accuracy in many settings, a proof of38

convergence is lacking. In this work we show that the Huber et al. approximation in fact does39

not converge in general, and we provide a divergence criterion (Theorem 3.1). In response to the40

divergent behavior, we propose two alternative polynomial approximations, a Taylor and Legendre41

series approximation of GMM entropy that are provably convergent. We establish in Theorem 4.242

and Theorem 4.5 that each series converges everywhere under conditions on the center point or43

interval, respectively. In Theorem 4.4 we provide a simple mechanism for choosing a value to ensure44

that these series converge everywhere. We additionally establish, in Theorem 4.3, that our Taylor45

approximation is a convergent lower bound on the true entropy for any finite poynomial order.46

The complexity of both Huber et al. and our proposed methods have similar computation largely47

driven by polynomial order. To address this we propose an approximation that estimates the higher-48

order terms by fitting a polynomial regression. This approach requires the evaluation of only three49

consecutive polynomial orders to approximate higher order series. In this way we can obtain more50

accurate estimates without the computational overhead of evaluating higher order polynomial terms.51

We conclude with an empirical comparison of all polynomial approximations that produce the diver-52

gent behavior of the Huber et al. approximation while our propsed methods maintain convergence.53

We also compare accuracy and compuation time for each method accross a varaitey of dimensions,54

number of GMM components, and polynomial orders. Finally, we show an application of our methods55

in Nonparametric Variational Inference [11] where the guarantees of convergence play a large role in56

the accuracy of posterior approximation via GMMs.57

2 Preliminaries58

We briefly introduce required notation and concepts, beginning with a definition of the Gaussian59

mixture entropy. We will highlight the challenges that preclude efficient computation of entropy. We60

conclude by defining notation that will be used for discussion of polynomials approximations.61

2.1 Gaussian Mixture Entropy62

The differential entropy of a continuous-valued random vector x ∈ Rd with a probability density63

function p(x) is given by,64

H(p(x)) = −
∫

p(x) log p(x)dx = E[− log p(x)]. (1)

The differential entropy is in [−∞,∞] for continuous random variables. It is a measure of uncertainty65

in the random variable in the sense that its minimum is achieved when there is no uncertainty in the66

random vector, i.e. a Dirac delta, and approaches the maximum as the density becomes uniformly67

distributed. Gaussian mixtures are ubiquitous in statistics and machine learning due to their property68

as universal density approximators [18]. However, despite this flexibility, the entropy of a Gaussian69

mixture requires computing the expectation of the log-sum operator, which lacks a closed form. Many70

approximations and bounds are used in practice. A simple upper bound is given by the entropy of a71

single Gaussian with the same mean and covariance as the mixture [14], and a lower bound can be72

obtained by Jensen’s inequality. Though efficient, these bounds are very loose in practice, leading73

to more useful Monte Carlo approximations, deterministic sampling [12], and numerous variational74

bounds and approximations [21, 10].75

2.2 Taylor Polynomials76

In this paper we explore entropy approximation using Taylor polynomials. The nth-order Taylor77

polynomial of a function f(x) with evaluation point c is given by,78

Tf,n,c(x) =

n∑
i=0

f (n)(c)

n!
(x− c)n, (2)

where f (n)(c) denotes the nth derivative of f evaluated at point c. The Taylor series has a region79

of convergence which determines the range of x-values where the series accurately represents the80

original function. It depends on the behavior of the function and its derivatives at the expansion81

point. Analyzing the region of convergence is crucial for ensuring the validity of the Taylor series82

approximation. Various convergence tests, such as the ratio test, help determine the x-values where83

the Taylor series provides an accurate approximation.84
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2.3 Orthogonal Polynomials85

Taylor series are versatile approximations, however predominately behave well near the center point86

chosen. We ideally would like an approximation that performs well across a range of values. To87

achieve this, we consider series approximation via orthogonal polynomials. A set of orthogonal88

polynomials on the range [a, b] is an infinite sequence of polynomials P0(x), P1(x), . . . where Pn(x)89

is an nth degree polynomial and for any pair of polynomials satisfies90

⟨Pi(x), Pj(x)⟩ =
∫ b

a

Pi(x)Pj(x)dx = ciδij (3)

where δij is the Kronecker delta function and ci is some constant. Orthogonal polynomials can be91

used to approximate a function, f(x), on their interval, [a, b], by finding the projection of f(x) onto92

each polynomial in the series Pi(x).93

f(x) =

∞∑
i=1

⟨f(x), Pi(x)⟩
⟨Pi(x), Pi(x)⟩

Pi(x) (4)

Any appropriate choice of orthogonal polynomials can be used. One might be interested in consid-94

ering the Chebyshev polynomials for their property of minimizing interpolation error or Legendre95

polynomials for their versatility and ease of computation.96

3 Convergence of Polynomial Approximations97

To estimate the entropy H(p) = Ep[− log(p(x))] using a polynomial approximation one may ap-98

proximate either the log-density log(p(x)) or just the logarithm log(y). We will show that estimating99

log(p(x)) has convergence issues and that it can be complicated to compute due to tensor arithmetic100

in higher dimensions. Both of these issues will be addressed by simply approximating log(y) and101

computing the exact p(x). All proofs are deferred to the Appendix for space.102

3.1 Divergence of Huber et al. Approximation103

We begin our exploration with a widely used approximation of the GMM entropy due to [15]. Let p(x)104

be a GMM and the log-GMM h(x) = log(p(x)). Huber et al. provides a Taylor series approximation105

of the GMM entropy given by,106

log(p(x)) = −
M∑
i=1

wi

∞∑
n=0

h(n)(µi)

n!
(x− µi)

n, (5)

The series is M individual Taylor series evaluated at each component mean, µi. The equality in107

Eqn. (5) only holds if the series converges, which we will show is not the case in general.108

Theorem 3.1 (Divergence Criterion for Huber et al.). Let p(x) =
∑M

i=1 wiN (x | µi,Σi) and109

consider the Taylor series presented in Eqn. (5). If any mean component, µi, satisfies the condition110

p(µi) <
1
2max(p(x)), then Huber et al.’s approximation diverges, otherwise it converges.111

Theorem 3.1 provides us with the condition that Huber et al.’s approximation Eqn. (5) will diverge.112

This means that the entropy approximation will be inaccurate for any GMM with any of its modes113

less than half the probability of any other point, as illustrated in Fig. 1.114

3.2 Taylor Series Approximation of the Logarithm115

Motivated by the divergence of the previous Taylor series we propose a different approach that is116

provably convergent. While Huber et al. perform a Taylor decomposition of the log-GMM PDF, our117

approach decomposes only the log(y) function using a Taylor series of the function centered about118

the point a. It is well-known that this series converges for values |y − a| < a and is given by,119

log(y) = log(a) +

∞∑
n=1

(−1)n

nan
(y − a)n. (6)

Note the change of c to a as the Taylor series center. This change highlights the difference in function120

domains. In particular, the former series is computed on values of the random vector x, whereas ours121

is computed on the PDF y = p(x). Choosing any center a > 1
2max(p(x)) will ensure that the series122

converges everywhere.123
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Figure 1: Divergence of Huber et al. and convergence of our polynomial series approximation are plotted
for the Gaussian mixture, p(x) = .35N (x | −3, 2) + .65N (x | 0, .2). In the left graph, the log-GMM is
plotted, which is what each series is defined for. The right plot is the exponential of the series so we can see
how each converge in the more familiar framework of a GMM. Notice that the Huber et al. is centered on the
first component mean µ1 = −3 and diverges around the mean of the second component µ2 = 0 as supported
by Theorem 3.1 since the mode µ1 is less than half the probability at the mode µ2. Both of our methods are
convergent, the Taylor series is a bound (Theorem 4.3) while the Legendre series has a lower global error.

Lemma 3.2 (Convergent Taylor Series of Log). If a > 1
2max(p(x)), then for all x124

log(p(x)) = log(a) +

∞∑
n=1

(−1)n−1

nan

n∑
k=0

(
n

k

)
(−a)n−kp(x)k (7)

The proof of Lemma 3.2 is a simple ratio test. The only assumption on p(x) is that it has a finite125

maximum, which is true for any non-degenerate GMM with positive definite component covariances.126

As a result, the Taylor series converges for all x regardless of the GMM form.127

3.3 Legendre Series Approximation of the Logarithm128

For the orthogonal polynomial approximation, we consider the Legendre polynomials, specifically129

the shifted Legendre polynomials [4] which are orthogonal on [0, a],130

Pn(y) = L[0,a],n(y) =

n∑
k=0

(−1)n+k(n+ k)!

(n− k)!(k!)2ak
yk (8)

Lemma 3.3 (Convergent Legendre Series of Log). If a > max(p(x)), and consider the shifted131

Legendre polynomials on the interval [0, a] in Eqn. (8). Then for all x132

log(p(x)) =

∞∑
n=0

(2n+ 1)

n∑
j=0

(−1)n+j(n+ j)!((j + 1) log(a)− 1)

(n− j)!((j + 1)!)2
L[0,a],n(p(x)) (9)

Again, all that is assumed about this approximation is that the max of a GMM can be bounded, so133

this approximation converges for all GMMs regardless of structure.134

4 GMM Entropy Approximations135

Having established multiple polynomial approximations in Sec. 3, we now consider applying them to136

the definition of entropy for a GMM. We can directly substitute the series approximation into the137

entropy definition, H(p(x)) = Ep [− log(p(x))], and push the expectation through the summations.138

4.1 Huber et al. Entropy approximation139

Applying Huber et al.’s Taylor series approximation of the log(p(x)), we see the GMM entropy can140

be approximated by,141

H(p(x)) = −
m∑
i=1

wi

∞∑
n=0

h(n)(µi)

n!
Eqi [(x− µi)

n] , (10)

where qi(x) = N (x | µi,Σi) is shorthand for the ith Gaussian component. The attractive feature142

of Eqn. (10) is that it simplifies the expected value of a log-GMM to the nth central moments of143

4



the ith component which, is exactly zero when n is odd and has a closed form when n is even.144

However, this approximation had some major limitations. Theorem 3.1 shows that this approximation145

is not guaranteed to converge which is supported by experimental results in Sec. 6. Furthermore, in146

higher dimensions, h(n)(µi) =
∂nh(µi)

∂x
j1
1 ...∂xjn

d

, where j1 + · · ·+ jd = n which grows rapidly, is an n147

dimensional tensor. This is cumbersome to compute and is difficult to deal with the tensor arithmetic148

required beyond a Hessian. In practice, this limits Eqn. (10) to only second order approximations (or149

third order since the third centered moment is zero) unless we are in one dimension.150

4.2 Taylor Series Entropy Approximation151

Having established the convergent Taylor series of the logarithm in Lemma 3.2, we can applying the152

approximation and push the expectation through the summations. This reduces the computation of the153

entropy to computing Ep[p(x)
k] for all k < n where n is the order of the polynomial approximation.154

Lemma 4.1 (Closed form expectation of powers of GMMs). Let p(x) =
∑M

i=1 wiN (x|µi,Σi) be a155

GMM and k be a non-negative integer. Then156

Ep[p(x)
k] =

∑
j1+···+jM=k

(
k

j1, . . . , jM

) M∑
i=1

wi

(
N (0|µi,Σi)

N (0|µ,Σ)

M∏
t=1

(wtN (0|µt,Σt)
jt)

)
(11)

where Σ = (Σ−1
i +

∑M
t=1 jtΣ

−1
t )−1 and µ = Σ(Σ−1

i µi +
∑M

t=1 jtΣ
−1
t µt).157

While Eqn. (11) may seem complicated at first glance, it is straightforward to compute. All terms158

are Gaussian densities, polynomial functions, and binomial coefficients. Lemma 4.1 is defined for159

Ep[p(x)
k] but an analogous definition holds for Ep[q(x)

k] allowing us to apply all the following160

results not only to entropy, but cross-entropy, KL and MI of GMMs. This is not the focus of this161

paper, however a discussion can be found in A.4 for completeness. Using Lemma 3.2 and Eqn. (11),162

we can obtain the following approximation,163

ĤT
N,a(p(x)) = − log(a)−

N∑
n=1

(−1)n−1

nan

n∑
k=0

(
n

k

)
(−a)n−kEp[p(x)

k] (12)

To ensure the expected value can be pushed through the infinite sum of the series, we check that our164

finite order entropy approximation does still converge to the true entropy.165

Theorem 4.2 (Convergence of ĤT
N,a(p(x))). Let p(x) =

∑M
i=1 wiN (x|µi,Σi) be a GMM and166

choose a Taylor center such that a > 1
2max(p(x)). Then, for ĤT

N,a(p(x)) defined in Eqn. (12)167

lim
N→∞

ĤT
N,a(p(x)) = H(p(x)) (13)

Having established convergence of our estimator, it remains to provide a method for selecting a168

Taylor center that meets the convergence criterion a > 1
2max(p(x)). In fact, we show in Theorem 4.3169

that selecting a looser condition a > max(p(x)) ensures convergence from below, thus yielding a170

lower bound on the true entropy.171

Theorem 4.3 (Taylor Series is Lower Bound of Entropy). Let p(x) =
∑M

i=1 wiN (x|µi,Σi) and172

a > max(p(x)). Then, for all finite N ,173

ĤT
N,a(p(x)) ≤ H(p(x)) (14)

We have now established that the Taylor center chosen as a > max(p(x)) is both convergent and174

yields a lower bound. In fact, it is easy to find such a point by upper bounding the maximum of a175

GMM as given in Theorem 4.4.176

Theorem 4.4 (Upper bound on maximum of a GMM). Let p(x) =
∑M

i=1 wiN (x|µi,Σi), then177

max(p(x)) ≤ a =

M∑
i

wi |2πΣi|−
1
2 (15)

In our experience choosing a center closer to the convergence criterion a > 1
2max(p(x)) yields178

slightly more accurate estimates, but not significantly so. We find in practice that performing an179

approximation of the limit of the Taylor polynomial (similar to Richardson extrapolation [22]) is a180

better approach for higher accuracy.181

ĤTL
N,a(p(x)) = ĤT

N−2,a(p(x))−
(ĤT

N−1,a(p(x))− ĤT
N−2,a(p(x)))

2

ĤT
N,a(p(x))− 2ĤT

N−1,a(p(x)) + ĤT
N−2,a(p(x))

(16)

This limit requires three consecutive terms of the Taylor series to be computed and assumes that the182

series converges at the rate β · αn + η for some β < 0 and 0 < α < 1. This does not hold true in183

general but in practice provides higher accuracy. Derivation and discussion can be found in A.5.184
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4.3 Legendre Entropy Approximation185

Now, starting with the convergent Legendre approximation considered in Lemma 3.3 and Eqn. (11),186

we can obtain the following approximation,187

ĤL
N,a(p(x)) = −

N∑
n=0

(2n+1)

n∑
j=0

(−1)n+j(n+ j)!((j + 1) log(a)− 1)

(n− j)!((j + 1)!)2
L[0,a],n

(
Ep[p(x)

k]
)

(17)

Again, we check that taking the expectation of our series does not effect convergence.188

Theorem 4.5 (Convergence of ĤL
N,a(p(x))). Let p(x) =

∑M
i=1 wiN (x|µi,Σi) be a GMM and189

choose an interval such that a > max(p(x)). Then for ĤL
N,a(p(x)) defined in Eqn. (17)190

lim
N→∞

ĤL
N,a(p(x)) = H(p(x)) (18)

Now having established converge criterion for the Legendre series approximation, we need to choose191

an upper point of the interval for the Legendre series. We need to choose a > max(p(x)) which is192

satisfied by the same a found in Lemma 4.4.193

5 Related Work194

Numerous approximation methods exist in the literature for estimating entropy and related information195

measures, such as mutual information and Kullback-Leibler divergence, in the context of Gaussian196

Mixture Models (GMMs). Monte Carlo estimation, deterministic bounds using Jensen’s inequality,197

best-fit moment matched Gaussians, and numerical integral approximations based on the uncented198

transform have been explored [16, 14, 15]. This paper focuses on the Taylor approximation by Huber199

et al., an alternative Taylor approximation is proposed by Sebastiani [24], which assumes a shared200

covariance matrix among GMM components in the high variance setting. However, neither Huber201

et al. or Sebastiani provide theoretical analysis or convergence guarantees offered in our present202

work. An analysis conducted by Ru et al. [23] explores the efficiency of Huber et al.’s method and203

demonstrates that deterministic quadrature methods can be equally fast and accurate in a single204

dimension, however quadrature methods scale poorly with dimension, at O(ND) where N is the205

number of quadrature points per dimension and D is the dimension of the problem.206

Variational approximations and bounds are also widely explored for estimating entropy and mutual207

information (MI). Much of this work is motivated by the use of Gibbs’ inequality, which leads to208

bounds on entropy and MI [1]. Later work explored similar techniques for upper and lower bounds209

on MI [21, 10]. More recent work uses artificial neural networks (ANNs) as function approximators210

for a variety of information-theoretic measures based on differential entropy. The MI neural estimator211

(MINE) uses such an approach for representation learning via the information bottleneck [2] based on212

the Donsker-Varadhan (DV) lower bound on KL [9]. Related methods use ANNs for optimizing the213

convex conjugate representation of Nguyen et al. [20]. McAllester and Stratos [19] show that many of214

these distribution-free approaches based on ANN approximation rely on Monte Carlo approximations215

that have poor bias-variance characteristics which they provide their own Difference of Entropies216

(DoE) estimator that achieves the theoretical limit on estimator confidence.217

6 Experiments218

We consider two experiments, a synthetic GMM section where we look at divergence of Huber et219

al. approximation (Eqn. (10)) and convergence of our three methods, our Taylor (Eqn. (12)), Taylor220

limit (Eqn. (16)), and our Legendre (Eqn. (17)). Furthermore, we give comparisons of accuracy and221

computation time across a variety of setting of approximation order, number of GMM components,222

and dimension for all methods. We then show our how our methods can be applied in practice to223

Nonparametric Variational Inference [11] where the convergence guarantees of the estimators has a224

noticeable accuracy improvement on their algorithm.225

6.1 Synthetic Multivariate GMM226

To highlight the theoretical properties, such as convergence, divergence, accuracy, and lower-bound227

of methods as discussed in Sec. 4, we will consider some synthetic GMMs. We create two GMMs228

similar to the example published in [15] (original experiment recreated in A.6). We consider a single229

and multi-dimensional dimensional case that satisfy the divergence criterion in Theorem 3.1. We also230

look at a time and accuracy analysis versus dimension, components, and polynomial order.231
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Figure 2: Scalar GMM example is plotted on the left. The variance of a component of a two component GMM is
varied between σ2

2 ∈ (0, 1] as in theory according to Theorem 3.1, the example will be divergent where σ2
2 < .46

and convergent above. We plot the fourth order of each method and see that Huber et al.’s approximation does
diverge where the theory predicts. Two dimensional GMM with five components is consider on the right. Here
the mean of a single component is shifted from µ5 = [−3,−3]T to µ5 = [3, 3]T . We consider the third order
approximation of each method and see that Huber et al. is poorly behaved. In both examples, we see that our
Taylor method is a lower bound (Theorem 4.3), the Taylor limit provides higher accuracy, and Our Legendre
method is a highly accurate approximate.

Scalar GMM In this experiment, we consider a scalar GMM as fourth order and above cannot232

be easily computed in higher dimensions for Huber et al. due to tensor arithmetic. We use a simple233

two-component GMM with parameters w1 = 0.35, w2 = 0.65, µ1 = −2, µ2 = −1, σ2
1 = 2, and234

σ2
2 ∈ (0, 1]. We are changing the variance of the second Gaussian, σ2

2 , in the range (0, 1] because235

the condition for divergence in Theorem 3.1 (p(x = µ1) <
1
2p(x = µ2)) is satisfied approximately236

when σ2
2 < 0.46 meaning this experiment should have regions of both convergence and divergence237

for Huber et al. approximation. Fig. 2 (left) shows the fourth order approximations of all methods.238

We see that the Huber et al. approximations diverges as expected in the range where σ2
2 < .46. Our239

Taylor method remains convergent and accurate for all values while maintaining a lower bound.240

Again, our limit method gains us some accuracy and still manages to be lower bound. In this case,241

we see that the Legendre approximation is a near perfect fit for the entropy.242

Multivariate GMM To demonstrate that divergence is not limited to single dimension or higher243

orders, we consider a five-component, two-dimensional GMM with the parameters wi = .2 ∀i,244

µ1 = [0, 0]T , µ2 = [3, 2]T , µ3 = [1,−.5]T , µ4 = [2.5, 1.5]T , µ5 = c[1, 1]T for c ∈ [−3, 3],245

Σ1 = .25I2, Σ2 = 3I2, and Σ3 = Σ4 = Σ5 = 2I2 where I2 is the two dimensional identity246

matrix. This examples shifts the mean of the fifth component to show that simply the location of247

components can make the Huber et al. approximation behave poorly. Fig. 2 (right) shows the third248

order approximation of each method. We see that Huber et al. is clearly not well behaved in this case249

even with low order approximation. Furthermore, we continue to see a lower bound by our Taylor250

method, an increased accuracy from out limit method, and that the Legendre approximation is very251

close to the true entropy.252

6.1.1 Computation Time253

In this experiment we empirically analyze the computation time of each method as a function of254

Gaussian dimension, number of Gaussian components, and the order of each polynomial approxima-255

tion. The baseline of each method will be compared to the Monte Carlo estimation of entropy using256

L = 1000 samples {xj}Lj=1 ∼ p. The Monte Carlo estimator is given by Ĥ = 1
L

∑
j(− log p(xj)).257

Dimension In Fig. 3 (left), we evaluate the accuracy and computation time for 30 two-component258

GMMs per dimension in the range of [1, 50]. Comparing second order approximations of all methods259

against the Monte Carlo estimator, our polynomial approximations demonstrate similar accuracy and260

nearly identical computation time. The results are comparable to Huber, indicating that our methods261

preserve accuracy and computation efficiency while providing convergence guarantees.262

GMM Components In Fig. 3 (middle), accuracy and computation time are presented for 30263

two-dimensional GMMs with varying numbers of components (from 1 to 20) using second order264

approximations. Legendre and Huber methods show slightly higher accuracy compared to our265

Taylor approximation and Taylor limit. Notice, Huber’s standard deviation also increases with more266

components, due to the increased likelihood of satisfying the divergence condition in Theorem 3.1.267

Computation time remains similar for all methods, but is more prohibitive for higher components.268
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Figure 3: Dimension (left) of a two-component GMM varies from zero to fifty, for the second order of each
method. Our methods show comparable accuracy and computation time to Huber, regardless of dimension.
Number of components (middle) in a two-dimensional GMM is considered for the second order approximation
of all methods. Huber et al. and our Legendre approximations are nearly equivalent in accuracy, while the Taylor
series and Taylor limit serve as lower bounds. Computation time for all our methods is identical and comparable
to Huber et al., deviating only at high numbers of components. Order (right) of each approximation is varied
for a three-dimensional, two-component GMM. Huber et al. is plotted up to order three, as higher orders are
restrictive due to tensor arithmetic and Taylor limit starts at order two as it requires three consecutive terms.

Polynomial Order Fig. 3 (right) shows as the order of the polynomial approximation increases for269

two-component GMMs in three dimensions. Legendre and Huber methods show higher accuracy270

compared to Taylor approximation and Taylor limit. Huber is limited to order 3 due to Tensor271

arithmetic, while Taylor limit starts at order 2 as it requires multiple orders. Computation times are272

similar across all methods. Notice no accuracy is gained from zero to first order and from second to273

third order in Huber’s approximation due to relying on odd moments of Gaussians which are zero.274

6.2 Nonparametric Variational Inference275

Consider a target density p(x,D) with latent variables x and observations D. The NPV approach [11]276

optimizes the evidence lower bound (ELBO), log p(x,D) ≥ maxq Hq(p(x,D))−Hq(q(x)) ≡ L(q)277

w.r.t. an m-component GMM variational distribution q(x) = 1
N

∑m
i=1 N (x|µi, σ

2
i Id). The GMM278

entropy lacks a closed-form so NPV applies Jensen’s lower bound as an approximation, ĤJ
q (q(x)).279

The cross entropy also lacks a closed-form, so NPV approximates this term using the analogous280

Huber et al. Taylor approximation. Specifically, NPV expands the log density around the means of281

each GMM component as,282

Hq(p(x)) ≈ −
M∑
i=1

wi

N∑
n=0

∇2 log(p(µi))

n!
Eqi [(x− µi)

n
] = ĤH

N,q(p(x)) (19)

However, Eqn. (19) is subject to the divergence criterion of Theorem 3.1 if 2p(µi) ≤ max(p(x)).283

By replacing the entropy terms with our convergent series approximations we observe significant284

improvements in accuracy.285

In our approach, we will highlight and address two problems with the NPV algorithm; the potential286

divergence of ĤH
N,q(p(x)) and the poor estimation of the GMM entropy via ĤJ

q (q(x)). To address287

the potential divergence of ĤH
N,q(p(x)), we will take motivation from the results found in [23] and288

use a 2 point Gauss-Hermite quadrature method to approximate Hq(p(x)). This method will be289

a limiting factor in scaling the NPV algorithm in dimension, however it guarantees that the cross-290

entropy approximation will not diverge. This alteration leads to a solution for the inconsistency of291

the ELBO approximations. Then, Jensen’s inequality is a very poor approximation for entropy in292

general, instead we will use the three methods we have introduced, our Taylor, Taylor limit, and our293

Legendre, as the GMM entropy approximations for higher accuracy. Fig. 4 shows an approximation294

of a two dimensional, three component mixture Student T distribution using a five component GMM295

in the traditional NPV, our modified NPV algorithm with our Taylor and Legendre approximation.296
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Figure 4: A three component mixture Student T distribution PDF (far-left) is approximated by a five component
GMM using traditional NPV (left), our algorithm using a 6th order Taylor polynomial (right), and Legendre
polynomial (far-right). We see that NPV both has issues with finding correct placement of means and sets the
variances of the GMM components to be too narrow. Our methods do a better job of assigning means and the
Legendre method seems to set the variances slightly better than our Taylor.
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Figure 5: The above figures show the accuracy of each method across varying components, orders, and
dimensions in approximating a multivariate mixture T distribution with a GMM. Our method consistently
improves accuracy significantly. Low order of the convergent estimators provide substantial approximation
improvement (middle). Most accuracy improvements are achieved with a small number of components, unlike
NPV (left) which continues to need higher number of components to see good accuracy return. The guaranteed
convergence of the approximation in higher dimensions seems to have a drastic improvement on accuracy ().

The results, as seen in Fig. 5, highlight the accuracy of each method versus the number of components,297

the order of our polynomial approximation, and the dimension of the GMM. In each experiment,298

we are approximating a multivariate mixture T distribution, p(x). We randomize the parameters299

of p(x) and the initialization parameters of the variational GMM, q(x), for optimization. The KL300

is approximated using a 100000 Monte Carlo approximation after convergence of each algorithm.301

We see that in all cases of components, order, and dimension, our method achieves significant302

accuracy improvements. We see that we can use low order approximations to receive substantial303

approximation improvement (Fig. 5 (middle)). We see all methods gain accuracy as number of304

components increase (Fig. 5 (left)) however our methods see most of the accuracy improvements with305

only a few components, whereas NPV has substantially worse approximations with low components.306

Finally, we see we maintain a lower variance and KL than NPV with all our methods as the dimension307

grows (Fig. 5 (right)). For further discussion of the experiment, see A.7.308

7 Discussion309

We have provided novel theoretical analysis of the convergence for the widely used Huber et al. Taylor310

approximation of GMM entropy and established that the series diverges under conditions on the311

component means. We address this divergence by introducing multiple novel methods which provably312

converge. We wish to emphasize that the Huber et al. approximation tends to yield accurate results313

when it is convergent and the intention of this work is not to dissuade the use of this approximator.314

Quite the contrary, this work encourages the use of either Huber et al. or our own estimator by315

providing a solid theoretical foundation for both methods. We acknowledge that there are contexts in316

which one method may be preferred over the other, for example when bounds are preferred, or when317

convergence criteria are provably satisfied.318

There are several areas that require further investigation. For example, one limitation of both methods319

is that they scale poorly with polynomial order and number of components. In fact, Huber et al. cannot320

easily be calculated for fourth order and above, due to tensor arithmetic. Our approximation works321

well in practice, but is limited solely to GMM densities. Further work is necessary to efficiently apply322

our convergent series to situations of cross-entropy’s that contain non-GMM distributions.323
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A Appendix398

A.1 Section 3 Proofs399

Theorem 3.1 (Divergence Criterion for Huber et al.). Let p(x) =
∑M

i=1 wiN (x | µi,Σi) be a GMM400

and consider the Taylor series presented by Huber et al. in Eqn. (5). If any mean component, µi,401

satisfies the condition p(µi) <
1
2max(p(x)), then Huber et al.’s approximation diverges, otherwise it402

converges.403

Proof. Let f(y) = log(y), g(x) = p(x), and h(x) = f(g(x)) = log(p(x)). Huber et al. creates the404

Taylor series in Eqn. (5) with N th order approximation405

M∑
i=1

wiTh,N,µi(x) =

M∑
i=1

wi

N∑
n=0

h(n)(µi)

n!
(x− µi)

n, (20)

Let us consider just a single one of the Taylor series in Eqn. (20)406

Th,N,µi(x) =

N∑
n=0

h(n)(µi)

n!
(x− µi)

n, (21)

By Theorem 3.4 in Lang1, the Taylor series of a composition of function is equivalent to the407

composition of each components Taylor series, i.e. Th,N,µi(x) = Tf,N,g(µi) ◦ Tg,N,µi
(x) where ◦ is408

the composition operation. Since p(x) is a GMM, is the sum of entire functions, and thus itself is409

entire, meaning it’s Taylor series, Tg,N,µi
(x), converges everywhere. We turn our attention to the410

Taylor approximation of log, Tf,N,g(µi),411

Tf,N,p(µi)(x) = log(p(µi)) +

N∑
n=1

(−1)n−1)

np(µi)n
(y − p(µi))

n, (22)

We can look at the nth term in the series, bn = (−1)n−1)
np(µi)n

(y − p(µi))
n, and use the ratio test to define412

convergence.413

lim
n→∞

∣∣∣∣bn+1

bn

∣∣∣∣ = lim
n→∞

∣∣∣∣ (−1)n)

(n+ 1)p(µi)n+1
(y − p(µi))

n+1 np(µi)
n

(−1)n−1)
(y − p(µi))

−n

∣∣∣∣
= lim

n→∞

∣∣∣∣ (−1)n

(−1)n−1

np(µi)
n

(n+ 1)p(µi)n+1

(y − p(µi))
n+1

(y − p(µi))n

∣∣∣∣
= lim

n→∞

∣∣∣∣ n

(n+ 1)p(µi)
(y − p(µi))

∣∣∣∣
= lim

n→∞

n

(n+ 1)

∣∣∣∣y − p(µi)

p(µi)

∣∣∣∣ = ∣∣∣∣y − p(µi)

p(µi)

∣∣∣∣ = L

The ratio test states that the series converges if the limit, L, is strictly less than 1. However, setting414

L = 1 and some simple manipulation, we find415 ∣∣∣∣y − p(µi)

p(µi)

∣∣∣∣ < 1 ⇒ |y − p(µi)| < p(µi) ⇒ y < 2p(µi) (23)

This only converges if all y < 2(p(µi). Consider the maximum, max(p(x)), if it satisfies this416

condition, so will every other point, if it doesn’t satisfy this point, then the series is divergent by the417

ratio test. So we have the convergent criterion max(p(x)) < 2p(µi), or written in terms of divergence418

criterion, we diverge if p(µi) <
1
2max(p(x)).419

Lemma 3.2 (Convergent Taylor Series of Log). If a > 1
2max(p(x)), then for all x420

log(p(x)) = log(a) +

∞∑
n=1

(−1)n−1

nan

n∑
k=0

(
n

k

)
(−a)n−kp(x)k (24)

1Lang, Serge. Complex Analysis. 4th ed. Springer, 2013. ISBN 978-1-4757-3083-8.
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Proof. Consider the nth term in the sum421

bn =
(−1)n−1

nan
(p(x)− a)n

The ratio test says if the limit of the absolute value of successive terms converges to a value strictly422

less than one, then the series converges423

lim
n→∞

∣∣∣∣bn+1

bn

∣∣∣∣ = lim
n→∞

∣∣∣∣ (−1)n

(n+ 1)an+1
(p(x)− a)n+1 nan

(−1)n−1
(p(x)− a)−n

∣∣∣∣
= lim

n→∞

∣∣∣∣ (−1)n

(−1)n−1

nan

(n+ 1)an+1

(p(x)− a)n+1

(p(x)− a)n

∣∣∣∣
= lim

n→∞

∣∣∣∣ n

(n+ 1)a
(p(x)− a)

∣∣∣∣
= lim

n→∞

n

(n+ 1)

∣∣∣∣p(x)− a

a

∣∣∣∣ = ∣∣∣∣p(x)− a

a

∣∣∣∣ = L

We see that L < 1 ∀x iff a > 1
2max(p(x)) in which case the series converges everywhere.424

Lemma 3.3 (Convergent Legendre Series of Log). If a > max(p(x)), and consider the nth shifted425

Legendre polynomial on the interval [0, a] in Eqn. (8). Then for all x426

log(p(x)) =

∞∑
n=0

(2n+ 1)

n∑
j=0

(−1)n+j(n+ j)!((j + 1) log(a)− 1)

(n− j)!((j + 1)!)2
L[0,a],n(p(x)) (25)

Proof. Orthogonal polynomials can approximate any function that is continuous and square-integrable427

(see Trefethen and Bau2). In out case, L[0,a],n(y) live on L2([0, a]) (referring to the second Lebesgue428

space on the interval [0, a]). This means all we have to show is that log(y) lives in this domain which429

means ∥log(y)∥22 < ∞430

∥log(y)∥22 =

∫ a

0

log(y)2dy = a((log(a)− 2) log(a) + 2) < ∞ (26)

So we see that log(y) ∈ L2([0, a]) and therefore it’s Legendre series is convergent.431

For completeness, we now derive the Legendre series for log(y). We will appeal to Eqn. (8),432

L[0,a],n =
∑n

k=0

(−1)n+k(n+ k)!

(n− k)!(k!)2ak
yk, and

〈
L[0,a],n(y), L[0,a],n(y)

〉
= a

2n+1 as found in [4]433

log(p(x)) =

∞∑
n=0

〈
log(y), L[0,a],n(y)

〉〈
L[0,a],n(y), L[0,a],n(y)

〉L[0,a],n(p(x))

=

∞∑
n=0

2n+ 1

a

∫ a

0

log(y)

n∑
k=0

(−1)n+k(n+ k)!

(n− k)!(k!)2ak
ykdyL[0,a],n(p(x))

=

∞∑
n=0

2n+ 1

a

n∑
k=0

(−1)n+k(n+ k)!

(n− k)!(k!)2ak

∫ a

0

log(y)ykdyL[0,a],n(p(x))

=

∞∑
n=0

2n+ 1

a

n∑
k=0

(−1)n+k(n+ k)!

(n− k)!(k!)2ak
ak+1 ((k + 1) log(a)− 1)

(k + 1)2
L[0,a],n(p(x))

=

∞∑
n=0

2n+ 1

n∑
k=0

(−1)n+k(n+ k)! ((k + 1) log(a)− 1)

(n− k)!((k + 1)!)2
L[0,a],n(p(x))

which we know is convergent from the above discussion434

2Trefethen, Lloyd N., and David Bau III. Numerical Linear Algebra. SIAM, 1997.
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A.2 Section 4 Proofs435

Lemma 4.1 (Closed form expectation of powers of GMMs). Let p(x) =
∑M

i=1 wiN (x|µi,Σi) be a436

GMM and k be a non-negative integer. Then437

Ep[p(x)
k] =

∑
j1+···+jM=k

(
k

j1, . . . , jM

) M∑
i=1

wi

(
N (0|µi,Σi)

N (0|µ,Σ)

M∏
t=1

(wtN (0|µt,Σt)
jt)

)
(27)

where Σ = (Σ−1
i +

∑M
t=1 jtΣ

−1
t )−1 and µ = Σ(Σ−1

i µi +
∑M

t=1 jtΣ
−1
t µt).438

Proof. We will prove this statement by directly expanding out each term439

Ep[p(x)
k] =Ep

( m∑
t=1

wtN (x|µt,Σt)

)k


=Ep

 ∑
j1+···+jm=k

(
k

j1, . . . , jm

) m∏
t=1

(wtN (x|µt,Σt))
jt


=

∑
j1+···+jm=k

(
k

j1, . . . , jm

) m∏
t′=1

(wt′)
jt′

M∑
i=1

wi

∫
N (x|µi,Σi)

m∏
t=1

(N (x|µt,Σt))
jtdx

To combine the Gaussians under the integral, we appeal to the power of Gaussians (Lemma A.2.3)440

and product of Gaussians (Lemma A.2.4)441

=
∑

j1+···+jm=k

(
k

j1, . . . , jm

)
m∏

t′=1

(wt′)
jt′

M∑
i=1

wi

∫
N (x|µi,Σi)

m∏
t=1

N (x|µt,
1
jt
Σt)

|jt(2πΣt)jt−1|1/2
dx

=
∑

j1+···+jm=k

(
k

j1, . . . , jm

)
m∏

t′=1

(wt′)
jt′

|jt(2πΣt)jt−1|1/2
M∑
i=1

wi

∫ N (0|µi,Σi)
∏m

t=1 N (0|µt,
1
jt
Σt)

N (0|µ,Σ) N(x|µ,Σ)dx

=
∑

j1+···+jm=k

(
k

j1, . . . , jm

)
M∑
i=1

wi

(
N (0|µi,Σi)

N (0|µ,Σ)

m∏
t=1

(wtN (0|µt,Σt))
jt

)

where µ = Σ(Σ−1
i µi +

∑M
t=1 jtΣ

−1
t µt) as defined from Lemma A.2.4. We see that we are left with442

no integral and a closed form of the expectation of the powers of the GMM.443

Theorem 4.2 (Convergence of ĤT
N,a(p(x))). Let p(x) =

∑M
i=1 wiN (x|µi,Σi) be a GMM and444

choose a Taylor center such that a > 1
2max(p(x)). Then, for ĤT

N,a(p(x)) defined in Eqn. (12)445

lim
N→∞

ĤT
N,a(p(x)) = H(p(x)) (28)

Proof. We start out with the definition of entropy and introduce in the approximation discussed in446

Lemma 3.2447

H(p(x)) =−
∫ M∑

i=1

wiqi(x) log(p(x))dx = −
M∑
i=1

wi

∫
qi(x) log(p(x))dx

=−
M∑
i=1

wi

∫
qi(x)

(
log(a) +

∞∑
i=1

(−1)n−1

nan
(p(x)− a)n

)
dx

=−
M∑
i=1

wi

(
log(a) +

∫
qi(x)

∞∑
i=1

(−1)n−1

nan
(p(x)− a)ndx

)

=−
M∑
i=1

wi

(
log(a) +

∫ ∞∑
i=1

(−1)n−1

nan
qi(x)(p(x)− a)ndx

)
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We now wish to swap the order of integration and of the infinite summation as shown in Lemma A.2.1448

=−
M∑
i=1

wi

(
log(a) +

∞∑
i=1

∫
(−1)n−1

nan
qi(x)(p(x)− a)ndx

)

=−
M∑
i=1

wi

(
log(a) +

∞∑
i=1

(−1)n−1

nan

∫
qi(x)(p(x)− a)ndx

)

=−
M∑
i=1

wi

(
log(a) +

∞∑
i=1

(−1)n−1

nan

∫
qi(x)

n∑
k=0

(
n

k

)
(−a)n−k(p(x))kdx

)

=−
M∑
i=1

wi

(
log(a) +

∞∑
i=1

(−1)n−1

nan

n∑
k=0

(
n

k

)
(−a)n−kEqi(x)

[
(p(x))k

])

We can compute Eqi(x)

[
(p(x))k

]
using Lemma 4.1. The above term is equality for the Entropy,449

simply truncating the infinite summation gives a convergent approximation.450

ĤT
N,a(p(x)) = −

M∑
i=1

wi

(
log(a) +

N∑
i=1

(−1)n−1

nan

n∑
k=0

(
n

k

)
(−a)n−kEqi(x)

[
(p(x))k

])
(29)

451

Theorem 4.3 (Taylor Series is Lower Bound of Entropy). Let p(x) =
∑M

i=1 wiN (x|µi,Σi) and452

a > max(p(x)). Then, for all finite N ,453

ĤT
N,a(p(x)) ≤ H(p(x)) (30)

Proof. If a > max(p(x)), then we have the following lower bound454

H(p(x)) =−
∫

p(x) log p(x)dx = −
∫

p(x)

(
log(a) +

∞∑
n=1

(−1)n−1

nan
(p(x)− a)n

)
dx

=−
∫

p(x)

(
log(a) +

∞∑
n=1

(−1)n−1(−1)n

nan
(a− p(x))n

)
dx

=− log(a)−
∫

p(x)

( ∞∑
n=1

−1

nan
(a− p(x))n

)
dx

=− log(a) +

∫
p(x)

( ∞∑
n=1

1

nan
(a− p(x))n

)
dx

≥− log(a) +

∫
p(x)

(
N∑

n=1

1

nan
(a− p(x))n

)
dx = ĤN (p(x))

since every term in the summation is positive due to a > p(x) ∀x, then truncating the series only455

removes positive terms, leaving us with a lower bound.456

Theorem 4.4 (Upper bound on maximum of a GMM). Let p(x) =
∑M

i=1 wiN (x|µi,Σi), then457

max(p(x)) ≤ a =

M∑
i

wi |2πΣi|−
1
2 (31)

Proof. We need to find an upper bound on max(p(x))458

max(p(x)) =max

(
M∑
i=1

wiN (x|µi,Σi)

)

≤
M∑
i=1

wimax (N (x|µi,Σi)) =

M∑
i=1

wi |2πΣi|−
1
2
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We simply have bound the maximum of the combination by combining the maximum of every459

component in the GMM.460

Theorem 4.5 (Convergence of ĤL
N,a(p(x))). Let p(x) =

∑M
i=1 wiN (x|µi,Σi) be a GMM and461

choose an interval such that a > max(p(x)). Then for ĤL
N,a(p(x)) defined in Eqn. (17)462

lim
N→∞

ĤL
N,a(p(x)) = H(p(x)) (32)

Proof. We start out with the definition of entropy and introduce in the approximation discussed in463

Lemma 3.3464

H(p(x)) =−
∫ M∑

i=1

wiqi(x) log(p(x))dx = −
M∑
i=1

wi

∫
qi(x) log(p(x))dx

=−
M∑
i=1

wi

∫
qi(x)

∞∑
i=0

〈
log(y), L[0,a],n(y)

〉〈
L[0,a],n(y), L[0,a],n(y)

〉L[0,a],n(p(x))dx

=−
M∑
i=1

wi

∞∑
i=0

∫
qi(x)

〈
log(y), L[0,a],n(y)

〉〈
L[0,a],n(y), L[0,a],n(y)

〉L[0,a],n(p(x))dx

We swapped the order of integration and of the infinite summation as shown in Lemma A.2.2. We465

simplify computation that are recreated in Theorem 3.3466

=−
∞∑
i=0

〈
log(y), L[0,a],n(y)

〉〈
L[0,a],n(y), L[0,a],n(y)

〉 M∑
i=1

wi

∫
qi(x)L[0,a],n(p(x))dx

=−
∞∑
i=0

(2n+ 1)

n∑
j=0

(−1)n+j(n+ j)!((j + 1) log(a)− 1)

(n− j)!((j + 1)!)2

M∑
i=1

wiEqi(x)

[
n∑

k=0

(−1)n+k(n+ k)!

(n− k)!(k!)2ak
p(x)k

]

=−
∞∑
i=0

(2n+ 1)

n∑
j=0

(−1)n+j(n+ j)!((j + 1) log(a)− 1)

(n− j)!((j + 1)!)2

n∑
k=0

(−1)n+k(n+ k)!

(n− k)!(k!)2ak

M∑
i=1

wiEqi(x)

[
p(x)k

]
We can compute Eqi(x)

[
(p(x))k

]
using Lemma 4.1. Simply truncating the infinite summation gives467

the approximation.468

ĤL
N,a(p(x)) = −

N∑
i=0

(2n+1)

n∑
j=0

(−1)n+j(n+ j)!((j + 1) log(a)− 1)

(n− j)!((j + 1)!)2

n∑
k=0

(−1)n+k(n+ k)!

(n− k)!(k!)2ak

M∑
i=1

wiEqi(x)

[
p(x)k

]
which limN→∞ ĤL

N,a(p(x)) = H(p(x)) as the above series is exactly equal to the entropy.469

Here, we address a few of the assumptions we made in the above derivations. We start with the ability470

to swap the order of the integral and infinite sum for the Taylor series.471

Lemma A.2.1 (Swapping Integral and Infinite Sum (Taylor)). Let a > 1
2max(p(x)), then472 ∫ ∞∑

i=1

(−1)n−1

nan
qi(x)(p(x)− a)ndx =

∞∑
i=1

∫
(−1)n−1

nan
qi(x)(p(x)− a)ndx

Proof. For simplicity of notation, let c = sup
∣∣∣p(x)−a

a

∣∣∣ < 1 since a > 1
2max(p(x)). We then appeal473

to Fubini-Tonelli theorem which states that if
∫ ∑

|fn(x)|dx < ∞ or if
∑∫

|fn(x)|dx < ∞, then474 ∫ ∑
fn(x)dx =

∑∫
fn(x)dx.475

∞∑
i=1

∫ ∣∣∣∣ (−1)n−1

nan
qi(x)(p(x)− a)n

∣∣∣∣ dx =

∞∑
i=1

1

n

∫
qi(x)

(
|p(x)− a|

a

)n

dx

≤
∞∑
i=1

1

n

∫
qi(x) (c)

n
dx

=

∞∑
i=1

cn

n

∫
qi(x)dx =

∞∑
i=1

cn

n
< ∞

16



We know that
∑∞

i=1
cn

n < ∞ because of the ratio test again476

lim
n→∞

∣∣∣∣ cn+1

n+ 1

n

cn

∣∣∣∣ = lim
n→∞

n

n+ 1
c = c < 1

So we see that Fubini-Tonelli holds so477 ∫ ∞∑
i=1

(−1)n−1

nan
qi(x)(p(x)− a)ndx =

∞∑
i=1

∫
(−1)n−1

nan
qi(x)(p(x)− a)ndx

478

We now consider the case for the Legendre series479

Lemma A.2.2 (Swapping Integral and Infinite Sum (Legendre)). Let a > max(p(x)), then480 ∫
qi(x)

∞∑
i=1

〈
log(y), L[0,a],n(y)

〉〈
L[0,a],n(y), L[0,a],n(y)

〉L[0,a],n(p(x))dx =

∞∑
i=1

∫
qi(x)

〈
log(y), L[0,a],n(y)

〉〈
L[0,a],n(y), L[0,a],n(y)

〉L[0,a],n(p(x))dx

Proof. We again appeal to Fubini-Tonelli. We will use that
∣∣∣∣ L[0,a],n(p(x))

⟨L[0,a],n(y),L[0,a],n(y)⟩

∣∣∣∣ ≤ 1 as it is the481

orthonormal polynomials and then use Cauchy-Schwartz on the remaining term482

∞∑
i=1

∫ ∣∣∣∣∣qi(x)
〈
log(y), L[0,a],n(y)

〉〈
L[0,a],n(y), L[0,a],n(y)

〉L[0,a],n(p(x))

∣∣∣∣∣ dx
=

∞∑
i=1

〈
log(y), L[0,a],n(y)

〉 ∫ ∣∣∣∣∣ qi(x)L[0,a],n(p(x))〈
L[0,a],n(y), L[0,a],n(y)

〉∣∣∣∣∣ dx
≤

∞∑
i=1

∥log(y)∥2
∥∥L[0,a],n(y)

∥∥2 ∫ qi(x)dx

=

∞∑
i=1

a((log(a)− 2) log(a) + 2)

(
a

2n+ 1

)2 ∫
N(x|µi,Σi)dx

=a3((log(a)− 2) log(a) + 2)

∞∑
i=1

1

(2n+ 1)2
< ∞

So we see that since the absolute value is finite, then Fubini-Tonelli applies and we can swap the483

order of the integral and infinite summation.484

The next thing we show is the relations we used for powers of Gaussians.485

Lemma A.2.3. Powers of a Gaussian486

487

N (x|µ,Σ)n =
∣∣n(2πΣ)n−1

∣∣− 1
2 N

(
x|µ, 1

n
Σ

)
Proof. We are going to do an inductive proof and rely on the well known relation of products of488

Gaussians489

N (x|a,A)N (x|b, B) = N (x|d,D)N (a|b, A+B)

Where D = (A−1 +B−1)−1 and d = D(A−1a+B−1b).490

Base Case: n = 2491

N (x|µ,Σ)2 =N (x|µ,Σ)N (x|µ,Σ) (33)

=N(x|µ, 1
2
Σ)N(µ|µ, 2Σ) = |2πΣ|−

1
2 N(x|µ, 1

2
Σ) (34)

In this case, we get that D = (Σ−1 + Σ−1)−1 = 1
2Σ and d = 1

2Σ(Σ
−1µ + Σ−1µ) = µ. We also492

see that N(µ|µ, 2Σ) is being evaluated at its maximum, which just leaves the scaling term out front493
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of the exponential in the Gaussian, |2πΣ|−
1
2 .494

Inductive step: Assume that N(x|µ,Σ)n =
∣∣n(2πΣ)n−1

∣∣− 1
2 N

(
x|µ, 1

nΣ
)
, then we wish to show495

that N(x|µ,Σ)n+1 = |(n+ 1)(2πΣ)n|−
1
2 N

(
x|µ, 1

n+1Σ
)

496

N(x|µ,Σ)n+1 =N(x|µ,Σ)nN(x|µ,Σ)

=
∣∣n(2πΣ)n−1

∣∣− 1
2 N

(
x|µ, 1

n
Σ

)
N(x|µ,Σ)

=
∣∣n(2πΣ)n−1

∣∣− 1
2 N

(
x|µ, 1

n+ 1
Σ

)
N(µ|µ, n+ 1

n
Σ)

=
∣∣n(2πΣ)n−1

∣∣− 1
2

∣∣∣∣2πn+ 1

n
Σ

∣∣∣∣− 1
2

N
(
x|µ, 1

n+ 1
Σ

)
= |(n+ 1)(2πΣ)n|−

1
2 N

(
x|µ, 1

n+ 1
Σ

)

Here, D =
((

1
nΣ
)−1

+Σ−1
)−1

= 1
n+1Σ and d = 1

n+1Σ
((

1
nΣ
)−1

µ+Σ−1µ
)
= µ.497

We finally show the product of Gaussians that we used. We keep the exact same notation used in the498

derivation of the entropy Taylor series so the terms may be more easily identified.499

Lemma A.2.4. Product of a Gaussians500

501

N (x|µi,Σi)

m∏
t=1

N
(
x|µt,

1

jt
Σt

)
= N (0|µi,Σi)

m∏
t=1

N
(
0 + µt,

1

jt
Σt

)
N(x|µ,Σ)
N(0|µ,Σ)

where Σ = (Σ−1 +
∑m

t=1 jtΣ
−1
t )−1 and µ = Σ

(
Σ−1

i µi +
∑m

t=1 jtΣ
−1
t µt

)
502

Proof. We will simply expand out the product of Gaussians, collect like terms, complete the square, and then503
recollect exponentials into Gaussians evaluated at 0.504

N (x|µi,Σi)

m∏
t=1

N
(
x|µt,

1

jt
Σt

)
= |2πΣi|−

1
2 exp

{
−

1

2
(x − µi)

T
Σ

−1
i (x − µi)

} m∏
t=1

∣∣∣∣ 2πjt Σt

∣∣∣∣− 1
2
exp

{
−

1

2
(x − µt)

T
jtΣ

−1
t (x − µt)

}

= |2πΣi|−
1
2

m∏
t=1

∣∣∣∣ 2πjt Σt

∣∣∣∣− 1
2
exp

{
−

1

2

(
x
T
Σ

−1
i x − 2x

T
Σ

−1
i µi + µ

T
i Σ

−1
i µi +

m∑
t=1

x
T
jtΣ

−1
t x − 2x

T
jtΣ

−1
t µt + µ

T
t jtΣ

−1
t µt

)}

= |2πΣi|−
1
2

m∏
t=1

∣∣∣∣ 2πjt Σt

∣∣∣∣− 1
2
exp

{
−

1

2

(
x
T

(
Σ

−1
i +

m∑
t=1

jtΣt

)
x − 2x

T

(
Σ

−1
i µi +

m∑
t=1

jtΣ
−1
t

)
+ µ

T
i Σ

−1
i µi +

m∑
t=1

µ
T
t jtΣ

−1
t µt

)}

Now we let Σ = (Σ−1 +
∑m

t=1 jtΣ
−1
t )−1 and µ = Σ

(
Σ−1

i µi +
∑m

t=1 jtΣ
−1
t µt

)
505

= |2πΣi|−
1
2

m∏
t=1

∣∣∣∣ 2πjt Σt

∣∣∣∣− 1
2
exp

{
−

1

2

(
x
T
Σ

−1
x − 2x

T
Σ

−1
µ + µ

T
i Σ

−1
i µi +

m∑
t=1

µ
T
t jtΣ

−1
t µt

)}

= |2πΣi|−
1
2

m∏
t=1

∣∣∣∣ 2πjt Σt

∣∣∣∣− 1
2
exp

{
−

1

2

(
x
T
Σ

−1
x − 2x

T
Σ

−1
µ + µ

T
Σµ − µ

T
Σµ + µ

T
i Σ

−1
i µi +

m∑
t=1

µ
T
t jtΣ

−1
t µt

)}

= |2πΣi|−
1
2

m∏
t=1

∣∣∣∣ 2πjt Σt

∣∣∣∣− 1
2 |2πΣ|1/2

|2πΣ|1/2
exp

{
−

1

2

(
(x − µ)

T
Σ

−1
(x − µ)

)}
exp

{
−

1

2

(
−µ

T
Σµ + µ

T
i Σ

−1
i µi +

m∑
t=1

µ
T
t jtΣ

−1
t µt

)}

= |2πΣi|−
1
2 exp

{
−

1

2

(
µ
T
i Σ

−1
i µi

)} m∏
t=1

∣∣∣∣ 2πjt Σt

∣∣∣∣− 1
2
exp

{
−

1

2

(
µ
T
t jtΣ

−1
t µt

)}
|2πΣ|1/2 exp

{
−

1

2

(
−µ

T
Σµ
)}

N (x|µ,Σ)

=N (0|µiΣi)

m∏
t=1

N
(
0|µt,

1

jt
Σt

) N (x|µ,Σ)

N (0|µ,Σ)

506
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A.4 Extensions to Cross-Entropy507

Our main results on GMM entropy approximation also extend to the cross-entropy between508

different GMMs. We can instead consider Hp(q(x)) = −Ep(x) [log(q(x))] where p(x) =509 ∑M̃
i=1 w̃iN (x|µ̃i, Σ̃i) and q(x) =

∑M̂
i=1 ŵiN (x|µ̂i, Σ̂i). The series representations of log(·) stay510

unchanged however we must choose a center point that allows the series to converge with respect511

to the inner GMM, q(x). This means Theorem 3.2, Theorem 3.3, Theorem 4.2, Theorem 4.3, and512

Theorem 4.5 need to be reformulated so that a > max(q(x)) (or the respective a > 1
2max(q(x)). We513

do not formally restate these theorems here for brevity. We instead provide a sketch of how the results514

extend to the cross-entropy setting. Choosing the bounding a of the max found in Theorem 4.4 can515

simply be altered so that516

max(q(x)) ≤ a =

M̂∑
i

ŵi

∣∣∣2πΣ̂i

∣∣∣− 1
2

The analogous proofs will all hold in this case. The final alteration that needs to be made is to517

Theorem 4.1. Again, following the exact same proof, just switching notation and being careful, one518

can find that519

Ep[q(x)
k] =

∑
j1+···+j

M̂
=k

(
k

j1, . . . , jM̂

) M̂∑
i=1

w̃i

N (0|µ̃i, Σ̃i)

N (0|µ,Σ)

M̂∏
t=1

(ŵtN (0|µ̂t, Σ̂t)
jt)

 (35)

where Σ = (Σ̃i

−1
+
∑M̂

t=1 jtΣ̂t

−1
)−1 and µ = Σ(Σ̃i

−1
µ̃i +

∑M̂
t=1 jtΣ̂t

−1
µ̂t). The result is the520

same form, however has much more convoluted notation and hence dropped from the main paper as521

an attempt to bring clarity to the methods being discuss without unnecessary notation.522

A.5 Discussion of Taylor Limit523

Computing the series in Eqn. (12) for higher orders can be computationally prohibitive. In particular,524

the sum
∑

j1+...+jM=n is over M integers summing to n, which is O((n+M − 1)!). In this section,525

we provide an approximation that avoids explicit computation of this sum for higher orders. The526

method is based on a polynomial fit of the convergence rate for the lower bound property discussed527

in Theorem 4.3. We model this convergence as,528

Ĥn(p(x)) = β · αn + η (36)

where Ĥn(p(x)) is the nth order Taylor approximation and we have dropped explicit dependence on529

the center and notation of Taylor method for brevity. Further, β < 0 and 0 < α < 1 are convergence530

constants and η is the estimated limiting value of the approximation. We require three consecutive531

orders of our Taylor series approximation, Ĥn(p(x)), Ĥn+1(p(x)), and Ĥn+2(p(x)), to solve for the532

three unknown parameters,533

Ĥn(p(x)) =β · αn + η

Ĥn+1(p(x)) =β · αn+1 + η

Ĥn+2(p(x)) =β · αn+2 + η.

Given three equations and three unknowns we can solve for the approximate limiting entropy as,534

η = Ĥn − (Ĥn+1 − Ĥn)
2

Ĥn+2 − 2Ĥn+1 + Ĥn

(37)

This approach assumes that the Taylor series converges according to Eqn. (36), which is not the535

case in general. Identifying the exact rate of convergence is a topic of future work. But this simple536

approximation has shown higher accuracy in practice with negligible additional computation, as537

shown in the experiments of Sec. 6. With slight abuse of terminology we refer to this approach as the538

Taylor limit. We do not apply this method to the Legendre approximation (Eqn. (17)) as it doesn’t539

maintain a lower bound during its convergence. Equivalent methods have been considered to model540

the potential oscillation convergence however in practice, we do not find an increase in accuracy.541
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Figure 6: Well-Behaved GMM example is plotted on the left. The entropy of a five-component, bivariate GMM
is plotted as a function of the location of the fifth component µ5 ∈ [−3, 3]. We show the true entropy, the 3rd

order of Huber et al.’s approximation and our two methods, along with our approximate limit.

A.6 Recreation of Huber et al Experiment542

Here we reproduce the experiment of [15] of a five-component bivariate GMM with uniform weights543

wi = 0.2 for i = 1, . . . , 5, µ1 = [0, 0]T , µ2 = [3, 2]T , µ3 = [1,= 0.5]T µ4 = [2.5, 1.5]T ,544

µ5 = c · [1, 1]T , Σ1 = diag(0.16, 1), Σ2 = diag(1, 0.16), and Σ3 = Σ4 = Σ5 = diag(0.5, 0.5).545

We vary the position of the fifth mean (µ5) in the range [−3, 3]. Fig. 6 (left) reports the third order546

Taylor approximations from both Taylor approximations, the Legendre approximation, as well as our547

approximate limiting method.548

Huber et al. is accurate in the well-behaved case, but does not have any convergence guarantees nor549

is it a bound. Our proposed Taylor approximation sacrifices some accuracy, but is always a lower550

bound (Theorem 4.3) and is convergent (Theorem 4.2). We also note that our naïve limit method does551

gain us substantial accuracy and is still a lower bound–though we have not proven the bound property552

for this approximation. We notice that our Legendre approximation has comparable accuracy to553

that of Huber et al. in this well behaved case but has the advantage that it is guaranteed to converge554

(Theorem 4.5) and that we can compute higher order approximations that are difficult to define for555

the Huber et al. approximation.556

A.7 Nonparametric Variational Inference557

Consider a target density p(x,D) with latent variables x and observations D. The NPV approach [11]558

optimizes the evidence lower bound (ELBO),559

log p(x) ≥ max
q

Hq(p(x,D))−Hq(q(x)) ≡ L(q) (38)

w.r.t. a m-component GMM variational distribution q(x) = 1
N

∑m
i=1 N (x|µi, σ

2
i Id). The GMM560

entropy lacks a closed-form so NPV applies Jensen’s lower bound as an approximation,561

Hq(q(x)) = −Eq [log(q(x))] ≥ −
M∑
i=1

wi log (Eqi [q(x)]) = ĤJ
q (q(x)) (39)

The cross entropy also lacks a closed-form, so NPV approximates this term using the analogous562

Huber et al. Taylor approximation. Specifically, NPV expands the log density around the means of563

each GMM component as,564

Hq(p(x)) ≈ −
M∑
i=1

wi

N∑
n=0

∇2 log(p(µi))

n!
Eqi [(x− µi)

n
] = ĤH

N,q(p(x)) (40)

However, Eqn. (19) is subject to the divergence criterion of Theorem 3.1 if 2p(µi) ≤ max(p(x)).565

This approximation is often known as the multivariate delta method for moments. The authors use566

these approximations of the entropy and cross entropy to create the following two approximation of567

the ELBO.568

L1(q) = ĤH
1,q(p(x))− ĤJ

q (q(x)) L2(q) = ĤH
2,q(p(x))− ĤJ

q (q(x)) (41)
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Figure 7: The above figures show the accuracy and computation time of each method across varying components,
orders, and dimensions in approximating a multivariate mixture T distribution with a GMM. Our method
consistently improves accuracy significantly. Higher order approximations do not increase computation time
(bottom middle), and even low order approximations provide substantial improvement (top middle). Most
accuracy improvements are achieved with a small number of component, unlike NPV (top left) which continues
to need higher number of components to see good accuracy return. Our computation time increases with
dimension due to less salable cross-entropy approximation with Gauss-Hermite quadrature (bottom right)
however the guaranteed convergence of the approximation seems to have a drastic improvement on accuracy
(top right).

Gershman et al. (2012) use the two approximations because optimizing ĤH
2,q(p(x)) with respect to569

the mean components, µi requires computing a third order, multivariate derivative of log(p(x)) which570

is computationally expensive. The authors iterate between optimizing the mean components, µi,571

using L1(q) and optimizing the variance components, σ2
i , using L2(q) until the second approximate572

appropriately converges δL2(q) < .0001.573

In our approach, we will highlight and address three problems with the NPV algorithm; the potential574

divergence of ĤH
N,q(p(x)), the inconsistent ELBO approximations, and the poor estimation of the575

GMM entropy via ĤJ
q (q(x)). To address the potential divergence of ĤH

N,q(p(x)), we will take576

motivation from the results found in [23] and use a 2 point Gauss-Hermite quadrature method577

to approximate Hq(p(x)). This method will be a limiting factor in scaling the NPV algorithm578

in dimension, however it guarantees that the cross-entropy approximation will not diverge. This579

alteration leads to a solution for the inconsistency of the ELBO approximations. Since the quadrature580

method does not require any derivatives of log(p(x)) w.r.t. the mean components of the GMM,581

we can now optimize the means and variances simultaneously on the same ELBO approximation.582

Finally, Jensen’s inequality is a very poor approximation for entropy in general, instead we will use583

the three methods we have introduced, Taylor, Taylor limit, and Legendre, as the GMM entropy584

approximations for higher accuracy. Fig. 4 shows an approximation of a two dimensional, three585

component mixture Student T distribution using a fiver component GMM in the traditional NPV,586

using our Taylor approximation and our Legendre approximation.587

The results, as seen in Fig. 5, highlight the accuracy and computation time of each method versus the588

number of components used, the order of our polynomial approximation used, and the dimension of589

the GMM. The accuracy is the same as seen in Section 6, the new information here is the computation590

time of each method. We see that the order of the method has very little impact on the computation591

time of our algorithm. We even see most of the accuracy improvement at around order 2 or 3 so592

staying in a low order approximation seems advisable. We do see that the component does increase593

our time by a bit compared to that of traditional NPV. The source of the computation time increase594

in our methods comes from more iterations in the optimization. Each evaluation of the (ELBO)595

approximator are near equivalent but since we are converging to a better optimum, this take more596

21



iteration steps than NPV. Finally, we see that dimension does have a large impact on our method.597

The source of this computation increase come from our Gauss-Hermite approximation of the cross598

entropy. The number of quadrature points used 2 per dimension D, so we are computing with 2D599

points, which clearly scale poorly with dimension. We are seeking better ways of computing the600

cross-entropy of a GMM with any non-GMM function that is both convergent and computationally601

fast, however this was not the focus of the paper and no method was considered yet.602
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