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A Notations

Table 1: Summary of notations and their descriptions.
Notations Descriptions
G,Y,A,W Graph space, label space, architecture space and weight space

α,w Architecture operation choices and architecture weight
H,A Graph embeddings and adjacency matrix
O, |O| A pool of GNN operations and the number of operations
fα,w(·) A GNN characterized by operation choices α and weight w
s(·) Pseudo label generator defined by pretext tasks
c Learnable vectors for the latent factors
K The number of the latent factors
r Perturbation ratio in architecture augmentations

Tf (·) Architecture augmentation function
Enc(·) Architecture encoding function
l,L loss functions
ϕ(·) A function that calculates the similarity of two embeddings

B Additional Experiments and Analyses

B.1 Complexity Analysis

Denote the number of nodes and edges in the graph as N and E, the number of latent factors as
K, the number of operation choices as |O|, the dimensionality of hidden representations as d. The
time complexity of the disentangled super-network is O(K|E|d+K|V |d2), where the computation
for each factor is fully parallelizable and amenable to GPU acceleration, and K is usually a small
constant. The time complexity of the self-supervised training and contrastive search modules is both
O(K2d2). As architectures under different factors share the parameters, the number of learnable
parameters is the same as classical graph super-network, i.e., O(|O|d2). Therefore, the complexity of
our method is comparable to classical GNAS methods.
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Table 2: Comparisons of NAS methods in terms of empirical running time and performance on
unsupervised graph classification datasets (with single NVIDIA GeForce RTX 3090).

Data PROTEINS DD MUTAG IMDB-B
Metric ACC(%) Time(s) ACC(%) Time(s) ACC(%) Time(s) ACC(%) Time(s)

Random 74.5±0.9 2952 74.8±1.3 9401 82.1±2.8 949 69.0±2.1 2535
DARTS 73.6±0.9 80 75.7±0.9 650 86.5±2.3 21 70.4±0.6 65

GraphNAS 73.6±0.7 1897 75.2±0.9 7830 77.5±0.7 273 62.7±1.3 1595
PAS 74.6±0.3 156 76.5±0.9 931 84.0±1.6 36 64.6±13.8 127

GASSO - - - -

DSGAS 76.0±0.2 471 78.4±0.7 1800 88.7±0.7 41 72.0±0.5 261

Table 3: Comparisons of NAS methods in terms of empirical running time and performance on
unsupervised node classification datasets (with single NVIDIA GeForce RTX 3090).

Data CS Computers Physics Photo
Metric ACC(%) Time(s) ACC(%) Time(s) ACC(%) Time(s) ACC(%) Time(s)

Random 92.9±0.3 1071 84.8±0.4 3605 95.4±0.1 2095 91.1±0.6 522
DARTS 92.8±0.3 34 79.7±0.5 79 95.2±0.1 75 91.5±0.6 13

GraphNAS 91.6±0.3 647 69.0±0.6 5295 94.5±0.1 2268 89.3±0.7 435
PAS - - - -

GASSO 93.1±0.3 34 84.9±0.4 69 95.7±0.1 75 92.0±0.3 13

DSGAS 93.5±0.2 49 86.6±0.4 201 95.7±0.1 99 93.3±0.3 20

B.2 Empirical Running Time

We make the comparisons of different NAS methods in terms of the empirical running time. The time
is tested with one NVIDIA 3090 GPU. As shown in the Table 2 and Table 3, the running time of our
method DSGAS is on par with the state-of-the-art one-shot NAS methods (e.g., DARTS, GASSO,
and PAS), which is much more efficient than the multi-trial NAS methods (e.g., random search
and GraphNAS). While being competitive in efficiency, our method has significant performance
improvements over the baselines. The empirical results also confirm the theoretical complexity
analysis in Section B.1 that our method does not introduce many additional computational costs.

B.3 Search Space Analysis

We show how the performance of DSGAS changes when the search space is larger on the Computers
dataset in the Table 4 and Table 5. In Table 4 , we enlarge the search space by gradually increasing
the GNN operation pool , i.e. increasing the number of available GNN options. In Table 5, we enlarge
the search space by gradually increasing the number of factors , i.e. increasing the number of paths to
capture graph factors. As shown in the tables, when the search space is larger, the performance of our
method gradually improves, which verifies that our method can discover better architectures with a
larger search space.

B.4 Discussions of the Searched Architectures

We visualize several searched architectures in Figure 4 of the main paper, which are powerful yet
complex. Here, we make following discussions about the searched architectures.

∗This work was done during the author’s internship at Wechat, Tencent
†Corresponding authors

Table 4: The performance of our method with increasing number of available GNN options on the
Computers dataset.

|O| 2 3 4 5

ACC(%) 84.8±0.4 86.2±0.3 86.6±0.3 86.6±0.4
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Table 5: The performance of our method with increasing number of available factors on the Computers
dataset.

K 2 3 4 5

ACC(%) 85.1±0.4 86.6±0.4 87.3±0.4 86.5±0.4

Table 6: The performance of NAS methods on other graph datasets in unsupervised settings.
Data Cora Citeseer Pubmed

DARTS 78.4±0.3 71.1±0.8 78.8±0.7

GraphNAS 81.5±0.6 70.4±1.1 79.9±0.9

GASSO 80.2±0.8 69.5±1.1 78.1±0.8

DSGAS 83.5±0.4 72.2±1.4 80.6±0.4

We observe that in different random training runs, while the searched architectures show similar
performance, their DAGs are not the same, which is consistent with the NAS literature [1, 2]. A
possible reason is that there exist plenty of different architectures with very similar performance in
the large graph architecture search space [3]. As shown in Table 2 in the main paper, our method has
relatively low performance variance and high performance expectation, which shows that our method
can better search for the potential top-ranked architectures than baselines.

The number of factors K, which reflects the assumption of the number of graph factors to be captured
inside the data, controls the searchable architectures in our method. When K = 1, our method
can include single simple architectures with arbitrary operation combinations. When K ≥ 1, our
method can discover more sophisticated architectures to capture the inherent graph factors and obtain
better performance. Empirically, we observe that when K ≥ 1, the searched architectures are more
complex than single architectures but are also more competitive in capturing the graph properties,
which verifies the design of our method.

B.5 Additional Results in Unsupervised Settings

We provide the experimental results on Cora, CiteSeer, and PubMed in Table 6. We follow the
public data splits [4] of Cora, Citeseer, and Pubmed, and conduct graph neural architecture search
without labels. Similar to other unsupervised node classification datasets in the paper, we train the
super-network with fixed epochs , and for evaluation, we train a linear classifier and report the mean
accuracy and standard deviations on the test nodes of 5 runs with different random seeds. As shown
in the Table 6, our method DSGAS has significant performance improvement over the NAS baselines.

C Experimental Details

C.1 Unsupervised Settings

Setups Following previous works of graph self-supervised learning [5, 6], we first pretrain the
models by self-supervised loss with fixed epochs, and then evaluate the models by finetuning an extra
classifier. As supervised labels are not available in unsupervised settings, for fair comparisons, all the
methods adopt the same self-supervised tasks, [5] and [6] for graph and node classification tasks
respectively. For GNAS baselines, the self-supervised loss is utilized to train the model parameters as
well as select the architectures.

Evaluation protocols For graph-level classification tasks, the obtained graph representations are
evaluated by an SVM classifier with a 10-fold cross-validation and the process is repeated by five
times with different seeds. For node-level classification tasks, the obtained node representations are
evaluated by a logistic regression classifier with random splits twenty times. The average accuracies
and their standard deviations are reported. These protocols are kept the same for all methods to
guarantee fair comparisons. We summarize the pipeline of unsupervised settings for DSGAS in
Algorithm 1.
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Algorithm 1 The pipeline of unsupervised settings for DSGAS
Require: Graph G without labels, training epochs L.

1: Construct the dientangled graph architecture super-networks with randomly initialized weights
w and operation choices α.

2: for l = 1, . . . , L do
3: Calculate the self-supervised training loss with architecture-graph disentanglement Lw as Eq.

(9)
4: Update the super-network weights with w = w − λw∇wLw

5: Calculate the contrastive search loss with architecture augmentations Lα as Eq. (12)
6: Update the super-network operation choices with α = α− λα∇αLα

7: end for
8: Evaluate the searched model with linear protocols.

C.2 Semi-supervised Settings

Setups To further test the performance of GNAS in scenarios with scarce labels instead of exactly
no labels, we conduct semi-supervised experiments with limited labels, i.e., using 10%,5%,1% labels
for both training and validation. In this setting, we compare the differentiable GNAS baselines,
including DARTS, PAS and GASSO, which train super-network weights with training datasets and
optimize architecture parameters with validation datasets as in supervised settings. For DSGAS,
it first pretrains the super-network by methods mentioned in Section 3.2 and Section 3.3, and then
continues the search process as traditional supervised GNAS. We also include DSGAS-P, which does
not adopt the pretraining stage, as an ablated baseline.

Evaluation protocols For OGBG-Molhiv and OGBN-Arxiv, the splits are the same in the open
graph benchmark [7]. For Wechat-Video, we adopt random splits with a ratio of 6:2:2 for training,
validation, and testing by multi-label stratified splitting [8]. The available training and validation
labels are randomly sampled with a stratified sampling for settings of labeling rates 1%, 5%, and 10%.
We train the models with early-stop patience 50, and then we adopt the best-performed checkpoint
on validation data split, which is tested on testing data split to obtain the reported results. These
splits and the training strategies are kept the same for all methods to guarantee fair comparisons.
The experiments are run five times with different random seeds. We summarize the pipeline of
semi-supervised settings for DSGAS in Algorithm 2.

Algorithm 2 The pipeline of semi-supervised settings for DSGAS
Require: Graph G with limited labels, training epochs L, earlystop patience E.

1: Construct the dientangled graph architecture super-networks with randomly initialized weights
w and operation choices α.

2: Pretraining the super-networks for w and α using Algorithm 1
3: for l = 1, . . . , L do
4: Calculate the supervised loss on training data Lw.
5: Update the super-network weights with w = w − λw∇wLw.
6: Calculate the supervised loss on validation data Lα.
7: Update the super-network operation choices with α = α− λα∇αLα.
8: if the validation accuracy is non-increasing for E epochs then
9: break

10: end if
11: end for
12: Evaluate the searched model on testing data.
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D Implementation Details

D.1 Super-network Construction

The super-network generally consists of two parts, the operation pool and the directed acyclic graph
(DAG) that wires the operations. Following [9], we adopt three kinds of operations in the operation
pool as follows:

• Node aggregation operations, which aggregate messages from the neighborhood to update the
node representations, including GCN [10], GAT [11], GIN [12], GraphConv [13], GraphSage [14].
MLP (Multi-layer Perceptrons) is also included as an operation that does not utilize the neighbor-
hood.

• Graph pooling operations, which aggregate node representations to obtain graph-level represen-
tations, including SortPool [15], AttentionPool [16], MaxPool, MeanPool and SumPool. For
example, MeanPool takes the average of the node representations as the graph representation.

• Layer merging operations, which aggregate representations from intermediate layers to formulate
more expressive representations, including MaxMerge, ConcatMerge, SumMerge and MeanMerge.
For example, MaxMerge selects the max values in multiple representations from intermediate
layers.

For brevity, we denote ‘Agg’,‘Pool’,‘Merge’ as node aggregation operations, graph pooling operations,
and layer merging operations respectively. Following [17], the DAG for node classification tasks is a
straightforward path, i.e., Hl+1 = Aggl(Hl,A), and the embeddings of the last layer are utilized for
downstream tasks, where Hl denotes the hidden embeddings output by the l-th layer, and A denotes
the graph adjacency matrix. Following [9], the DAG for graph classification tasks is constructed by
Hl+1 = Aggl(Hl,A),Zl = Pooll(Hl,A), and the merged representations Merge(Z1,Z2, . . . ,ZL)
are utilized for downstream tasks, where L is the number of layers.

D.2 Hyperparameters

For fair comparisons, all methods adopt the same dimensionality, number of layers and normalization
techniques. For graph classification datasets, we adopt the dimensionality as 32, the number of layers
as 3 and batch normalization [18]. For node classification datasets, we adopt the dimensionality as
128 and the number of layers as 2 and layer normalization [19]. Adam optimizer [20] is adopted to
optimize the model weights and another SGD optimizer is adopted to optimize architecture parameters
for NAS methods. For our method, we adopt K = 3 for all node classification datasets and K = 4
for all graph classification datasets, and the hyperparameters that control the perturbation degree for
the architecture augmentations of operation choices, weights and embeddings are set to 1.1, 0.1, 0.05
respectively for all datasets.

D.3 Configurations

All experiments are conducted with:

• Operating System: Ubuntu 20.04.5 LTS
• CPU: Intel(R) Xeon(R) Gold 6240 CPU @ 2.60GHz
• GPU: NVIDIA GeForce RTX 3090 with 24 GB of memory
• Software: Python 3.9.12, Cuda 11.3, PyTorch [21] 1.12.1, PyTorch Geometric [22] 2.0.4.
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