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Abstract

Given a policy of a Markov Decision Process, we define a SAFEZONE as a subset1

of states, such that most of the policy’s trajectories are confined to this subset.2

The quality of a SAFEZONE is parameterized by the number of states and the3

escape probability, i.e., the probability that a random trajectory will leave the4

subset. SAFEZONES are especially interesting when they have a small number5

of states and low escape probability. We study the complexity of finding optimal6

SAFEZONES, and show that in general, the problem is computationally hard. Our7

main result is a bi-criteria approximation learning algorithm with a factor of almost8

2 approximation for both the escape probability and SAFEZONE size, using a9

polynomial size sample complexity.10

1 Introduction11

Most research in reinforcement learning (RL) deals with learning an optimal policy for some Markov12

Decision Process (MDP). One notable exception to that is Safe RL which addresses the concept13

of safety. Traditional Safe RL focuses on finding the best policy that meets safety requirements,14

typically by either adjusting the objective to include the safety requirements and then optimizing for15

it, or incorporating additional safety constraints to the exploration. Anomaly Detection is the problem16

of identifying patterns in data that are unexpected , i.e., anomalies (see, e.g., Chandola et al. (2009)17

for survey). This paper introduces the SAFEZONE problem, which addresses the safety of a specific18

Markov decision process (MDP) policy by detecting anomalous events rather than finding a policy19

that satisfies some pre-defined safety constraints.20

Consider a finite horizon MDP and a policy (a mapping from states to actions). The policy induces a21

Markov Chain (MC) on the MDP. Given a subset of states, a trajectory escapes it if at least one of22

its states is not in the subset. The escape probability of a subset is the probability that a randomly23

sampled trajectory will escape it. A SAFEZONE is a subset of states whose quality is measured by (1)24

its escape probability and (2) its size. If a SAFEZONE has low escape probability, we consider it safe25

(hence escaping is the anomaly). We emphasize that safety is policy-dependent and that different26

policies could have different SAFEZONES.27

Trivial solutions for SAFEZONE include the entire states set (minimal escape probability of 0,28

maximal size), and the empty set (minimal size, maximal escape probability of 1). The goal is to29

find a SAFEZONE with a good balance: a relatively small size but still safe enough (small escape30

probability). More precisely, given an upper bound over the escape probability, ρ > 0, the goal of the31

learner is to find the smallest SAFEZONE with escape probability at most ρ using trajectory sampling.32

We address an unknown environment, by which we mean no prior knowledge of the transition33

function or the policy used. The learner is only given access to random trajectories generated by the34

induced Markov chain. For many applications, if a small SAFEZONE exists, it is useful to find it.35
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One such example is designing a policy for a smaller state space that performs well in most cases36

but is undefined for some states, or formally, imitation learning with compact policy representation37

Abel et al. (2018); Dong et al. (2019). Suppose a company would like to automatically generate a38

‘lite’ edition of a software or an app (e.g., Microsoft Office Lite, Facebook Lite) that contains only39

part of the system’s states, finding a SAFEZONE makes a lot of sense— capturing popular users’40

trajectories. If instead of finding SAFEZONE , one were to simply take the 90% most popular states41

of users using Office, they might not include the state that allows for the precious option of saving,42

which emphasizes the importance of the problem.43

Another motivation for the problem is autonomous vehicles and specifically infrastructure design44

for them. Even though a lot of the progress in the field of autonomous driving is credited to sensors45

installed on the vehicles, relying solely on the vehicles’ sensors has its limitations (e.g., Yang et al.46

(2020)). In extreme weather, a vehicle might unintentionally deviate from the current lane and the47

vehicle sensors might not trigger a response in time. Vehicular-to-Infrastructure (V2I) is a type of48

communication network between vehicles and road infrastructures that are designed to fill the need49

for an extra layer of safety.1 An important part of the V2I communication is based on Road Side50

Units (RSUs), sensors that are installed alongside roads. Together with the sensors that are installed51

on the vehicles, they span the V2I communication. As the resources for RSUs distribution are limited52

and their enhanced safety is key for V2I and the autonomous vehicle adaptation, distributing RSUs in53

states of a (good) SAFEZONE could enhance the safety of popular commutes efficiently. Namely,54

given data regarding commutes (trajectories) in an area, installing RSUs in its’ SAFEZONE states will55

ensure increased safety measures of a major part of the commutes, from starting point to destination,56

and potentially increase the trust in the system. In addition, if regulation were to prevent people57

from making autonomous commutes outside of the SAFEZONE , having most of the autonomous58

commutes confined to the SAFEZONE implies that most commutes can still be driverless.59

Another useful application is automatic robotic arms that assemble products. If something unusual60

happened during the assembly of a product, it might result in a malfunctioning product, and in that61

case, the operator should be notified (anomaly detection). On the other hand, it is not really autonomic62

if the operator is notified too frequently. If we find a ‘safe enough’ SAFEZONE, we can make sure63

that we notify the operator only in the rare event the production process (trajectory) escapes it, which64

means that something went wrong with the product assembly. Furthermore, if the SAFEZONE is small,65

the manufacturer can potentially test the SAFEZONE states and verify their compliance, ensuring that66

the majority of products are well constructed for a significantly lower testing budget.67

Finally, the SAFEZONE problem can be viewed through the lens of explainable RL, where the goal is68

to explain a specific policy. SAFEZONE is a new post-hoc explanation of the summarization type69

Alharin et al. (2020). For example, for the autonomous vehicle infrastructure design, governments70

could explain to their citizens the design that was chosen.71

Our results include approximation algorithms for the SAFEZONE problem, which we show is NP-hard.72

We are interested in a good trade-off between the escape probability of the SAFEZONE and its size.73

Our algorithms are evaluated based on two criteria: their approximation factors (w.r.t. the escape74

probability bound and the optimal set size for this bound), and their trajectory sample complexity75

bounds (e.g., Even-Dar et al. (2002)).76

Contribution: In Section 2 we formalize the SAFEZONE problem. In Section 3, we explore naive77

approaches, namely greedy algorithms that select SAFEZONES based on state distributions and78

trajectory sampling. In addition, we show particular cases in which their solutions are far from79

optimal, either in terms of high escape probability or significantly larger set size. In Section 4 we80

design FINDING SAFEZONE, an efficient approximation algorithm with provable guarantees. The81

algorithm returns a SAFEZONE which is slightly more than twice the size and twice the escape82

probability compared to the optimal. While the main focus of this work is the introduction of the83

problem and the aforementioned theoretical guarantees, we do demonstrate the problem empirically,84

to provide additional intuition to the readers. In Section 5, we compare the performance of the85

naive approaches to FINDING SAFEZONE and show that different policies might lead to completely86

different SAFEZONES. In Appendix A, we show that the problem is hard, even for known environment87

1The ‘V2I Deployment Coalition’ is an initiative by the U.S. Department of Transportation with the vision
of “An integrated national infrastructure that provides the country a connected, safe and secure transportation
system taking full advantage of the progress being made in the Connected and Autonomous Vehicle arenas.”
https://transportationops.org/V2I/V2I-overview

2



setting, namely even when the induced Markov chain is given, finding a SAFEZONE is NP-hard, even88

for horizon H = 2.89

For brevity, some algorithms and (full) proofs are relegated to the appendix.90

1.1 Related Work91

MDPs have been studied extensively in the context of decision making in particular by the Reinforce-92

ment Learning (RL) community (see Puterman (1994) for a broad background on MDPs, and Sutton93

& Barto (2018) for background on reinforcement learning).94

Safe RL A related line of research is safe RL, where the goal of the learner is to find the best policy95

that satisfies safety guarantees. The two main methodologies to handle such problems are: (1) altering96

the objective to include the safety requirement and optimizing over it, and (2) adding additional97

safety constraints to the exploration part. See Pfrommer et al. (2021); Emam et al. (2021); Xu et al.98

(2021); Hendrycks et al. (2021); HasanzadeZonuzy et al. (2021); Bennett et al. (2023); Prajapat et al.99

(2022) for recent works and García & Fernández (2015); Amodei et al. (2016) for surveys. In our100

work, the goal is not to find the optimal policy, but rather, given a policy, finding its SAFEZONE.101

The SAFEZONE is not characterized by specific requirements, and might not be unique. Moreover,102

beyond the MDP, the solution very much depends on the policy.103

Imitation Learning. In imitation learning, the learner observes a policy behavior and wants to104

imitate it (see Hussein et al. (2017) for a survey). Similar to imitation learning, we are given access to105

samples of a given policy. In contrast, rather than imitating the policy we find the policy’s SAFEZONE,106

which is an important property of the policy.107

Approximate MDP equivalence. Another related research line is that of finding an (almost)108

equivalent minimal model for a given MDP, where the goal is that the optimal policy on the (almost)109

equivalent model induces an (approximately) optimal policy in the original MDP, e.g., Givan et al.110

(2003); Even-Dar & Mansour (2003). This line of works and ours differ in that we do not try to111

modify the MDP (e.g., cluster similar states), but rather to find a SAFEZONE, a property that is112

defined for the existing MDP and a specific policy.113

Explainability. In explainability, the goal is to provide a post-hoc explanation to a specific (given)114

model Molnar (2019), e.g., using decision trees Blanc et al. (2021); Moshkovitz et al. (2021),115

influential examples Koh & Liang (2017), or local approximation explanations Li et al. (2020). We116

focus on explainability for reinforcement learning, and specifically, we suggest a new summarization117

explanation through our SAFEZONE (Amir & Amir, 2018).118

2 The Safe Zone Problem119

We model the problem using a Markov model with a finite horizon H > 1. Formally, there120

is a Markov chain (MC) ⟨S, P, s0⟩ where S is the set of states, s0 ∈ S is the initial state, and121

P : S × S → [0, 1] is the transition function that maps a pair of states into probability by P (s, s′) =122

Pr[st+1 = s′|st = s]. We assume the transition function P is induced by a policy π : S → SimplexA
123

on an MDP ⟨S, s0, P ′,A⟩ with transition function P ′ : S × A × S → [0, 1] such that P (s, s′) =124 ∑
a∈A P ′(s, a, s′) · π(a|s) for all s, s′ ∈ S (though any MC can be generated this way, thus our125

theoretical guarantees apply for general MCs).126

A trajectory τ = (s0, . . . , sH) starts in the initial state s0 and followed by a sequence of H states127

generated by P , i.e., Pr[si+1 = s′|si = s] = P (s, s′) for all i ∈ [H], where [H] := {1, . . . ,H}. We128

abuse the notation and regard a trajectory τ both as a sequence and a set.129

Given a subset of states F ⊆ S, a trajectory τ escapes F if it contains at least one state s ∈ τ such130

that s /∈ F , i.e., τ ̸⊆ F . We refer to the probability that a random trajectory escapes F as escape131

probability and denote it by ∆(F ) = Prτ [τ ̸⊆ F ]. We call F a ρ−safe (w.r.t. the model ⟨S, s0, P ⟩)132

if its escape probability, ∆(F ), is at most ρ. Formally,133

Definition 2.1. A set F ⊆ S is ρ−safe if ∆(F ) := Prτ [τ ̸⊆ F ] ≤ ρ, where τ is a random trajectory.134
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A set F ⊆ S is called (ρ, k)−SAFEZONE if F is ρ−safe and |F | ≤ k. Given a safety parameter
ρ ∈ (0, 1), we denote the smallest size ρ−safe set by k∗(ρ):

k∗(ρ) = min
F⊆S is ρ−safe

|F |.

Whenever the discussed parameter ρ is clear from the context we use k∗ instead of k∗(ρ). We remark135

that there might be multiple different (ρ, k)−SAFEZONE sets. The learner knows the set of states, S ,136

the initial state, s0, and the horizon H . However, the transition function P and the minimal size of137

the ρ−safe set, k∗, are unknown to the learner. Instead, the learner receives information about the138

model from sampling trajectories from the distribution induced by P .139

Given ρ > 0, the ultimate goal of the learner would have been to find a (ρ, k∗(ρ))−SAFEZONE.140

However, as we show in Appendix A, finding a (ρ, k∗(ρ))−SAFEZONE is NP-hard, even when the141

transition function P is known. This is why we loosen the objective to find a bi-criteria approximation142

(ρ′, k′)−SAFEZONE . (Bi-criteria approximations are widely studied in approximation and online143

algorithms Vazirani (2001); Williamson & Shmoys (2011).) In our setting, given ρ the objective is to144

find a set F which is (ρ′, k′)−SAFEZONE with minimal size k′ ≥ k∗ and minimal escape probability145

ρ′ ≥ ρ. In addition, we are interested in minimizing the sample complexity.146

Notice that the learner can efficiently verify, with high probability, whether a set F is approximately147

ρ−safe or not, as we formalize in the next proposition. The following proposition follows directly148

from Lemma C.2.149

Proposition 2.2. There exists an efficient algorithm such that for every set F ⊆ S and parameters150

ϵ, λ > 0, the algorithm samples O( 1
ϵ2 ln

1
λ ) random trajectories and returns ∆̂(F ), such that with151

probability at most λ we have |∆(F )− ∆̂(F )| ≥ ϵ.152

2.1 A Note on Trajectory Escaping.153

The SAFEZONE problem deals with escaping trajectories. In particular, given a SAFEZONE, a154

trajectory escapes it, no matter if only one of its states is outside the SAFEZONE or all of them. A155

related, yet very different problem, is that of minimizing a subset size, such that the expected number156

of states outside the set is minimized. This related problem, while significantly easier (as it is solved157

by returning the most visited states), does not apply to the applications we described earlier. For158

example, consider the infrastructure design for autonomic vehicles. We want passengers to have a159

safe experience end-to-end. Hence the entire route must have that extra security layer provided by the160

RSUs. In Section 3, we show that the solution for the SAFEZONE does not necessarily overlaps with161

the most visited states. Furthermore, simply returning states which appeared in trajectory samples162

could result in a set size far from optimal.163

2.2 Summary of Contributions164

We summarize the results of all the algorithms that appear in the paper in Table 1. The bounds of165

GREEDY BY THRESHOLD and GREEDY AT EACH STEP requires the Markov Chain model as input,166

and a pre-processing step that takes O(|S|2H) time. Additionally, the bounds for the first three167

algorithms (the naive approaches) require additional knowledge of k∗(ρ). The sample complexities168

of SIMULATION is bounded by poly(k∗, 1
ρ ), and of FINDING SAFEZONE Algorithm is bounded169

by poly(k∗, H, 1
ϵ ,

1
δ ) for some parameters ϵ, δ ∈ (0, 1). Beyond the upper bounds, we provide each170

of the first three algorithms (the naive approaches) instances that show that they are tight up to a171

constant.172

The following theorem is an informal statement of our main theorem, Theorem 4.2.173

Theorem 2.3. For every ρ, ϵ, δ > 0, with probability ≥ 0.99 there exists an algorithm that returns a174

set which is (2ρ+ 2ϵ, (2 + δ)k∗)− SAFEZONE.175

In addition to the sample complexity, the running time of the algorithm is also bounded by176

poly(k∗, H, 1
δ ,

1
ϵ ).177

We empirically evaluate the suggested algorithms on a grid-world instance (where the goal is to178

reach an absorbing state), showing that FINDING SAFEZONE outperforms the naive approaches.179

Moreover, we show that different policies have qualitatively different SAFEZONES. Finally, an180

informal statement of Theorem A.2 which appears in Appendix A due to space limitations.181
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Theorem 2.4. SAFEZONE is NP-hard.182

3 Gentle Start183

Table 1: Upper bounds for safety and set size. * Only
for layered MDPs.

Algorithm Safety Set Size
Greedy by Threshold 2ρ k∗H/ρ

Simulation 2ρ O(k∗H ln k∗)

Greedy at Each Step* ρH k∗

Finding SAFEZONE 2ρ+ 2ϵ (2 + δ)k∗

This section explains and analyzes various184

naive algorithms to the SAFEZONE prob-185

lem. We show that even if the transition186

function is known in advance, these naive187

algorithms result in outputs that are far from188

optimal. To describe the algorithms, we de-189

fine for each state s the probability to ap-190

pear in a random trajectory and denote it191

by p(s) = Prτ [s ∈ τ ] ∈ [0, 1]. Note that192 ∑
s∈S p(s) is a number between 1 and H193

(e.g., p(s0) = 1), and can be estimated effi-194

ciently using dynamic programming if the195

environment and policy are known and sam-196

pling otherwise. To be precise, some of the197

algorithms assume the probabilities {p(s)}s∈S are received as input.198

Greedy by Threshold Algorithm. The algorithm gets, in addition to ρ, the distribution p and a199

parameter β > 0 as input. It returns a set F that contains all states s with probability at least β, i.e.,200

p(s) ≥ β. We formalize this idea as Algorithm 3 in Appendix B. For β = ρ
k∗ , the output of the201

algorithm is
(
2ρ, k∗H

ρ

)
− SAFEZONE. More generally, we prove the following lemma.202

Lemma 3.1. For any ρ, β ∈ (0, 1), the GREEDY BY THRESHOLD ALGORITHM returns a set that is203

(ρ+ k∗β, H
β )− SAFEZONE. In particular, for β = ρ

k∗ , this set is
(
2ρ, k∗H

ρ

)
− SAFEZONE.204

While it is clear why there are instances for which the safety is tight, Lemma B.1 in Appendix B205

shows that the set size is tight as well.206

Simulation Algorithm. The algorithm samples O( ln k∗

β ) random trajectories and returns a set F207

with all the states in theses trajectories. It is formalized in Appendix B as Algorithm 4.208

Lemma 3.2. Fix ρ, β ∈ (0, 1). With probability at least 0.99, SIMULATION Algorithm returns209

a set that is
(
ρ+ k∗β,O(k∗ + ρH ln k∗

β )
)
− SAFEZONE. In particular, for β = ρ

k∗ , this set is210

(2ρ,O(k∗H ln k∗))− SAFEZONE.211

While the algorithm achieves a low escape probability, only 2ρ, in Lemma B.2 in the appendix212

we prove that the size of F is tight up to a constant, i.e., we show an MDP instance where |F | =213

Ω(k∗H ln k∗). The algorithms presented so far were approximately safe (i.e., low escape probability),214

but the returned set size was large. Without any further assumptions, the following algorithm provides215

a (ρH,Hk∗)−SAFEZONE, thus not improving the previous algorithms. However, when considering216

MDPs with a special structure it provides an optimal sized SAFEZONE , at the price of large escape217

probability.218

Greedy at Each Step Algorithm. For the analysis of the next algorithm, we assume the MDP is219

layered, i.e., there are no states that appear in more than a single time step and denote S =
⋃H

i=1 Si.220

I.e., the transitions P (s, s′) are nonzero only for s′ ∈ Si+1 and s ∈ Si. The GREEDY AT EACH221

STEP ALGORITHM, sometimes simply called greedy, takes at each time step i the minimal number222

of states such that the sum of their probabilities is at least 1− ρ. It is formalized in Appendix B as223

Algorithm 5.224

Lemma 3.3. For any ρ ∈ (0, 1), if the MDP is layered, GREEDY AT EACH STEP ALGORITHM225

returns a set that is (ρH, k∗)− SAFEZONE.226

In Lemma B.3 in the appendix we provide a lower bound on the escape probability, matching up to a227

constant.228
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Weaknesses of the naive algorithms. We showed algorithms that identify SAFEZONE with escape229

probability much greater than ρ or size much greater than k∗, and instances with tight lower bounds230

for each of them. This holds even when providing extra information about the model or the optimal231

size of the ρ−safe set, i.e., k∗.232

4 Algorithm for Detecting Safe Zones233

In this section, we suggest a new algorithm that builds upon and improves the added trajectory234

selection of the SIMULATION Algorithm. One reason for why SIMULATION returns a large set is235

that it treats every sampled trajectory identically, regardless of how many states are being added,236

which could be as large as H . More precisely, fix any (ρ, k∗)−SAFEZONE set, F ∗, and consider a237

trajectory τ that escapes it, i.e., τ ̸⊆ F ∗. If τ was sampled, its states are added to the constructed238

set F , which might increase the size of F by up to H states that are not in F ∗, without significantly239

improving the safety. In contrast, when selecting which trajectory to add to F , we would consider the240

number of states it adds to the current set. For the sake of readability, we refer to any state which is241

not in the current set F as new, and denote by newF (τ) the number of new states in τ w.r.t. F , i.e.,242

newF (τ) := |τ \ F |.

Note that for every F ⊆ S, Prτ [newF (τ) ̸= 0] = ∆(F ).243

The new algorithm does not sample each trajectory uniformly at random, but samples from a new244

distribution, which will be denoted by QF .245

While favoring trajectories with higher probabilities, which we already get by the sampling process,246

another key idea would guide this new distribution: To prefer trajectories that gradually increase the247

size of F . To implement this idea, we will ensure that the probability of adding a trajectory τ to F248

should be inversely proportional to newF (τ).249

Formally, the support of QF is the trajectories with new states, i.e., X = {τ |newF (τ) ̸= 0}. For
every τ ∈ X

QF (τ) ∝
Pr[τ ]

newF (τ)
,

where Pr[τ ] is the probability of trajectory τ under the Markov Chain with dynamics P . Note that250

the new distribution depends on the current set F , and changes as we modify it. Intuitively, adding251

trajectories to F according to QF instead of adding trajectories sampled directly from the dynamics252

(as we do in SIMULATION) would increase the expected ratio between the added safety and the253

number of new states we add to F , thus improving the set size guarantee of the output set. We254

elaborate on this in Section 4.2.255

Our main algorithm is FINDING SAFEZONE, Algorithm 1. The algorithm receives, in addition to the256

safety parameter ρ, parameters ϵ, λ ∈ (0, 1), and maintains a set F that is initiated to {s0}. On a high257

level, to implement the idea of adding trajectories to F according to QF , we use rejection sampling.258

Namely, in each iteration of the while–loop we first sample a trajectory τ , and if newF (τ) ̸= 0, we259

accept it with probability 1/newF (τ). If the trajectory is accepted, it is added to F . More precisely,260

if newF (τ) ̸= 0, we sample a Bernoulli random variable, accept ∼ Br(1/newF (τ)). If accept = 1,261

we add τ to F . This process of adding trajectories to F generates the desired distribution, QF .262

Whenever a trajectory is added to F , we estimate the escape probability ∆(F ) (w.r.t. the updated set,263

F ).264

The algorithm stops adding states to F and returns it as output when it becomes “safe enough”. To be265

precise, let ∆̂(F ) denote the result of the escape probability estimation (by sampling trajectories as266

suggested in Proposition 2.2). If ∆̂(F ) ≤ 2ρ+ ϵ , it means that F is (2ρ+2ϵ)−safe with probability267

≥ 1− λj > 1− λ, in which case the algorithm terminates and returns F as output.268

To implement the estimation ∆̂(F ), the algorithm calls EstimateSafety Subroutine. The subroutine269

samples Nj = Θ( 1
ϵ2 ln

2
λj
) trajectories, and returns the fraction of trajectories that escaped F .270

For cases in which the transition function P is known to the learner, we provide an alternative271

implementation for EstimateSafety which computes the exact probability ∆(F ) (see Lemma F.1 in272

Appendix F).273
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Algorithm 1 FINDING SAFEZONE

Input: ρ ∈ (0, 1)
Parameters: ϵ, λ ∈ (0, 1)

F ← {s0}, j ← 1, ∆̂(F )← 1

while ∆̂(F ) > 2ρ+ ϵ do
τ ← sample a random trajectory
Compute newF (τ)
if newF (τ) ̸= 0 then

sample accept ∼ Br(1/newF (τ))
if accept = 1 then

F ← F ∪ τ
λj ← 3λ

2(jπ)2 , j ← j + 1

∆̂(F )← EstSafety(ϵ, λj , F )
end if

end if
end while
return F

Algorithm 2 EstSafety Subroutine
Input: subset F
Parameters: ϵ, λj ∈ (0, 1)

∆̂(F )← 0
T ← sample Nj =

1
2ϵ2 ln

2
λj

trajectories
for τ ∈ T do

if τ ̸⊆ F then
∆̂(F )← ∆̂(F ) + 1

Nj

end if
end for
return ∆̂(F )

274

4.1 Algorithm Analysis275

We define the event E = {∀i |∆̂(Fi−1)−∆(Fi−1)| ≤ ϵ}, which states that all our EstimateSafety276

Subroutine estimations are accurate. We show that E holds with high probability using Hoeffding’s277

inequality. In most of the analysis, we condition on E to hold.278

The following theorem is the central component in the proof of the main theorem that follows it.279

Theorem 4.1. Given ρ, ϵ, λ ∈ (0, 1), FINDING SAFEZONE Algorithm returns a subset F ⊆ S such280

that:281

1. The escape probability is bounded from above by ∆(F ) ≤ 2ρ+ 2ϵ, with probability 1− λ.282

2. The expected size of F given E is bounded by E[|F | | E ] ≤ 2k∗.283

3. The sample complexity of the algorithm is bounded by O
(

k∗

λϵ2 ln
k∗

λ + Hk∗

ρλ

)
, and the284

running time is bounded by O
(

Hk∗

λϵ2 ln k∗

λ + H2k∗

ρλ

)
, with probability 1− λ.285

To obtain the main theorem, we run FINDING SAFEZONE Algorithm several times and return the286

smallest output set, F , see the next section for more details.287

Theorem 4.2. (main theorem) Given ϵ, ρ, δ > 0, if we run FINDING SAFEZONE for Θ( 1δ ) times and288

return the smallest output set, F ⊆ S, then with probability ≥ 0.99289

1. The escape probability is bounded by ∆(F ) ≤ 2ρ+ 2ϵ.290

2. The size of F is bounded from above by |F | ≤ (2 + δ)k∗.291

3. The total sample complexity and running time are bounded by O( k∗

δ2ϵ2 ln
k∗

δ + Hk∗

ρδ2 ), and292

O(Hk∗

δ2ϵ2 ln k∗

δ + H2k∗

ρδ2 ), respectively.293

4.2 Proof Technique294

Escape probability set size bounds. To ease the presentation of the proof, we assume that ∆̂(F ) =295

∆(F ). For full proofs, we refer to Appendix C. This case is interesting on its own since if the policy296

and transition function are known, we can compute ∆(F ) efficiently using dynamic programming297

(see Appendix F). As a result, event E always holds. In addition, it is clear that the termination of298

the algorithm implies that ∆̂(F ) = ∆(F ) ≤ 2ρ, thus F is (2ρ+ 2ϵ)−safe. The main challenge is299

bounding |F |.300

7



A few notations before we start. Let F ∗ denote a minimal ρ−safe set (of size k∗). Consider iteration301

i inside the while–loop. The random variable Gi(F ) is the number of states in F ∗ that are added302

to F in iteration i and Bi(F ) is the number of states added to F in iteration i that are not in F ∗ (G303

stands for good and B for bad). For ease of presentation, from here on we write Gi and Bi instead of304

Gi(F ) and Bi(F ), respectively. Notice that the size of the output set is exactly
∑

i Bi +Gi and that305 ∑
i Gi ≤ k∗.306

The main idea of the proof technique is to show that by adding trajectories according to the new
distribution QF , we ensure that, in expectation, there are at least as many good states that are added
to F as bad states. Suppose the trajectory τ was chosen to be added to F by the algorithm. If τ ⊆ F ∗,
then Gi is equal to newF (τ) and Bi = 0. If τ ̸⊆ F ∗, then Bi ≤ newF (τ). Summarizing these
observations, we have the following bounds

Gi ≥ newF (τ) · I[τ ⊆ F ∗] and Bi ≤ newF (τ) · I[τ ̸⊆ F ∗],

where I[·] is the indicator function.307

Moreover, a direct consequence of the probability in which τ is added to F is that for any set of308

trajectories T ,309

Eτ∼QF
[newF (τ) · I[τ ∈ T ]] =

∑
τ∈T

QF (τ)newF (τ)

=
1

Z

∑
τ∈T,newF (τ )̸=0

(
Pr[τ ]

newF (τ)

)
newF (τ)

=
1

Z
Pr
τ
[τ ∈ T ∧ newF (τ) ̸= 0],

(1)

where Z is the normalization factor of QF .310

To bound the size of F , we want to show that the algorithm does not add too many states outside of311

F ∗. We therefore bound E[Bi]/E[Gi], where the expectations are over the trajectory τ that is added312

to F according to QF . Applying Equation (1) twice, once with T = {τ | τ ⊆ F ∗} and once with313

T = {τ | τ ̸⊆ F ∗}, we bound the ratio between Bi and Gi by314

E[Bi]

E[Gi]
≤ Prτ [τ ̸⊆ F ∗ ∧ newF (τ) ̸= 0]

Prτ [τ ⊆ F ∗ ∧ newF (τ) ̸= 0]
. (2)

We know that Prτ [τ ̸⊆ F ∗] is always smaller than ρ, so the numerator is ≤ ρ. A lower bound for the315

denominator is Prτ [newF (τ) ̸= 0]−Prτ [τ ̸⊆ F ∗]. In addition, whenever the algorithm is inside the316

main loop, the safety is at least Prτ [newF (τ) ̸= 0] = ∆(F ) > 2ρ. Thus, the denominator is at least317

ρ. Hence, the RHS of (2) is less or equal to 1, thus318

E[Bi] ≤ E[Gi]. (3)

This completes the proof because we know that the algorithm does not add too many states outside of
F ∗. More precisely,

E[|F |] = E

[∑
i

Bi +Gi

]
≤ E

[
2
∑
i

Gi

]
≤ 2k∗.

Sample complexity. To discuss the sample complexity, we drop the assumption that the MC is known319

to the learner and use EstimateSafety Subroutine to approximate ∆(F ). The number of calls to320

EstimateSafety is bounded by the size of the output set, F . Hence, this part of the sample complexity321

is bounded by |F | ·N|F | and we show that is O(k
∗

ϵ2 log k∗). Another source of sampling is trajectories322

sampled for purposes of potentially adding them to F . Observe that at any iteration the set F has an323

escape probability of at least 2ρ, and each trajectory that escapes F is accepted with a probability of324

at least 1/H . This implies a lower bound for the probability that a random trajectory is accepted is325

2ρ/H . This gives an upper bound of 2|F |ρ
H for the expected sample complexity.326

Amplification.Theorem 4.1 shows that if E holds, then the set size, |F |, is bounded in expectation327

by 2k∗. As Pr[E ] ≥ 1 − λ implies, from Markov’s inequality, that the size (2 + δ)k∗ with small328

probability of about δ + λ = O(δ). If we want to make sure that the actual size is at most (2 + δ)k∗329

with high probability, we can repeat the process about Θ
(
1
δ

)
times and take the smallest size set.330
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5 Empirical Demonstration331

Figure 1: %Coverage: difference from GREEDY Algorithm.

This section demonstrates the qualita-332

tive and quantitative performance of333

the described algorithms in the paper.334

The MDP. We focus on a grid of335

size N × N , for some parameter N .336

The agent starts off at mid-left state,337

(0, ⌊N2 ⌋) and wishes to reach the (ab-338

sorbing) goal state at (N − 1, ⌊N2 ⌋)339

with a minimal number of steps. At340

each step, it can take one of four ac-341

tions: up, down, right, and left by342

1 grid square. With probability 0.9,343

the intended action is performed and344

with probability 0.1 there is a drift345

down. The agent stops either way af-346

ter H = 300 steps.347

5.1 FINDING348

SAFEZONE vs. naive approaches349

To compare the FINDING SAFEZONE350

Algorithm to the naive approaches presented in Section 3 we focus on the policy that first goes to the351

right and when it reaches the rightmost column, it goes up. The policy is described in the appendix,352

Figure 6(d). We take N = 30 and 2000 episodes.353

We run the FINDING SAFEZONE , GREEDY, and SIMULATION algorithms, and estimate their354

coverage based on a test set containing 2000 random trajectories. Section 5 depicts the trajectories355

coverage of each algorithm minus the coverage of the GREEDY algorithm. For a figure with absolute356

values, we refer the reader to Figure 6(b) in the appendix. We see that the new algorithm exhibits357

better performance compared to its competitors. We also see that taking less than 30% of the states358

(k = 250 out of 900 states) is enough to get coverage of more than 80% of the trajectories.359

Figures 5(a),5(b) show the sets found for k = 60 both by the Finding SAFEZONE Algorithm and360

GREEDY. We see that GREEDY chooses an unconnected set for this small k, leading to a coverage of361

0. While the new algorithm chooses a few states which consist of several trajectories, thus leading to362

a coverage larger than 0.363

6 Discussion and Open Problems364

In this paper, we have introduced the SAFEZONE problem. We have shown that it is NP-hard, even365

when the model is known, and designed a nearly (2ρ, 2k∗) approximation algorithm for the case366

where the model and policy are unknown to the algorithm. Beyond improving the approximation367

factors (or showing that it cannot be done unless P = NP ), a natural direction for future work is the368

following. Given a small ρ > 0 and a (known or unknown to the learner) MDP, find a policy with369

a small ρ−safe subset. If the value of the policy, when restricted to the SAFEZONE states, is close370

to the optimal value of the original MDP, restricting the policy to the SAFEZONE states generates a371

compact policy representation with a value close to optimal, and most trajectories are completed in372

the SAFEZONE .373
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Supplementary Material439

A Hardness440

In this section we show that SAFEZONE is NP-hard to solve, and this is why approximation is441

necessary. Moreover, SAFEZONE is hard even if the MC and the optimal ρ−safe size, k∗ are known.442

Our starting point is the NP-hardness of regular cliques. The REGULARCLIQUE(G, kc) problem gets443

as an input (i) a regular graph G with n nodes where each node has degree d, and (ii) an integer kc. It444

returns whether G contains a clique of size kc. Whenever G and kc are clear from the context we445

simply write REGULARCLIQUE. The following fact follows, e.g., from Brandes et al. (2016).446

Fact A.1. REGULARCLIQUE is NP-hard.447

Markov chain (random walk). Fix a graph G = (V,E) and a starting vertex v0 ∈ V . The graph448

induces a Markov Chain (random walk) in the following way. The states of the process correspond to449

the vertices V in the graph G. The transition function is defined as P (v|u) = 1
d · 1(u,v)∈E , where450

d is the degree of any node. The process starts from node v0 and then proceeds according to the451

transition function P for H steps.452

Reduction. To prove the hardness of SAFEZONE , we show how to solve REGULARCLIQUE given a453

solver to SAFEZONE. For each vertex v ∈ V , run an algorithm for SAFEZONE with horizon H = 2,454

k = kc, and ρ = 1−
(
kc−1

d

)2
, and v as the starting state. If there is at least one run of the algorithm455

that returns YES, then the final answer is YES. Otherwise, the answer is NO. Note that this reduction456

is efficient.457

458

Theorem A.2. For every graph G = (V,E) and an integer kc there exists a clique of size kc in G459

⇐⇒ there exists v ∈ V such that SAFEZONE(V, v0 = v, P, kc, ρ) returns YES.460

Given an environment, a policy, and a SAFEZONE , one could compute exactly how much safe it is461

(see Appendix F for details), from which we deduce our following corollary.462

Corollary A.3. SAFEZONE is NP-complete.463

We note that for H = 1, the GREEDY AT EACH STEP Algorithm is optimal.464

B Proofs of Section 3465

B.1 Greedy by Threshold Algorithm466

A naive approach to the SAFEZONE problem is to return all states s ∈ S with probability p(s) ≥ β,467

for some parameter β > 0, see Algorithm 3.

Algorithm 3 Greedy by Threshold
Parameter: β > 0, {p(s)}s∈S
return {s ∈ S : p(s) ≥ β}

468

Lemma 3.1. For any ρ, β ∈ (0, 1), the GREEDY BY THRESHOLD ALGORITHM returns a set that is469

(ρ+ k∗β, H
β )− SAFEZONE. In particular, for β = ρ

k∗ , this set is
(
2ρ, k∗H

ρ

)
− SAFEZONE.470

Proof. There are at most H
β states with probability p(s) ≥ β. Thus |F | ≤ H

β .471

Denote by F ∗ the optimal (ρ, k∗)− SAFEZONE set. By the law of total probability,472

Pr
τ
[τ ̸⊆ F ] ≤ Pr

τ
[τ ̸⊆ F ∗] + Pr

τ
[τ ⊆ F ∗ \ F ].

Looking at the R.H.S of the inequality, the left term is smaller than ρ by the definition of SAFEZONE.473

The right term is equal to the probability to reach a state in F ∗ that its probability is smaller than β,474

i.e., a state in F ∗ \ F.475

Using union bound, this can be bounded by k∗β.476
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Lemma B.1. For every ρ ∈ (0, 1/2), H ∈ N, there exists an MDP and a minimal integer k such that477

the MDP has a (ρ, k)−SAFEZONE , but for β = ρ/k GREEDY BY THRESHOLD Algorithm returns478

F with escape probability ≤ 2ρ and of size |F | = Ω(H/β).479

Proof. Fix ρ ∈ (0, 1). For ease of the presentation, we will assume that 1−ρ
β is an integer (if not, it480

should be rounded to the nearest integer). Define A to contain 1−ρ
β ·H states, B to contain k − 1481

states, and S = {s0} ∪A ∪B. Consider the following MDP with states S and starting state s0. The482

transition function is defined as follows:483

• For every i ∈ A, Pr[sA1,i|s0] = β and for every j ∈ [H − 1], Pr[sAj+1,i|sAj,i] = 1.484

• For s ∈ B, Pr[s|s0] = 1−ρ
k−1485

• For s ∈ B, Pr[s|s] = 1486

The MDP is illustrated in Figure 2. Clearly, {s0} ∪B is a (ρ, k)−SAFEZONE . In addition, GREEDY487

BY THRESHOLD ALGORITHM returns the set of all states, as for every state s ∈ A we have that488

p(s) = β, p(s0) = 1 > ρ ≥ β, and for every s ∈ B we have that p(s) = 1−ρ
k−1 > ρ

k = β. Thus the489

size of the returned set is S, which is of size Ω(H/β), which completes the proof.490

Figure 2: Lower bound for GREEDY BY THRESHOLD Algorithm.

B.2 Simulation Algorithm491

Algorithm 4 Simulation Algorithm

Input: m = 1
β ln k∗

0.005

F ← {s0}
for i = 1 . . .m do
τ ← choose a random trajectory
F ← F ∪ τ

end for
return F

Lemma 3.2. Fix ρ, β ∈ (0, 1). With probability at least 0.99, SIMULATION Algorithm returns492

a set that is
(
ρ+ k∗β,O(k∗ + ρH ln k∗

β )
)
− SAFEZONE. In particular, for β = ρ

k∗ , this set is493

(2ρ,O(k∗H ln k∗))− SAFEZONE.494
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Proof. Denote by F ∗ the optimal (ρ, k∗)− SAFEZONE set. By the law of total expectation, we can495

split E[|F |] into two parts, depending on whether trajectories are entirely in F ∗ or not:496

• Trajectories that are entirely in F ∗ contribute at most k∗ states to F .497

• A trajectory that is not contained in F ∗ contributes at most H states to F .498

Thus,

E[|F |] ≤ k∗ + ρ ·
(
1

β
ln

k∗

0.005

)
·H = O

(
k∗ +

ρH ln k∗

β

)
.

We use Markov’s inequality to get the desired bound on |F |.499

For the safety, we first denote the set of all states in F ∗ with probability at least β as Γ =500

{s ∈ F ∗ | p(s) ≥ β} . We will show that with probability at least 0.9995, it holds that Γ ⊆ F,501

which will prove our claim, similarly to Lemma 3.1.502

For a fixed state s ∈ Γ, the probability that s /∈ F is bounded by (1−p(s))
1
β ln k∗

0.005 ≤ e−
β
β ·ln k∗

0.005 =503
0.005
k∗ . Using union bound, the probability that there is a state s ∈ Γ which is not in F is bounded by504

k∗ · 0.005k∗ = 0.005.505

In other words, with probability at least 0.995, Γ ⊆ F , thus implementing the greedy approach506

in Algorithm 3 and proving that the probability that a random trajectory escapes F is bounded by507

ρ+ k∗β.508

Lemma B.2. For every ρ, γ ∈ (0, 1), H, k ∈ N, and β = ρ
k , there is an integer r ∈ N and MDP509

with (ρ, k)−SAFEZONE, but with probability ≥ 1 − γ, SIMULATION algorithm returns F of size510

E[|F |] ≥ kH ln k with escape probability ∆(F ) = O(ρ).511

Proof. Fix ρ, γ ∈ (0, 1). Recall that m = 1
β ln k∗

0.005 and take r = ⌈m
2

γ ⌉. Define A to contain rH512

states, B to contain k − 1 states, and S = {s0} ∪A ∪B.513

Consider the following MDP with states S and starting state s0. The transition function is defined as514

follows:515

• For every i ∈ A, Pr[sA1,i|s0] =
ρ
r and for every j ∈ [H − 1], Pr[sAj+1,i|sAj,i] = 1.516

• For s ∈ B, Pr[s|s0] = 1−ρ
k−1517

• For s ∈ B, Pr[s|s] = 1518

The MDP is illustrated in Figure 3.519

The set B ∪ {s0} is ρ−safe with k states.520

We will show that:521

• After adding ≥ 1
β ln k = k

ρ ln k random trajectories, with probability ≥ 1− γ we have that522

|F | ≥ kH ln k.523

• After adding m random trajectories, we have that with high probability F ∗ ⊆ F , thus524

∆(F ) ≤ Ω(ρ).525

To prove the first property, we claim that with probability≥ 1− γ, every time we add a trajectory τ526

such that τ ∩A ̸= ∅, we add H new states.527

Notice that if we ignore s0, trajectories in A are entirely unconnected, and each trajectory is chosen528

randomly with probability Pr[sA1,i|s0] =
ρ
r . This yields that if sA1,i /∈ F , then sAj,i /∈ F for every529

j ∈ [H]. As a result, every time we add a new sA1,i to F , we add H − 1 more states to F . Let N530
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Figure 3: Lower bound for SIMULATION Algorithm.

denote the number of trajectories sampled with states from A. The probability that their intersection531

contains only s0 is532

r · (r − 1) · . . . · (r −N)

rN
≥

(
r −N

r

)N

=

(
1− N

r

)N

≥ 1− N2

r
= 1− γ.

From the structure of the MDP, we have that E[N ] = ρm. Therefore, with probability ≥ 1− γ,533

E[|F |] ≥ E[N ] ·H = ρ ·m ·H ≥ ρ · 1
β
ln k ·H = kH ln k.

The second property follows from Lemma 3.2.534

B.3 Greedy at Each Step535

Algorithm 5 Greedy at Each Step
Input: ρ > 0, {p(s)}s∈S
F ← {s0}
for i = 1 . . . H do

Sort states in Si, p(s1i ) ≥ . . . ≥ p(s
|Si|
i )

j∗ ← argminj∈[|Si|]
∑j

r=1 p(s
r
i ) ≥ 1− ρ

F ← F ∪
{
s1i , . . . s

j∗

i

}
end for
return F

Lemma 3.3. For any ρ ∈ (0, 1), if the MDP is layered, GREEDY AT EACH STEP ALGORITHM536

returns a set that is (ρH, k∗)− SAFEZONE.537

Proof. Take a random trajectory τ = (s1, s2, . . . ). For every si ∈ τ , the probability that si /∈ F is538

bounded by ρ, thus using union bound, the probability that τ has state si such that si /∈ F is at most539

ρH .540

The construction of F guarantees that F is the minimal subset of states such that for every i, the541

probability that si is in the subset is at least 1 − ρ. Assume by contradiction that |F | > k∗. Then542

there is a time step i such that Pr[si ∈ F ∗] < 1− ρ, which is a contradiction, since Pr[τ ∈ F ∗] ≤543

mini Pr[si ∈ F ∗].544

545
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Lemma B.3. For any ρ ∈ (0, 1), there is an MDP and an integer k such that there is a546

(ρ, k)−SAFEZONE , but GREEDY AT EACH STEP Algorithm returns F with escape probability547

∆(F ) ≥ Ω(Hρ).548

Proof. Fix ρ ∈ (0, 1) and take k = 3H + 1.549

Consider the MDP illustrated in Figure 4. The set {s0} ∪ {si1}i ∪ {si2}i ∪ {si3}i form a (ρ, 3H +550

1)−SAFEZONE .551

Figure 4: Lower bound for GREEDY AT EACH STEP Algorithm.

We will prove by induction that the for every time i,552

• p(si1) = 1− 2ρ,553

• p(si2) = p(si3) = p(si4) =
ρ
2 , and554

• For every j ∈ {5, . . . , k + 4}, p(sij) =
ρ
2k .555

It is easy to see that the two properties hold for i = 1.556

For i > 1,

p(si1) = p(si−1
1 )(1− ρ) + p(si−1

2 )
ρ

2
+ p(si−1

3 )
ρ

2
= (1− 2ρ)(1− ρ) + 2(1− 2ρ)

ρ

2
= 1− 2ρ

p(si2) = pi−1(s
i−1
1 )

ρ

2
+ p(si−1

2 )ρ+ p(si−1
3 )ρ = (1− 2ρ)

ρ

2
+

ρ2

2
+

ρ2

2
=

ρ

2
Similarly, p(si3) =

ρ
2 .

p(si4) =
1

2
p(si−1

4 ) +

k+4∑
j=5

p(si−1
j )

2
=

ρ

4
+ k

ρ

4k
=

ρ

2

For every j ∈ {5, . . . , k + 4},

p(sij) =
1

2k
p(si−1

4 ) +

k+4∑
m=5

p(si−1
m )

2k
=

ρ

4k
+ k

ρ

4k2
=

ρ

2k
.

The algorithm might return {s0} ∪ {si1}i ∪ {si2}i ∪ {si4}i, i.e., instead of taking ∪i{si3}i it takes557

∪i{si4}i. Finally, the observation ∆({s0} ∪ {si1}i ∪ {si2}i ∪ {si4}i) ≥
ρH
4 completes the proof.558
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C Proofs of Section 4559

For convenience, we state here Hoeffding’s inequality.560

Lemma C.1. [Hoeffding’s Inequality] Let y1, . . . , yN be independent random variables such that561

yi ∈ [a, b] for every yi with probability 1. Then, for any ϵ > 0,562

Pr

[∣∣∣∣∣ 1N
N∑
i=1

yi − E[yi]

∣∣∣∣∣ ≥ ϵ

]
≤ 2e−2Nϵ2/(b−a)2 .

C.1 Proof of Theorem 4.1563

In this section, we provide a complete proof for Theorem 4.1. Throughout the section, we define564

a few terms and notions. We will start with proving guarantees regarding a single iteration of the565

while–loop.566

Recall that F ∗ denotes a minimal ρ−safe set (of size k∗). If there are multiple optimal solutions,567

choose one arbitrarily. For the convince of analysis, we denote the values of the algorithm variables568

at the end of each iteration i of the while–loop by τi, Fi, accepti. Let j(i) denote the value of569

variable j during the i−th call to EstimateSafety Subroutine. In addition, let Ni denote the number of570

trajectories sampled for the j−th time of calling Subroutine EstimateSafety, i.e., Ni =
1

2ϵ2 ln
2

λj(i)
571

for j(i) ≤ i.572

For ease of presentation, we recall some of the definitions from the proof technique description. We573

say that a trajectory τ is good if all the states in τ are in F ∗ and bad if it escapes it. I.e., a trajectory is574

good if τ ⊆ F ∗ and bad if τ ̸⊆ F ∗. Additionally, we say that a state s ∈ S is good if it is in F ∗ and575

bad otherwise. Namely, a state s is good if s ∈ F ∗ and bad if s /∈ F ∗. Let Gi(Fi−1) and Bi(Fi−1)576

be the number of good and bad states added to Fi−1 in iteration i, respectively (notice that Gi(Fi−1)577

and Bi(Fi−1) are random variables that depends on Fi−1). For short, whenever it is clear from the578

context, we write Gi and Bi respectively.579

The following lemma bounds the error in approximating the escape probability.580

Lemma C.2. Let Fi−1 ⊆ S be a subset of of states and ϵ, λj > 0 be some parameters. Let Si be a581

sample of Ni ≥ 1
2ϵ2 ln

2
λj(i)

i.i.d. random trajectories. Then,582

Pr
Si

[∣∣∣∆̂(Fi−1)−∆(Fi−1)
∣∣∣ ≥ ϵ

]
≤ λj .

Also, as λj =
3λ

2(πj)2 ,583

Pr
[
∃i

∣∣∣∆̂(Fi−1)−∆(Fi−1)
∣∣∣ ≥ ϵ

]
≤ λ/4,

Where the last probability is over all the samples Si made by EstimateSafety Subroutine.584

Proof. The first part follows directly from Hoeffding’s inequality by taking yi = I[τ ̸⊆ F ].585

Assigning λj =
3λ

2(πj)2 and applying union bound, we get586

Pr
[
∃i

∣∣∣∆̂(Fi−1)−∆(Fi−1)
∣∣∣ ≥ ϵ

]
≤

∑
i

Pr
Si

[∣∣∣∆̂(Fi−1)−∆(Fi−1)
∣∣∣ ≥ ϵ

]
≤(∗)

∑
j(i)

λj(i) ≤
∞∑
j=1

λj =

∞∑
j=1

3λ

2(πj)2
=

λ

4
.

The inequality marked by (∗) follows from the fact that ∆(F ) is estimated once for every time j587

increases.588

We define the event that EstimateSafety always provides good estimations by

E = {∀i
∣∣∣∆̂(Fi−1)−∆(Fi−1)

∣∣∣ ≤ ϵ}.

By the above, we have that Pr[E ] ≥ 1− λ/4.589
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In the following lemma we assume that if the current escape probability is at least 2ρ, then the fraction590

of bad trajectories that escape Fi−1 is bounded from above by the fraction of good trajectories that591

escape Fi−1.592

Lemma C.3. Let ρ > 0 and assume that ∆(Fi−1) ≥ 2ρ. Then,593

Pr
τ
[newFi−1

(τ) ̸= 0 ∧ τ ̸⊆ F ∗] ≤ Pr
τ
[newFi−1

(τ) ̸= 0 ∧ τ ⊆ F ∗],

where the probabilities are over random trajectories.594

Proof. To prove the lemma, we will bound the probability Prτ [newFi−1(τ) ̸= 0 ∧ τ ̸⊆ F ∗] from595

above and the probability Prτ [newFi−1(τ) ̸= 0 ∧ τ ⊆ F ∗] from below. Since ∆(F ∗) ≤ ρ,596

Pr
τ
[newFi−1

(τ) ̸= 0 ∧ τ ̸⊆ F ∗] ≤ Pr
τ
[τ ̸⊆ F ∗] ≤ ρ. (4)

The assumption ∆(Fi−1) ≥ 2ρ implies that597

2ρ ≤ ∆(Fi−1) = Pr
τ
[newFi−1

(τ) ̸= 0] = Pr
τ
[newFi−1

(τ) ̸= 0 ∧ τ ⊆ F ∗] + Pr
τ
[newFi−1

(τ) ̸= 0 ∧ τ ̸⊆ F ∗]

≤ Pr
τ
[newFi−1

(τ) ̸= 0 ∧ τ ⊆ F ∗] + Pr
τ
[τ ̸⊆ F ∗] ≤ Pr

τ
[newFi−1

(τ) ̸= 0 ∧ τ ⊆ F ∗] + ρ,

hence598

ρ ≤ Pr
τ
[newFi−1(τ) ̸= 0 ∧ τ ⊆ F ∗]. (5)

Putting (4) and (5) together yields the statement.599

Now, as long as the algorithm is inside the while–loop (i.e., the escape probability holds ∆̂(F ) >600

2ρ + ϵ), it follows that ∆(F ) ≥ 2ρ with high probability from Lemma C.2. Combining it with601

Lemma C.3 would yield that with high probability over a random trajectory, if the trajectory escapes602

F then in expectation, it is at least as likely to be good as it is to be bad.603

We move on to show the main ingredient of the proof, namely that for any iteration, with high604

probability, the expected number of good states added to the current set F is larger or equal to the605

expected number of bad states.606

For every iteration i in which we sample τi both Gi and Bi depends on the following:607

1. The realizations of the sampled trajectory, τi, and in particular on newFi−1
(τi).608

2. The probability of adding it to F , i.e., 1/newFi−1(τi).609

Next, we prove Equation (3).610

Lemma C.4. Assume event E holds. Thus, for all iterations i inside the while–loop we have611

E[Bi|Fi−1] ≤ E[Gi|Fi−1],

where the expectation is over the trajectory τ that is sampled from the MC dynamics and added to612

Fi−1 according to QFi−1
.613

Proof. Since event E holds, we have that ∆(Fi−1) ≥ 2ρ as long as we do not terminate in iteration i.614

We can use it to bound Eτ [Bi|Fi−1] by615

Eτ [Bi|Fi−1] ≤
H∑

h=1

Prτ [newFi−1
(τ) = h ∧ τ ̸⊆ F ∗]

h
· h

= Pr
τ
[newFi−1

(τ) ̸= 0 ∧ τ ̸⊆ F ∗] ≤︸︷︷︸
Lemma C.3

Pr
τ
[newFi−1

(τ) ̸= 0 ∧ τ ⊆ F ∗]

=

H∑
h=1

Prτ [newFi−1
(τ) = h ∧ τ ⊆ F ∗]

h
· h ≤ Eτ [Gi|Fi−1].

616
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Theorem 4.1. Given ρ, ϵ, λ ∈ (0, 1), FINDING SAFEZONE Algorithm returns a subset F ⊆ S such617

that:618

1. The escape probability is bounded from above by ∆(F ) ≤ 2ρ+ 2ϵ, with probability 1− λ.619

2. The expected size of F given E is bounded by E[|F | | E ] ≤ 2k∗.620

3. The sample complexity of the algorithm is bounded by O
(

k∗

λϵ2 ln
k∗

λ + Hk∗

ρλ

)
, and the621

running time is bounded by O
(

Hk∗

λϵ2 ln k∗

λ + H2k∗

ρλ

)
, with probability 1− λ.622

Proof. Assume that the event E holds, and recall that623

Pr[E ] ≥ 1− λ/4. (6)

We start with the first clause. Since the event E holds, Lemma C.2 in particular implies that624

∆(F ) ≤ 2ρ + 2ϵ, hence the first clause holds. For second clause, we will bound E[|F | | E ] from625

above by 2k∗. Since E holds, we have that ∆(Fi−1) ≥ 2ρ, for every i inside the while–loop, thus626

Lemma C.4 yields627

E[Bi|Fi−1] ≤ E[Gi|Fi−1].

This implies that628

E[|F | | E ] ≤ 2
∑
i

EFi−1
[E[Gi|Fi−1]]|E ] ≤ 2k∗, (7)

where the last inequality follows from the definition of Gi, as
∑

i Gi ≤ |F ∗| = k∗.629

We continue with the third clause of the theorem. Let M denote the sample complexity of the630

algorithm, namely M = MF +ME where MF is the expected total number of trajectories sampled631

within the FINDING SAFEZONE Algorithm (without the samples made by EstimateSafety Subroutine)632

and ME is the total number of trajectories sampled using EstimateSafety. We will bound each term633

separately.634

Since E holds, whenever we are inside the while–loop, ∆(Fi) ≥ 2ρ, which implies that it takes at635

most 1/2ρ trajectories in expectation to sample a trajectory that escapes Fi, and such trajectory is636

accepted with probability at least 1/H .637

Thus, from Wald’s identity, it follows that638

E [MF | E ] =
H

2ρ
· E[|F | |E ] ≤ Hk∗

ρ
.

From Markov’s inequality on the above inequality, with probability at least 1− λ
4 ,639

Pr

[
MF ≥

4Hk∗

ρλ

∣∣E] ≤ λ

4
. (8)

Moving on to bound ME . Since E holds, it follows from Equation (7) and Markov’s inequality that640

Pr

[
|F | ≥ 8k∗

λ

∣∣ E] = Pr

[
|F | ≥ 2k∗ · 4

λ

∣∣ E] = Pr

[
|F | ≥ E[|F | | E ] · 4

λ

∣∣ E] ≤ λ

4
. (9)

If |F | ≤ 8k∗

λ , the number of calls for Subroutine EstimateSafety is also bounded by 8πk∗/λ (we only641

call EstimateSafety after we added states to F ). It also implies that 3λ3

2(8πk∗)2 ≤ λj for every j ≥ 1.642

Thus, if |F | ≤ 8k∗

λ ,643

ME =

|F |∑
j=1

Ni ≤
8k∗
λ∑
j

1

2ϵ2
ln

2

λj
≤

8k∗
λ∑
j

1

2ϵ2
ln

2
3λ3

2(8πk∗)2

≤
8k∗
λ∑
j

1

2ϵ2
ln

86(πk∗)2

λ3

=
8k∗

2λϵ2
ln

86(πk∗)2

λ3
=

4k∗

λϵ2
ln

86(πk∗)2

λ3
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Combining the above with Equation (9), we get644

Pr

[
ME >

4k∗

λϵ2
ln

86(πk∗)2

λ3

∣∣ E] ≤ λ

4
(10)

As M = MF +ME , union bound over Equation (6), Equation (8) and Equation (10) implies that645

with probability ≥ 1− 3λ/4 > 1− λ,646

M = O

(
k∗

λϵ2
ln

k∗

λ
+

Hk∗

ρλ

)
(11)

For each trajectory we sample we run in time O(H), e.g., by using a lookup table for maintaining647

the current set F . Consequently, if the event in Equation (11) holds then the running time of the648

algorithm is bounded by649

O

(
Hk∗

λϵ2
ln

k∗

λ
+

H2k∗

ρλ

)
.

Overall, all the clauses in the lemma hold with probability ≥ 1− λ.650

651

C.2 Proof of Theorem 4.2652

Theorem 4.2. (main theorem) Given ϵ, ρ, δ > 0, if we run FINDING SAFEZONE for Θ( 1δ ) times and653

return the smallest output set, F ⊆ S, then with probability ≥ 0.99654

1. The escape probability is bounded by ∆(F ) ≤ 2ρ+ 2ϵ.655

2. The size of F is bounded from above by |F | ≤ (2 + δ)k∗.656

3. The total sample complexity and running time are bounded by O( k∗

δ2ϵ2 ln
k∗

δ + Hk∗

ρδ2 ), and657

O(Hk∗

δ2ϵ2 ln k∗

δ + H2k∗

ρδ2 ), respectively.658

Proof. Assume we run FINDING SAFEZONE Algorithm for m = 2 ln 300
δ times and denote each659

algorithm output by F i. Return the smallest set F = argminF i |F i|.660

It follows from Theorem 4.1 that for every λ ∈ (0, 1), each F i is of expected size E[|F i|] ≤ 2k∗, and661

is (2ρ+ 2ϵ)−safe with probability ≥ 1− λ. Choosing λ = 0.01
3m implies662

Pr[∆(F ) > 2ρ+ 2ϵ] ≤ 0.01

3
. (12)

In addition, from Markov’s inequality it follows that for every δ > 0,663

Pr
[
|F i| > (2 + δ)k∗

]
≤ Pr

[
|F i| > (2 + δ)k∗|E

]
+ Pr[E ]

≤ 2k∗

(2 + δ)k∗
+ λ

= 1− δ/2

1 + δ/2
+ λ

= 1− δ/2− λ− λδ/2

1 + δ/2

From the independence of the algorithm runs, for m = 2 ln 300
δ ,664

Pr[|F | > (2 + δ)k∗] ≤ Pr[∀i : (|F i| > (2 + δ)k∗)]

≤
∏

i∈[m]

Pr[|F i| > (2 + δ)k∗]

≤
(
1− δ/2− λ− λδ/2

1 + δ/2

)m

≤ e−m(
δ/2−λ−λδ/2

1+δ/2
) ≤ 0.01

3
.
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Hence665

Pr[|F | > (2 + δ)k∗] ≤ 0.01

3
. (13)

As for the sample complexity, let Mi denote the (random) sample complexity of the i−th run, and let
us denote

M̄ =
4k∗

λϵ2
ln

86(πk∗)2

λ3
+

4Hk∗

ρλ
.

From Theorem 4.1, Mi > M̄ with probability < λ.666

By taking the union bound on the sample complexity bound per one run, we get667

Pr
[
∃i : Mi > M̄

]
≤

∑
i∈[m]

Pr
[
Mi > M̄

]
≤ m · λ =

0.01

3
.

Where the last inequality follows from Theorem 4.1, and λ = 0.01
3m .668

Assigning m = 2 ln 300
δ and λ = 0.01

3m = 0.01δ
6 ln 300 , we get that with probability ≥ 1− 0.01

3 ,669

m∑
i=1

Mi = O

(
mk∗

λϵ2
ln

k∗

λ
+

mHk∗

ρλ

)
= O

(
k∗

δ2ϵ2
ln

k∗

δ
+

Hk∗

ρδ2

)
(14)

Since the algorithm runs in time O(H) for every trajectory sampled, if the sample complexity is670

bounded by the above term, then the total running time is bounded by O
(

Hk∗

δ2ϵ2 ln Hk∗

δ + Hk∗

ρδ2

)
.671

Finally, from union bound over Equation (12), Equation (13) and Equation (14) all the theorem672

properties hold with probability ≥ 0.99.673

D Proofs of Section A674

Theorem A.2. For every graph G = (V,E) and an integer kc there exists a clique of size kc in G675

⇐⇒ there exists v ∈ V such that SAFEZONE(V, v0 = v, P, kc, ρ) returns YES.676

Proof. (=⇒) If there is a clique of size kc, then we can take the corresponding k states. The677

probability to remain in this subset is at least
(
k−1
d

)2
(remember that H = 2). Thus, an exact solver678

for SAFEZONE must return YES.679

(⇐=) Suppose there is no clique of size k. Assume by contradiction that the reduction (algorithm)680

returns YES. Let s0 be a vertex which was the starting state from the running instance which the YES681

came from and let F̂ denote the output of SAFEZONE . We will show that the probability to remain682

in any subset of size k is smaller than
(
k−1
d

)2
.683

Since there is no clique of size k in G, we know that F̂ is not a clique. It therefore follows that there684

exists at least two vertexes, sa, sb ∈ V such that (sa, sb) /∈ E.685

We will now bound the probability of escape from state s0 by exhaustion.686

1. If s0 ̸= sa, then687

Pr[escape from s0] ≥ Pr[t = 1 : (s0, s
′), s′ /∈ F̂ ]

688

+Pr[t = 1 : (s0, s), s ̸= sa] · Pr[t = 2 : (s, s′), s′ /∈ F̂ |t = 1 : (s0, s), s ̸= sa]
689

+Pr[t = 1 : (s0, sa)] · Pr[t = 2 : (sa, s
′), s′ /∈ F̂ |t = 1 : (s0, sa)]

690

=
d− (k − 1)

d
+

k − 2

d
· d− (k − 1)

d
+

1

d
· d− (k − 2)

d
691

= 1− k − 1

d
+

k − 2

d
− (k − 2)(k − 1)

d2
+

1

d
− k − 2

d2
=
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692

1− k − 2

d2
(k − 1 + 1) = 1− k(k − 2)

d2

Hence693

Pr[staying] ≤ k(k − 2)

d2
<

(k − 1)2

d2
.

2. If s0 = sa, then694

Pr[escape from s0] ≥ Pr[t = 1 : (s0, s
′), s′ /∈ F̂ ]

695

+Pr[t = 1 : (s0, s), s ∈ F̂ ] · Pr[t = 2 : (s, s′), s′ /∈ F̂ |t = 1 : (s0, s), s ∈ F̂ ]
696

=
d− (k − 2)

d
+

k − 2

d
· d− (k − 1)

d
697

= 1− k − 2

d
+

k − 2

d
− (k − 2)(k − 1)

d2
698

= 1− (k − 2)(k − 1)

d2

Hence699

Pr[staying] ≤ (k − 2)(k − 1)

d2
<

(k − 1)2

d2
.

700

E Additional Figures for Section 5701

E.1 Comparing SAFEZONE of two policies702

In this section, we empirically explore the SAFEZONE of two different policies within the same703

MDP. The first policy, described in the previous section, first goes right and then to the middle, and704

the second policy first goes to the middle and then goes right. See Figure 6 in the appendix. These705

seemingly similar policies induce very different SAFEZONES as can be seen in Figure 8 which depicts706

the number of visits in each state. It shows that the second policy requires fewer states to achieve the707

same level of safety, even though in terms of minimizing the number of steps to get to the goal state it708

is outperformed by the first policy (intuitively, the second policy has more fail attempts to go up in709

expectation since the lowest row of the grid cannot get worst). In Figure 7 we see that already with710

14% of the states, all three algorithms achieve trajectory coverage of more than 85%.711

Figure 6 depicts the two policies discussed in the paper when N = 7.712

Figure 7 depicts coverage percentage for the different algorithms discussed in the paper when applied713

to the second policy.714

Figure 6(c) depicts the number of total visits at each state using the described policy.715

Figure 8 shows the visits of the policies described in the main paper for N = 30. It is immediately716

clear that the SAFEZONE of the two policies are fundamentally different. As mentioned, this affects717

their SAFEZONE sizes. Namely, when trying to go right from a current state in the lowest row it718

is impossible to get to a square that is lower than that, and the first policy takes advantage of this.719

In contrast, the second policy keeps trying to go up from the lowest row, which implies that in720

expectation it goes down more times compared to the first.721

F Exact Computation722

In this section, we assume that the transition function is known to the algorithm and show how to723

compute ∆(F ).724

Given a Markov Chain ⟨S, P, s0⟩ and a set F ⊆ S we create a new Markov Chain ⟨S ′, P ′, s0⟩ as725

follows. We add a new state ssink ̸∈ S, and set S ′ = F ∪ {ssink}. For each transition from a state726

s ∈ F to a state s′ ̸∈ F we modify and make the transition in P ′ to the sink ssink. In P ′, when we727
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(a) Set chosen by GREEDY AT EACH STEP Algo-
rithm.

(b) Set chosen by SAFEZONE Algorithm.

Figure 5: Empirical results regarding Coverage of the different algorithms, FINDING SAFEZONES
and state visit frequency.

are in ssink we always stay in ssink. More formally: (1) if s, s′ ∈ F then P ′(s′|s) = P (s′|s), (2) we728

set P ′(ssink|s) =
∑

s′ ̸∈F P (s′|s) and (3) P ′(ssink|ssink) = 1 and P ′(s|ssink) = 0 for s ̸= ssink.729

Now we claim that ∆(F ) = PrP ′ [sH = ssink], since any trajectory that reaches a state not in F will730

reach the sink in P ′ and stay there. We can compute PrP ′ [sH = ssink] using standard dynamics731

programming.732

The running time of constructing ⟨S ′, P ′, s0⟩ is O(|S|2). Computing the probability of PrP ′ [sH =733

ssink] takes O(H|S|2). Therefore we have established the following.734

Lemma F.1. Given a Markov chain ⟨S, P, s0⟩ and a set F ⊆ S we can compute ∆(F ) in time735

O(|S|2H).736

Note that the above lemma implements an exact version of the EstimateSafety Subroutine.737
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(a) %Coverage: difference from GREEDY Algorithm.

(b) %Coverage: absolute values.

(c) Total number of visits at each state
from 2000 episodes. Zero visits in grey.
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(d) Go right and then to the goal state.

(e) Go to the middle and then right.

Figure 6: Two policies for the same MDP with N = 7. Starting state, s0, in blue, and the goal state
in red.
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Figure 7: SAFEZONE coverage for the second policy.

26



(a) Number of visits at each state for policy “Go right and then to
the middle”

(b) Number of visits at each state for policy “Go to the middle and
then right”

Figure 8: Total number of visits for the two policies.
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