
Appendix434

A Theoretical Proof435

We provide a detailed derivation and proof of the least-squares pose regression process in the text.436

The camera position parameters θ and t can be obtained by solving the following loss function.437

ξ = argmin
θ,t

n∑
i=1

Si(Rp′
i + t− p̂i)

2,R =

[
cos θ − sin θ
sin θ cos θ

]
(8)

The relationship between the corresponding points p′
i and p̂i in point sets p′ and p̂ can be expressed438

as p′
i = Rp̂i + t. To simplify the problem, we calculate the centroids g′ and ĝ of point sets p′ and439

p̂, respectively. We then subtract the centroids from each point in their respective sets, resulting in440

q′
i = p′

i − g′ and q̂i = p̂i − ĝ. This simplifies the problem to:441

ξ = argmin
θ

n∑
i=1

Si(Rq′
i − q̂i)

2

= argmin
θ

n∑
i=1

Si(Rq′
i − q̂i)

t
(Rq′

i − q̂i)

= argmin
θ

n∑
i=1

Si(q
′
i
t
q′
i) + q̂i

tq̂i − 2q̂i
tRq′

i

(9)

Therefore, minimizing ξ is equivalent to maximizing
∑n

i=1 Si(q̂i
tRq′

i). Assuming that H =442 ∑n
i=1 Si(q

′
iq̂i

t). then443

n∑
i=1

Si(q̂i
tRq′

i) = tr(

n∑
i=1

RSiq
′
iq̂i

t) = tr(RH) (10)

Upon performing an SVD decomposition on H , the result is H = UΛV t, where U and V are444

orthogonal matrices of dimensions 3×3, and Λ is 3×3 diagonal matrix with non-negative elements.445

Then we introduce an orthogonal matrix X = UV t, and observe that XH = V ΛV t is a symmet-446

ric positive-definite matrix. According to the properties of positive definite matrices, it holds that447

tr(XH) ≥ tr(BXH) for any 3 × 3 orthogonal matrix B. Therefore, we obtain the maximum448

value of
∑n

i=1 Si(q̂i
tRq′

i) when R = X , which implies that449

R = UV t (11)

The dense matching relationship between the graphs gives rise to the uniqueness of solution for R.450

Subsequently, the relative displacement can be determined as451

t = g′ −Rĝ (12)

By utilizing equations 11 and 12, we can obtain the camera location and azimuth through a straight-452

forward differentiable process, using the least-squares regression method.453

B Localization qualitative results454

In Figures 5 and 6, we present additional qualitative cross-view localization results on the KITTI,455

Ford multi-AV, VIGOR, and Oxford RobotCar datasets.456

As pointed out in the main paper Section 4.6 of the main text, our method tends to exhibit poorer457

performance in terms of longitudinal localization accuracy. We present some examples of localiza-458

tion errors in Figure 5. In the visualization results it can be noticed that our algorithm demonstrates459

higher accuracy in lateral localization along the direction of travel, while performing poorly in lon-460

gitudinal localization, particularly in the Ford multi-AV dataset of suburban scenes. The displayed461

examples of localization failures reveal that the limited horizontal field of view and the absence of462

reference objects along the sides of the lane contribute to the localization errors. In such scenarios,463

our algorithm is still able to rely on lane features to accomplish lateral localization compared to LM.464

However, neither method performs well in longitudinal localization.465
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Figure 5: Failure cases. The left image sourced from KITTI dataset and the two on the right from
the Ford multi-AV dataset.For each scene, the up left is the ground image, the bottom left denotes
matching inliers and the right shows the satellite image and localization results. For visual simplicity,
dense matching displays only partial inliers.

(A) KITTI dataset

OursLMGT OursLMGT

OursLMGT

(B) Ford multi-AV dataset

OursMCCGT OursMCCGT

(C) VIGOR dataset

OursMCCGT OursMCCGT

(D) Oxford RobotCar dataset

OursLMGT

Figure 6: Qualitative results on the four datasets. For each scene, the up left is the ground image,
the bottom left denotes matching inliers, the center shows the satellite image and localization results,
and the right displays a visualization of the matched points mapped back to the original image. The
central axis of a panoramic image represents its orientation. For visual simplicity, dense matching
displays only partial inliers.

In addition, we have provided more visualizations for all four datasets. As discussed in Section 4 of466

the main text, our approach outperforms previous methods. It is important to note that, during testing467

on the VIGOR dataset, the MCC method cannot handle angle noise. Therefore, the visualization for468

MCC is based on a scenario where the angle noise is zero, while our visualization results are obtained469

in a scenario where the angle is completely unknown. Furthermore, to demonstrate the effectiveness470

of dense matching, we visualize the dense matching points mapped onto the original images in471

Figure 5. It can be observed that our pipeline establishes correspondences between satellite and472

ground-level image points, achieving precise localization of ground cameras in satellite images. This473

further confirms the efficacy of the architecture proposed in our work for cross-view localization474

using dense pixel flow fields.475
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