
A Effect of Pruning Criteria438

We seek to illustrate the effectiveness of different pruning criteria in TriRE. As explained in Section439

3.1, the dense network is first pruned using k-WTA criteria, resulting in a subnetwork of the most440

activated neurons, and then this subnetwork is pruned using CWI criteria, resulting in a final extracted441

subnetwork at the end of Retain stage. Table 3 demonstrates the comparison of Class-IL accuracy442

between various pruning criteria, namely, magnitude-based, Fisher information-based, and CWI-443

based, across all three datasets. The idea behind magnitude pruning is that small valued weights444

impact the network’s output less and can be safely pruned without significantly affecting performance.445

Fisher information-based pruning evaluates the importance of connections based on their contributions446

to the Fisher information matrix. Connections with low contributions, indicating less relevance or447

importance, are pruned or set to zero. However, both these criteria calculate the importance of weights448

within the current task, but do not consider the possibility of it being crucial for other tasks. On the449

other hand, CWI considers the significance of weights with respect to data saved in the rehearsal450

buffer as well, resulting in superior performance across all datasets.451

Table 3: Comparison of the effect of various pruning criteria in TriRE on different datasets.

Dataset Magnitude Fisher Information CWI

Seq-CIFAR10 65.09±0.83 64.40±0.43 68.17±0.33

Seq-CIFAR100 41.89±0.74 40.26±0.21 43.91±0.18

Seq-TinyImageNet 19.07±0.97 18.16±0.75 20.14±0.19

B Model analysis452

B.1 Task Recency Bias453

In any CL setting, the model entails learning on a few or no samples from previous tasks while454

aplenty of the most recent task [21]. This tilts learning toward the most recent task, resulting in455

decisions biased toward new classes and confusion among the old classes. However, the CL model456

should ideally have predictions distributed evenly across all tasks with the least possible recency457

bias. Figure 6 provides the confusion matrix for various CL models to evaluate the task recency458

bias. After training on Seq-CIFAR100 for 5 tasks with a buffer size of 200, the model is deemed to459

have correctly predicted the task label if it predicts any of the classes that make up the sample’s true460

task label. As can be seen, ER and DER++ have a propensity to frequently classify the majority of461

samples as classes in the most recent task. However, TriRE’s predictions are uniformly distributed462

across the diagonal. TriRE essentially decreases interference between tasks, captures task-specific463

information through extracted sub-networks, and produces the least recency bias.464
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Figure 6: Confusion matrix of different rehearsal-based CL models. Unlike ER and DER++, TriRE
predictions are evenly distributed across the tasks with the least recency bias.

B.2 Stability-Plasticity Dilemma465

A CL model is said to be stable if it can retain previously learned information, and plastic if it can466

effectively acquire new information. The stability-plasticity dilemma refers to an inherent trade-off467
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Figure 7: (Left) Stability-Plasticity Trade-off for CL models trained on Seq-CIFAR100 with 5 tasks.
ER and DER++ are more plastic than stable leading to recency bias. TriRE maintains a better balance
between stability and plasticity and achieves the highest trade-off amongst the baselines. (Right)
Reliability diagram depicting model calibration: The red dashed line represents the ideal scenario.
Compared to the other two methods, TriRE is better calibrated with the lowest ECE value. All models
were trained on Seq-CIFAR100 with 5 tasks.

in which the CL model masters one of these aspects at the expense of the other. Sarfraz et al. (2022)468

[43] introduced a trade-off measure that serves as an approximation of how the model balances its469

stability and plasticity. Once the model completes the final task T , its stability (S) is assessed by470

calculating the average performance across all preceding T − 1 tasks as follows:471

S =

T−1∑
i=0

ATi (5)

The plasticity of the model (P) is evaluated by computing the average performance of each task after472

its initial learning i.e.,473

P =

T∑
i=0

Aii (6)

Thus, the trade-off measure determines the optimal balance between the stability (S) and the plasticity474

(P ) of the model. This measure is calculated as the harmonic mean of S and P .475

Trade-off =
2SP

S + P
(7)

Figure 7 (Left) provides the stability-plasticity trade-off measure for different CL methods across476

different datasets for a buffer size of 200. ER and DER++ exhibit high plasticity, enabling them477

to rapidly adapt to new information. However, they lack the ability to effectively retain previously478

acquired knowledge. On the other hand, TriRE exhibits substantially high stability with low plasticity,479

resulting in a higher stability-plasticity trade-off.480

B.3 Model Calibration481

Ensuring the reliability of safety-critical CL systems necessitates the presence of a well-calibrated482

model. Calibration refers to the task of accurately predicting probability estimates that reflect the483

true likelihood of correctness. Miscalibration, on the other hand, refers to the disparity between484

confidence and accuracy expectations. To assess the degree of miscalibration in classification, the485

Expected Calibration Error (ECE) involves partitioning the predictions into bins of equal size and486

calculating the difference between the weighted average of accuracy and confidence within each bin.487

A lower ECE value indicates better calibration in the underlying models. In Figure 7 (Right) shows488

a comparison of different CL approaches using a calibration framework trained on Seq-CIFAR100489

with a buffer size of 200. Well-calibrated CL systems accurately represent the true likelihood of490

accuracy (indicated by the red dashed line). Among the baselines, TriRE achieves the lowest ECE491

value and exhibits high calibration, demonstrating its effectiveness in minimizing task interference492

and reducing overconfidence in CL, thus enabling more informed decision making.493
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C Limitations494

We proposed TriRE, a novel CL paradigm that encompasses retaining the most prominent neurons for495

each task, revising and solidifying the knowledge extracted from current and past tasks, and actively496

promoting less active neurons for subsequent tasks through rewinding and relearning. As TriRE497

leverages the advantages of multiple orthogonal CL approaches, the selection of such approaches498

needs careful consideration, as these approaches may not always be complementary to each other.499

In addition, having multiple objective functions naturally expands the number of hyperparameters,500

thereby requiring hyperparameter tuning to achieve optimal performance. We also highlight that501

Retain, Revise, and Rewind steps are mainly proposed for CNN-based architectures. Therefore, more502

diligence is necessary when extending our method to other architectures such as vision transformers.503

D Hyperparameter Selection504

The hyperparameters required to replicate the results of TriRE can be found in Table 4. These505

hyperparameters were determined through a tuning process involving different random initializations506

and a small portion of the training set reserved for validation. All experiments were conducted using507

a batch size of 32 and trained for 50 epochs. TriRE was optimized using the Adam optimizer [23]508

implemented in PyTorch. Furthermore, the number of epochs allocated to each phase specified in509

Algorithm 1 was consistently set at a ratio of E1 : E2 : E3 = 3 : 1 : 1.510

Table 4: Best hyperparameters of TriRE chosen for optimal performance on different datasets.

Dataset η η′ γ λ
EMA Parameters Rewind

Percentileµ ζ

Seq-CIFAR10 0.0006 0.0001 0.4 0.06 0.999 0.18 0.9
Seq-CIFAR100 0.002 0.0001 0.2 0.04 0.999 0.12 0.9
Seq-TinyImageNet 0.002 0.0001 0.3 0.05 0.999 0.01 0.8

E Datasets and Settings511

We assess the effectiveness of our approach in two different types of CL scenarios: Class Incremental512

Learning (Class-IL) and Task Incremental Learning (Task-IL). In Task-IL and Class-IL, each task513

consists of a predetermined number of new classes that the model needs to learn. A CL model learns514

multiple tasks in sequence while being able to differentiate between all classes it has encountered so515

far. Task-IL is similar to Class-IL, but it has the advantage of having access to task labels during the516

inference process, making it one of the easiest scenarios.517

To evaluate the performance of our method in Task-IL and Class-IL scenarios, we employ three518

different datasets: Seq-CIFAR10, Seq-CIFAR100, and Seq-TinyImageNet. These datasets are derived519

from CIFAR10, CIFAR100, and TinyImageNet, respectively. In Seq-CIFAR10, CIFAR10 is divided520

into five tasks, each task containing two classes. Similarly, in Seq-CIFAR100, CIFAR100 is divided521

into five tasks, each consisting of 20 classes. Lastly, in Seq-TinyImageNet, we partition TinyImageNet522

into ten tasks, each of which comprises 20 classes. These datasets are designed to introduce more523

challenging scenarios for a comprehensive analysis of various CL methods. By increasing the number524

of tasks or the number of classes per task, we can thoroughly examine the effectiveness of different525

CL approaches in handling different levels of complexity. Following [6], we used ResNet-18 as526

the backbone in all our experiments. The training process remains consistent for both Class-IL and527

Task-IL. To compare various state-of-the-art approaches, we present the average accuracy across all528

tasks encountered in Class-IL. According to Task-IL conventions, we take advantage of task identity529

and selectively deactivate neurons in the linear classifier that are not related to the current task.530

Contrary to the common practice of using dense CL models, dynamic sparse approaches take a531

different approach by starting with a sparse network and maintaining the same level of connection532

density throughout the learning procedure to incorporate sparsity into a CL model; it is necessary to533

disentangle interfering units to prevent forgetting and establish new pathways to encode new knowl-534

edge. This presents challenges when implementing batch normalization and residual connections535

for both the NISPA and CLNP methods. Consequently, these methods do not employ the ResNet-18536
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architecture. Instead, they opt for a simpler convolutional neural network architecture without ‘skip537

connections’ and batch normalization.538
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