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Appendix1

In the appendix, we provide details omitted in the main text, including:2

• Section A: Implementation Details.3

• Section B: Low-Resolution Data (32×32).4

• Section C: Feature Embedding Distribution.5

• Section D: More Visualization of Synthetic Data.6

A Implementation Details7

A.1 Dataset Statistics8

Table 1 enumerates various permutations of ImageNet-1K training set, delineated according to their9

individual configurations. Tiny-ImageNet [1] incorporates 200 classes derived from ImageNet-1K,10

with each class comprising 500 images possessing a resolution of 64×64. ImageNette/ImageWoof [2]11

(alternatively referred to as subsets of ImageNet) include 10 classes from analogous subcategories,12

with each image having a resolution of 112×112. The MTT [3] framework introduces additional13

10-class subsets of ImageNet, encompassing ImageFruit, ImageSquawk, ImageMeow, ImageBlub,14

and ImageYellow. ImageNet-10/100 [4] samples 10/100 classes from ImageNet while maintaining an15

image resolution of 224×224. Downsampled ImageNet-1K rescales the entirety of ImageNet data to16

a resolution of 64×64. In our experiments, we opt for two standard datasets of relatively large scale:17

Tiny-ImageNet and the full ImageNet-1K.18

Training Dataset #Class #Img per class Resolution Method

Tiny-ImageNet [1] 200 500 64×64 MTT [3], FRePo [5], DM [6], SRe2L (Ours)
ImageNette/ImageWoof [2] 10 ∼1,000 112×112 MTT [3], FRePo [5]
ImageNet-10/100 [4] 10/100 ∼1,200 224×224 IDC [7]
Downsampled ImageNet-1K [8] 1,000 ∼1,200 64×64 TESLA [9], DM [6]
Full ImageNet-1K [10] 1,000 ∼1,200 224×224 SRe2L (Ours)

Table 1: Variants of ImageNet-1K training set with different configurations.

A.2 Squeezing Details19

Data Augmentation.20
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config value

optimizer SGD
base learning rate 0.2
weight decay 1e-4
optimizer momentum 0.9
batch size 256
learning rate schedule cosine decay
training epoch 100
augmentation RandomResizedCrop

(a) Tiny-ImageNet squeezing setting.

config value

optimizer AdamW
base learning rate 0.001
weight decay 0.01
optimizer momentum β1, β2 = 0.9, 0.999
batch size 1,024
learning rate schedule cosine decay
training epoch 300
augmentation RandomResizedCrop

(b) ImageNet-1K validation setting.

config value

αBN 1.0
optimizer Adam
base learning rate 0.1
weight decay 1e-4
optimizer momentum β1, β2 = 0.5, 0.9
batch size 100
learning rate schedule cosine decay
recovering iteration 1,000
augmentation RandomResizedCrop

(c) Tiny-ImageNet recovering setting.

config value

αBN 0.01
optimizer Adam
base learning rate 0.25
weight decay 1e-4
optimizer momentum β1, β2 = 0.5, 0.9
batch size 100
learning rate schedule cosine decay
recovering iteration 2,000
augmentation RandomResizedCrop

(d) ImageNet-1K recovering setting.

Table 2: Parameter settings in three stages.

Table 2 in the main paper illustrates that the utilization of data augmentation techniques during the21

squeeze phase contributes to a decrease in the final accuracy of the data recovered. To summarize,22

the results on Tiny-ImageNet indicate that lengthening the training period and the application of23

data augmentation in the squeeze phase intensify the intricacy involved in data recovery from the24

compressed model.25

Parallel conclusions are inferred from the compressed models for the ImageNet-1K dataset. For26

our experimental setup, we aimed to extract data from a pre-trained ResNet50 model with available27

V1 and V2 weights in the PyTorch model zoo. The results propose that the task of data extraction28

poses a greater challenge from the ResNet50 model equipped with V2 weights as compared to the29

model incorporating V1 weights. This can be attributed to the fact that models utilizing V1 weights30

are trained employing a rudimentary recipe, whereas models with V2 weights encompass numerous31

training enhancements, such as prolonged training and data augmentation, to achieve cutting-edge32

performance. These additional complexities impede the data recovery process. Therefore, the pre-33

trained models we employ for the recovery of ImageNet-1K images are those integrating V1 weights34

from the PyTorch model zoo.35

Hyper-parameter Setting.36

• Tiny-ImageNet: We train modified ResNet-{18, 50} models on Tiny-ImageNet data with the37

parameter setting in Table 2a. The well-trained ResNet-{18, 50} models achieve Top-1 accuracy of38

{59.47%, 61.17%} under the 50 epoch training setting.39

• ImageNet-1K: We use PyTorch off-the-shelf ResNet-{18, 50} with V1 weights and Top-1 accuracy40

of {69.76%, 76.13%} as squeezed/condensed models. In the original training script [11], ResNet41

models are trained for 90 epochs with a SGD optimizer, learning rate of 0.1, momentum of 0.9 and42

weight decay of 1× 10−4.43

A.3 Recovering Details44

Regularization Terms. We conduct a multitude of ablation experiments under varying regularization45

term conditions, as illustrated in Table 3. The two image prior regularizers, L2 regularization46

and total variation (TV), are not anticipated to enhance validation accuracy as our primary focus47
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Ablation Top-1 acc. (%)

RTV Rℓ2 Random Crop Tiny-ImageNet ImageNet-1K

✓ ✓ ✗ 29.87 22.92
✓ ✗ ✗ 29.92 23.15
✗ ✓ ✗ 30.11 40.81
✗ ✗ ✗ 30.30 40.37
✗ ✗ ✓ 37.88 46.71

Table 3: Top-1 validation accuracy under ablation experiment settings. ResNet-18 is used in three
stages with the relabling temperature τ = 20.

is on information recovery rather than image smoothness. Consequently, we exclude these two48

regularization terms from our experiments.49

Multi-crop Optimization. To offset the RandomResizedCrop operation applied to the training data50

during the model training phase, we incorporate a corresponding RandomResizedCrop augmentation51

on synthetic data. This implies that only a minor cropped region in the synthetic data undergoes52

an update in each iteration. Our experimentation reveals that our multi-crop optimization strategy53

facilitates a notable improvement in validation accuracy, as presented in Table 3. A comparative54

visualization with other non-crop settings in Fig. 1 shows multiple miniature regions enriched with55

categorical features spread across the entire image in the last columns (SRe2L). Examples include56

multiple volcanic heads, shark bodies, bee fuzz, and mountain ridges. These multiple small feature57

regions populate the entire image, enhancing its expressiveness in terms of visualization. Therefore,58

the cropped regions on our synthetic images are not only more closely associated with the target59

categories but also more beneficial for model training.60

Memory Consumption and Computational Cost. Regarding memory utilization, the memory61

accommodates a pre-trained model, reconstructed data, and the corresponding computational graph62

during the data recovery phase. Unlike the MTT approach, which necessitates all model states63

across all epochs during model training to align with the trajectory, our proposed methodology,64

SRe2L, merely requires the statistical data from each Batch Normalization (BN) layer, stored within65

the condensed model, for image optimization. In terms of computational overhead, it is directly66

proportional to the number of recovery iterations. To establish a trade-off between performance67

and computational time, we enforce a recovery budget of 1k iterations for Tiny-ImageNet and 2k68

iterations for ImageNet-1K in ablation experiments. Our best accuracy, achieved on condensed data69

from 4k recovery iterations, is presented in Table 4 in the main paper.70

Hyper-parameter Setting.71

We calculate the total recovery loss ℓtotal = argmin
Csyn,|C|

ℓ (ϕθT (x̃syn),y)+αBNRBN and update synthetic72

data with the parameter setting in Table 2c and Table 2d for Tiny-ImageNet and ImageNet-1K,73

respectively.74

A.4 Relabeling & Validation Details75

In this experiment, we utilize an architecture identical to that of a recovery model to provide soft76

labels as a teacher for synthesized images. We implement a fast knowledge distillation process for a77

duration of 300 epochs with a temperature setting of τ = 20.78

Hyper-parameter Setting. Regarding Tiny-ImageNet, we leverage the condensed data and the79

retargeted labels to train the validation model over a span of 100 epochs, with all other training80

parameters adhering to the condensing configurations outlined in Table 2a. In the case of ImageNet-81

1K, we train the validation model in accordance with the parameter configurations presented in82

Table 2b.83
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+RTV + Rℓ2
+RTV − Rℓ2

−RTV + Rℓ2
−RTV − Rℓ2

−RTV − Rℓ2
+ Crop

Figure 1: Distilled example visualization under various regularization terms and crop augmentation
settings. Selected classes are {Volcano, Hammerhead Shark, Bee, Valley}.

B Low-Resolution Data (32×32)84

Experiments were carried out on diminutive datasets such as MNIST and CIFAR. Intrinsically, these85

datasets encapsulate a limited quantum of information. Our method, which involves squeezing and86

subsequent recovering, inherently leads to information loss at each stage, thereby impeding the87

competitiveness of our results on these datasets. Nevertheless, our approach continues to demonstrate88

superior computational efficiency and enhanced processing speed when applied to these datasets.89

C Feature Embedding Distribution90

We feed the image data through a pretrained ResNet-18 model, subsequently extracting the feature91

embedding prior to the classification layer for the purpose of executing t-SNE [12] dimensionality92

reduction and visualization. Fig. 2a exhibits two distinct feature embedding distributions of synthetic93

Tiny-ImageNet data, sourced from 3 classes in MTT’s and SRe2L’s condensed datasets, respectively.94

Relative to the distribution present in MTT, SRe2L’s synthetic data from differing classes displays a95

more dispersed pattern, whilst data from identical classes demonstrates a higher degree of clustering.96

This suggests that the data synthesized by SRe2L boasts superior discriminability with respect97

to feature embedding distribution and can therefore be utilized to train models to attain superior98

performance. Fig. 2b portrays feature embedding distributions of SRe2L’s synthetic ImageNet data99

derived from 8 classes. Our synthetic ImageNet data also exemplifies exceptional clustering and100

discriminability attributes.101
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MTT SRe2L

Academic Gown Refrigerator Meat Loaf

(a) Tiny-ImageNet

SRe2L

Tench
Tiger Cat

Coffee Mug
Hook

Paper Towel
Tobacco Shop

Water Tower
Pit Bull Terrier

(b) ImageNet-1K

Figure 2: Feature embedding distribution on synthetic data and real ImageNet-1K data. ResNet-18 is
used as the feature embedding extractor.

D More Visualization of Synthetic Data102

We provide more visualization comparisons on synthetic Tiny-ImageNet between MTT and SRe2L in103

Fig. 3. Additionally, we furnish synthetic samples pertaining to ImageNet-1K in Fig. 4 and Fig. 5104

for a more comprehensive understanding. It can be observed that our synthetic data has stronger105

semantic information than MTT with more object textures, shapes and details, which demonstrates106

the superior quality of our synthesized data.107
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    Abacus           Academic  Gown           Acorn            African Elephant         Albatross  

        Alp                       Altar                   Alligator          American Lobster           Apron  

    Camel                   Baboon                Backpack                Banana                 Bannister

 Barbershop                Barn                     Barrel                  Basketball               Bathtub
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Figure 3: Synthetic Tiny-ImageNet data visualization from SRe2L and MTT [3].
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Figure 4: Synthetic ImageNet-1K data visualization from SRe2L.
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Figure 5: Synthetic ImageNet-1K data visualization from SRe2L.
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