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Abstract

We give a polynomial-time algorithm for learning high-dimensional halfspaces
with margins in d-dimensional space to within desired Total Variation (TV) distance
when the ambient distribution is an unknown affine transformation of the d-fold
product of an (unknown) symmetric one-dimensional logconcave distribution, and
the halfspace is introduced by deleting at least an ϵ fraction of the data in one
of the component distributions. Notably, our algorithm does not need labels and
establishes the unique (and efficient) identifiability of the hidden halfspace under
this distributional assumption. The sample and time complexity of the algorithm
are polynomial in the dimension and 1/ϵ. The algorithm uses only the first two
moments of suitable re-weightings of the empirical distribution, which we call
contrastive moments; its analysis uses classical facts about generalized Dirichlet
polynomials and relies crucially on a new monotonicity property of the moment
ratio of truncations of logconcave distributions. Such algorithms, based only on
first and second moments were suggested in earlier work, but hitherto eluded
rigorous guarantees.
Prior work addressed the special case when the underlying distribution is Gaussian
via Non-Gaussian Component Analysis. We improve on this by providing polytime
guarantees based on TV distance, in place of existing moment-bound guarantees
that can be super-polynomial. Our work is also the first to go beyond Gaussians in
this setting.

1 Introduction
Suppose points in Rd are labeled according to a linear threshold function (a halfspace). Learning a
threshold function from labeled examples is the archetypal well-solved problem in learning theory, in
both the PAC and mistake-bound models; its study has led to efficient algorithms, a range of powerful
techniques and many interesting learning paradigms. While the sample complexity in general grows
with the dimension, when the halfspace has a margin, the complexity can instead be bounded in
terms of the reciprocal of the squared margin width [PCST99, SBS+00, AV06, LS11]. The problem
is also very interesting for special classes of distributions, e.g., when the underlying distribution
is logconcave, agnostic learning is possible [KKMS08], and active learning needs fewer samples
compared to the general case [BBL06].

The main motivation for our work is learning a halfspace with a margin with no labels, i.e.,
unsupervised learning of halfspaces. This is, of course, impossible in general — there could be
multiple halfspaces with margins consistent with the data — raising the question: Can there be
natural distributional assumptions that allow the unsupervised learning of halfspaces? For example,
suppose data is drawn from a Gaussian in Rd with points in an unknown band removed, i.e., we
assume there exists a unit vector u ∈ Rd and an interval [a, b] so that the input distribution is the
Gaussian restricted to the set {x ∈ Rd|⟨u, x⟩ ≤ a or ⟨u, x⟩ ≥ b}. Can the vector u be efficiently
learned? Such a distributional assumption ensures that the band normal to u is essentially unique,
leaving open the question of whether it can be efficiently learned.
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Such models have been considered in the literature, notably for Non-Gaussian Component Analysis
(NGCA) [BKS+06, TV18], learning relevant subspaces [Blu94, VX11] and low-dimensional convex
concepts [Vem10] where data comes from a product distribution with all components being Gaussian
except for one (or a small number). It is assumed that the non-Gaussian component differs from
Gaussian in some low moment and the goal is to identify this component. Another related model
is Independent Component Analysis (ICA) where the input consists of samples from an affine
transformation of a product distribution and the goal is to identify the transformation itself [Com94,
Car98, GVX14, JKV23]. For this problem to be well-defined, it is important that at most one
component of the product distribution is Gaussian. No such assumption is needed for NGCA or the
more general problem we consider here.

Formally, we consider the following model and problem, illustrated in Figure 1.1.
Definition 1 (Affine Product Distribution with ϵ-Margin). Let q be a symmetric one-dimensional
isotropic logconcave density function. Let Q be the d-fold product distribution obtained from q. Let q̂
be the isotropized density obtained after restricting q to R\[a, b] where q((−∞, a]) ≥ ϵ, q([a, b]) ≥ ϵ

and q([b,∞)) ≥ ϵ. Let P be the product of one copy of q̂ and d− 1 copies of q. Let P̂ be obtained by
a full-rank affine transformation of P ; we refer to P̂ as an Affine Product Distribution with ϵ-Margin.
Let u be the unit vector normal to the margin before transformation.
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(a) Symmetric and asymmetric margin
[a, b]. We use contrastive covariance and
mean respectively.
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(b) Definition 1 with uniform q. P̂
is a full-rank affine transformation of
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(c) Unlabeled data is drawn
from P̂ . The goal is to learn
the normal vector u.

Figure 1.1: Affine Product Distribution with Margin.

With this model in hand, we have the following algorithmic problem.

Problem. Given input parameters ϵ, δ > 0 and access to iid samples from P̂ , an affine product
distribution with ϵ-margin, the learning problem is to compute a unit vector ũ that approximates u
to within TV distance δ. That is, the TV distance between the corresponding P̃ and P is at most δ,
where P̃ is the distribution with margin normal to ũ.

In this formulation of the problem with a TV distance guarantee, if each side of the halfspace receives
a different label, then the probability that the output halfspace of the data disagrees with the true label
(up to swapping the labels) is at most δ.

A natural approach to identifying the halfspace is maximum margin clustering [XNLS04]: find a
partition of the data into two subsets s.t. the distance between the two subsets along some direction is
maximized. Unfortunately, this optimization problem is NP-hard, even to approximate.

There are at least two major difficulties we have to address. The first is the unknown affine
transformation, which we cannot hope to completely identify in general. The second is that, even if
we reversed the transformation, the halfspace normal is in an arbitrary direction in Rd and would be
undetectable in almost all low-dimensional projections, i.e., we have a needle in a haystack problem.

1.1 Results and Techniques

We give an efficient algorithm for the unsupervised halfspace learning problem under any symmetric
product logconcave distribution. It consists of the following three high-level steps.

(1) Make the data isotropic (mean zero and covariance matrix identity).
(2) Re-weight data and compute the re-weighted mean µ̃i and the top eigenvector v of the

re-weighted covariance.
(3) Project data along the vectors µ̃i, v, and output the vector with the largest margin.

2



Although the algorithm is simple and intuitive, its analysis has to overcome substantial challenges.
Our main result is the following. The formal version (Theorem 7) is in the Appendix.

Theorem 1 (Main). There is an algorithm that can learn any affine product distribution with
ϵ-margin to within TV distance δ with time and sample complexity that are polynomial in d, 1/ϵ
and 1/δ with high probability.

To see the idea of the algorithm, we first consider the case when no affine transformation is applied.
In this case, we can detect the direction u by calculating the empirical mean and top eigenvector
of the empirical uncentered covariance matrix. If the margin [a, b] lies on one side of the origin,
the mean along u is nonzero while the mean in any other direction that is orthogonal to u is zero.
Thus the mean itself reveals the vector u. Otherwise, we can show that the second moment along
u is higher than along any other orthogonal direction. Thus, there is a positive gap between the
top two eigenvalues of the uncentered covariance matrix and the top eigenvector is u. In fact, the
algorithm applies more generally, to the product distribution created from one-dimensional bounded
isoperimetric distributions. A one-dimensional distribution p is isoperimetric if there exists a constant
ψ > 0 such that for any x ∈ R, p(x) ≥ ψmin{p([x,∞)), p((−∞, x])}. The theorem is stated as
follows. The formal version (Theorem 6), algorithm and proofs are included in the Appendix.

Theorem 2 (Isotropic Isoperimetric Distribution). There is an algorithm that can learn any
isotropic isoperimetric bounded product distribution with ϵ-margin to within TV distance δ with
time and sample complexity that are polynomial in d, 1/ϵ, 1/δ with high probability.

In the general case, when an unknown affine transformation is applied, the algorithm first computes
the empirical mean and covariance of the sample and makes the empirical distribution isotropic. Then
we will consider two cases as illustrated in Figure 1.1a. If the unknown band is not centered around
the mean along u, we can expect the empirical mean to differ from the mean of the underlying product
distribution without the margin. Consequently, if we knew the latter, we can use the difference to
estimate u. However, in general, we do not have this information. Instead, we demonstrate that there
exists a re-weighting of the sample so that re-weighted empirical mean compared to the unweighted
empirical mean is a good estimate of u. In other words, with appropriate re-weighting, the mean
shifts along the normal direction to the unknown band. On the other hand, if the band is centered
along u, the mean shift will be zero. In this scenario, we will show that the maximum eigenvector of
a re-weighted covariance matrix is nearly parallel to u!

Our algorithm only uses first and second order moments, can be implemented efficiently, and is in
fact practical (see Section 5). The main challenges are (1) proving the existence of band-revealing
re-weightings and (b) showing that a polynomial-sized sample (and polynomial time) suffice.

To prove the main theorem, we will show that either the re-weighted mean induces a contrastive
gap (Lemma 1), or the eigenvalues of the re-weighted covariance matrix induce a contrastive gap
(Lemma 2). In the subsequent two lemmas, we adopt the notation from Definition 1. Here, P
represents a product distribution with ϵ-margin defined by the interval [a, b] (before transformation).
Lemma 1 (Contrastive Mean). If |a+ b| > 0, then for any two distinct nonzero α1, α2 ∈ R, at least
one of the corresponding re-weighted means is nonzero, i.e.,

max

(∣∣∣∣ E
x∼P

eα1∥x∥2

u⊤x

∣∣∣∣ , ∣∣∣∣ E
x∼P

eα2∥x∥2

u⊤x

∣∣∣∣) > 0.

Lemma 2 (Contrastive Covariance). If a + b = 0, then there exists an α < 0, such that (1) there
is a positive gap between the top two eigenvalues of the re-weighted uncentered covariance matrix
Σ̃ = Ex∼P eα∥x∥

2

(xx⊤). That is, λ1(Σ̃) > λ2(Σ̃). (2) The top eigenvector of Σ̃ is u.

The proof of Lemma 1 uses Descartes’ rule of signs applied to a suitable potential function. To prove
Lemma 2, we develop a new monotonicity property of the moment ratio (defined as the ratio of the
variance ofX2 and the squared mean ofX2) for truncations of logconcave distributions. The moment
ratio is essentially the square of the coefficient of variation of X2. An insight from the monotonicity
of the moment ratio is that for logconcave distributions with positive support, when the distribution is
restricted to an interval away from the origin, it needs a smaller sample size to estimate its second
moment accurately. We state the lemma as follows.
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Lemma 3 (Monotonicity of Moment Ratio). Let q be a logconcave distribution in one dimension
with nonnegative support. For any t ≥ 0, let qt be the distribution obtained by restricting q to [t,∞).

Then the moment ratio of q, defined as mrq(t) :=
varqt (X

2)

(Eqt
X2)2 , is strictly decreasing with t.

To obtain polynomial guarantees, we will need quantitative estimates of the inequalities in the above
two lemmas. Establishing such quantitative bounds is the bulk of the technical contribution of this
paper. While our focus is on proving polynomial bounds, whose existence a priori is far from clear,
we did not optimize the polynomial bounds themselves; our experimental results suggest that in fact
the dependence on both d and 1/ϵ might be linear!

1.2 Related Work

Efficient algorithms for supervised halfspace learning [Ros58, MP69], combined with the kernel
trick [CST+00, HDO+98], serve as the foundation of much of learning theory. Halfspaces with
margin are also well-studied, due to their motivation from the brain, attribute-efficient learning [Val98,
Blu90], random projection based learning [AV06], and turn out to have sample complexity that grows
inverse polynomially with the margin, independent of the ambient dimension. When examples are
drawn from a unit Euclidean ball in Rd, and the halfspace has margin γ, then the sample complexity
grows as O(1/γ2) regardless of the dimension. This leads to the question of whether labels are even
necessary, or the halfspace can be identified from unlabeled samples efficiently — the focus of the
present paper.

The model of unsupervised learning we study is similar to other classical models in the literature,
notably Independent Component Analysis where input data consists of iid samples from an unknown
affine transformation of a product distribution. There, the goal is to recover the affine transformation
under minimal assumptions. Known polynomial-time algorithms rely on directional moments, and
the assumption that component distributions differ from a Gaussian in some small moment. A
related relevant problem, Non-Gaussian Component Analysis (NGCA), aims to extract a hidden
non-Gaussian direction in a high-dimensional distribution. Here too, the main idea is the fact that
non-Gaussian component must have some finite moment different from that of a Gaussian. While
finite moment difference implies a TV distance lower bound, to get ϵ-TV distance, one might need
to use k’th moments for k = Ω(log(1/ϵ)) even for logconcave densities. As the dependence on
the moment number is exponential (even for the sample complexity), this approach does not yield
polytime algorithms in terms of TV distance, the natural notion for classification.

The idea of applying Principal component analysis (PCA) to re-weighted samples was used in
[BV08] to unravel a mixture of well-separated Gaussians. For a mixture of two general Gaussians
that are mean separated, after making the mixture isotropic, it was shown that either the mean or top
eigenvector of the covariance of a re-weighted sample reveals the vector of the mean differences. This
high-level approach was used for solving general ICA by estimating re-weighted higher moments
(tensors) [GVX14]. Higher moment re-weightings were also used by [VX11] to give an algorithm
for factoring a distribution and learning “subspace juntas", functions of an unknown low-dimensional
subspace, and by [TV18] to give a more efficient algorithm for the special case of NGCA. The
question of whether expensive higher moment algorithms could be replaced by re-weighted second
moments is natural and one variant was specifically suggested by [TV18] for NGCA. Our work
validates this intuition with rigorous polynomial-time algorithms.

2 Algorithm
Our algorithm first makes the data to be isotropic using the sample mean and sample covariance. Then
we apply the weight w(y, α) = eα∥y∥

2

to each isotropized sample y, and compute the re-weighted
mean and the top eigenvector of the re-weighted covariance matrix. Then for each candidate normal
vector, we project the data to it, and scan to find the maximum gap. The algorithm outputs the vector
with the maximal gap among all candidate vectors. We give the formal description in Algorithm 1.

3 Analysis
We demonstrate that Algorithm 1 operates within polynomial time and sample complexity. The
details regarding sample complexity are presented in Theorem 1. The time complexity is justified by
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Algorithm 1 Unsupervised Halfspace Learning with Contrastive Moments

Input: Unlabeled data S = {x(1), · · · , x(N)} ⊂ Rd. ϵ, δ > 0.

• (Isotropize) Compute the sample mean and covariance:

µ̂ =
1

N

N∑
j=1

x(j), Σ̂ =
1

N

N∑
j=1

(x(j) − µ̂)(x(j) − µ̂)⊤.

Make the data isotropic: y(j) = Σ̂−1/2(x(j) − µ̂).
• (Re-weighted Moments) Set α1 = −c1ϵ82/d, α2 = −c2ϵ42/d and α3 = −c3ϵ2. Let
w(y, α) = eα∥y∥

2

. Compute the re-weighted sample means µα1
, µα2

using α1, α2 and the
re-weighted sample covariance using α3 as follows:

µ̃αi
=

1

N

N∑
j=1

w(y(j), αi)y
(j), for i ∈ {1, 2} and Σ̃ =

1

N

N∑
j=1

w(y(j), α3)y
(j)y(j)

⊤

Compute the top eigenvector v of Σ̃.
• (Max Margin) Calculate the max margin (i.e., maximum gap) of the one-dimensional

projections of the data along the vectors µ̂α1
, µ̂α2

, v, and let û be the vector among these
with the largest margin.

return û.

the algorithm’s process: it calculates the re-weighted sample mean and the top eigenvector of the
re-weighted sample covariance matrix, both of which require polynomial time.

In our algorithm, we consider two cases depending on whether the removed band [a, b] is origin-
symmetric. If it is asymmetric, we will show that one of the re-weighted means with two αs gives us
the correct direction by showing that the re-weighted mean along u has a gap from zero while the
re-weighted mean along all other orthogonal directions is zero. We state the positive gap quantitatively
in Lemma 4. Otherwise, if the band is symmetric, we will show a positive gap between the top two
eigenvalues of the re-weighted covariance matrix, and the top eigenvector corresponds to u. We
quantify the gap between the top two eigenvalues in Lemma 5. In the algorithm, since we know
neither the underlying distribution mean nor the location of the removed band, we have to compute
both re-weighted means and re-weighted covariance, and then get the correct direction among all
three candidate vectors by calculating the margin and finding the one with the largest margin.

Lemma 4 (Quantitative Gap of Contrastive Mean). Suppose that |a + b| ≥ ϵ5. Then, for α1 =
−c1ϵ82/d, α2 = −c2ϵ42/d, the re-weighted mean of P , denoted as µα1

and µα2
, satisfies

max
(∣∣u⊤µα1

∣∣ , ∣∣u⊤µα2

∣∣) > Cϵ159

d2
for some constant C > 0,

∀v⊥u, v⊤µα1 = v⊤µα2 = 0.

Lemma 5 (Quantitative Spectral Gap of Contrastive Covariance). Suppose that |a+ b| < ϵ5. Choose
α3 = −c3ϵ2 for some constant c3 > 0. Then, for an absolute constant C, the top two eigenvalues
λ1 ≥ λ2 of the corresponding re-weighted covariance of P satisfy

λ1 − λ2 ≥ Cϵ3λ1.

4 Proofs

Recall that we are given data x(1), · · · , x(N) drawn from the affine product distribution with ϵ-
margin P̂ . Algorithm 1 first makes the data isotropic. Denote y(1), · · · , y(N) as the corresponding
isotropicized data. Then each y(j) is an independent and identically distributed variable drawn from
P = q̂ ⊗ q ⊗ · · · q. Since we compute the re-weighted moments on y(j) in the algorithm, we analyze
the moments of P directly.
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Recall in Definition 1 that q is the symmetric one-dimensional isotropic logconcave density function,
and q̃ is the density obtained by restricting q to R\[a, b] for some unknown a < b. Denote µ1, σ

2
1 as

the mean and variance of q̃. q̂ is the density obtained after making q̃ isotropic, with support R\[a′, b′],
where a′ = a−µ1

σ1
, b′ = b−µ1

σ1
. We denote the standard basis of Rd by {e1, · · · , ed}, and assume wlog

that e1 = u is the (unknown) normal vector to the band. We write xi := ⟨x, ei⟩ as x’s i-th coordinate.
We assume in our proof that |b| > |a|. If this condition is not met, we can redefine our interval by
setting a′ = −b and b′ = −a. The proof can then be applied considering the distribution is restricted
to {x ∈ Rd : u⊤x ≤ a′ or u⊤x ≥ b′}. For a vector x ∈ Rd, we use ∥x∥ to denote its l2 norm. For a
matrix A ∈ Rm×n, we denote its operator norm as ∥A∥op.

Contrastive Mean. We can write the contrastive mean as a linear combination of exponential
functions of α. By Descartes’ rule of signs, the number of zeros of this function is at most two. Since
α = 0 is one root and corresponds to mean zero, there is at most one nonzero root. And thus we have
that for any two distinct nonzero α’s, at least one of them achieves nonzero contrastive mean.

+# > - +# ≤ -
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#′ % &′−#′
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Figure 4.1: Coefficient of eαx
2

in F (α). In the proof of Lemma 1, by combining eαx
2

terms, we flip
q̂(x) horizontally. For a′ > 0, the coefficient is negative when x ∈ (a′, b′) and non-negative outside
the interval. For a′ ≤ 0, it is negative when x ∈ (−a′, b′) and positive when x > b′.

Theorem 3 (Descartes’ Rule of Signs in the Integral Form). Let F (α) =
∫∞
0
a(x)eαx

2

dx. Then the
number of roots of F (α) = 0 is at most the number of sign changes in a(x) for x ≥ 0.

Proof of Lemma 1 (Contrastive Mean). |b| > |a| implies that µ1 < 0. For any x ≥ 0, we have

q̂(x) =
σ1q(xσ1 + µ1)

1−
∫ b
a
q(x) dx

≥ σ1q(−xσ1 + µ1)

1−
∫ b
a
q(x) dx

= q̂(−x).

Since P is a product distribution, we have

E
x∼P

eα∥x∥
2

x1 = E
x1∼q̂

eαx
2
1x1 ·

d∏
i=2

E
xi∼q

eαx
2
i

We denote

F (α) = E
x∼q̂

eαx
2
1x1 =

∫
R\[a′,b′]

eαx
2

xq̂(x) dx (4.1)

Then we rearrange F (α) by combining eαx
2

as in Figure 4.1.

If a′ ≤ 0, we rewrite F (α) as

F (α) = −
∫ b′

−a′
xq̂(−x)eαx

2

dx+

∫ ∞

b′
x(q̂(x)− q̂(−x))eαx

2

dx

We treat F (α) as the integral of a(x)eαx
2

for x ≥ −a′. Since q̂(x)− q̂(−x) > 0 for x > b′, we have
a(x) > 0 for x ∈ [−a′, b′) and a(x) < 0 for x > b′. In other words, for increasing x, the sign of
a(x) only changes once. By Theorem 3, F (α) = 0 has at most one root.
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If a′ > 0, we arrange F (α) in the same way and get

F (α) =

∫ a′

0

x(q̂(x)− q̂(−x))eαx
2

dx−
∫ b′

a′
xq̂(−x)eαx

2

dx+

∫ ∞

b′
x(q̂(x)− q̂(−x))eαx

2

dx

Similarly, we treat F (α) as the integral of a(x)eαx
2

for x ≥ 0. For increasing x, the sign of a(x)
changes twice. By Descartes’ rule of signs, F (α) = 0 has at most two roots. In addition, we know
F (0) = E

P
x1 = 0 by definition of P , which implies that α = 0 is one root of F (α). So there is at

most one nonzero root of F (α). In other words, for any two distinct nonzero α1, α2, at least one of
F (α1), F (α2) is nonzero. Consequently,

max

(∣∣∣∣ E
x∼P

eα1∥x∥2

x1

∣∣∣∣ , ∣∣∣∣ E
x∼P

eα2∥x∥2

x1

∣∣∣∣) > 0.

Proof Idea of Lemma 4 (Quantitative Gap of Contrastive Mean). To get a quantitative bound on the
contrastive mean, we follow the same idea of bounding the number of roots of F (α) as in Lemma 1.
By taking the derivative of F (α), we can show that either F ′(0) ̸= 0 or F ′′(0) ̸= 0. Then by Taylor
expansion, we can choose two distinct α’s (near zero) so that one of the corresponding contrastive
means is bounded away from zero.

Moment Ratio and Contrastive Covariance. To prove Lemma 2, we develop a new monotonicity
property of the moment ratio of logconcave distributions. Moment ratio is specifically defined as
the ratio of the fourth moment to the square of the second moment of truncated versions of the
distribution. This measurement essentially reflects the uncentered kurtosis of the distribution. We will
prove the monotonicity of the moment ratio by reducing the case of general logconcave distributions
to exponential distributions.

Proof of Lemma 3 (Moment Ratio). We show the monotonicity of moment ratio by showing its
derivative with respect to t is negative. DefineMk(t) =

∫∞
t
xkq(x) dx. By calculation, the derivative

of moment ratio is proportional to −H(t), where H(t) is defined as follows:

H(t) = t4M0(t)M2(t) +M2(t)M4(t)− 2t2M0(t)M4(t).

Let h(x) = βe−γx be an exponential function (β, γ > 0) such that

M0(t) = N0(t),M2(t) = N2(t), where Nk(t) =
∫ ∞

t

xkh(x) dx, k ∈ N.

Then we have ∫ ∞

t

(h(x)− q(x)) dx = 0,

∫ ∞

t

x2(h(x)− q(x)) = 0

By the logconcavity of q, the graph of h intersects with the graph of q at exactly two points u′ < v,
where v > 0. Also we have h(x) ≤ q(x) at the interval [u′, v] and h(x) > q(x) outside the interval.
Let u = max{0, u′}. So for x ≥ 0, (x− u)(x− v) has the same sign as h(x)− q(x). Since t ≥ 0,
we have ∫ ∞

t

(x2 − u2)(x2 − v2)(h(x)− q(x)) ≥ 0

Expanding the terms and we get∫ ∞

t

x4(h(x)− q(x)) ≥ (u2 + v2)

∫ ∞

t

x2(h(x)− q(x)) dx− u2v2
∫ ∞

t

(h(x)− q(x)) dx = 0

This shows that N4(t) ≥M4(t). To show that H(t) > 0, we consider two cases.

Firstly if M2(t)− 2t2 ≥ 0, we have

H(t) = t4M0(t)M2(t) +M4(t)(M2(t)− 2t2) > 0.
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Secondly if M2(t)− 2t2 < 0, by calculation of the exponential function’s moments, we have
t4N0(t)N2(t) > −N4(t)(N2(t)− 2t2)

This implies that
H(t) = t4M0(t)M2(t) +M4(t)(M2(t)− 2t2) ≥ (M2(t)− 2t2)(M4(t)−N4(t)) ≥ 0

The equality holds if and only if M4(t) = N4(t) > 0. Then we have
H(t) = t4N0(t)N2(t) +N4(t)(N2(t)− 2t2) > 0.

Combining both cases, mr′q(t) < 0,∀t ≥ 0, which implies that the moment ratio of q is strictly
decreasing with respect to t.

Proof Idea of Lemma 2 (Constrastive Covariance). View the spectral gap of the re-weighted
covariance, denoted as λ1(Σ̃)− λ2(Σ̃), as a function S(α). By calculation, S(0) = 0 and S′(0) is
proportional to mrq(b)− mrq(0), which is negative by the monotonicity property of moment ratio.
Then we can prove the spectral gap for the chosen α using Taylor expansion.

Proof Idea of Lemma 5 (Quantitative Gap of Contrastive Covariance). We first prove the case when
a = −b, and then extend the result to the near-symmetric case when |a+ b| < ϵ5 by comparing the
re-weighted second moments of two distributions created by restricting q to R\[a, b] and R\[−b, b]
respectively.

The following theorem enables us to bound the sample complexity to estimate the covariance matrix.
Lemma 6 (Covariance Estimation [SV13]). Consider independent isotropic random vectors Xi in
Rd s.t. for some C, η > 0, for every orthogonal projection P in Rd,

P(∥PXi∥ > t) ≤ Ct−1−η for t > Crank(P ).
Let ϵ ∈ (0, 1). Then with the sample size N = O(dϵ−2−2/η), we have

E ∥Σ− Σ̂∥op ≤ ϵ∥Σ∥op.

The following classical theorem will allow us to use the eigenvalue gap to identify the relevant vector.
Lemma 7 (Davis-Kahan [DK70]). Let S and T be symmetric matrices with the same dimensions. For
a fixed i, assume that the largest eigenvalue of S is well separated from the second largest eigenvalue
of S, i.e.∃δ > 0 s.t. λ1(S)− λ2(S) > δ. Then for the top eigenvectors of S and T , we have

sin θ(v1(S), v1(T )) ≤
2∥S − T∥op

δ
.

Proof Sketch of Main Theorem. We prove the theorem by considering whether the removed band
[a, b] is symmetric or not. If |a + b| ≥ ϵ5, by Lemma 4, for the chosen two αs, at least one of
the contrastive means µ̃i along u direction is bounded away from zero (by poly(1/d, ϵ)) and the
projection of the contrastive mean along any direction orthogonal to u is zero by symmetry. So by
Chebyshev’s Inequality, we will ensure that the angle between u and µ̃i is less than δ with high
probability using O(poly(d, 1/ϵ, 1/δ)) samples. On the other hand, if |a + b| < ϵ5, we rely on
the contrastive covariance. By Lemma 5, the top eigenvector v aligns with u while the top two
eigenvalues λ1 > λ2 satisfy λ1 − λ2 > poly(ϵ). By Lemma 7, we can upper bound the angle
between u and v by the quotient of the operator norm of the difference of the contrastive covariance
and sample contrastive covariance and the spectral gap λ1 − λ2. The covariance matrix itself can
be estimated to desired accuracy efficiently with O(poly(d, 1/ϵ, 1/δ)) samples by Lemma 6. This
ensures the closeness of u and top eigenvector v and hence a TV-distance guarantee. The formal
statement of the theorem and the proofs are included in the Appendix.

5 Experiments

While our primary goal is to establish polynomial bounds on the sample and time complexity, our
algorithms are natural and easy to implement. We study the efficiency and performance of Algorithm 1
on data drawn from affine product distributions with margin. Here we consider three special cases
of logconcave distribution: Gaussian, uniform in an interval and exponential. We include four
experiments. In all results, we measure the performance of the algorithm using the sin of the angle
between the true normal vector u and the predicted vector û, i.e., sin θ(u, û), which bounds the TV
distance between the underlying distribution and the predicted one after isotropic transformation.
Experimental results strongly suggest that the sample complexity is a small polynomial, perhaps even
just nearly linear in both the dimension and the separation parameter ϵ.
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Overall Performance. Here we conduct the experiments based on a grid search of (a, b) pairs on
three special cases of logconcave distribution: Gaussian, uniform in an interval and exponential. We
measure the performance of (a, b) pairs, where for each pair of (a, b), we conduct five independent
trials. For Gaussian and exponential distribution, we choose −3 ≤ a < b ≤ 3 and for uniform
distribution, we choose −1.5 ≤ a < b ≤ 1.5. Here we set the dimension d = 10 and sample size
N = 1000000. For the parameters, we choose α1 = α3 = −0.1, α2 = −0.2. See Figure 5.1 as the
heatmap of sin θ(u, û) given different pairs of (a, b).

Although in Algorithm 1, we use extremely small values of the weight parameter α, our experiments
show that larger constant values also work empirically, leading to much smaller sample complexity.
This coincides with our qualitative lemmas (Lemma 1, Lemma 2).

The algorithm performs well as seen in the results, except when a and b are both close to the edge,
and thus there is almost no mass on one side of the band. Also, the uniform distribution is the
easiest to learn, while the exponential is the hardest among these three distributions. As shown in all
three plots, the algorithm performs the best when a and b are near symmetric with origin. In other
words, contrastive covariance has better sample complexity than contrastive mean when we fix other
hyperparameters. This coincides with our sample complexity bounds as in the proof of Theorem 1.

(a) Gaussian (b) Uniform (c) Exponential

Figure 5.1: The performance of Algorithm 1 with varying (a, b).

Performance of Contrastive Mean and Covariance. In this experiment, we fix a negative a as
the left endpoint of the removed band, and measure the performance of both contrastive mean and
contrastive covariance with respect to different margin right endpoint b. As shown in Figure 5.2,
contrastive mean performs well except when a + b is close to zero, while contrastive covariance
performs well only when a+ b is close to zero. This coincides with our algorithm and analysis for
the two cases. In addition, our algorithm chooses the best normal vector among candidates from
both contrastive mean and covariance. So our algorithm achieves good performance (minimum of
contrastive mean and covariance curves).

Specifically, we choose a = −2, b ∈ [−1.9, 4] for Gaussian and exponential cases, and a = −0.5, b ∈
[−0.4, 0.9] for uniform case. We choose the dimension d = 10, the sample size N = 2000000. We
choose α1 = α3 = −0.1, α2 = −0.2. We average the result with 50 independent trials.

2 1 0 1 2 3 4
b

0.0

0.2

0.4

0.6

0.8

1.0

sin
(u

,u
)

Contrastive Mean
Contrastive Covariance

(a) Gaussian, a = −2.

0.4 0.2 0.0 0.2 0.4 0.6 0.8
b

0.0

0.2

0.4

0.6

0.8

1.0

sin
(u

,u
)

Contrastive Mean
Contrastive Covariance

(b) Uniform, a = −0.5.

2 1 0 1 2 3 4
b

0.0

0.2

0.4

0.6

0.8

1.0

sin
(u

,u
)

Contrastive Mean
Contrastive Covariance

(c) Exponential, a = −2.

Figure 5.2: The performance of Algorithm 1 for fixed a and varying b. The yellow lines show the
result computed using the top eigenvector of the contrastive covariance. The blue dotted lines show
the better of the two contrastive means.
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Dimension Dependence. In this experiment, we show the relationship between the input dimension
d and the sample complexity. For fixed number size N = 1000000, we measure the performance of
our algorithm with different d. The result is averaged based on a grid search of (a, b) pairs, where for
each pair of (a, b), we conduct five independent trials. For Gaussian and exponential distributions,
we choose −3 ≤ a < b ≤ 3 and for uniform distribution, we choose −0.8 ≤ a < b ≤ 0.8.

As shown Figure 5.3, the performance scales linearly with growing dimension d, suggesting a linear
relationship between the sample complexity and the input dimension.

20 40 60 80 100
d

0.0

0.1

0.2

0.3

0.4

0.5

0.6

sin
(u

,u
)

(a) Gaussian
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0.0
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0.3
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(b) Uniform
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d
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0.2

0.3

0.4

0.5

0.6

0.7

0.8

sin
(u

,u
)

(c) Exponential

Figure 5.3: The performance of Algorithm 1 for fixed sample size N and varying dimension d.

ϵ-Dependence. To further understand the dependence on the separation parameter ϵ, we plot the
performance versus 1/ϵ in Figure 5.4. Here we calculate 1/ϵ as 1/q([a, b]), and the performance as
the median sin θ(u, û) for specific mass q([a, b]). As we can see the performance drops near linearly
with respect to 1/ϵ, which indicates that the sample complexity is possibly linear in 1/ϵ as well.

(a) Gaussian (b) Uniform (c) Exponential

Figure 5.4: The performance with respect to 1/ϵ.

6 Discussion
We have proposed and analyzed an efficient algorithm to learn the symmetric product logconcave
distribution without labeled data. This is also connected to self-supervised learning. Specifically,
contrastive learning without data augmentation is closely related to the contrastive covariance part in
our algorithm.

The algorithm delivers more than the theoretical analysis. While our analysis focuses on specific
values of α, as demonstrated by the qualitative lemmas (Lemma 1, Lemma 2), any distinct pair
of nonzero α values should work for contrastive mean, and any bounded small α should work for
contrastive covariance. This flexibility ensures the applicability of the algorithm in various real-world
scenarios. Furthermore, our experimental results align with this claim.

The experiments reveals a linear relationship with the input dimension d, raising an open question
regarding the improvement of the sample complexity bound to be linear with respect to d (as well
as 1/ϵ). Additionally, it might be possible to extend the algorithm’s application to more general
distributions.

Acknowledgements. This work was supported in part by NSF awards CCF-2007443 and CCF-
2134105 and an ARC fellowship.
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Appendix
A Preliminaries

A.1 Logconcave Distributions

Lemma 8 (Lemma 5.4, [LV07]). LetX be a random point drawn from a one-dimensional logconcave
distribution. Then

P(X ≥ EX) ≥ 1

e
.

Lemma 9 (Lemma 5.5,[LV07]). Let p : R → R+ be an isotropic logconcave density function. Then
we have

(a) For all x, g(x) ≤ 1.

(b) g(0) ≥ 1/8.
Lemma 10 (Lemma 5.6,[LV07]). LetX be a random point drawn from a logconcave density function
p : R → R+. Then for every c ≥ 0,

P(p(X) ≤ c) ≤ c

maxx p(x)

Lemma 11 (Lemma 5.7, [LV07]). Let X be a random variable drawn from a logconcave distribution
in R. Assume that EX2 ≤ 1. Then for any t ≥ 1, we have

P(X ≥ t) ≤ e1−t

Corollary 1. Let X be a random point drawn from an isotropic symmetric logconcave density
function p : R → R+. Then we have for t ≥ 0, we have

P(X ≥ t) ≤ 8p(t)

Proof. Since p(x) is symmetric, we know p(x) is monotonically decreasing for x ≥ 0. Then we
apply Lemma 10 with c = p(x), and get

P(x ≥ t) ≤ P(p(X) ≤ p(t)) ≤ p(t)

maxx p(x)

On other hand, by Lemma 9, we have maxx p(x) ≥ p(0) ≥ 1/8. So we have

P(X ≥ t) ≤ 8p(t).

Lemma 12 (Theorem 5.22, [LV07]). For a random point X drawn from a logconcave distribution in
Rd, then

E|X|k ≤ (2k)k(E(|X|))k

Lemma 13. LetX be a random point drawn from an isotropic symmetric logconcave density function
p : R → R+. Then for any t ≥ 3, we have

p(t) ≤ p(0) · 2−t/3

Proof. First we claim that p(3) < p(0)/2. Otherwise,

EX2 ≥
∫ 3

0

x2p(x) dx ≥ p(0)

2

33

3
≥ 9

16
>

1

2

This leads to the contradiction. Then for any t ≥ 3, from the logconcavity of p,

p(3) ≥ p(0)1−
3
t p(t)

3
t

This implies that
p(t) ≤ p(0) · 2−t/3
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A.2 Descartes’ Rule of Signs

Descartes’ rule of signs is a well-known principle in algebra that offers a way to estimate the maximum
number of real roots for any polynomial. This classical theorem can be stated as follows:

Theorem 4 (Descartes’ Rule of Signs). For the generalized Dirichlet polynomial

F (x) =

n∑
j=1

aje
pjx, p1 ≥ p2 ≥ · · · ≥ pn,

the number of roots of F (x) = 0 is at most the number of sign changes in the series {a1, a2, · · · , an}.

In this section, we state and prove a variant of Descartes’ rule of signs in the integral form, which we
apply directly to prove Lemma 1. To begin with, we say a function f has a root of order k at point x
if

f(x) = f ′(x) = · · · = f (k−1)(x) = 0 and f (k)(x) ̸= 0.

We denote Z(f) as the number of roots of f , counted with their orders. Then we can show that the
number of roots of f is upper bounded by one plus the number of roots of f ′ in Lemma 14. We use
Rolle’s Theorem in the proof of the lemma.

Theorem 5 (Rolle’s Theorem). Suppose that a function f is differentiable at all points of interval
[a, b] and f(a) = f(b). Then there is at least one point x0 ∈ (a, b) such that f ′(x0) = 0.

Lemma 14. Z(f) ≤ Z(f ′) + 1.

Proof. Suppose f has a root of order kr as xr, 1 ≤ r ≤ n. Then f ′ has a root of order k − 1 at xr.
These add up to

n∑
r=1

(kr − 1) = Z(f)− n

By Rolle’s Theorem, f ′(x) also has at least n− 1 roots in the gaps between the points xr. Together,
these two facts give

Z(f ′) ≥ Z(f)− n+ n− 1 = Z(f)− 1.

Theorem 3 (Descartes’ Rule of Signs in the Integral Form). Let F (α) =
∫∞
0
a(x)eαx

2

dx. Then the
number of roots of F (α) = 0 is at most the number of sign changes in a(x) for x ≥ 0.

Proof. We prove the theorem with induction on the number of sign changes of a(x). For the base case
when the number of sign changes of a(x) is zero, we assume wlog that a(x) ≥ 0. Then F (α) > 0
and thus F (α) has no root. Now we assume that the theorem holds when the number of sign changes
is t and we will show the t+ 1 case.

Let one of the sign changes of a(x) occurs at x0. Define

F0(α) :=

∫ ∞

0

a(x)eα(x
2−x2

0) dx,

which has the same roots as F (α). By taking derivative, we get

F ′
0(α) =

∫ ∞

0

a(x)(x2 − x20)e
α(x2−x2

0) dx.

Let b(x) = a(x)(x2 − x20) be the new sequence. Then b(x) has one less sign changes than a(x). By
induction hypothesis, the number of roots of F ′

0(α) is upper bounded by the number of sign changes
of b(x). By Lemma 14, the number of roots of F0 is upper bounded by the number of sign changes
of a(x), thus leading to the induction step.
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B Warm-up: Isotropic Isoperimetric Distribution with ϵ-Margin

As a warm-up, we consider the isotropic product distributions with ϵ-margin. Notably, without
applying an unknown transformation on data, we can extend the logconcave distributions to
isoperimetric distributions. In this section, we will demonstrate how to retrieve the normal vector
u by calculating the empirical mean and top eigenvector of the empirical uncentered covariance
matrix. This technique is similar to Principal Component Analysis (PCA), but instead of computing
covariance matrix, we use the uncentered covariance matrix.
Definition 2. A distribution p with support R is ψ-isoperimetric if there exists ψ > 0 such that for
any x ∈ R, we have p(x) ≥ ψmin{p([x,∞)), p((−∞, x])}.
Definition 3 (Isotropic Isoperimetric Distribution with ϵ-Margin). Let q1, . . . , qd be symmetric
one-dimensional isotropic ψ-isoperimetric density functions bounded by τ . Let Q = q1 ⊗ · · · ⊗ qd.
Let q̂ be the density obtained after restricting q1 to R\[a, b] where q1((−∞, a]) ≥ ϵ, q1([a, b]) ≥ ϵ
and q1([b,∞)) ≥ ϵ. Let P be an arbitrary rotation of q̂ ⊗ q2 ⊗ · · · ⊗ qd. We refer P as an Isotropic
Isoperimetric Distribution with ϵ-Margin. Let u be the unit vector normal to the margin.

Problem. Given input parameters ϵ, δ > 0 and access to iid samples from P , an isotropic
isoperimetric distribution with ϵ-margin, the learning problem is to compute a unit vector ũ that
approximates u to within TV distance δ. That is, the TV distance between the corresponding P̃ and
P is at most δ, where P̃ is the distribution with margin normal to ũ.

B.1 Algorithm

Given data drawn from P , we compute the sample mean and the top eigenvector of the uncentered
covariance matrix. Then we compare the max margin along these two candidate normal vectors. This
gives an efficient algorithm for the problem with no re-weighting. We state the algorithm formally in
Algorithm 2.

Algorithm 2 Unsupervised Halfspace Learning from Isotropic Isoperimetric Data

Input: Unlabeled data {x(1), · · · , x(N)} ⊂ Rd. ϵ, δ > 0.

• Compute the sample mean and uncentered covariance matrix:

µ̂ =
1

N

N∑
j=1

x(j), Σ̂ =
1

N

N∑
j=1

x(j)x(j)
⊤

• Compute Σ̂’s top eigenvector v.
• Calculate the max margin (i.e., maximum gap) of the one-dimensional projections of the

data along the vectors µ̂, v. Let û be the vector among these two with a larger margin.

return the vector û.

B.2 Analysis

We demonstrate that Algorithm 2 operates within polynomial time and sample complexity. The
details regarding sample complexity are presented in Theorem 2 (formal statement of Theorem 6).
The time complexity is justified by the algorithm’s process: it calculates the sample mean and the top
eigenvector of the sample covariance matrix, both of which require polynomial time.
Theorem 6 (Sample Complexity for Isotropic Isoperimetric Distribution). Algorithm 2 with N =
Õ(d2ϵ−6δ−2ξ−1) samples learns the target isotropic isoperimetric distribution with ϵ-margin to
within TV distance δ with probability 1− ξ.

The analytical approach is straightforward. Given that the component distributions are isotropic,
the empirical mean will reveal the band if the removed band [a, b] stays on one side of the origin.
Otherwise, when [a, b] spans across the origin, the variance along the component with the deleted band
will increase. Consequently, this component emerges as the top principal component. Intriguing, this
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property is “opposite" to the method used to identify low-dimensional convex concepts in [Vem10].
The latter relies on the Brascamp-Lieb inequality, where the variance of a restricted Gaussian is less
than that of the original Gaussian.

To prove Theorem 6, we aim to quantify either the mean gap or the spectral gap (gap between the top
two eigenvalues) of the uncentered covariance matrix. Specifically, Lemma 15 indicates that when
0 ≤ a < b, the mean along the direction u significantly deviates from zero. Meanwhile, Lemma 16
demonstrates that when a ≤ 0 < b, there’s a gap between the first and second eigenvalues of the
uncentered covariance matrix. Subsequently, we employ Lemma 6 [SV13] to determine the sample
complexity, and utilize the Davis-Kahan Theorem [DK70] (Lemma 7) to leverage the eigenvalue gap
in identifying the pertinent vector u. We leave the proof of the lemmas in Section B.3.

For any x ∈ R, we denote xi as its i-th coordinate. We use ∥x∥ to denote its l2 norm. For a
matrix A ∈ Rm×n, we denote its operator norm as ∥A∥op. We denote the standard basis of Rd by
{e1, · · · , ed}, and assume wlog that e1 = u is the (unknown) normal vector to the band. Denote
Σ = Ex∼P xx⊤ as the uncentered covariance matrix of P , with eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λd.
Lemma 15 (Mean Gap). For 0 ≤ a < b and b− a ≥ cϵ for constant c > 0, we have

E
x∼q̂

x < −ψc
2ϵ3

2
, var
x∼q̂

x ≤ 1

2ϵ
.

Lemma 16 (Spectral Gap of Covariance). If a ≤ 0 < b and b > cϵ for constant c > 0, then the first
and second eigenvalues of the uncentered covariance matrix Σ have the following gap

λ1 − λ2 > Cϵ3λ1 for constant C > 0.

Furthermore, the top eigenvector corresponds to u.

Now we are ready to prove Theorem 6.

Proof of Theorem 6. We can proceed with the assumption that |b| > |a|. If this condition is not
met, we can redefine our interval by setting a′ = −b and b′ = −a. The proof can then be applied
considering the distribution is restricted to {x ∈ Rd : u⊤x ≤ a′ or u⊤x ≥ b′}. We will prove the
theorem by considering two cases: 0 ≤ a < b and a ≤ 0 < b .

We first consider the case when 0 ≤ a < b. Given that q1 is bounded by τ , it follows that b−a > ϵ/τ .
By Lemma 15, we know

E
x∼P

x1 < −ψϵ
3

2τ2
, var
x∼P

x1 ≤ 1

2ϵ
,

while for i ≥ 2, we have
E
x∼P

xi = 0, var
x∼P

xi = 1.

Given data x(1), · · · , x(N), let µ̂ = 1
N

∑N
j=1 x

(j) be the sample mean. Then by Chebyshev’s
Inequality,

P(µ̂1 > −ψϵ
3

4τ2
) ≤ 8τ4

Nψ2ϵ7
, P(µ̂i < − ψϵ3δ

4τ2
√
d
) ≤ 16τ4d

Nψ2ϵ6δ2
, 2 ≤ i ≤ d

Let 0 < ξ < 1. So we know with sample size N1 = 16τ4d2

ϵ7δ2ψ2ξ ,

P(µ̂1 > −ψϵ
3

4τ2
) ≤ ψ2δ2ξ

2d2
<
ξ

d
, P(µ̂i < − ψϵ3δ

4τ2
√
d
) ≤ ϵξ

d
<
ξ

d

Then we have

P(sin θ(µ̂, e1) ≤ δ) =P(
µ̂2
1∑d

i=1 µ̂
2
i

≥ 1− δ2)

≥P(µ̂1 < −ψϵ
3

4τ2
, µ̂i > − ψϵ3δ

4τ2
√
d
, 2 ≤ i ≤ d)

≥1− ξ
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Secondly, we consider the case where a ≤ 0 < b. Given that b− a > ϵ/τ and |b| > |a|, it results in
b > ϵ/(2τ). By Lemma 16, the top two eigenvalues of Σ, denoted as λ1 and λ2 satisfies

λ1 − λ2 ≥ Cϵ3λ1 for some constant C > 0

By Lemma 6, with sample size N2 = Õ(dϵ−2
1 ), with probability at least 1− ξ,

∥Σ− Σ̂∥op ≤ ϵ1∥Σ∥op

By Lemma 7, we know for the top eigenvector v of Σ̂ satisfies

sin θ(e1, v) ≤
2∥Σ− Σ̂∥op

Cϵ3λ1
≤ 2ϵ1λ1
Cϵ3λ1

=
2ϵ1
Cϵ3

Choose ϵ1 = Cϵ3δ/2, and we will get sin θ(e1, v) ≤ δ. The sample size we need is N2 =

Õ(dϵ−6δ−2). So with sample size N = max(N1, N2) = Õ(d2ϵ−6δ−2ξ−1), Algorithm 2 can
recover e1 within TV distance δ with probability 1− ξ.

B.3 Proofs

Lemma 15 (Mean Gap). For 0 ≤ a < b and b− a ≥ cϵ for constant c > 0, we have

E
x∼q̂

x < −ψc
2ϵ3

2
, var
x∼q̂

x ≤ 1

2ϵ
.

Proof. Since q1 is ψ−isoperimetric, ∀t ∈ [a, b], q1(t) ≥ ψ
∫∞
t
q1(x) dx ≥ ψϵ. Then we have∫ b

a

xq1(x) dx > ψϵ

∫ b

a

x dx >
c2ψϵ3

2

By the definition of expectation, we have

| E
x∼q̂

x| =
|
∫
R\[a,b] xq1(x) dx|∫
R\[a,b] q1(x) dx

=
|
∫ b
a
xq1(x) dx|∫

R\[a,b] q1(x) dx
>
c2ϵ3

2

On the other hand, we can calculate the variance as follows.

var
x∼q̂

x ≤ E
x∼q̂

x2 =

∫
R\[a,b] x

2q1(x) dx∫ a
−∞ q1(x) dx+

∫∞
b
q1(x) dx

≤
∫
R x

2q1(x) dx

2ϵ
=

1

2ϵ

Lemma 17 (Second Moment). For a, b satisfying a ≤ 0 < b, b > cϵ for constant c > 0, we have

E
x∼q̂

x2 > 1 + Cϵ2 for constant C > 0.

Proof. By definition of q̂, we know its density on the support x ∈ R\[a, b] is

q̂(x) =
q1(x)∫ a

−∞ q1(x) dx+
∫∞
b
q1(x) dx

Then we calculate its second moment as follows.

E
x∼q̂

x2 =

∫∞
−a x

2q1(x) dx+
∫∞
b
x2q1(x) dx∫∞

−a q1(x) dx+
∫∞
b
q1(x) dx

Define g(x) :=
∫∞
x

(t2 − 1)q1(t) dt, x ≥ 0. Its derivative is g′(x) = (1 − x2)q1(x). So we know
g(x) is monotonically increasing when x ∈ [0, 1], and decreasing when x ≥ 1. Since P1 is symmetric
and isotropic, we know

∫∞
0
q1(x) dx =

∫∞
0
x2q1(x) dx = 1/2. So we have g(0) = 0. This derives

that g(x) ≥ 0,∀x ≥ 0. In other words,
∫∞
−a x

2q1(x) dx ≥
∫∞
−a q1(x) dx.

17



For any x ∈ [cϵ,M ], we have g(x) ≥ min(g(cϵ), g(M)). Here we let M > 0 such that∫∞
M
p(x) dx = ϵ. Then we can lower bound g(cϵ) as follows.

g(cϵ) = g(0) +

∫ cϵ

0

g′(x) dx =

∫ cϵ

0

(1− x2)q1(x) dx > cϵ(1− c2ϵ2)q1(cϵ) > ψcϵ2(1− c2ϵ2)

If M ≤ 1, we know |b| < M ≤ 1. Then we have g(b) ≥ g(cϵ).

If M ≥ 1 + ϵ, we can lower bound g(M) as

g(M) > (M2 − 1)

∫ ∞

M

q1(x) dx > ((1 + ϵ)2 − 1)ϵ = ϵ3 + 2ϵ2

Similarly we will get g(b) > min(ψcϵ2(1− c2ϵ2), ϵ3 + 2ϵ2). Finally if 1 < M < 1 + ϵ, there exists
M ′ > 0 such that

∫M ′

M
q1(x) dx = ϵ/2. Here M ′ −M > ϵ/2. Then we have

g(M ′) > (M ′2 − 1)

∫ ∞

M ′
q1(x) dx > ((1 + ϵ/2)2 − 1)ϵ/2 = ϵ3/8 + ϵ2/2

In this case, we have g(b) > min(g(ϵ), g(M ′)) > min(ψcϵ2(1− c2ϵ2), ϵ3/8+ ϵ2/2). Therefore, we
can lower bound the second moment of q̂ as follows.

E
x∼q̂

x2 >

∫∞
−a q1(x) dx+

∫∞
b
q1(x) dx+ g(b)∫∞

−a q1(x) dx+
∫∞
b
q1(x) dx

>1 +
min(ψcϵ2(1− c2ϵ2), ϵ3/8 + ϵ2/2)∫∞

−a q1(x) dx+
∫∞
b
q1(x) dx

>1 + min(ψcϵ2(1− c2ϵ2), ϵ3/8 + ϵ2/2)

>1 + Cϵ3 where C = min(ψc/2, 1/8)

Lemma 16 (Spectral Gap of Covariance). If a ≤ 0 < b and b > cϵ for constant c > 0, then the first
and second eigenvalues of the uncentered covariance matrix Σ have the following gap

λ1 − λ2 > Cϵ3λ1 for constant C > 0.

Furthermore, the top eigenvector corresponds to u.

Proof. We assume wlog that e1 = u. Then the marginal distribution of P in e1 is q̂, while the marginal
distribution in ei is qi for any 2 ≤ i ≤ d. Since qi is isotropic, for any 2 ≤ i ≤ d, E

x∼P
x2i = 1. By

Lemma 17, we have E
x∼P

x21 > 1 + C ′ϵ3 for constant C ′ > 0. Let g(v) := E
x∼P

v⊤xx⊤v
v⊤v

. Then we

have g(e1) > 1 + C ′ϵ3, while g(ei) = 1,∀2 ≤ i ≤ d. Then for any unit vector v =
∑d
i=1 βiei

satisfying
∑d
i=1 β

2
i = 1, we have

g(v) =

d∑
i=1

β2
i g(ei) ≤ g(e1)

Then we know the top eigenvalue of Σ is λ1 > 1+Cϵ3. Furthermore, the top eigenvector corresponds
to e1. Similarly, the second eigenvalue of Σ is λ2 = maxv:v⊥e1 g(v) = g(ei) = 1, 2 ≤ i ≤ d. This
implies that λ1 − λ2 > Cϵ3λ1 for constant C > 0.
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C General Case: Affine Product Distribution with ϵ-Margin

In this section, we first prove the main theorem in Section C.1 using the quantitative lemmas, and then
prove all the lemmas. We begin with proving the two qualitative lemmas (Lemma 1 and Lemma 2)
in Section C.2, and then prove the quantitative lemmas (Lemma 4 and Lemma 5) in the remaining
section. For the quantitative part, we first consider the asymmetric case where |a+ b| ≥ ϵ5. In this
case, contrastive mean leads to recovering u, as elaborated in Section C.3. Secondly, we consider the
symmetric case characterized by a+ b = 0, addressed in Section C.4. We show that we can recover
u by calculating the top eigenvector of the re-weighted covariance matrix. Finally we extend the
result to near-symmetric case where |a+ b| < ϵ5 in Section C.5.

Recall that we are given data x(1), · · · , x(N) drawn from the affine product distribution with ϵ-
margin P̂ . Algorithm 1 first makes the data isotropic. Denote y(1), · · · , y(N) as the corresponding
isotropicized data. Then each y(j) is an independent and identically distributed variable drawn from
P = q̂ ⊗ q ⊗ · · · q. Since we compute the re-weighted moments on y(j) in the algorithm, we analyze
the moments of P directly.

Recall in Definition 1 that q is the symmetric one-dimensional isotropic logconcave density function,
and q̃ is the density obtained by restricting q to R\[a, b] for some unknown a < b. Denote µ1, σ

2
1 as

the mean and variance of q̃. q̂ is the density obtained after making q̃ isotropic, with support R\[a′, b′],
where a′ = a−µ1

σ1
, b′ = b−µ1

σ1
. The density q̂ on its support is

q̂(x) =
σ1q(xσ1 + µ1)∫ a

−∞ q(x) dx+
∫∞
b
q(x) dx

We denote the standard basis of Rd by {e1, · · · , ed}, and assume wlog that e1 = u is the (unknown)
normal vector to the band. We write xi := ⟨x, ei⟩ as x’s i-th coordinate. We assume in our proof
that |b| > |a|. If this condition is not met, we can redefine our interval by setting a′ = −b and
b′ = −a. The proof can then be applied considering the distribution is restricted to {x ∈ Rd : u⊤x ≤
a′ or u⊤x ≥ b′}. For a vector x ∈ Rd, we use ∥x∥ to denote its l2 norm. For a matrix A ∈ Rm×n,
we denote its operator norm as ∥A∥op.

C.1 Proof of Theorem 1

Armed with two quantitative lemmas and the Davis-Kahan Theorem, we are now prepared to prove
the main theorem. We state the formal version of Theorem 1 as follows.
Theorem 7 (Sample Complexity for Affine Product Distribution with ϵ-Margin). Algorithm 1 with
N = Õ(d6ϵ−318δ−2ξ−1) samples learns the target affine product distribution with ϵ-margin to
within TV distance δ with probability 1− ξ.

Proof. Firstly we consider the case when |a+ b| ≥ ϵ5. Denote α∗ = argmaxα{|(µα1
)1|, |(µα2

)1|},
and µα = µα∗ . By Lemma 4, |(µα)1| ≥ C1ϵ

159/d2. Since for any negative α, for any 1 ≤ i ≤ d,

var(µα)i ≤ E
y∼P

e2α
∗∥y∥2

y2 ≤ E
y∼P

y2 = 1

By Chebyshev’s Inequality, the re-weighted sample mean µ̃ = 1
N

∑N
j=1 e

α∗∥y(j)∥2

y(j) satisfies

P(|µ̃1| ≤
C1ϵ

159

2d2
) ≤ 4d4

NC2
1ϵ

318
, P(|µ̃i| ≥

C1ϵ
159δ

2d2
√
d
) ≤ 4d5

NC2
1ϵ

318δ2
, 2 ≤ i ≤ d.

Let the sample size N1 = 4d6

C2
1ϵ

318δ2ξ
= O(Cd6ϵ−318δ−2ξ−1), and we have

P(|µ̃1| >
C1ϵ

159

2d2
) > 1− ξ

d
, P(|µ̃i| <

C1ϵ
159δ

2d2
√
d
) > 1− ξ

d
, 2 ≤ i ≤ d.

So we have

P(sin θ(µ̃, e1) ≤ δ) =P(
µ̃2
1∑d

i=1 µ̃
2
i

≥ 1− δ2)
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≥P(|µ̃1| ≥
C1ϵ

159

2d2
, |µ̃i| ≤

C1ϵ
159δ

2d2
√
d
, 2 ≤ i ≤ d)

≥1− ξ

This indicates that with probability 1− ξ, the re-weighted mean can output the vector µ̃ that is within
angle δ to the vector e1.

Secondly, for the case when a and b are near-symmetric. Denote Σ as the re-weighted covariance
matrix with eigenvalues λi and Σ̃ as the empirical re-weighted covariance matrix with eigenvector
v. By Lemma 5, λ1 − λ2 > C2ϵ

3λ1. By Lemma 6, with sample size N2 = Õ(dϵ−6δ−2ξ−1), with
probability 1− ξ,

∥Σ− Σ̃∥op ≤ C2ϵ
3δ∥Σ∥op/2

By Lemma 7,

sin θ(e1, v) ≤
2∥Σ− Σ̃∥op

C2ϵ3λ1
≤ C2ϵ

3δλ1
C2ϵ3λ1

= δ

So given N = max(N1, N2) = Õ(d6ϵ318δ−2ξ−1), the algorithm learns the distribution P with
probability 1− ξ.

C.2 Proofs of Qualitative Bounds

We present proofs of two qualitative lemmas: the contrastive mean (Lemma 1) and the contrastive
covariance (Lemma 2). Their quantitative counterparts can be found in Section C.3 and Section C.5.
To establish the contrastive mean, we invoke Descartes’ Rule of Signs. For the proof concerning
contrastive covariance, we introduce a novel monotonicity property on the moment ratio, as described
in Lemma 3. We include the complete proof within this section.

+# > - +# ≤ -

)

% #′ &′ ) % −#′ &′ )#′

#′ % &′−#′
"!(−))
"!())

)#′% &′
"!(−))
"!())

Figure C.1: Coefficients of F (α) ahead of eαx
2

term in Lemma 1’s proof. By combining eαx
2

terms,
we flip q̂(x) horizontally. For a′ > 0, the coefficient is negative when x ∈ (a′, b′) and non-negative
outside the interval. For a′ ≤ 0, the it is negative when x ∈ (−a′, b′) and positive when x > b′.

Contrastive Mean. We can write the contrastive mean as a linear combination of exponential
functions of α. By Descartes’ rule of signs, the number of zeros of this function is at most two. Since
α = 0 is one root and corresponds to mean zero, there is at most one nonzero root. And thus we have
that for any two distinct nonzero α’s, at least one of them achieves nonzero contrastive mean.
Lemma 1 (Contrastive Mean). If |a+ b| > 0, then for any two distinct nonzero α1, α2 ∈ R, at least
one of the corresponding re-weighted means is nonzero, i.e.,

max

(∣∣∣∣ E
x∼P

eα1∥x∥2

u⊤x

∣∣∣∣ , ∣∣∣∣ E
x∼P

eα2∥x∥2

u⊤x

∣∣∣∣) > 0.

Proof. |b| > |a| implies that µ1 < 0. For any x ≥ 0, we have

q̂(x) =
σ1q(xσ1 + µ1)

1−
∫ b
a
q(x) dx

≥ σ1q(−xσ1 + µ1)

1−
∫ b
a
q(x) dx

= q̂(−x).
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Since P is a product distribution, we have

E
x∼P

eα∥x∥
2

x1 = E
x1∼q̂

eαx
2
1x1 ·

d∏
i=2

E
xi∼q

eαx
2
i

We denote

F (α) = E
x∼q̂

eαx
2
1x1 (C.1)

By calculation, we have

F (α) =

∫
R\[a′,b′]

eαx
2

xq̂(x) dx

Then we rearrange F (α) by combining eαx
2

as in Figure C.1.

If a′ ≤ 0, we rewrite F (α) as

F (α) = −
∫ b′

−a′
xq̂(−x)eαx

2

dx+

∫ ∞

b′
x(q̂(x)− q̂(−x))eαx

2

dx

We treat F (α) as the integral of a(x)eαx
2

for x ≥ −a′. Since q̂(x)− q̂(−x) > 0 for x > b′, we have
a(x) > 0 for x ∈ [−a′, b′) and a(x) < 0 for x > b′. In other words, for increasing x, the sign of
a(x) only changes once. By Theorem 3, F (α) = 0 has at most one root.

If a′ > 0, we arrange F (α) in the same way and get

F (α) =

∫ a′

0

x(q̂(x)− q̂(−x))eαx
2

dx−
∫ b′

a′
xq̂(−x)eαx

2

dx+

∫ ∞

b′
x(q̂(x)− q̂(−x))eαx

2

dx

Similarly, we treat F (α) as the integral of a(x)eαx
2

for x ≥ 0. For increasing x, the sign of a(x)
changes twice. By Descartes’ rule of signs, F (α) = 0 has at most two roots. In addition, we know
F (0) = E

P
x1 = 0 by definition of P . So α = 0 is one root of F (α) = 0. So there is at most one

nonzero root of F (α) = 0. In other words, for any two distinct nonzero α1, α2, at least one of
F (α1), F (α2) is nonzero. This implies that

max

(∣∣∣∣ E
x∼P

eα1∥x∥2

x1

∣∣∣∣ , ∣∣∣∣ E
x∼P

eα2∥x∥2

x1

∣∣∣∣) > 0.

Moment Ratio. To prove Lemma 2, we develop a new monotonicity property of the moment ratio
of logconcave distributions. Moment ratio is specifically defined as the ratio of the fourth moment
to the square of the second moment of truncated versions of the distribution. This measurement
essentially reflects the uncentered kurtosis of the distribution. The formal definition is detailed in
Definition 5.
Definition 4 (One-side t-restriction distribution). Let q be a distribution in one dimension with
nonnegative support. For any t ≥ 0, define qt as the one-side t-restriction distribution on q obtained
by restricting q to [t,∞).
Definition 5 (Moment Ratio). Let q be a distribution in one dimension with nonnegative support.
For any t ≥ 0, define q’s moment ratio as a function of t, given by

mrq(t) :=
varqt(X

2)

(Eqt X2)2
, where qt is the one-side t-restriction distribution on q.

We will prove the monotonicity of the moment ratio (Lemma 3) by reducing general logconcave
distributions to exponential distributions. The monotonicity of the moment ratio for exponential
distribution is detailed in Lemma 18.
Lemma 18 (Monotonicity of Moment Ratio of Exponential Distribution). Define h(x) = βe−γx, x ≥
0, β, γ > 0. Denote Nk(t) =

∫∞
t
xkh(x) dx. Then for any t ≥ 0, we have

t4N0(t)N2(t) +N2(t)N4(t)− 2t2N0(t)N4(t) > 0.
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Proof. By calculation, we have

N0(t) =

∫ ∞

t

βe−γx dx =
β

γ
e−γt

N1(t) =

∫ ∞

t

βxe−γx dx =
β

γ
te−γt +

1

γ
N0(t) =

(
t+

1

γ

)
β

γ
e−γt

N2(t) =

∫ ∞

t

βx2e−γx dx =
β

γ
t2e−γt +

2

γ
N1(t) =

(
t2 +

2

γ
t+

2

γ2

)
β

γ
e−γt

N3(t) =

∫ ∞

t

βx3e−γx dx =
β

γ
t3e−γt +

3

γ
N2(t) =

(
t3 +

3

γ
t2 +

6

γ2
t+

6

γ3

)
β

γ
e−γt

N4(t) =

∫ ∞

t

βx4e−γx dx =
β

γ
t4e−γt +

4

γ
N3(t) =

(
t4 +

4

γ
t3 +

12

γ2
t2 +

24

γ3
t+

24

γ4

)
β

γ
e−γt

Then we can plug them and get

t4N0(t)N2(t) +N2(t)N4(t)− 2t2N0(t)N4(t)

=
β2

γ2
e−2γt

(
t4
(
t2 +

2

γ
t+

2

γ2

)
+

(
−t2 + 2

γ
t+

2

γ2

)
·
(
t4 +

4

γ
t3 +

12

γ2
t2 +

24

γ3
t+

24

γ4

))
=
8β2

γ2
e−2γt

(
t3

γ3
+

6t2

γ4
+

12t

γ5
+

6

γ6

)
> 0

Next, we will prove the monotonicity of moment ratio for logconcave distributions.

Lemma 3 (Monotonicity of Moment Ratio). Let q be a logconcave distribution in one dimension
with nonnegative support. For any t ≥ 0, let qt be the distribution obtained by restricting q to [t,∞).

Then the moment ratio of q, defined as mrq(t) :=
varqt (X

2)

(Eqt
X2)2 , is strictly decreasing with t.

Proof. Denote Mk(t) =
∫∞
t
xkq(x) dx. By Definition 5,

mrq(t) =
varqt(X

2)

(Eqt X2)2
=

∫ ∞
t
x4q(x) dx∫ ∞

t
q(x) dx( ∫ ∞

t
x2q(x) dx∫ ∞

t
q(x) dx

)2 − 1 =
M0(t)M4(t)

M2(t)2
− 1

Next we will show that mr′(t) < 0,∀t ≥ 0. By taking the derivative,

mr′(t) =
−q(t)
M2(t)

(t4M0(t)M2(t) +M4(t)M2(t)− 2t2M0(t)M4(t))

DefineH(t) = t4M0(t)M2(t)+M4(t)M2(t)−2t2M0(t)M4(t). We will show thatH(t) > 0,∀t ≥
0. Clearly H(0) =M4(0)M2(0) > 0, So we only consider t > 0 in the following proof.

Let h(x) = βe−γx be an exponential function (β, γ > 0) such that

M0(t) = N0(t),M2(t) = N2(t), where Nk(t) =
∫ ∞

t

xkh(x) dx, k ∈ N.

Then we have ∫ ∞

t

(h(x)− q(x)) dx = 0,

∫ ∞

t

x2(h(x)− q(x)) = 0

By the logconcavity of q, the graph of h intersects with the graph of q at exactly two points u′ < v,
where v > 0. Also we have h(x) ≤ q(x) at the interval [u′, v] and h(x) > q(x) outside the interval.
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Let u = max{0, u′}. So for x ≥ 0, (x− u)(x− v) has the same sign as h(x)− q(x). Since t ≥ 0,
we have ∫ ∞

t

(x2 − u2)(x2 − v2)(h(x)− q(x)) ≥ 0

Expanding and we get∫ ∞

t

x4(h(x)− q(x)) ≥ (u2 + v2)

∫ ∞

t

x2(h(x)− q(x)) dx− u2v2
∫ ∞

t

(h(x)− q(x)) dx = 0

This shows that N4(t) ≥M4(t). To show that H(t) > 0, we consider two cases.

Firstly if M2(t)− 2t2 ≥ 0, we have

H(t) = t4M0(t)M2(t) +M4(t)(M2(t)− 2t2) > 0.

Secondly if M2(t)− 2t2 < 0, by calculation of the exponential function’s moments (Lemma 18), we
have

t4N0(t)N2(t) > −N4(t)(N2(t)− 2t2)

Then we have

H(t) =t4M0(t)M2(t) +M4(t)(M2(t)− 2t2)

=t4N0(t)N2(t) +M4(t)(M2(t)− 2t2)

≥−N4(t)(N2(t)− 2t2) +M4(t)(M2(t)− 2t2)

=(M2(t)− 2t2)(M4(t)−N4(t))

≥0

The equality holds if and only if M4(t) = N4(t). This implies that

H(t) = t4N0(t)N2(t) +N4(t)(N2(t)− 2t2) > 0.

Combining both cases, mr′(t) < 0,∀t ≥ 0, which implies that the moment ratio of q is strictly
decreasing with respect to t.

Contrastive Covariance. View the spectral gap of the re-weighted covariance, denoted as λ1(Σ̃)−
λ2(Σ̃), as a function of α, which we denote as S(α). By calculation, S(0) = 0 and S′(0) is
proportional to mr(b)−mr(0), which is negative by the monotonicity property of moment ratio. Then
we can prove Lemma 2 using Taylor expansion.
Lemma 2 (Contrastive Covariance). If a + b = 0, then there exists an α < 0, such that (1) there
is a positive gap between the top two eigenvalues of the re-weighted uncentered covariance matrix
Σ̃ = Ex∼P eα∥x∥

2

(xx⊤). That is, λ1(Σ̃) > λ2(Σ̃). (2) The top eigenvector of Σ̃ is u.

Proof. Denote Mk(t) =
∫∞
t
xkq(x) dx. The variance σ2

1 of q restricted to R\[−b, b] is

σ2
1 =

∫∞
b
x2p(x) dx∫∞

b
p(x) dx

=
M2(b)

M0(b)

Since q̂ is isotropic, the density on the support R\[−b/σ1, b/σ1] is

Pq̂(x) =
σ1q(xσ1)

2
∫∞
b
q(x) dx

Let
S(α) := E

x∼q̂
eαx

2

x2 E
x∼q

eαx
2

− E
x∼q

eαx
2

x2 E
x∼q̂

eαx
2

Since q and q̂ are both isotropic, S(0) = E
x∼q̂

x2 − E
x∼q

x2 = 0. Then,

S′(0) =
M4(b)M0(b)

M2
2 (b)

− M4(0)M0(0)

M2
2 (0)
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The last step is because the distribution q is isotropic. By Lemma 3, we know S′(0) = mr′(0) < 0.

On the other hand, ∀α ≤ 0, S′′(α) can be bounded.

S′′(α) ≤ M6(b)

M0(b)M3
2 (b)

+
M4(b)

M0(b)M2
2 (b)

< poly(1/ϵ)

By Taylor expansion, we know there exists α < 0 such that

S(α) =S(0) + αS′(0) +
α2

2
S′′(α′) > 0, where α′ ∈ [α, 0]

Then we have for 2 ≤ j ≤ d,

E
x∼P

eα∥x∥
2

x21 − E
x∼P

eα∥x∥
2

x2j = S(α)

(
E
x∼q

eαx
2

)d−2

> 0

For any v ∈ Rd, define ϕ(v) as

ϕ(v) := E
x∼P

eα∥x∥
2

v⊤xx⊤v

v⊤v

Substituting v with e1 and ej , 2 ≤ j ≤ d, we have

ϕ(e1) = E
x∼P

eα∥x∥
2

x21, ϕ(ej) = E
x∼P

eα∥x∥
2

x2j

This implies that for 2 ≤ j ≤ d,

ϕ(e1)− ϕ(ej) = E
x∼P

eα∥x∥
2

x21 − E
x∼P

eα∥x∥
2

x2j > 0

For any vector v =
∑d
i=1 γiei, we have

ϕ(v) =
1∑d
i=1 γ

2
i

E eα∥x∥
2

(

d∑
i=1

γixi)
2 =

∑d
i=1 γ

2
i ϕ(ei)∑d

i=1 γ
2
i

≤ ϕ(e1)

This shows that the top eigenvalue of Σ̃ is λ1(Σ̃) = maxv ϕ(v) = ϕ(e1). Similarly, λ2(Σ̃) =

maxv:v⊥e1 ϕ(v) = ϕ(ej), 2 ≤ j ≤ d. Therefore, λ1(Σ̃) > λ2(Σ̃) and the top eigenvector is e1,
which is essentially u.

C.3 Quantitative Bounds for Contrastive Mean

We will prove Lemma 4 in this section. Here we consider the case when |a+ b| ≥ ϵ5. We compute
the contrastive mean of P given α < 0 as E

x∼P
eαx

2

x using two different α’s.

Definition 6. We define F (α) as re-weighted mean for the one-dimensional distribution q̂.

F (α) = E
x∼q̂

eαx
2

x =

∫
R\[a′,b′]

eαx
2

xq̂(x) dx (C.2)

Since P is isotropic, F (0) = E
x∼q̂

x = 0.

To prove Lemma 4, we need to show that for given α1, α2, the maximum of |F (α1)|, |F (α2)| exceeds
a certain positive threshold. We follow the same idea of bounding the number of roots of F (α) as
in the qualitative lemma (Lemma 1). By taking the derivative of F (α), we can show that either
F ′(0) ̸= 0 or F ′′(0) ̸= 0. Then by Taylor expansion, we can choose two distinct α’s (near zero) so
that one of the corresponding contrastive means is bounded away from zero.

In the process of proving the quantitative bounds, similar to our approach with qualitative bounds, we
must consider two distinct scenarios based on the sign of a′, as illustrated in Figure 4.1.

• In the case where a′ is negative, Lemma 20 asserts that the first derivative of F at zero,
F ′(0), is always positive.
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• Conversely, when a′ is nonnegative, Lemma 23 reveals an essential characteristic of the
function F (α): it’s not possible for both F ′(0) and F ′′(0) to be zero at the same time.

• Lemma 24 provides upper bounds for the derivatives of F (α). These upper bounds are
crucial as they help in managing the extra terms that emerge during the Taylor expansion of
F (α).

• The section concludes with the proof of Lemma 4, which is the quantitative lemma for the
contrastive mean.

We start with Lemma 19 showing that |µ1| is away from zero provided that |a+ b| is also different
from zero.
Lemma 19 (Lower Bound of |µ1|). If |a+ b| ≥ ϵs for s ≥ 2, then |µ1| ≥ ϵs/2e.

Proof. Firstly, let’s consider the case when a ≤ 0. By Lemma 9, we know q(x) is upper bounded
by 1. Since |a+ b| ≥ ϵs and q is logconcave, by Lemma 8, the mean of the density restricted q in
[−a, b] satisfies µ[−a,b] ≥ 1/e. Then

|µ1| =
µ[−a,b]

∫ b
−a q(x) dx

1−
∫ b
a
q(x) dx

≥ 1

e

∫ b
−a q(x) dx∫ b

−a q(x) dx+ 2
∫∞
b
q(x) dx

By Lemma 11,

q(b) ≥ 2

∫ ∞

b

q(x) dx

Since |a| < |b|, we have∫ b

−a
q(x) dx ≥ (b+ a)q(b) ≥ 2(b+ a)

∫ ∞

b

q(x) dx

So we have

|µ1| ≥
1

e

2(b+ a)

2(b+ a) + 2
≥ 1

e

ϵs

1 + ϵs
>
ϵs

2e

Secondly, when a > 0, since b− a > ϵ,

|µ1| =
µ[a,b]

∫ b
a
q(x) dx

1−
∫ b
a
q(x) dx

> (a+
ϵ

e
)

ϵ

1− ϵ
>
ϵ2

e

Lemma 20 (Derivative of F (0) when a′ < 0). If |a + b| ≥ ϵs for s ≥ 2 and a′ < 0, then
F ′(0) > ϵ3s+3.5/2.

Proof. We rearrange F (α) by combining terms with same eαx
2

as in Figure 4.1, and get

F (α) = −
∫ b′

−a′
xq̂(−x)eαx

2

dx+

∫ ∞

b′
x(q̂(x)− q̂(−x))eαx

2

dx

Define r(x) =
{
−q̂(−x) x ∈ [−a′, b′]
q̂(x)− q̂(−x) x ∈ [b′,∞)

. Then we have

F (α) =

∫ ∞

−a′
xr(x)eαx

2

dx

By calculating the derivative of F (α), we have

F ′(α) =

∫ ∞

−a′
x3r(x)eαx

2

dx

=

∫ ∞

−a′
x(x2 − b′

2
)r(x)eαx

2

dx+ b′
2
∫ ∞

−a′
xr(x)eαx

2

dx
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=

∫ ∞

−a′
x(x2 − b′

2
)r(x)eαx

2

dx+ b′
2
F (α)

Since r(x) is nonnegative for x ≥ b′ and negative otherwise, then for any x ≥ −a′, we have

x(x2 − b′
2
)r(x)eαx

2

≥ 0

Since F (0) = 0, we have

F ′(0) =

∫ ∞

−a′
x(x2 − b′

2
)r(x) dx ≥

∫ b′

−a′
x(b′

2 − x2)q̂(−x) dx

By calculation,

F ′(0) ≥ 1

1−
∫ b
a
q(x) dx

∫ b−µ1
σ1

− a−µ1
σ1

x

((
b− µ1

σ1

)2

− x2

)
σ1q(−xσ1 + µ1) dx

≥ 1

σ3
1(1−

∫ b
a
q(x) dx)

∫ b−2µ1

−a
(x+ µ1)

(
(b− µ1)

2 − (x+ µ1)
2
)
q(x) dx

≥ 1

σ3
1(1−

∫ b
a
q(x) dx)

∫ b

−a
(x+ µ1)(x+ b)(b− x− 2µ1)q(x) dx

≥ 1

σ3
1(1−

∫ b
a
q(x) dx)

(b− a)2|µ1|
∫ b

−a
(x+ µ1)q(x) dx

Choose t0 ∈ [−a, b] such that
∫ t0
−a q(x) dx =

∫ b
t0
q(x) dx. Since q(x) is bounded by 1 by Lemma 9,

we have

t0 + a ≥
∫ b
−a q(x) dx

2
On the other hand, similar to the proof of Lemma 19, we have∫ b

−a
q(x) dx ≥ 2(b+ a)

∫ ∞

b

q(x) dx ≥ 2ϵs+1

So we have ∫ b

−a
(x+ µ1)q(x) dx ≥

∫ b

t0

(x+ a)q(x) dx ≥ (t0 + a)
1

2

∫ b

−a
q(x) dx

≥1

4

(∫ b

−a
q(x) dx

)2

≥ ϵ2s+2

By definition, we have

σ2
1 ≤

∫
R\[a,b] x

2q(x) dx

1−
∫ b
a
q(x) dx

≤
E
x∼q

x2

1−
∫ b
a
q(x) dx

≤ 1

1−
∫ b
a
q(x) dx

Applying Lemma 19, we know |µ1| > ϵs/2e. Using these results to estimate F ′(0), we get

F ′(0) ≥(1−
∫ b

a

q(x) dx)0.5 · ϵ · ϵ
s

e
ϵ2s+2 >

ϵ3s+3.5

2

Lemma 21. If a ≥ µ1, µ1 ≤ 0, then we have
∫ b
a−2µ1

xq(x) dx ≥ |µ1|
∫∞
b
q(x) dx.

Proof. Firstly we will show that
∫ a
2µ1−a(x−µ1)q(x) dx ≥ 0. For x ∈ [µ1, a], we have (2µ1−x)2−

x2 = 4µ1(µ1 − x) ≥ 0. Since q(x) is symmetric and uni-modal, we have q(2µ1 − x) ≤ q(x),∀x ∈
[µ1, a]. ∫ a

2µ1−a
(x− µ1)q(x) dx =

∫ µ

2µ1−a
(x− µ1)q(x) dx+

∫ a

µ1

(x− µ1)q(x) dx
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=

∫ a

µ1

(µ1 − x)q(2µ1 − x) dx+

∫ a

µ1

(x− µ1)q(x) dx

=

∫ a

µ1

(x− µ1)(q(x)− q(2µ1 − x)) dx

≥0

And then, we have∫
(−∞,2µ1−b]∪[b−2µ1,∞)

(x− µ1)q(x) dx =− µ1

∫
(−∞,2µ1−b]∪[b−2µ1,∞)

q(x) dx

=− 2µ1

∫ ∞

b−2µ1

q(x) dx

Since µ1 is the mean of the distribution q̃. We have∫
R\[a,b]

(x− µ1)q(x) dx = 0

Then we know∫ 2µ1−a

2µ1−b
(x− µ1)q(x) dx+

∫ b−2µ1

b

(x− µ1)q(x) dx ≤ 2µ1

∫ ∞

b−2µ1

q(x) dx

Then we have

0 ≥
∫ 2µ1−a

2µ1−b
(x− µ1)q(x) dx+

∫ b−2µ1

b

(x− µ1)q(x) dx− 2µ1

∫ ∞

b−2µ1

q(x) dx

=−
∫ b−2µ1

a−2µ1

xq(x) dx− µ1

∫ b−2µ1

a−2µ1

q(x) dx+

∫ b−2µ1

b

xq(x) dx− µ1

∫ b−2µ1

b

q(x) dx

− 2µ1

∫ ∞

b−2µ1

q(x) dx

=−
∫ b−2µ1

a−2µ1

xq(x) dx− µ1

∫ ∞

a−2µ1

q(x) dx+

∫ b−2µ1

b

xq(x) dx− µ1

∫ ∞

b

q(x) dx

This derives that ∫ b

a−2µ1

xq(x) dx ≥− µ1

∫ ∞

a−2µ1

q(x) dx− µ1

∫ ∞

b

q(x) dx

≥− µ1

∫ ∞

b

q(x) dx

Lemma 22 (Second Derivative of F (0) when a′ ≥ 0). If a′ ≥ 0, we define the following functions,

r(x) =

{
q̂(x)− q̂(−x) x ∈ [0, a′] ∪ [b′,∞)

−q̂(−x) x ∈ (a′, b′)
, H(α) =

∫ ∞

0

x(x2 − a′
2
)(x2 − b′

2
)r(x)eαx

2

dx.

Then we have
F ′′(α) = H(α) + (a′

2
+ b′

2
)F ′(α) + a′

2
b′

2
F (α).

Proof. We rearrange F (α) by combining terms with same eαx
2

as in Figure 4.1, and get

F (α) =

∫ a′

0

x(q̂(x)− q̂(−x))eαx
2

dx−
∫ b′

a′
xq̂(−x)eαx

2

dx+

∫ ∞

b′
x(q̂(x)− q̂(−x))eαx

2

dx

By the definition of r(x), we naturally have

F (α) =

∫ ∞

0

xr(x)eαx
2

dx
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Then we can calculate its first and second derivative as follows.

F ′(α) =

∫ ∞

0

x3r(x)eαx
2

dx, F ′′(α) =

∫ ∞

0

x5r(x)eαx
2

dx

By the definition of H(α), we have

H(α) =

∫ ∞

0

x5r(x)eαx
2

dx− (a′
2
+ b′

2
)

∫ ∞

0

x3r(x)eαx
2

dx+ a′
2
b′

2
∫ ∞

0

xr(x)eαx
2

dx

=F ′′(α)− (a′
2
+ b′

2
)F ′(α) + a′

2
b′

2
F (α)

Lemma 23 (First and Second Derivatives of F (0) when a′ ≥ 0). If |a + b| ≥ ϵs for s ≥ 2 and
a′ ≥ 0, then we have either F ′(0) < −C2ϵ

6s+6.5

log4 (1/ϵ)
or F ′′(0) > C3ϵ

6s+4.5

log4(1/ϵ)
for constants C2, C3 > 0.

Proof. We prove the lemma by showing that H(0) > C1ϵ
6s+4.5

log5(1/ϵ)
. We calculate H(0) as follows.

H(0) =

∫ ∞

0

x(x2 − a′
2
)(x2 − b′

2
)r(x) dx

≥
∫ b′

a′
x(x2 − a′

2
)(b′

2 − x2)q̂(−x) dx

=

∫ b′

a′
x(x2 − a′

2
)(b′

2 − x2)
σ1q(xσ1 − µ1)

1−
∫ b
a
q(x) dx

dx

=

∫ b−2µ1

a−2µ1
(x+ µ1)

(
(x+ µ1)

2 − (a− µ1)
2
) (

(b− µ1)
2 − (x+ µ1)

2
)
q(x) dx

σ3
1(1−

∫ b
a
q(x) dx)

=

∫ b−2µ1

a−2µ1
(x+ µ1)(x+ a)(x− a+ 2µ1)(b+ x)(b− x− 2µ1)q(x) dx

σ3
1(1−

∫ b
a
q(x) dx)

Denote ρ :=
∫ b
a−2µ1

q(x) dx, by Lemma 21 and the bound of b, we know

ρ =

∫ b

a−2µ1

q(x) dx ≥ ϵs/2e · ϵ
1 + ln(1/ϵ)

≥ ϵs+1

6 ln(1/ϵ)

Choose t1 < t2 such that
∫ t1
a−2µ1

q(x) dx =
∫ t2
t1
q(x) dx =

∫ b
t2
q(x) dx. Since q(x) is upper bounded

by 1 by Lemma 9, we have
t1 − (a− 2µ1) ≥

ρ

3
, b− t2 ≥ ρ

3
.

Using this, we can bound∫ t2

t1

(x+ µ1)(x+ a)(x− a+ 2µ1)(b+ x)(b− x− 2µ1)q(x) dx

≥|µ1|2
ρ

3

ρ

3

ρ

3

ρ

3
≥ C1ϵ

6s+4

ln4(1/ϵ)
for some constant C1 > 0

We have shown that σ1 ≤ 1/
√
1−

∫ b
a
q(x) dx. Combining all results, we can compute H(0) as

H(0) >

√
1−

∫ b

a

q(x) dx
C1ϵ

6s+4

log4(1/ϵ)
>
C1ϵ

6s+4.5

log4(1/ϵ)

Given F (0) = 0, by Lemma 22,

F ′′(0) = H(0) + (a′
2
+ b′

2
)F ′(0)
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Since the distribution is symmetric, we know

|µ1| =
|
∫ b
|a| xq(x) dx|

1−
∫ b
a
q(x) dx

≤
E
x∼q

|x|

ϵ
≤

√
E
x∼q

x2

ϵ
=

1

ϵ

So we know 0 ≤ a′ < b′ = b − 2µ1 < 2.5/ϵ, thus (a′2 + b′
2
)2 < 25/(2ϵ2). Thus we have either

F ′(0) < −C2ϵ
6s+6.5

log4 (1/ϵ)
or F ′′(0) > C3ϵ

6s+4.5

log4(1/ϵ)
for constants C2, C3 > 0.

Lemma 24 (Upper Bound of F ’s derivatives). For α ≤ 0, the derivatives of F (α) are bounded as

|F ′(α)| ≤ C4/ϵ
3, |F ′′(α)| ≤ C5/ϵ

5, |F ′′′(α)| ≤ C6/ϵ
7 for constants C4, C5, C6 > 0.

Proof. Define Mk = E
x∼q

|x|k. By Cauchy-Schwarz Inequality, M1 ≤
√
M2M0 = 1. By Lemma 12,

Mk ≤ (2k)k(M1)
k ≤ (2k)k

Also we have proved that |µ1| ≤ 1/ϵ. By definition of F (α), we calculate its first derivative as
follows.

|F ′(α)| ≤
∫ ∞

−∞
q(x)|x− µ1|3eα(x−µ)

2 dx

≤
∫ ∞

−∞
q(x)|x− µ1|3 dx

≤
∫ ∞

−∞
q(x)(|x|3 − 3µ1x

2 + 3µ2
1|x| − µ3

1) dx

=M3 − 3µ1M2 + 3µ2
1M1 − µ3

1

≤C4/ϵ
3 for some constant C4 > 0

Similarly, we calculate its second and third derivatives as follows.

|F ′′(α)| ≤
∫ ∞

−∞
q(x)|x− µ1|5 dx

≤M5 − 5µ1M4 + 10µ2
1M3 − 10µ3

1M2 + 5µ4
1M1 − µ5

≤C5/ϵ
5 for some constant C5 > 0

|F ′′′(α)| ≤
∫ ∞

−∞
q(x)|x− µ1|7 dx

=M7 − 7µ1M6 + 21µ2
1M5 − 35µ3

1M4 + 35µ4
1M3 − 21µ5

1M2 + 7µ6
1M1 − µ7

1

≤C6/ϵ
7 for some constant C6 > 0

Now we are ready to prove Lemma 4.
Lemma 4 (Quantitative Gap of Contrastive Mean). Suppose that |a + b| ≥ ϵ5. Then, for α1 =
−c1ϵ82/d, α2 = −c2ϵ42/d, the re-weighted mean of P , denoted as µα1

and µα2
, satisfies

max
(∣∣u⊤µα1

∣∣ , ∣∣u⊤µα2

∣∣) > Cϵ159

d2
for some constant C > 0,

∀v⊥u, v⊤µα1 = v⊤µα2 = 0.

Proof of Lemma 4. For any 2 ≤ k ≤ d, for any α, by symmetry of q, the contrastive mean is

E
x∼P

eα∥x∥
2

xk = E
x∼q

eαx
2

x · E
x∼q̂

eαx
2

·
(

E
x∼q

eαx
2

)d−2

= 0
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Next we will consider E
x∼P

eα∥x∥
2

x1. For any x ≥ 0, we have

q̂(x) =
σ1q(xσ1 + µ1)

1−
∫ b
a
q(x) dx

≥ σ1q(−xσ1 + µ1)

1−
∫ b
a
q(x) dx

= q̂(−x)

Since P is a product distribution, we have

E
x∼P

eα∥x∥
2

x1 = E
x1∼q̂

eαx
2
1x1 ·

d∏
i=2

E
xi∼q

eαx
2
i = F (α)

(
E
x∼q

eαx
2

)d−1

We will consider two cases depending on whether a′ ≥ 0. See Figure 4.1.

Firstly, if a′ ≤ 0. We use α2 in this case. By Lemma 20, F ′(0) > ϵ18.5/2. By Taylor expansion,
there exists α2 < η0 < 0 such that

F (α2) = F (0) + α2F
′(0) +

α2
2

2
F ′′(η0).

By Lemma 24, we know F ′′(η0) ≤ C5/ϵ
5. Since F (0) = 0, we know for α2 = −c2ϵ42/d,

F (α2) =α2F
′(0) +

α2
2

2
F ′′(η0)

≤c2ϵ
42

d

(
−ϵ

18.5

2
+
c2ϵ

42

2d

C5

ϵ5

)
<− C7ϵ

61

d
for some constant C7 > 0

Then we consider the case when a′ > 0. By Lemma 23, we have either F ′(0) < − C2ϵ
36.5

log4(1/ϵ)
or

F ′′(0) > C3ϵ
34.5

log4(1/ϵ)
. Here we consider three cases with respect to F ′(0).

Case 1: F ′(0) < − C2ϵ
36.5

ln4(1/ϵ)
. We use α2 in this case. By Taylor expansion, there exists η1 such that

α2 < η1 < 0 and

F (α2) = F (0) + α2F
′(0) +

α2
2

2
F ′′(η1)

By Lemma 24, we know |F ′′(η1)| ≤ C5/ϵ
5. By choosing α2 = −c2ϵ42/d,

F (α1) =α2F
′(0) +

α2
2

2
F ′′(η1)

≥c2ϵ
42

d

(
C2ϵ

36.5

ln4(1/ϵ)
− c2ϵ

42

2d

C5

ϵ5

)
>
C8ϵ

79

d
for some constant C8 > 0

Case 2: − C2ϵ
36.5

ln4(1/ϵ)
≤ F ′(0) ≤ csϵ

77

d with some constant cs > 0. We use α2 in this case. By

Lemma 23, we know F ′′(0) > C3ϵ
34.5/ ln4(1/ϵ). Then there exists η2 satisfying α2 < η2 < 0 and

F (α2) = F (0) + α2F
′(0) +

α2

2
F ′′(0) +

α3
2

6
F ′′′(η2).

By Lemma 24, we know |F ′′′(η2)| ≤ C6/ϵ
7. Thus by choosing α2 = −c2ϵ42/d,

F (α2) =α2F
′(0) +

α2
2

2
F ′′(0) +

α3
2

6
F ′′′(η2)

>
c2ϵ

42

d

(
−csϵ

77

d
+
c2ϵ

42

2d

C3ϵ
34.5

ln4(1/ϵ)
− c22ϵ

84

6d2
C6

ϵ7

)
≥C9ϵ

119

d2
for some constant C9 > 0
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Case 3: F ′(0) > csϵ
77

d . We use α1 in this case. Then there exists η3 satisfying α1 < η3 < 0 and

F (α1) = F (0) + α1F
′(0) +

α2
1

2
F ′′(η3).

By Lemma 24, we know |F ′′(η3)| ≤ C5/ϵ
5. For α1 = −c1ϵ82/d, we have

F (α1) =α1F
′(0) +

α2
1

2
F ′′(η3)

≤c1ϵ
82

d

(
−csϵ

77

d
+
c1ϵ

82

2d

C5

ϵ5

)
≤− C10ϵ

159

d2
for some constant C10 > 0

Then we know for all cases, there exists a constant C ′ = min(C7, C8, C9, C10) such that

max(|F (α1)|, |F (α2)|) ≥
C ′ϵ159

d2

Finally we will lower bound
(

E
x∼q

eαx
2

)d−1

as follows.

(
E
x∼q

eαx
2

)d−1

≥
(

E
x∼q

(1 + αx2)

)d−1

= (1 + α)
d−1 ≥

(
1− 1

d

)d−1

≥ 1/e

Let C = C ′/e, and we will get

max(|u⊤µα1 |, |u⊤µα2 |) >
Cϵ159

d2
.

C.4 Quantitative Bounds for Contrastive Covariance: Symmetric Case

Before addressing Lemma 5 which is applicable in the scenario where |a + b| < ϵ5, we first
demonstrate that contrastive covariance works for the case where the removed band [a, b] is symmetric
around the origin. That is, a = −b. In such cases, we aim to establish that there’s a noticeable
difference between the top two eigenvalues (λ1 and λ2) of the contrastive covariance matrix Σ̃, stated
in Lemma 25. We will then extend the lemma to the near-symmetric scenario in Section C.5.
Lemma 25 (Quantitative Spectral Gap of Contrastive Covariance - Symmetric Case). Suppose
a+ b = 0. Choose α3 = −c3ϵ2 for some constant c3 > 0. Then, for an absolute constant C, the top
two eigenvalues λ1 ≥ λ2 of the corresponding re-weighted covariance of P satisfy

λ1 − λ2 ≥ Cϵ3λ1.

We recall the definition of moment ratio as in Definition 5.

mrq(t) =
varqt(X

2)

(Eqa X2)2
=
M0(t)M4(t)

M2
2 (t)

− 1, where Mk(t) =

∫ ∞

t

xkq(x) dx.

For simplicity, in the remaining section, we’ll use mr(t) as a shorthand notation for this moment
ratio. Just as in the proof of the qualitative bound in Section C.2, the difference between the first
and second eigenvalues (the spectral gap) of the re-weighted covariance matrix, denoted as λ1 − λ2,
is proportional to the difference in the moment ratio of the distribution q at 0 and b, denoted as
mr(0)− mr(b). To prove the quantitative result Lemma 25, our proof strategy involves several steps.

• Proving monotonicity of Moment Ratio mr(t). This property is stated in Lemma 3 and
its proof is presented in Section C.2. The proof involves reducing the case of general
logconcave distributions to that of exponential distributions.

• Establishing a positive spectral gap for small b. With Lemma 26, we focus on illustrating that
for values of b which are relatively small (less than a certain constant), there is a guaranteed
positive gap mr(0)− mr(b).
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• Generalizing to any b satisfying
∫ b
−b q(x) dx ≥ ϵ in Lemma 29. The lemma will directly

imply the quantitative result lemma for the symmetric case (Lemma 25).

Having demonstrated the monotonicity of the moment ratio in Section C.2, we now begin by
illustrating the positive gap, denoted as mr(0)− mr(b), for small b in Lemma 26. The proof relies on
the properties of moments derived by the unimodality of the distribution (Lemma 27, Lemma 28).

Lemma 26 (Gap for small t). For t > 0 such that
∫ t
0
q(x) dx ≤ 0.4, we have the following gap

mr(0)− mr(t) ≥
∫ t
0
q(x) dx

100
.

Proof. Denote
∫ t
0
q(x) dx = ν,

∫ t
0
x2q(x) dx = ω. Then we have

mr(0)− mr(t) =
M0(0)M4(0)

M2
2 (0)

− M0(t)M4(t)

M2
2 (t)

=2

∫ t

0

x4q(x) dx+
M4(t)

2(ω +M2(t))2
−

( 12 − ν)M4(t)

M2
2 (t)

=2

∫ t

0

x4q(x) dx+
M4(t)

2M2
2 (t)

 1(
1 + ω

M2(t)

)2 − 1 + 2ν


Fix q(t) and ν, we apply Lemma 27 and have

M2(t) ≥
(
1

2
− ν

)
t2
(
1 +

1
2 − ν

q(t)t

)
Since q(x) is monotonically decreasing, for any x ≤ t, q(x) ≥ q(t). So we have the constraint that

ν =

∫ t

0

q(x) dx ≥ tq(t)

Plug into the previous inequality and we get

M2(t) ≥
(
1

2
− ν

)
t2
(
1 +

1
2 − ν

q(t)t

)
≥
(
1

2
− ν

)
t2
(
1 +

1
2 − ν

ν

)
=

(
1

2
− ν

)
t2

2ν

In addition, by fixing v and t, we apply Lemma 28 and get

ω ≤ νt2

3

So we know
ω

M2(t)
≤

νt2

3(
1
2 − ν

)
t2

2ν

=
2ν2

3
(
1
2 − ν

)
By calculation, we will get

1(
1 + ω

M2(t)

)2 − 1 + 2ν ≥
9
(
1
2 − ν

)2 − 2
(
1
2 − ν

) (
3
2 − 3ν + 2ν2

)2(
3
2 − 3ν + 2ν2

)2
≥4

9

(
1

2
− ν

)(
9

(
1

2
− ν

)
− 2

(
3

2
− 3ν + 2ν2

)2
)

=
4

9
ν

(
1

2
− ν

)(
−8ν3 + 24ν2 − 30ν + 9

)
Let T (ν) = −8ν3 + 24ν2 − 30ν + 9, then we know its derivative is

T ′(ν) = −24ν2 + 48ν − 30 = −24(ν − 1)2 − 6 < 0
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So T (ν) is monotonically decreasing. Since ν < 0.4, we know

T (ν) ≥ T (0.4) > 0.3,
1

2
− ν > 0.1

Plugging in and we will get

1(
1 + ω

M2(t)

)2 − 1 + 2ν ≥ 4

9
ν · 0.1 · 0.3 > 0.01ν

Finally by Cauchy-Schwarz Inequality, we have M0(t)M4(t) ≥M2
2 (t).

mr(0)− mr(t) ≥ M4(t)

2M2
2 (t)

0.01ν ≥ ν

200M0(t)
≥ ν

100

Lemma 27. Let t, r ≥ 0, 0 < s ≤ 1. Define P = {p(x) : [t,∞) → [0, 1), logconcave , p′(x) ≤
0,
∫∞
t
p(x) dx = s, p(t) = r}. Then we have

min
p∈P

∫ ∞

t

x2p(x) dx ≥ st2
(
1 +

s

rt

)
.

Proof. For any p ∈ P , we denote M2(p) =
∫∞
t
x2p(x) dx. Define

u(x) = r · 1x∈[t,t+s/r]

Clearly u ∈ P . We will show that u(x) = argminp∈PM2(p). For any p ∈ P , we have∫∞
t
u(x) dx =

∫∞
t
p(x) dx, u(t) = p(t) and p′(x) ≤ 0. So we know the graph of u and p

intersects at points t and t + s/r, where u(x) ≥ p(x) in the interval [t, t + s/r] and u(x) < p(x)
outside the interval. So we know∫ t+s/r

t

u(x)− p(x) dx =

∫ ∞

t+s/r

p(x)− u(x) dx

Since for any x ∈ [t, t+ s/r], any y ∈ [t+ s/r,∞), we have x ≤ y. So we have

M2(u)−M2(p) =

∫ t+s/r

t

(u(x)− p(x))x2 dx−
∫ ∞

t+s/r

(p(x)− u(x))x2 dx ≤ 0

This shows that
min
p∈P

M2(p) =M2(u).

By calculating M2(u), we have

min
p∈P

M2(p) =M2(u) =

∫ t+s/r

t

rx2 dx = r(t2
s

r
+ t

s2

r2
+

s3

3r3
) ≥ st2

(
1 +

s

rt

)

Lemma 28. Let t ≥ 0, 0 < s ≤ 1. Define P = {p(x) : [0, t] → [0, 1), logconcave, p′(x) ≤
0,
∫ t
0
p(x) dx = s}. Then we have

max
p∈P

∫ t

0

x2p(x) dx =
st2

3
.

Proof. For any p ∈ P , we denote M2(p) =
∫ t
0
x2p(x) dx. Define u(x) = s

t · 1x∈[0,t]. Clearly,
u ∈ P . Then for any p ∈ P , because it is monotonically decreasing and

∫ t
0
p(x) dx =

∫ t
0
u(x) dx,

the graphs of p and u intersect at point l ∈ [0, t]. Also p(x) ≥ u(x) for x ∈ [0, l] and p(x) ≤ u(x)
for x ∈ [l, t]. Since for any x ∈ [0, l] and any y ∈ [l, t], we have x ≤ y. So we know

M2(p)−M2(u) =

∫ l

0

x2(p(x)− u(x)) dx−
∫ t

l

x2(u(x)− p(x)) ≤ 0
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By calculating M2(u), we have

max
p∈P

M2(p) =M2(u) =

∫ t

0

s

t
x2 dx =

s

t

1

3
t3 =

st2

3

Using Lemma 3 and Lemma 26, we will show the positive gap mr(0)− mr(b) for any b satisfying∫ b
−b q(x) dx ≥ ϵ as in Lemma 29.

Lemma 29 (Gap for Log-concave Distribution). Let 0 < ϵ < 0.1, let b > 0 satisfying
∫ b
0
q(x) dx ≥

ϵ/2. Then we have for mr(0)− mr(b) ≥ ϵ/200.

Proof. Let b0 such that
∫ b0
0
q(x) dx = ϵ/2. By Lemma 26, we know

mr(0)− mr(b0) ≥
∫ b0
0
q(x) dx

100
≥ ϵ

200

By Lemma 3, we know mr′(t) ≤ 0,∀t ≥ 0. So for any b > 0 such that
∫ b
0
q(x) dx ≥ ϵ/2,

mr(b) ≤ mr(a0). Therefore,

mr(0)− mr(b) ≥ mr(0)− mr(b0) ≥
ϵ

200

Before moving on to the proof of the quantitative lemma, we will first present a helper lemma that
can be directly applied.
Lemma 30. Define

S(α) := E
x∼q̂

eαx
2

x2 E
x∼q

eαx
2

− E
x∼q

eαx
2

x2 E
x∼q̂

eαx
2

(C.3)

For a given α = −cϵs with s ≥ 2 and a certain positive constant c, it can be established that

S(α) > Cϵs+1, where C is a positive constant.

Proof. We show the lower bound of S(α) using Taylor expansion.

Firstly, since q and q̂ are both isotropic,

S(0) = E
x∼q̂

x2 − E
x∼q

x2 = 0

Secondly, we will lower bound |S′(0)| using the monotonicity of moment ratio. The variance σ2
1 of q

restricted to R\[−b, b] is

σ2
1 =

∫∞
b
x2p(x) dx∫∞

b
p(x) dx

=
M2(b)

M0(b)

Since q̂ is isotropic, the density on the support R\[−b/σ1, b/σ1] is

Pq̂(x) =
σ1q(xσ1)

2
∫∞
b
q(x) dx

By calculation, we have

S(α) =
2
∫∞
b/σ1

eαx
2

x2σ1p(xσ1) dx

2
∫∞
b
q(x) dx

· 2
∫ ∞

0

eαx
2

q(x) dx−
2
∫∞
b/σ1

eαx
2

σ1p(xσ1) dx

2
∫∞
b
q(x) dx

· 2
∫ ∞

0

eαx
2

x2q(x) dx

=
2
∫∞
b
eαy

2/σ2
1y2/σ2

1q(y) dy∫∞
b
q(x) dx

·
∫ ∞

0

eαx
2

q(x) dx−
2
∫∞
b
eαy

2/σ2
1q(y) dy∫∞

b
q(x) dx

·
∫ ∞

0

eαx
2

x2q(x) dx
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=

2
σ2
1

∫∞
b
eαy

2/σ2
1y2q(y) dy ·

∫∞
0
eαx

2

q(x) dx− 2
∫∞
b
eαy

2/σ2
1q(y) dy ·

∫∞
0
eαx

2

x2q(x) dx∫∞
b
q(x) dx

Then we can compute S′(0) as

S′(0) =
2

σ2
1

∫∞
b
q(x) dx

(
1

σ2
1

∫ ∞

b

y4q(y) dy ·
∫ ∞

0

q(x) dx+

∫ ∞

b

y2q(y) dy ·
∫ ∞

0

x2q(x) dx

)
− 2∫∞

b
q(x) dx

(
1

σ2
1

∫ ∞

b

y2q(y) dy ·
∫ ∞

0

x2q(x) dx+

∫ ∞

b

q(y) dy ·
∫ ∞

0

x4q(x) dx

)
=
2M0(b)M4(b)M0(0)

M2
2 (b)

− 2M4(0)

=
M4(b)M0(b)

M2
2 (b)

− M4(0)M0(0)

M2
2 (0)

=mr(b)− mr(0)

The last step is because the q is isotropic. By Lemma 29, mr(0)−mr(b) ≥ ϵ/200. This indicates that

S′(0) ≤ −ϵ/200

Next, we can upper bound S′′(α) for any α ≤ 0 as

S′′(α) =
2∫∞

b
p(x) dx

(
1

σ6
1

∫ ∞

b

eαy
2/σ2

1y6q(y) dy ·
∫ ∞

0

eαx
2

q(x) dx

+
1

σ4
1

∫ ∞

b

eαy
2/σ2

1y4q(y) dy ·
∫ ∞

0

eαx
2

x2q(x) dx

− 1

σ2
1

∫ ∞

b

eαy
2/σ2

1y2q(y) dy ·
∫ ∞

0

eαx
2

x4q(x) dx

−
∫ ∞

b

eαy
2/σ2

1q(y) dy ·
∫ ∞

0

eαx
2

x6q(x) dx

)

≥− 2

M0(b)

(
M2(b)M4(0)

M2(0)
+M0(b)M6(0)

)
≥− 2

M0(b)
(M4(0) +M0(0)M6(0))

By Cauchy-Schwarz Inequality, M1(0) ≤
√
M2(0)M0(0) = 1/2. By Lemma 12,

Mk(0) ≤ (2k)k(2M1(0))
k/2 ≤ (2k)k/2

Since M0(b) ≥ ϵ, for some positive constant csec,

S′′(α) ≥ −csec
ϵ

By Taylor expansion, we know for α3 = −cϵs, s ≥ 2, c = 1/(101csec), there exists α′ ∈ [α, 0] such
that for some constant C > 0,

S(α) =S(0) + αS′(0) +
α2

2
S′′(α′) ≥ 0 + cϵs

ϵ

200
− c2ϵ2s

2

csec
ϵ

> Cϵs+1

Now we are ready to prove the contrastive covariance lemma (Lemma 25).

Proof of Lemma 25. Define

S(α) := E
x∼q̂

eαx
2

x2 E
x∼q

eαx
2

− E
x∼q

eαx
2

x2 E
x∼q̂

eαx
2
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Then for 2 ≤ j ≤ d,

E
x∼P

eα∥x∥
2

x21 − E
x∼P

eα∥x∥
2

x2j

=

(
E

x1∼q̂
eαx

2
1x21 E

x2∼q
eαx

2
2 − E

x2∼q̂
eαx

2
2x21 E

x1∼q
eαx

2
1

)(
E
x∼q

eαx
2

)d−2

=S(α)
E
x∼P

eα∥x∥
2

x21

E
x1∼q̂

eαx
2
1x21 E

x2∼q
eαx

2
2

Since α3 < 0, we have

E
x1∼q̂

eα3x
2
1x21 ≤ E

x1∼q̂
x21 = 1, E

x2∼q
eα3x

2
2 ≤ 1

By Lemma 30, α3 = c3ϵ
2 implies that S(α3) > Cϵ3. So we have

E
x∼P

eα∥x∥
2

x21 − E
x∼P

eα∥x∥
2

x2j ≥ Cϵ3 E
x∼P

eα∥x∥
2

x21

Finally we will show that the first eigenvector corresponds to e1. For any v ∈ R, define ϕ(v) as

ϕ(v) := E
x∼P

eα3∥x∥2

v⊤xx⊤v

v⊤v

Then we know for 2 ≤ j ≤ d,
ϕ(e1)− ϕ(ej) > Cϵ3ϕ(e1)

For any vector v =
∑d
i=1 γiei, we have

ϕ(v) =
1∑d
i=1 γ

2
i

E eα3∥x∥2

(

d∑
i=1

γixi)
2

=
1∑d
i=1 γ

2
i

 d∑
i=1

γ2i ϕ(ei) + 2E eα∥x∥
2 ∑
i̸=j

γiγjxixj


=

1∑d
i=1 γ

2
i

 d∑
i=1

γ2i ϕ(ei) + 2
∑
i̸=j

γiγj E eα3
∑

k ̸=i,j x
2
k E eα3⟨x,ei⟩2x1 E eα⟨x,ej⟩

2

xj


=

∑d
i=1 γ

2
i ϕ(ei)∑d

i=1 γ
2
i

≤ϕ(e1)

This shows that the top eigenvalue of Σ̃ is λ1 = maxv ϕ(v) = ϕ(e1). In other word, the
top eigenvector is e1, which is essentially u. Similarly the second eigenvalue of Σ̃ is λ2 =
maxv:v⊥e1 ϕ(v) = ϕ(ej), 2 ≤ j ≤ d. So we get

λ1 − λ2 > Cϵ3λ1

C.5 Quantitative Bounds for Contrastive Covariance: Near-Symmetric Case

We have shown the result for symmetric case a+b = 0 in Section C.4. Here we will show that we can
extend the contrastive covariance lemma (Lemma 25) to the near-symmetric case, where |a+ b| < ϵ5.
In this section, we will present the proof of Lemma 5, which addresses the nearly symmetric case
quantitatively. The proof idea is to approximate the re-weighted covariance of the distribution with
margin [a, b], by comparing it to the same distribution truncated with the symmetric interval [−b, b].
This enables us to generalize the result from the symmetric scenario to the near-symmetric scenario.
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Recall that q̃ is the distribution obtained by restricting q to the set R\[a, b]. We denote r̃ as the
distribution that is obtained by restricting q to the set R\[−b, b], and r̂ as the isotropized distribution
of r̃. Let σ2

2 be the variance of r̃.

To approximate the characteristics of q̂ using those of r̂, we undertake the subsequent steps.

• Assessing the mean. We illustrate that the mean of q̃ is adequately small in Lemma 31.
• Variance approximation. We approximate the variance of q̂ by using the variance of r̂, as

elaborated in Lemma 32.
• Re-weighted second moment. We use the re-weighted second moment of r̂ to approximate

the corresponding moment in q̂. The details are provided in Lemma 34.
• Re-weighted zeroth moment. We use the re-weighted zero moment of r̂ to approximate the

corresponding moment in q̂, which is shown in Lemma 35.
Lemma 31. For an integer s ≥ 1, if |a+ b| < ϵs+1, then

(1) the mean of q̃, |µ1| < ϵs ln(1/ϵ);

(2) a < 0.

Proof. We first consider the case when a < 0. By Lemma 8, we have

|µ1| =

∫ b
|a| xq(x) dx

1−
∫ b
a
q(x) dx

≤
b
∫ b
|a| q(x) dx∫ a

−∞ q(x) dx+
∫∞
b
q(x) dx

≤ b(b+ a)

2ϵ

By the tail bound of logconcave distributions (Lemma 11),

|b| < 1 + ln
1

ϵ

Then we have

|µ1| <
(1 + ln 1

ϵ )ϵ
s+1

2ϵ
< ϵs ln(

1

ϵ
)

Next for a ≥ 0, we can bound b by ϵs+1/2 because |b| ≥ |a|. This implies that b − a ≤ ϵs+1/2,
which leads to a contradiction that

∫ b
a
q(x) dx ≥ ϵ. Therefore, a can only be negative in this scenario.

Lemma 32. For |µ1| ≤ r with r < 1/6, we can bound the variance as follows.

σ2
2

1 + 2er
≤ σ2

1 ≤ σ2
2

Proof. By Lemma 31, we know a < 0. We can calculate the variance as

σ2
2 =

∫∞
b
x2q(x) dx∫∞

b
q(x) dx

, σ2
1 =

∫∞
b
x2q(x) dx+ 1

2

∫ b
−a x

2q(x) dx∫∞
b
q(x) dx+ 1

2

∫ b
−a q(x) dx

On one hand, ∫ b
−a x

2q(x) dx∫∞
b
x2q(x) dx

≤
b2
∫ b
−a q(x) dx

b2
∫∞
b
q(x) dx

=

∫ b
−a q(x) dx∫∞
b
q(x) dx

So we have

σ2
1

σ2
2

=
1 +

∫ b
−a

x2q(x) dx

2
∫ ∞
b
x2q(x) dx

1 +
∫ b
−a

q(x) dx

2
∫ ∞
b
q(x) dx

≤ 1

On the other hand, since |µ1| ≤ r, by Lemma 8,

r ≥ |µ1| =
∫ b
−a xq(x) dx∫ b

−a q(x) dx+ 2
∫∞
b
q(x) dx

>
1
e

∫ b
−a q(x) dx∫ b

−a q(x) dx+ 2
∫∞
b
q(x) dx
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So we have

σ2
2

σ2
1

=
1 +

∫ b
−a

q(x) dx

2
∫ ∞
b
q(x) dx

1 +
∫ b
−a

x2q(x) dx

2
∫ ∞
b
x2q(x) dx

≤ 1 +

∫ b
−a q(x) dx

2
∫∞
b
q(x) dx

≤ 1 +
er

1− er
< 1 + 2er

Lemma 33. The variance σ2
2 is monotonically increasing with respect to b. Furthermore, σ2

2 ≥ 1.

Proof. By taking the derivative,

∂σ2
2

∂b
= − q(b)

(
∫∞
b
q(x) dx)2

(b2
∫ ∞

b

q(x) dx−
∫ ∞

b

x2q(x) dx) > 0

So for b > 0,

σ2
2 ≥

∫∞
0
x2q(x) dx∫∞

0
q(x) dx

= 1

Lemma 34 (Approximation for Re-weighted Second Moment). For |a + b| ≤ ϵ5, by choosing
α = −cϵ2, then for some constant C ′ > 0, we have the following inequalities.∫ ∞

b

eαy
2/σ2

2y2q(y) dy − C ′ϵ5 ≤
∫ ∞

b

eα(y−µ1)
2/σ2

1y2q(y) dy ≤
∫ ∞

b

eαy
2/σ2

2y2q(y) dy (C.4)

∫ ∞

b

eαy
2/σ2

2y2q(y) dy − C ′ϵ5 ≤
∫ ∞

−a
eα(y+µ1)

2/σ2
1y2q(y) dy ≤

∫ ∞

b

eαy
2/σ2

2y2q(y) dy + C ′ϵ5

(C.5)

Proof. By Lemma 31, we can bound |µ1| as

|µ1| < ϵ4 ln
1

ϵ
< ϵ3

We begin by showing that
∫∞
b
eαy

2/σ2
2y2q(y) dy is close to

∫∞
b
eαy

2/σ2
1y2q(y) dy. By Lemma 32,

σ2
2

1 + 2eϵ3
≤ σ2

1 ≤ σ2
2

Since α < 0, αy2/σ2
1 < αy2/σ2

2 for y > 0. This implies∫ ∞

b

eαy
2/σ2

1y2q(y) dy ≤
∫ ∞

b

eαy
2/σ2

2y2q(y) dy.

On the other hand, ∫ ∞

b

eαy
2/σ2

2y2q(y) dy −
∫ ∞

b

eαy
2/σ2

1y2q(y) dy

≤
∫ ∞

b

eαy
2/σ2

2y2q(y) dy −
∫ ∞

b

eαy
2(1+2eϵ3)/σ2

2y2q(y) dy

=

∫ ∞

b

(
1− e2eαy

2ϵ3/σ2
2

)
eαy

2/σ2
2y2q(y) dy

≤
∫ ∞

b

2e|α|y2ϵ3

σ2
2

eαy
2/σ2

2y2q(y) dy

=
2e|α|ϵ3

σ2
2

∫ ∞

b

eαy
2/σ2

2y4q(y) dy

≤2e|α|ϵ3

σ2
2

∫ ∞

0

y4q(y) dy
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≤2e|α|ϵ3

σ2
2

∗ 84/2

=
84ecϵ5

σ2
2

The last inequality is implied by Lemma 12. Furthermore, by Lemma 33, σ2
2 ≥ 1. So there exists a

constant c1 > 0 such that∫ ∞

b

eαy
2/σ2

2y2q(y) dy − c1ϵ
5 ≤

∫ ∞

b

eαy
2/σ2

1y2q(y) dy ≤
∫ ∞

b

eαy
2/σ2

2y2q(y) dy. (C.6)

This also applies for the integral from −a to ∞. To be specific,∫ ∞

−a
eαy

2/σ2
2y2q(y) dy − c1ϵ

5 ≤
∫ ∞

−a
eαy

2/σ2
1y2q(y) dy ≤

∫ ∞

−a
eαy

2/σ2
2y2q(y) dy. (C.7)

Next we will show that
∫∞
b
eαy

2/σ2
1y2q(y) dy and

∫∞
b
eα(y−µ1)

2/σ2
1y2q(y) dy are close to each other.

Since µ1 < 0, α < 0, we derive that αy2 > α(y − µ1)
2. This implies∫ ∞

b

eαy
2/σ2

1y2q(y) dy >

∫ ∞

b

eα(y−µ1)
2/σ2

1y2q(y) dy

On the other hand, ∫ ∞

b

eαy
2/σ2

1y2q(y) dy −
∫ ∞

b

eα(y−µ1)
2/σ2

1y2q(y) dy

≤
∫ ∞

b

(
1− e−(|α|µ2

1+|αµ1|y)/σ2
1

)
eαy

2/σ2
1y2q(y) dy

≤|αµ1|
σ2
1

∫ ∞

b

eαy
2/σ2

1 (y + |µ1|)y2q(y) dy

≤|αµ1|
σ2
1

∫ ∞

0

(y + |µ1|)y2q(y) dy

≤c2ϵ5 for some constant c2 > 0

The last inequality is implied by Lemma 12 and Lemma 33 . Combining two inequalities, we get∫ ∞

b

eαy
2/σ2

1y2q(y) dy − c2ϵ
5 ≤

∫ ∞

b

eα(y−µ1)
2/σ2

1y2q(y) dy ≤
∫ ∞

b

eαy
2/σ2

1y2q(y) dy (C.8)

Similarly, we will show the approximation inequality for
∫∞
−a e

α(y+µ1)
2/σ2

1y2q(y) dy. We will
decompose the integral by the summation of the integral on [−a, 6 ln(1/ϵ)] and (6 ln(1/ϵ),∞)
respectively. For the first part of the integral,∣∣∣∣∣
∫ 6 ln(1/ϵ)

−a
eα(y+µ1)

2/σ2
1y2q(y) dy −

∫ 6 ln(1/ϵ)

−a
eαy

2/σ2
1y2q(y) dy

∣∣∣∣∣
=

∣∣∣∣∣
∫ 6 ln(1/ϵ)

−a
eαy

2/σ2
1

(
e

αµ1
σ2
1

(2y+µ1) − 1

)
y2q(y) dy

∣∣∣∣∣
≤
∫ −µ1/2

−a
eαy

2/σ2
1

(
1− e

αµ1
σ2
1

(2y+µ1)
)
y2q(y) dy +

∫ 6 ln(1/ϵ)

−µ1/2

eαy
2/σ2

1

(
e

αµ1
σ2
1

(2y+µ1) − 1

)
y2q(y) dy

The first term can be bounded using e−t ≥ 1− t.∫ −µ1/2

−a
eαy

2/σ2
1

(
1− e

αµ1
σ2
1

(2y+µ1)
)
y2q(y) dy ≤

∫ −µ1/2

−a

αµ1

σ2
1

(−2y − µ1)y
2q(y) dy

≤
∫ −µ1/2

−a
|α||µ1|2y2q(y) dy ≤ ϵ8
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The second term can be bounded using the upper limit of the integral. For y ≤ 6 ln(1/ϵ),

e
αµ1
σ2
1

(2y+µ1) − 1 ≤ e24ϵ
6 ln2(1/ϵ) − 1 ≤ 40ϵ5

Substituting into the second term, we get∫ 6 ln(1/ϵ)

−µ1/2

eαy
2/σ2

1

(
e

αµ1
σ2
1

(2y+µ1) − 1

)
y2q(y) dy ≤ 40ϵ5

∫ ∞

0

y2q(y) dy = 20ϵ5

Combining both terms,∣∣∣∣∣
∫ 6 ln(1/ϵ)

−a
eα(y+µ1)

2/σ2
1y2q(y) dy −

∫ 6 ln(1/ϵ)

−a
eαy

2/σ2
1y2q(y) dy

∣∣∣∣∣ ≤ 21ϵ5 (C.9)

For the remaining part of the integral, we can bound using logconcave distribution’s upper bound as
in Lemma 13. For any t ≥ 3,

q(t) ≤ q(0) · 2−t/3 < e−t/5

Then the following holds with some constant c′3 > 0.∫ ∞

6 ln(1/ϵ)

eαy
2/σ2

1y2q(y) dy ≤
∫ ∞

6 ln(1/ϵ)

y2e−y/5 dy ≤ (1 + 6 ln(
1

ϵ
))e−6 ln( 1

ϵ ) ≤ c′3ϵ
5 (C.10)

Similarly, we get ∫ ∞

6 ln(1/ϵ)

eα(y+µ2)
2/σ2

1y2q(y) dy ≤ c′3ϵ
5 (C.11)

With Equations (C.9), (C.10), (C.11), we get∣∣∣∣∫ ∞

−a
eα(y+µ1)

2/σ2
1y2q(y) dy −

∫ ∞

−a
eαy

2/σ2
1y2q(y) dy

∣∣∣∣ ≤ c3ϵ
5 for constant c3 > 0 (C.12)

Combining Equations (C.6), (C.7), (C.8), (C.12) , we have∫ ∞

b

eαy
2/σ2

2y2q(y) dy − (c1 + c2)ϵ
5 ≤

∫ ∞

b

eα(y−µ1)
2/σ2

1y2q(y) dy ≤
∫ ∞

b

eαy
2/σ2

2y2q(y) dy

∫ ∞

b

eαy
2/σ2

2y2q(y) dy − (c1 + c3)ϵ
5 ≤

∫ ∞

−a
eα(y+µ1)

2/σ2
1y2q(y) dy ≤

∫ ∞

b

eαy
2/σ2

2y2q(y) dy + c3ϵ
5

By choosing C ′ = c1 + c2 + c3, we prove the lemma.

Lemma 35 (Approximated for Re-weighted Zeroth Moment). By choosing α = −cϵ2, for some
constant C ′ > 0, we have the following inequalities.∫ ∞

b

eαy
2/σ2

2q(y) dy − C ′ϵ5 ≤
∫ ∞

b

eα(y−µ1)
2/σ2

1q(y) dy ≤
∫ ∞

b

eαy
2/σ2

2q(y) dy (C.13)

∫ ∞

b

eαy
2/σ2

2q(y) dy − C ′ϵ5 ≤
∫ ∞

−a
eα(y+µ1)

2/σ2
1q(y) dy ≤

∫ ∞

b

eαy
2/σ2

2q(y) dy + C ′ϵ5 (C.14)

The proof follows exactly from the proof of Lemma 34 by replacing y2 with 1.

Now we are ready to prove Lemma 5.
Lemma 5 (Quantitative Spectral Gap of Contrastive Covariance). Suppose that |a+ b| < ϵ5. Choose
α3 = −c3ϵ2 for some constant c3 > 0. Then, for an absolute constant C, the top two eigenvalues
λ1 ≥ λ2 of the corresponding re-weighted covariance of P satisfy

λ1 − λ2 ≥ Cϵ3λ1.
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Proof. By calculation, we have

E
x∼r̂

eαx
2

x2 =

∫∞
b/σ2

eαx
2

x2σ2q(xσ2) dx∫∞
b
q(x) dx

=

∫∞
b
eαy

2/σ2
1y2q(y) dy

σ2
2

∫∞
b
q(x) dx

E
x∼q̂

eαx
2

x2 =

∫ (a−µ1)/σ1

−∞ eαx
2

x2σ1q(xσ1 + µ1) dx+
∫∞
(b−µ1)/σ1

eαx
2

x2σ1q(xσ1 + µ1) dx∫∞
−a q(x) dx+

∫∞
b
q(x) dx

=

∫ a
−∞ eα(y−µ1)

2/σ2
1 (y − µ1)

2q(y) dy +
∫∞
b
eα(y−µ1)

2/σ2
1 (y − µ1)

2q(y) dy

σ2
1

(∫∞
−a q(x) dx+

∫∞
b
q(x) dx

)
=

∫∞
−a e

α(y+µ1)
2/σ2

1 (y + µ1)
2q(y) dy +

∫∞
b
eα(y−µ1)

2/σ2
1 (y − µ1)

2q(y) dy

σ2
1

(∫∞
−a q(x) dx+

∫∞
b
q(x) dx

)
=

∫∞
−a e

α(y+µ1)
2/σ2

1y2q(y) dy +
∫∞
b
eα(y−µ1)

2/σ2
1y2q(y) dy

σ2
1

(∫∞
−a q(x) dx+

∫∞
b
q(x) dx

)
+

2µ1

σ2
1

∫∞
−a e

α(y+µ1)
2/σ2

1yq(y) dy −
∫∞
b
eα(y−µ1)

2/σ2
1yq(y) dy∫∞

−a q(x) dx+
∫∞
b
q(x) dx

+
µ2
1

σ2
1

∫∞
−a e

α(y+µ1)
2/σ2

1q(y) dy +
∫∞
b
eα(y−µ1)

2/σ2
1q(y) dy∫∞

−a q(x) dx+
∫∞
b
q(x) dx

The first term is close to E
x∼r̂

eαx
2

x2 while the second and third terms are close to zero. We first give

the bound on the absolute values of last two terms. Since α < 0,∣∣∣∣∫ ∞

−a
eα(y+µ1)

2/σ2
1yq(y) dy −

∫ ∞

b

eα(y−µ1)
2/σ2

1yq(y) dy

∣∣∣∣
≤
∫ ∞

−a
eα(y+µ1)

2/σ2
1yq(y) dy +

∫ ∞

b

eα(y−µ1)
2/σ2

1yq(y) dy

≤
∫ ∞

−a
yq(y) dy +

∫ ∞

b

yq(y) dy < 1

Similarly, ∫ ∞

−a
eα(y+µ1)

2/σ2
1q(y) dy +

∫ ∞

b

eα(y−µ1)
2/σ2

1q(y) dy < 1

By Lemma 32, Lemma 34 and Lemma 35, we have∫∞
−a e

α(y+µ1)
2/σ2

1y2q(y) dy +
∫∞
b
eα(y−µ1)

2/σ2
1y2q(y) dy

σ2
1

(∫∞
−a q(x) dx+

∫∞
b
q(x) dx

)
≤
2
∫∞
b
eαy

2/σ2
2y2q(y) dy + C ′ϵ5

2
∫∞
b
q(y) dy

· 1 + 2eϵ3

σ2
2

=

∫∞
b
eαy

2/σ2
2y2q(y) dy

σ2
2

∫∞
b
q(y) dy

+
C ′ϵ5

σ2
22
∫∞
b
q(y) dy

+
2eϵ3

σ2
2

2
∫∞
b
eαy

2/σ2
2y2q(y) dy + C ′ϵ5

2
∫∞
b
q(y) dy

<

∫∞
b
eαy

2/σ2
2y2q(y) dy

σ2
2

∫∞
b
q(y) dy

+ c1ϵ
4 for constant c1 > 0

By combining with the second and third terms, we conclude that for constants c3, c4 > 0,

E
x∼r̂

eαx
2

x2 − c3ϵ
4 < E

x∼q̂
eαx

2

x2 < E
x∼r̂

eαx
2

x2 + c4ϵ
4 (C.15)
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Similarly, we have

E
x∼r̂

eαx
2

− c3ϵ
4 < E

x∼q̂
eαx

2

< E
x∼r̂

eαx
2

+ c4ϵ
4 (C.16)

Then, we would like to compute the gap between first and second eigenvalues of the re-weighted
second moment of q̂. We denote Q as the product of q̂ and d− 1 fold of q. For 2 ≤ j ≤ d,

E
x∼Q

eα∥x∥
2

x21 − E
x∼Q

eα∥x∥
2

x2j =

(
E

x1∼q̂
eαx

2
1x21 E

x2∼q
eαx

2
2 − E

x2∼q
eαx

2
2x22 E

x1∼q̂
eαx

2
1

)(
E
x∼q

eαx
2

)d−2

We define T (α) as follows.

T (α) = E
x1∼q̂

eαx
2
1x21 E

x2∼q
eαx

2
2 − E

x2∼q
eαx

2
2x22 E

x1∼q̂
eαx

2
1

Recall that S(α) is defined in Lemma 30.

S(α) = E
x1∼r̂

eαx
2
1x21 E

x2∼q
eαx

2
2 − E

x2∼q
eαx

2
2x22 E

x1∼r̂
eαx

2
1

We calculate the difference between T (α) and S(α) using Equation (C.15) and Equation (C.16).

S(α)− T (α)

=

(
E

x1∼r̂
eαx

2
1x21 − E

x1∼q̂
eαx

2
1x21

)
E

x2∼q
eαx

2
2 −

(
E

x1∼r̂
eαx

2
1 − E

x1∼q̂
eαx

2
1

)
E

x2∼q
eαx

2
2x22

≤c3ϵ4 + c4ϵ
4

By Lemma 30, S(α) > C ′ϵ3 for constant C ′ > 0. So we know T (α) > Cϵ3 for C > 0. Then all
proof follows as same as the case when a+ b = 0. We write out the proof for completeness.

For 2 ≤ j ≤ d,

E
x∼P

eα∥x∥
2

x21 − E
x∼P

eα∥x∥
2

x2j

=

(
E

x1∼q̂
eαx

2
1x21 E

x2∼q
eαx

2
2 − E

x2∼q̂
eαx

2
2x21 E

x1∼q
eαx

2
1

)(
E
x∼q

eαx
2

)d−2

=T (α)
E
x∼P

eα∥x∥
2

x21

E
x1∼q̂

eαx
2
1x21 E

x2∼q
eαx

2
2

Since α3 < 0, we have

E
x1∼q̂

eα3x
2
1x21 ≤ E

x1∼q̂
x21 = 1, E

x2∼q
eα3x

2
2 ≤ 1.

Also we have shown that T (α3) > Cϵ3. So we have

E
x∼P

eα∥x∥
2

x21 − E
x∼P

eα∥x∥
2

x2j ≥ Cϵ3 E
x∼P

eα∥x∥
2

x21

Finally we will show that the first eigenvector corresponds to e1. For any v ∈ R, define ϕ(v) as

ϕ(v) := E
x∼P

eα3∥x∥2v⊤xx⊤v

v⊤v

Then we know for 2 ≤ j ≤ d,
ϕ(e1)− ϕ(ej) > Cϵ3ϕ(e1)

For any vector v =
∑d
i=1 γiei, we have

ϕ(v) =
1∑d
i=1 γ

2
i

E eα3∥x∥2

(

d∑
i=1

γixi)
2
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=
1∑d
i=1 γ

2
i

 d∑
i=1

γ2i ϕ(ei) + 2E eα∥x∥
2 ∑
i̸=j

γiγjxixj


=

1∑d
i=1 γ

2
i

 d∑
i=1

γ2i ϕ(ei) + 2
∑
i̸=j

γiγj E eα3
∑

k ̸=i,j x
2
k E eα3⟨x,ei⟩2x1 E eα⟨x,ej⟩

2

xj


=

∑d
i=1 γ

2
i ϕ(ei)∑d

i=1 γ
2
i

≤ϕ(e1)

This shows that the top eigenvalue of Σ̃ is λ1 = maxv g(v) = g(e1). In other word, the top
eigenvector is e1. Similarly the second eigenvalue of Σ̃ is λ2 = maxv:v⊥e1 ϕ(v) = ϕ(ej), 2 ≤ j ≤ d.
So we get

λ1 − λ2 > Cϵ3λ1
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