
A Appendix

A.1 Gaussian as the Posterior

Here we explain why setting the reward distribution as a Gaussian distribution is feasible. Recall that
we consider a non-stationary environment. We design the reward distribution to model the rewards
observed in recent history. Within a small number of steps, the model is unlikely to change drastically.
Therefore, the observed rewards, which are computed as the ratios of decrement in loss, are unlikely
to be skewed. As a result, Gaussian is a feasible choice.

A.2 Data

For the VQA task, we conduct downstream fine-tuning and testing on the VQA 2.0 dataset [14],
which consists of 83k images and 444k questions for training, 41k images, and 214k questions for
validation. For the image captioning task on COCO, we use [6] for training and testing. It contains
11k images for training and 5k images for validation and 5k images for testing.

A.3 Teacher Model Implementation Details

We fine-tune a pre-trained CoCa-Large model [48] as the teacher. It contains 672M parameters in
Transformer layers and contains a total of 787M parameters including the embedding size. It contains
24 layers in the image encoder, and 12 layers in the text encoder, and 12 layers in the multimodal
decoder. We use a vocabulary size of 64k. We use 576 as the image resolution and 18 as the patch
size for image inputs. We use 64 as the max sequence length for text inputs. We follow [48] for
fine-tuning hyper-parameters for all tasks, as listed in Table 2.

Table 2: Hyper-parameters for fine-tuning CoCa-Large teacher models.
Hyper-parameters VQA SNLI-VE NLVR2 COCO Caption

Optimizer Adafactor with Decoupled Weight Decay
Adam βs (0.9, 0.999)
Gradient Clipping 1.0
Learning Rate Schedule Linear Schedule Decaying to Zero
Warm-up Steps 1k
Weight Decay Rate 0.1
Pooler Learning Rate 5× 10−4 1× 10−3 5× 10−3 N/A
Encoder Learning Rate 2× 10−5 5× 10−5 2× 10−5 1× 10−5

RandAugment 1, 10 1, 10 None None
Training Steps 100k 50k 50k 50k
Batch Size 64 128 64 128
Dropout of Task Layer 0.5 0.5 0.5 N/A

For multimodal understanding tasks, we follow [48] to apply an attentional pooler with a single
query to extract embedding from the decoder output, and train a linear classifier on top of the pooled
embedding. For NLVR2, we construct two input sequences, each containing the concatenation of the
description and one image. The two output representations are further concatenated as the input to
the classifier. For image captioning, we apply the captioning loss proposed in [48]. We do not use the
CIDEr metric-specific optimization [29]. We use a greedy strategy for decoding.

A.4 Distillation Implementation Details

For each task, we distill a CoCa-Tiny12 student and a CoCa-Tiny6 student from a fine-tuned CoCa-
Large teacher on that task. CoCa-Tiny12 contains 102M parameters in the Transformer layers
and contains a total of 152M parameters including the embedding size. CoCa-Tiny6 contains
55M parameters in the Transformer layers and contains a total of 105M parameters including the
embedding size. We use 576 as the image resolution and 18 as the patch size for image inputs. To
tokenize text input, we use a sentence-piece model [33, 22] with a vocabulary size of 64k trained on
the sampled pre-training dataset. We use 64 as the max sequence length for text inputs. We follow
[48] for fine-tuning hyper-parameters for all tasks, as listed in Table 3.

We conduct a two-stage distillation for CoCa-Tiny6. We first distill CoCa-Tiny12 from CoCa-Large,
then use the distilled CoCa-Tiny12 as the teacher to teach CoCa-Tiny6. Existing works have shown
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that introducing an intermediate-sized teacher reduces the gap between the teacher and the student
model, which allows the distillation to be more effective [26].

We distill the model for a total of T ′ steps, i.e., a total of T = T ′/P rounds. Among the T rounds,
the first T0 ·K rounds are used for initialization of the parameters of the reward distribution.

Table 3: Hyper-parameters for distilling CoCa-Tiny student models.
Hyper-parameters VQA SNLI-VE NLVR2 COCO Caption

T0 10
P 100
T 1000
γ 0.98
αs (0.0, 1.0, 1× 10−2)

Optimizer Adafactor with Decoupled Weight Decay
Adam βs (0.9, 0.999)
Gradient Clipping 1.0
Learning Rate Schedule Linear Schedule Decaying to Zero
Learning Rate 1× 10−3

Warm-up Steps 1k
Weight Decay Rate 0.1
RandAugment 1, 10 1, 10 None None
Training Steps (T ′) 125k 100k 100k 100k
Batch Size 128 384 256 256
Dropout of Task Layer 0.5 0.5 0.5 N/A

A.5 Statistics of Experimental Results

We report the median of five random seeds for experiment results on CoCa-Tiny12 and CoCa-Tiny6.
Table 4 show the standard deviations of the experimental results in Table 1.

Table 4: The standard deviation of the experimental results in Table 1.
Method VQA SNLI-VE NLVR2 COCO Caption

Acc Acc Acc CIDEr

CoCa-Tiny6 0.20 0.25 0.11 0.15
CoCa-Tiny6 (OPTIMA) 0.22 0.13 0.35 0.15
CoCa-Tiny12 0.17 0.23 0.15 0.88
CoCa-Tiny12 (OPTIMA) 0.08 0.15 0.30 0.32

A.6 Design of Reward

Recall that we design the reward (Eq. 6) as the averaged ratio of loss decrements over three types
of distillation losses: DKL (Eq. 1), Lhidn (Eq. 3) and Lattn (Eq. 4). Figure 7 compares ours with
two variants: 1) rKD: the ratio of loss decrement of DKL; 2) rLWD: the averaged ratio of loss
decrements over Lhidn and Lattn. We can observe that rKD performs better than rLWD in NLVR2 but
reversely in COCO. Since captioning tasks often rely more on contextual knowledge in the layerwise
representations than classification tasks, the layerwise representation distance may better characterize
the distillation performance in COCO. By taking both distance metrics into consideration, rOPTIMA

performs well on both tasks.

A.7 Design of the Reward Distribution

Recall that we design the mean of the reward distribution (Eq. 7) as the exponential moving average
(EMA) of the past rewards. Figure 8 shows a hyper-parameter study on the halflife of the EMA,
computed as − 1

log2 γ . Halflife is the number of rounds the EMA decays by one-half. We can observe
that a too-large or too-small halflife, meaning that counting too many old rewards or counting only
instantaneous rewards can both be harmful to the student’s performance. This corroborates that the
actual contribution of each module is non-stationary in the long term and stationary in the short term,
and using EMA with an appropriate γ can correctly track the changing contribution.

16



rKD rLWD rOPTIMA

Reward Types

80

81

82

Te
st

 A
cc

ur
ac

y 
(%

)

81.0

80.3

81.2

NLVR2

rKD rLWD rOPTIMA

Reward Types

100

110

120

130

C
ID

Er

108.4

121.0 121.2

COCO Caption

Figure 7: A comparison of three variants of reward: 1) rKD:
the ratio of decrement of DKL; 2) rLWD: the averaged ratio
of decrement over Lhidn and Lattn; 3) rOPTIMA.
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Figure 8: A hyper-parameter study on
the halflife of the EMA, computed as
− 1

log2 γ .
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