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A Related work426

Our work builds upon Hindsight Credit Assignment (HCA) [1] which has sparked a number of427

follow-up studies. We generalize HCA towards estimating contributions upon rewarding outcomes428

instead of rewarding states and show through a detailed variance analysis that HCA suffers from429

spurious contributions leading to high variance, while using rewards or rewarding objects as rewarding430

outcome encodings leads to low-variance gradient estimators. Follow-up work on HCA reduces the431

variance of the HCA advantage estimates by combining it with Monte Carlo estimates [36] or using432

temporal difference errors instead of rewards [37]. Alipov et al. [27] leverages the latter approach433

to scale up HCA towards more complex environments. However, all of the above approaches still434

suffer from spurious contributions, a significant source of variance in the HCA gradient estimator. In435

addition, recent studies have theoretically reinterpreted the original HCA formulation from different436

angles: Ma and Pierre-Luc [38] create the link to Conditional Monte Carlo methods [39, 40] and437

Arumugam et al. [41] provide an information theoretic perspective on credit assignment. Moreover,438

Young [42] applies HCA to the problem of estimating gradients in neural networks with stochastic,439

discrete units.440

Long-term credit assignment in RL is hard due to the high variance of the sum of future rewards for441

long trajectories. A common technique to reduce the resulting variance in the policy gradients is to442

subtract a baseline from the sum of future rewards [6, 7, 43, 44]. To further reduce the variance, a443

line of work introduced state-action-dependent baselines [45–48]. However, Tucker et al. [49] argues444

that these methods offer only a small benefit over the conventional state-dependent baselines, as445

the current action often only accounts for a minor fraction of the total variance. More recent work446

proposes improved baselines by incorporating hindsight information about the future trajectory into447

the baseline, accounting for a larger portion of the variance [1, 3, 50–52]. Mesnard et al. [3] learn a448

summary metric of the uncontrollable, external environment influences in the future trajectory, and449

provide this hindsight information as an extra input to the value baseline. Nota et al. [50] consider450

partially observable MDPs, and leverage the future trajectory to more accurately infer the current451

underlying Markov state, thereby providing a better value baseline. Harutyunyan et al. [1] propose452

return-HCA, a different variant of HCA that uses a return-conditioned hindsight distribution to453

construct a baseline, instead of using state-based hindsight distributions for estimating contributions.454

Finally, Guez et al. [51] and Venuto et al. [52] learn a summary representation of the full future455

trajectory and provide it as input to the value function, while imposing an information bottleneck to456

prevent the value function from overly relying on this hindsight information.457

Environments with sparse rewards and long delays between actions and corresponding rewards put458

a high importance on long-term credit assignment. A popular strategy to circumvent the sparse459

and delayed reward setting is to introduce reward shaping [53–60]. These approaches add auxiliary460

rewards to the sparse reward function, aiming to guide the learning of the policy with dense rewards.461

A recent line of work introduces a reward shaping strategy specifically designed for long-term credit462

assignment, where rewards are decomposed and distributed over previous state-action pairs that were463

instrumental in achieving that reward [4, 5, 30, 32, 61–66]. To determine how to redistribute rewards,464

these approaches rely on heuristic contribution analyses, such as via the access of memory states [4],465

linear decompositions of rewards [30, 62–66] or learned sequence models [5, 32, 61]. Leveraging466

our unbiased contribution analysis framework to reach more optimal reward transport is a promising467

direction for future research.468

When we have access to a (learned) differentiable world model of the environment, we can achieve469

precise credit assignment by leveraging path-wise derivatives, i.e. backpropagating value gradients470

through the world model [18–22, 67]. For stochastic world models, we need access to the noise471

variables to compute the path-wise derivatives. The Dreamer algorithms [19–21] approach this by472

computing the value gradients on simulated trajectories, where the noise is known. The Stochastic473

Value Gradient (SVG) method [18] instead infers the noise variables on real observed trajectories. To474

enable backpropagating gradients over long time spans, Ma et al. [68] equip the learned recurrent475

world models of SVG with an attention mechanism, allowing the authors to leverage Sparse Attentive476

Backtracking [69] to transmit gradients through skip connections. Buesing et al. [34] leverages477

the insights from SVG in partially observable MDPs, using the inferred noise variables to estimate478

the effect of counterfactual policies on the expected return. Importantly, the path-wise derivatives479

leveraged by the above model-based credit assignment methods are not compatible with discrete480

action spaces, as sensitivities w.r.t. discrete actions are undefined. In contrast, COCOA can leverage481

model-based information for credit assignment, while being compatible with discrete actions.482
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Incorporating hindsight information has a wide variety of applications in RL. Goal-conditioned483

policies [70] use a goal state as additional input to the policy network or value function, thereby484

generalizing it to arbitrary goals. Hindsight Experience Replay [71] leverages hindsight reasoning to485

learn almost as much from undesired outcomes as from desired ones, as at hindsight, we can consider486

every final, possibly undesired state as a ‘goal’ state and update the value functions or policy network487

[72] accordingly. Goyal et al. [73] train an inverse environment model to simulate alternative past488

trajectories leading to the same rewarding state, hence leveraging hindsight reasoning to create a489

variety of highly rewarding trajectories. A recent line of work frames RL as a supervised sequence490

prediction problem, learning a policy conditioned on goal states or future returns [74–77]. These491

models are trained on past trajectories or offline data, where we have in hindsight access to states and492

returns, considering them as targets for the learned policy.493

Finally, Temporal Difference (TD) learning [78] has a rich history of leveraging proximity in time494

as a proxy for credit assignment [2]. TD(λ) [78] considers eligibility traces to trade off bias and495

variance, crediting past state-action pairs in the trajectory for the current reward proportional to how496

close they are in time. van Hasselt et al. [79] estimate expected eligibility traces, taking into account497

that the same rewarding state can be reached from various previous states. Hence, not only the past498

state-actions on the trajectory are credited and updated, but also counterfactual ones that lead to the499

same rewarding state. Extending the insights from COCOA towards temporal difference methods is500

an exciting direction for future research.501

B Undiscounted infinite-horizon MDPs502

In this work, we consider an undiscounted MDP with a finite state space S, bounded rewards and503

an infinite horizon. To ensure that the expected return and value functions remain finite, we require504

some standard regularity conditions [2]. We assume the MDP contains an absorbing state s∞ that505

transitions only to itself and has zero reward. Moreover, we assume proper transition dynamics,506

meaning that an agent following any policy will eventually end up in the absorbing state s∞ with507

probability one as time goes to infinity.508

The discounted infinite horizon MDP formulation is a special case of this setting, with a specific509

class of transition dynamics. An explicit discounting of future rewards
∑
k≥o γ

kRk with discount510

factor γ ∈ [0, 1], is equivalent to considering the above undiscounted MDP setting, but modifying511

the state transition probability function p(St+1 | St, At) such that each state-action pair has a fixed512

probability (1− γ) of transitioning to the absorbing state [2]. Hence, all the results considered in this513

work can be readily applied to the discounted MDP setting, by modifying the environment transitions514

as outlined above. We can also explicitly incorporate temporal discounting in the policy gradients515

and contribution coefficients, which we outline in Appendix I.516

The undiscounted infinite-horizon MDP with an absorbing state can also model episodic RL with a517

fixed time horizon. We can include time as an extra feature in the states S, and then have a probability518

of 1 to transition to the absorbing state when the agent reaches the final time step.519

C Theorems, proofs and additional information for Section 3520

C.1 Contribution coefficients, hindsight distribution and graphical models521

Here, we provide more information on the derivation of the contribution coefficients of Eq. 3.522

Abstracting time. In an undiscounted environment, it does not matter at which point in time the523

agent achieves the rewarding outcome u′. Hence, the contribution coefficients (3) sum over all524

future time steps, to reflect that the rewarding outcome u′ can be encountered at any future time,525

and to incorporate the possibility of encountering u′ multiple times. Note that when using temporal526

discounting, we can adjust the contribution coefficients accordingly (c.f. App I).527

Hindsight distribution. To obtain the hindsight distribution p(At = a | St = s, U ′ = u′), we528

convert the classical graphical model of an MDP (c.f. Fig. 5a) into a graphical model that incorporates529

the time k into a separate node (c.f. Fig. 5b). Here, we rewrite p(Uk = u′ | S = s,A = a), the530

probability distribution of a rewarding outcome Uk k time steps later, as p(U ′ = u′ | S = s,A =531

a,K = k). By giving K the geometric distribution p(K = k) = (1− β)βk−1 for some β, we can532

rewrite the infinite sums used in the time-independent contribution coefficients as a marginalization533
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(a) (b)

Figure 5: (a) Graphical model of the MDP. (b) Graphical model of the MDP, where we abstracted
time.

over K:534

∑

k≥1

p(Uk = s′ | S = s,A = a) = lim
β→1

∑

k≥1

p(Uk = u′ | S = s,A = a)βk−1 (8)

= lim
β→1

1

1− β
∑

k≥1

p(U ′ = u′ | S = s,A = a,K = k)p(K = k)

(9)

= lim
β→1

1

1− β p(U
′ = u′ | S = s,A = a) (10)

Note that this limit is finite, as for k → ∞, the probability of reaching an absorbing state s∞ and535

corresponding rewarding outcome u∞ goes to 1 (and we take u′ ̸= u∞). Via Bayes rule, we then536

have that537

w(s, a, u′) =

∑
k≥1 p(Uk = u′ | S = s,A = a)∑

k≥1 p(Uk = u′ | S = s)
− 1 (11)

=
p(U ′ = u′ | S = s,A = a)

p(U ′ = u | S = s)
− 1 =

p(A = a | S = s, U ′ = u′)
π(a | s) − 1 (12)

where we assume π(a | s) > 0 and where we dropped the limit of β → 1 in the notation, as we will538

always take this limit henceforth. Note that when π(a | s) = 0, the hindsight distribution pπ(a | s, u′)539

is also equal to zero, and hence the right-hand-side of the above equation is undefined. However,540

the middle term using pπ(Uk = u′ | S = s,A = a) is still well-defined, and hence we can use the541

contribution coefficients even for actions where π(a | s) = 0.542

C.2 Proof Theorem 1543

We start with a lemma showing that the contribution coefficients can be used to estimate the advantage544

Aπ(s, a) = Qπ(s, a)−V π(s), by generalizing Theorem 1 of Harutyunyan et al. [1] towards rewarding545

outcomes.546

Definition 2 (Fully predictive, repeated from main text). A rewarding outcome encoding U is fully547

predictive of the reward R, if the following conditional independence condition holds: pπ(Rk = r |548

S0 = s,A0 = a, Uk = u) = pπ(R = r | U = u), where the right-hand side does not depend on the549

time k.550

Lemma 6. For each state-action pair (s, a) with π(a | s) > 0, and assuming that u = f(s, a, r) is551

fully predictive of the reward (c.f. Definition 2), we have that552

Aπ(s, a) = r(s, a)−
∑

a′∈A
π(a | s)r(s, a) + ET∼T (s,π)


∑

k≥1

w(s, a, Uk)Rk


 (13)

with the advantage function Aπ , and the reward function r(s, a) ≜ E[R | s, a].553
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Proof. We rewrite the undiscounted state-action value function in the limit of a discounting factor554

β → 1− (the minus sign indicating that we approach 1 from the left):555

Q(s, a) = lim
β→1−

ET∼T (s,a,π)


∑

k≥1

βkRk


 (14)

= r(s, a) + lim
β→1−

∑

r∈R

∑

k≥1

βkpπ(Rk = r | s, a)r (15)

= r(s, a) + lim
β→1−

∑

r∈R

∑

u∈U

∑

k≥1

βkpπ(Rk = r, Uk = u | s, a)r (16)

= r(s, a) + lim
β→1−

∑

r∈R

∑

u∈U

∑

k≥1

βkpπ(R = r | U = u)rpπ(Uk = u | s, a) (17)

= r(s, a) + lim
β→1−

∑

u∈U
r(u)

∑

k≥1

βkpπ(Uk = u | s, a) (18)

= r(s, a) + lim
β→1−

∑

u∈U
r(u)

∑

k≥1

βkpπ(Uk = u | s)
∑
k′≥1 β

k′pπ(Uk′ = u | s, a)∑
k′≥1 β

k′pπ(Uk′ = u | s) (19)

where we use the property that u is fully predictive of the reward (c.f. Definition 1), and where we556

define r(s, a) ≜ E[R | s, a] and r(u) ≜ E[R | u] Using the graphical model of Fig. 5b where we557

abstract time k (c.f. App. C.1), we have that 1
1−β p

π
β(R = r′ | s, a) = ∑

k=0 β
kpπ(Rk = r | s, a).558

Leveraging Bayes rule, we get559

pπ(a | s, U ′ = u) = lim
β→1−

pπβ(U
′ = u | s, a)π(a | s)
pπβ(U

′ = u | s) = lim
β→1−

∑
k≥1 β

kpπ(Uk = u | s, a)∑
k≥1 β

kpπ(Uk = u | s) π(a | s)

(20)

Where we dropped the limit of β → 1− in the notation of pπ(a | s,R = r), as we henceforth always560

consider this limit. Taking everything together, we have that561

Qπ(s, a) = r(s, a) +
∑

u∈U

∑

k≥1

pπ(Uk = u | s)p
π(a | s, U ′ = u)

π(a | s) r(u) (21)

= r(s, a) +
∑

u∈U

∑

k≥1

pπ(Uk = u | s)(w(s, a, u) + 1)r(u) (22)

= r(s, a) +
∑

u∈U

∑

k≥1

pπ(Uk = u | s)(w(s, a, u) + 1)
∑

r∈R
p(Rk = r | Uk = u)r (23)

= r(s, a) + ET∼T (s,π)


∑

k≥1

(w(s, a, Uk) + 1)Rk


 (24)

Subtracting the value function, we get562

Aπ(s, a) = r(s, a)−
∑

a′∈A
π(a′ | s)r(s, a′) + ET∼T (s,π)


∑

k≥1

w(s, a, Uk)Rk


 (25)

563

Now we are ready to prove Theorem 1.564
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Proof. Using the policy gradient theorem [24], we have565

∇θV π(s0) = ET∼T (s0,π)


∑

t≥0

∑

a∈A
∇θπ(a | St)Aπ(St, a)


 (26)

= ET∼T (s0,π)


∑

t≥0

∑

a∈A
∇θπ(a | St)


r(St, a) +

∑

k≥1

w(St, a, Ut+k)Rt+k




 (27)

= ET∼T (s0,π)


∑

t≥0

∇θ log π(At | St)Rt +
∑

a∈A
∇θπ(a | St)

∑

k≥1

w(St, a, Ut+k)Rt+k




(28)

where we used that removing a baseline
∑
a′∈A π(a

′ | s)r(s, a′) independent from the actions566

does not change the policy gradient, and replaced ET∼T (s0,π)[
∑
a∈A∇θπ(a | St)r(St, a)] by its567

sampled version ET∼T (s0,π)[∇θ log π(At | St)Rt]. Hence the policy gradient estimator of Eq. 4 is568

unbiased.569

C.3 Different policy gradient estimators leveraging contribution coefficients.570

In this work, we use the COCOA estimator of Eq. 4 to estimate policy gradients leveraging the571

contribution coefficients of Eq. 3, as this estimator does not need a separate reward model, and it572

works well for the small action spaces we considered in our experiments. However, one can design573

other unbiased policy gradient estimators compatible with the same contribution coefficients.574

Harutyunyan et al. [1] introduced the HCA gradient estimator of Eq. 2, which can readily be extended575

to rewarding outcomes U :576

∇̂θV π =
∑

t≥0

∑

a∈A
∇θπ(a | St)

(
r(St, a) +

∑

k≥1

w(St, a, Ut+k)Rt+k

)
(29)

This gradient estimator uses a reward model r(s, a) to obtain the rewards corresponding to counter-577

factual actions, whereas the COCOA estimator (4) only uses the observed rewards Rk.578

For large action spaces, it might become computationally intractable to sum over all possible actions.579

In this case, we can sample independent actions from the policy, instead of summing over all actions,580

leading to the following policy gradient.581

∇̂θV π =
∑

t≥0

∇θ log π(At | St)Rt +
1

M

∑

m

∇θ log π(am | St)
∞∑

k=1

w(St, a
m, Ut+k)Rt+k (30)

where we sample M actions from am ∼ π(· | St). Importantly, for obtaining an unbiased policy582

gradient estimate, the actions am should be sampled independently from the actions used in the583

trajectory of the observed rewards Rt+k. Hence, we cannot take the observed At as a sample am, but584

need to instead sample independently from the policy. This policy gradient estimator can be used for585

continuous action spaces (c.f. App. F, and can also be combined with the reward model as in Eq.586

29.587

One can show that the above policy gradient estimators are unbiased with a proof akin to the one of588

Theorem 1.589

Comparison of COCOA to using time as a credit assignment heuristic. In Section 2 we discussed590

briefly the following discounted policy gradient:591

∇̂REINFORCE,γ
θ V π(s0) =

∑
t≥0
∇θ log π(At | St)

∑
k≥t

γk−tRk (31)

with discount factor γ ∈ [0, 1]. Note that we specifically put no discounting γt in front of592

∇θ log π(At | St), which would be required for being an unbiased gradient estimate of the dis-593

counted expected total return, as the above formulation is most used in practice [10, 25]. Rewriting594

the summations reveals that this policy gradient uses time as a heuristic for credit assignment:595

∇̂REINFORCE,γ
θ V π(s0) =

∑
t≥0

Rt
∑

k≤t
γt−k∇θ log π(Ak | Sk). (32)
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We can rewrite the COCOA gradient estimator (4) with the same reordering of summation, showcasing596

that it leverages the contribution coefficient for providing precise credit to past actions, instead of597

using the time discounting heuristic:598

∇̂Uθ V π(s0) =
∑

t≥0

Rt

[
∇θ log π(At | St) +

∑

k<t

∑

a∈A
w(Sk, a, Ut)∇θπ(a | Sk)

]
(33)

C.4 Proof of Proposition 2599

Proof. Proposition 2 assumes that each action sequence {Am}t+km=t leads to a unique state s′. Hence,600

all previous actions can be decoded perfectly from the state s′, leading to pπ(At = a | St, S′ =601

s′) = δ(a = at), with δ the indicator function and at the action taken in the trajectory that led to s′.602

Filling this into the COCOA gradient estimator leads to603

∇̂Sθ V π(s0) =
∑

t≥0

∇θ log π(At | St)Rt +
∑

a∈A
∇θπ(a | St)

∑

k≥1

(
δ(a = At)

π(a | St)
− 1

)
Rt+k (34)

=
∑

t≥0

∇θπ(At | St)
π(At | St)

∑

k≥0

Rt+k (35)

=
∑

t≥0

∇θ log π(At | St)
∑

k≥0

Rt+k (36)

where we used that
∑
a∇θπ(a | s) = 0.604

C.5 Proof Theorem 3605

Proof. Theorem 3 considers the case where the environment only contains a reward at the final time606

step t = T , and where we optimize the policy only on a single (initial) time step t = 0. Then, the607

policy gradients are given by608

∇̂Uθ V π(UT , RT ) =
∑

a

∇θπ(a | s)w(s, a, UT )RT (37)

∇̂REINFORCE
θ V π(A0, RT ) = ∇θ log π(A0 | s)RT (38)

With U either S, R or Z, and s the state at t = 0. As only the last time step can have a reward609

by assumption, and the encoding U needs to retain the predictive information of the reward, the610

contribution coefficients for u corresponding to a nonzero reward are equal to611

w(s, a, u) =
pπ(A0 = a | S0 = s, UT = u)

π(a | s) − 1 (39)

The coefficients corresponding to zero-reward outcomes are multiplied with zero in the612

gradient estimator, and can hence be ignored. Now, we proceed by showing that613

E[∇̂REINFORCE
θ V π(A0, RT ) | ST , RT ] = ∇̂Sθ V π(ST , RT ), E[∇̂Sθ V π(ST , RT ) | U ′

T , RT ] =614

∇̂U ′
θ V

π(U ′
T , RT ), E[∇̂U ′

θ V
π(U ′

T , RT ) | UT , RT ] = ∇̂Uθ V π(UT , RT ) , and E[∇̂Uθ V π(UT , RT ) |615

RT ] = ∇̂Rθ V π(RT ), after which we can use the law of total variance to prove our theorem.616

As ST is fully predictive of RT , the following conditional independence holds pπ(A0 | S0 =617

s, ST , RT ) = pπ(A0 | S0 = s, ST ) (c.f. Definition 1). Hence, we have that618

E[∇̂REINFORCE
θ V π(A0, RT ) | ST , RT ] (40)

=
∑

a∈A
p(A0 = a | S0 = s, ST )

∇θπ(a | s)
π(a | s) RT = ∇̂Sθ V π(ST , RT ) (41)

where we used that
∑
a∇θπ(a | s) = ∇θ

∑
a π(a | s) = 0.619

Similarly, as ST is fully predictive of U ′
T (c.f. Definition 1), we have that620

p(A | S,U ′
T ) =

∑

sT∈S
p(ST = sT | S,U ′

T )p(A | S, ST = sT , U
′
T ) (42)

=
∑

sT∈S
p(ST = sT | S,U ′

T )p(A | S, ST = sT ) (43)
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Figure 6: Less informative rewarding outcome encodings lead to gradient estimators with lower
variance. Normalized variance in dB using ground-truth coefficients and a random uniform policy,
for various gradient estimators on the tree envrionment (shaded region represents standard error over
10 random environments). To increase the information content of U , we increase the number of
different encodings u corresponding to the same reward value (c.f. ng in Section E.5), indicated by
the x-axis. COCOA-u-group indicates the COCOA estimator with rewarding outcome encodings of
increasing information content, whereas COCOA-reward and HCA+ have fixed rewarding outcome
encodings of U = R and U = S respectively.

Using the conditional independence relation pπ(ST | S0, U
′
T , RT ) = pπ(ST | S0, U

′
T ), following621

from d-separation in Fig. 5b, this leads us to622

E[∇̂Sθ V π(ST , RT ) | U ′
T , RT ] (44)

=
∑

a∈A

∑

sT∈S
p(ST = sT | S0 = s, U ′

T )p(A0 = a | S = s, ST = sT )
∇θπ(a | s)
π(a | s) RT (45)

=
∑

a∈A
p(A0 = a | S = s, U ′

T )
∇θπ(a | s)
π(a | s) RT (46)

= ∇̂U ′
θ V

π(U ′
T , RT ) (47)

Using the same derivation leveraging the fully predictive properties (c.f. Definition 1), we get623

E[∇̂U ′
θ V

π(U ′
T , RT ) | UT , RT ] = ∇̂Uθ V π(UT , RT ) (48)

E[∇̂Uθ V π(UT , RT ) | RT ] = ∇̂Rθ V π(RT ) (49)

Now we can use the law of total variance, which states that V[X] = E[V[X | Y ]] + V[E[X | Y ]].624

Hence, we have that625

V[∇̂REINFORCE
θ V π] = V[E[∇̂REINFORCE

θ V π | ST ]] + E[V[∇̂REINFORCE
θ V π | ST ]] (50)

= V[∇̂Sθ V π] + E[V[∇̂REINFORCE
θ V π | ST ]] ≽ V[∇̂Sθ V π] (51)

as E[V[∇̂REINFORCE
θ V π | ST ]] is positive semi definite. Using the same construction for the other626

pairs, we arrive at627

V[∇̂Rθ V π(s0)] ≼ V[∇̂Uθ V π(s0)] ≼ V[∇̂U ′
θ V

π(s0)] ≼ V[∇̂Sθ V π(s0)] ≼ V[∇̂REINFORCE
θ V π(s0)]

(52)

thereby concluding the proof.628

Additional empirical verification. To get more insight into how the information content of the629

rewarding-outcome encoding U relates to the variance of the COCOA gradient estimator, we repeat630

the experiment of Fig. 2, but now plot the variance as a function of the amount of information in the631

rewarding outcome encodings, for a fixed state overlap of 3. Fig. 6 shows that the variance of the632
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resulting COCOA gradient estimators interpolate between COCOA-reward and HCA+, with more633

informative encodings leading to a higher variance. These empirical results show that the insights634

of Theorem 3 hold in this more general setting of estimating full policy gradients in an MDP with635

random rewards.636

C.6 Proof of Theorem 4637

Proof. This proof follows a similar technique to the policy gradient theorem [24]. Let us first define638

the expected number of occurrences of u starting from state s as Oπ(u, s) =
∑
k≥1 p

π(Uk = u |639

S0 = s), and its action equivalent Oπ(u, s, a) =
∑
k≥1 p

π(Uk = u | S0 = s,A0 = a). Expanding640

Oπ(u, s) leads to641

∇θOπ(u, s) = ∇θ
[∑

a∈A
π(a | s)

∑

s′∈S
p(s′ | s, a)

(
δ(s′ = s) +Oπ(u, s′)

)
]

(53)

=
∑

a∈A
∇θπ(a | s)Oπ(u, s, a) +

∑

s′∈S
p(s′ | s)∇θOπ(u, s′) (54)

Now define ϕ(u, s) =
∑
a∈A∇θπ(a | s)Oπ(u, s, a), and pπ(Sl = s′ | S0 = s) as the probability of642

reaching s′ starting from s in l steps. We have that
∑
s′′∈S p

π(Sl = s′′ | S0 = s)pπ(S1 = s′ | S0 =643

s′′) = pπ(Sl+1 = s′ | S0 = s). Leveraging this relation and recursively applying the above equation644

leads to645

∇θOπ(u, s) =
∑

s′∈S

∞∑

l=0

pπ(Sl = s′ | S0 = s)ϕ(u, s′) (55)

=
∑

s′∈S

∞∑

l=0

pπ(Sl = s′ | S0 = s)
∑

a∈A
∇θπ(a | s′)Oπ(u, s′, a) (56)

∝ ES∼T (s,π)

∑

a∈A
∇θπ(a | S)Oπ(u, S, a) (57)

where in the last step we normalized
∑∞
l=0 p

π(Sl = s′ | S0 = s) with
∑
s′∈S

∑∞
l=0 p

π(Sl = s′ |646

S0 = s), resulting in the state distribution S ∼ T (s, π) where S is sampled from trajectories starting647

from s and following policy π.648

Finally, we can rewrite the contribution coefficients as649

w(s, a, u) =
Oπ(u, s, a)

Oπ(u, s)
− 1 (58)

which leads to650

∇θOπ(u, s) ∝ ES∼T (s,π)

∑

a∈A
∇θπ(a | S)w(S, a, u)Oπ(u, S) (59)

where we used that
∑
a∈A∇θπ(a | s) = 0, thereby concluding the proof.651

D Learning the contribution coefficients652

D.1 Proof proposition 5653

Proof. In short, as the logits l are a deterministic function of the state s, they do not provide any654

further information on the hindsight distribution and we have that pπ(A0 = a | S0 = s, L0 = l, U ′ =655

u′) = pπ(A0 = a | S0 = s, U ′ = u′).656
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We can arrive at this result by observing that p(A0 = a | S0 = s, L0 = l) = p(A0 = a | S0 = s) =657

π(a | s), as the policy logits encode the policy distribution. Using this, we have that658

pπ(A0 = a | S0 = s, L0 = l, U ′ = u′) (60)

=
pπ(A0 = a, U ′ = u′ | S0 = s, L0 = l)

pπ(U ′ = u′ | S0 = s, L0 = l)
(61)

=
pπ(U ′ = u′ | S0 = s,A0 = a, L0 = l)p(A0 = a | S0 = s, L0 = l)∑

a′∈A p
π(A0 = a′, U ′ = u′ | S0 = s, L0 = l)

(62)

=
pπ(U ′ = u′ | S0 = s,A0 = a)p(A0 = a | S0 = s)∑

a′∈A p
π(U ′ = u′ | S0 = s,A0 = a′, )p(A0 = a′ | S0 = s)

(63)

=
pπ(A0 = a, U ′ = u′ | S0 = s)

pπ(U ′ = u′ | S0 = s)
(64)

= pπ(A0 = a | S0 = s, U ′ = u′) (65)

659

D.2 Learning contribution coefficients via contrastive classification.660

Instead of learning the hindsight distribution, we can estimate the probability ratio pπ(At = a | St =661

s, U ′ = u′)/π(a | s) directly, by leveraging contrastive classification. Proposition 7 shows that by662

training a binary classifier D(a, s, u′) to distinguish actions sampled from pπ(At = a | St = s,R′ =663

r′) versus π(a | s), we can directly estimate the probability ratio.664

Proposition 7. Consider the contrastive loss665

L = Es,u′∼T (s0,π)

[
Ea∼pπ(a|s,u′) [logD(a, s, u′)] + Ea∼π(a|s)

[
log

(
1−D(a, s, u′)

)]]
, (66)

and D∗(s, a, u′) its minimizer. Then the following holds666

w(s, a, u′) =
D∗(a, s, u′)

1−D∗(a, s, u′)
− 1. (67)

Proof. Consider a fixed pair s, u′. We can obtain the discriminator D∗(a, s, u′) that maximizes667

Ea∼pπ(a|s,u′) [logD(a, s, u′)]+Ea∼π(a|s)
[
log

(
1−D(a, s, u′)

)]
by taking the point-wise derivative668

of this objective and equating it to zero:669

pπ(a | s, u′) 1

D∗(a, s, u′)
− π(a | s) 1

1−D∗(a, s, u′)
= 0 (68)

⇒ pπ(a | s, u′)
π(a | s) =

D∗(a, s, u′)
1−D∗(a, s, u′)

(69)

As for any (a, b) ∈ R2
/0, the function f(x) = a log x+ b log(1− x) achieves its global maximum on670

support x ∈ [0, 1] at a
a+b , the above maximum is a global maximum. Repeating this argument for all671

(s, u′) pairs concludes the proof.672

We can approximate the training objective of D by sampling a(m), s(m), u′(m) along the observed673

trajectories, while leveraging that we have access to the policy π, leading to the following loss674

L =

M∑

m=1

[
− logD(a(m), s(m), u′(m))−

∑

a′∈A
π(a′ | s(m)) log

(
1−D(a′, s(m), u′(m))

)
]

(70)

Numerical stability. Assuming D uses the sigmoid nonlinearity on its outputs, we can improve the675

numerical stability by computing the logarithm and sigmoid jointly. This results in676

log σ(x) = − log(1 + exp(−x)) (71)
log(1− σ(x)) = −x− log(1 + exp(−x)) (72)

The probability ratio D/(1−D) can then be computed with677

σ(x)

1− σ(x) = exp
[
− log(1 + exp(−x)) + x+ log(1 + exp(−x))

]
= exp(x) (73)
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D.3 Successor representations.678

If we take u′ equal to the state s′, we can observe that the sum
∑
k≥1 p

π(St+k = s′ | s, a) used in679

the contribution coefficients (3) is equal to the successor representation M(s, a, s′) introduced by680

Dayan [28]. Hence, we can leverage temporal differences to learn M(s, a, s′), either in a tabular681

setting [28], or in a deep feature learning setting [29]. Using the successor representations, we682

can construct the state-based contribution coefficients as w(s, a, s′) = M(s, a, s′)/[
∑
ã∈A π(ã |683

s)M(s, ã, s′)]− 1.684

For a rewarding outcome encoding U different from S, we can recombine the state-based successor685

representations to obtain the required contribution coefficients using the following derivation.686

∑

k≥0

pπ(Uk = u′ | S0 = s,A0 = a) =
∑

k≥0

∑

s′∈S
pπ(Uk = u′, Sk = s′ | S0 = s,A0 = a) (74)

=
∑

k≥0

∑

s′∈S
p(U ′ = u′ | S′ = s′)pπ(Sk = s′ | S0 = s,A0 = a)

(75)

=
∑

s′∈S
p(U ′ = u′ | S′ = s′)

∑

k≥0

pπ(Sk = s′ | S0 = s,A0 = a)

(76)

=
∑

s′∈S
p(U ′ = u′ | S′ = s′)M(s, a, s′) (77)

where in the second line we used that S is fully predictive of U (c.f. Definition 1). Note that687

p(U ′ | S′) is policy independent, and can hence be approximated efficiently using offline data. We688

use this recombination of successor representations in our dynamic programming setup to compute689

the ground-truth contribution coefficients (c.f. App. E).690

E Experimental details and additional results691

Here, we provide additional details to all experiments performed in the manuscript and present692

additional results. The Python code to run our experiments can be found in the supplementary693

materials zip file.694

E.1 Dynamic programming setup695

In order to delineate the different policy gradient methods considered in this work, we develop696

a framework to compute ground-truth policy gradients and advantages as well as ground-truth697

contribution coefficients. We will first show how we can recursively compute a quantity closely698

related to the successor representation using dynamic programming which then allows us to obtain699

expected advantages and finally expected policy gradients.700

E.1.1 Computing ground truth quantities701

To compute ground truth quantities, we assume that the environment reaches an absorbing, terminal702

state s∞ after T steps for all states s, i.e. pπ(ST = s∞|s0 = s) = 1. This assumption is satisfied703

by the linear key-to-door and tree environment we consider. As a helper quantity, we define the704

successor representation:705

M(s, a, s′, T ) =
T∑

k=1

pπ(Sk = s′|S0 = s,A0 = a) (78)

which captures the cumulative probability over all time steps of reaching state s′ when starting from706

state S0 = s, choosing initial action A0 = a and following the policy π thereafter. We can compute707

M(s, a, s′, T ) recursively as708

M(s, a, s′, t) =
∑

s′′∈S
p(S1 = s′′|S0 = s,A0 = a)

∑

a′′∈A
π(a′′|s′′)(1s′′=s′ +M(s′′, a′′, s′, t− 1))

(79)

where 1 is the indicator function and M(s, a, s′, 0) is initialized to 0 everywhere. Then, the various709

quantities can be computed exactly as follows.710
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Contribution coefficients

w(s, a, u′) =
M(s, a, u′, T )∑

a′∈A π(a
′ | s)M(s, a′, u′, T )

− 1 (80)

where711

M(s, a, u′, T ) =
∑

s′∈S
M(s, a, s′, T )

∑

a′∈A
π(a′ | s′)

∑

r′

p(r′ | s′, a′)1f(s′,a′,r′)=u′ , (81)

similar to the successor representations detailed in Section D. To discover the full state space S for712

an arbitrary environment, we perform a depth-first search through the environment transitions (which713

are deterministic in our setting), and record the encountered states.714

Value function

V (s) =
∑

a′∈A
π(a′|s)r(s, a′) +

T∑

k=1

∑

s′∈S
pπ(Sk = s′|S0 = s, π)

∑

a′∈A
π(a′|s′)r(s′, a′) (82)

=
∑

a′∈A
π(a′|s)r(s, a′) +

∑

s′∈S

∑

a∈A
π(a | s)M(s, a, s′, T )

∑

a′∈A
π(a′|s′)r(s′, a′) (83)

where r(s′, a′) =
∑
r′ r

′p(r′ | s′, a′)715

Action-value function

Q(s, a) =r(s, a) +
T∑

k=1

∑

s′∈S
pπ(Sk = s′|S0 = s,A0 = a)

∑

a′∈A
π(a′|s′)r(s′, a′) (84)

=r(s, a) +
∑

s′∈S
M(s, a, s′, T )

∑

a′∈A
π(a′|s′)r(s′, a′) (85)

where r(s′, a′) =
∑
r′ r

′p(r′ | s′, a′)716

E.1.2 Computing expected advantages717

As a next step we detail how to compute the true expected advantage given a potentially imperfect718

estimator of the contribution coefficient ŵ, the value function V̂ or the action-value function Q̂.719

COCOA

Eπ
[
Âπ(s, a)

]
= r(s, a)−

∑

a′∈A
π(a′ | s)r(s, a′) + ET∼T (s,π)

[
T∑

k=1

ŵ(s, a, Uk)Rk

]
(86)

= r(s, a)−
∑

a′∈A
π(a′ | s)r(s, a′) +

∑

u′∈U

T∑

k=1

pπ(Uk = u′ | S0 = s)ŵ(s, a, u′)r(u′)

(87)

= r(s, a)−
∑

a′∈A
π(a′ | s)r(s, a′) +

∑

u′∈U
ŵ(s, a, u′)r(u′)

∑

a′∈A
π(a′ | s)M(s, a′, u′, T )

(88)

where r(u′) =
∑
r′ r

′p(r′ | u′) and M(s, a′, u′, T ) is defined as in E.1.1.720

Advantage

Eπ
[
Âπ(s, a)

]
= Q(s, a)− V̂ (s) (89)

where Q is the ground truth action-value function obtained following E.1.1.721

Q-critic

Eπ
[
Âπ(s, a)

]
= Q̂(s, a)−

∑

a′∈A
π(a′ | s)Q̂(s, a′) (90)
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E.1.3 Computing expected policy gradients722

Finally, we show how we can compute the expected policy gradient, Eπ
[
∇̂·
θV

π
]

of a potentially723

biased gradient estimator, given the expected advantage Eπ
[
Âπ(s, a)

]
.724

Eπ
[
∇̂·
θV

π
]
=

T∑

k=0

ESk∼T (s0,π)

∑

a∈A
∇θπ(a|s)Eπ

[
Âπ(Sk, a)

]
(91)

=

T∑

k=0

∑

s∈S
pπ(Sk = s|s0)

∑

a∈A
∇θπ(a|s)Eπ

[
Âπ(s, a)

]
(92)

Using automatic differentiation to obtain ∇θπ(a|s0), and the quantity M(s, a, s′, T ) we defined725

above, we can then compute the expected policy gradient.726

Eπ
[
∇̂·
θV

π
]
=

∑

a∈A
∇θπ(a|s0)Eπ

[
Âπ(s0, a)

]
+ (93)

∑

s∈S

∑

a0∈A
π(a0 | s0)M(s0, a0, s, T )

∑

a∈A
∇θπ(a|s)Eπ

[
Âπ(s, a)

]
(94)

Computing the ground-truth policy gradient. To compute the ground-truth policy gradient, we727

can apply the same strategy as for Eq. 93 and replace the expected (possibly biased) advantage728

Eπ
[
Âπ(s0, a)

]
by the ground-truth advantage function, computed with the ground-truth action-value729

function (c.f. Section E.1.1).730

E.2 Bias, variance and SNR metrics731

To analyze the quality of the policy gradient estimators, we use the signal-to-noise ratio (SNR), which732

we further subdivide into variance and bias. A higher SNR indicates that we need fewer trajectories733

to estimate accurate policy gradients, hence reflecting better credit assignment. To obtain meaningful734

scales, we normalize the bias and variance by the norm of the ground-truth policy gradient.735

SNR =
∥∇θV π∥2

Eπ
[
∥∇̂·

θV
π −∇θV π∥2

] (95)

Variance =
Eπ

[
∥∇̂·

θV
π − Eπ[∇̂·

θV
π]∥2

]

∥∇θV π∥2
(96)

Bias =
∥Eπ[∇̂·

θV
π]−∇θV π∥2

∥∇θV π∥2
(97)

We compute the full expectations Eπ[∇̂·
θV

π] and ground-truth policy gradient ∇θV π by lever-736

aging our dynamic programming setup, while for the expectation of the squared differences737

Eπ
[
∥∇̂·

θV
π −∇θV π∥2

]
we use Monte Carlo sampling with a sample size of 512. We report738

the metrics in Decibels in all figures.739

Focusing on long-term credit assignment. As we are primarily interested in assessing the long-740

term credit assignment capabilities of the gradient estimators, we report the statistics of the policy741

gradient estimator corresponding to learning to pick up the key or not. Hence, we compare the SNR,742

variance and bias of a partial policy gradient estimator considering only t = 0 in the outer sum743

(corresponding to the state with the key) for all considered estimators (c.f. Table 1).744

Shadow training. Policy gradients evaluated during training depend on the specific learning745

trajectory of the agent. Since all methods’ policy gradient estimators contain noise, these trajectories746

are likely different for the different methods. As a result, it is difficult to directly compare the quality747

of the policy gradient estimators, since it depends on the specific data generated by intermediate748

policies during training. In order to allow for a controlled comparison between methods independent749

of the noise introduced by different trajectories, we consider a shadow training setup in which the750

policy is trained with the Q-critic method using ground-truth action-value functions. We can then751

compute the policy gradients for the various estimators on the same shared data along this learning752

trajectory without using it to actually train the policy. We use this strategy to generate the results753

shown in Fig. 1B (right), Fig. 2B and Fig. 3C-D.754
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E.3 Linear key-to-door environment setup755

We simplify the key-to-door environment previously considered by various papers [e.g. 3, 4, 30], to a756

one-dimensional, linear track instead of the original two-dimensional grid world. This version still757

captures the difficulty of long-term credit assignment but reduces the computational burden allowing758

us to thoroughly analyze different policy gradient estimators with the aforementioned dynamic759

programming based setup. The environment is depicted in Fig. 3A. Here, the agent needs to pick760

up a key in the first time step, after which it engages in a distractor task of picking up apples which761

can either be to the left or the right of the agent and which can stochastically assume two different762

reward values. Finally, the agent reaches a door which it can open with the key to collect a treasure763

reward.764

In our simulations we represent states using a nine-dimensional vector, encoding the relative position765

on the track as a floating number, a boolean for each item that could be present at the current location766

(empty, apple left, apple right, door, key, treasure) as well as boolean indicating whether the agent767

has the key and a boolean for whether the agent does not have the key.768

There are four discrete actions the agent can pick at every time step: pick the key, pick to the left,769

pick to the right and open the door. Regardless of the chosen action, the agent will advance to the770

next position in the next time step. If it has correctly picked up the key in the first time step and771

opened the door in the penultimate time step, it will automatically pick up the treasure, not requiring772

an additional action.773

Hung et al. [4] showed that the signal-to-noise ratio (SNR) of the REINFORCE policy gradient [6]774

for solving the main task of picking up the key can be approximated by775

SNRREINF ≈ ∥E[∇̂REINF
θ V π]∥2

C(θ)V[
∑
t∈T2Rt] + Tr

[
V[∇̂REINF

θ V π | no T2]
] . (98)

with ∇̂REINF
θ V π the REINFORCE estimator (c.f. Table 1), C(θ) a reward-independent constant, T2776

the set of time steps corresponding to the distractor task, and Tr
[
V[∇̂REINF

θ V π | no T2]
]

the trace of777

the covariance matrix of the REINFORCE estimator in an equivalent task setup without distractor778

rewards. Hence, we can adjust the difficulty of the task by increasing the number of distractor rewards779

and their variance. We perform experiments with environments of length L ∈ {20, 40, . . . , 100}780

choosing the reward values such that the total distractor reward remains approximately constant.781

Concretely, distractor rewards are sampled as rdistractor ∼ U({ 2
L ,

18
L }) and the treasure leads to a782

deterministic reward of rtreasure =
4
L .783

E.4 Reward switching setup784

While learning to get the treasure in the key-to-door environment requires long term credit assignment785

as the agent needs to learn to 1) pickup the key and 2) open the door, learning to stop picking up786

the treasure does not require long term credit assignment, since the agent can simply learn to stop787

opening the door.788

We therefore reuse the linear key-to-door environment of length L = 40, with the single difference789

that we remove the requirement to open the door in order to get the treasure reward. The agent thus790

needs to perform similar credit assignment to both get the treasure and stop getting the treasure.791

When applying reward switching, we simply flip the sign of the treasure reward while keeping the792

distractor reward unchanged.793

E.5 Tree environment setup794

We parameterize the tree environment by its depth d, the number of actions na determining the795

branching factor, and the state overlap os, defined as the number of overlapping children from two796

neighbouring nodes. The states are represented by two integers: i < d representing the current level797

in the tree, and j the position of the state within that level. The root node has state (i, j) = (0, 0),798

and the state transitions are deterministic and given by i← i+ 1 and j ← j(na − os) + a, where799

we represent the action by an integer 0 ≤ a < na. We assign each state-action pair a reward800

r ∈ {−2,−1, 0, 1, 2}, computed as801

r(s, a) =
(
(idx(s) + ap+ seed) mod nr

)
− nr//2 (99)
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Figure 7: Schematic of the neural network architecture of the hindsight models

with the modulo operator mod, the number of reward values nr = 5, idx(s) a unique integer index802

for the state s = (i, j), a large prime number p, and an environment seed.803

To introduce rewarding outcome encodings with varying information content, we group state-action804

pairs corresponding to the same reward value in ng groups:805

u = (idx(s) + ap+ seed) mod (nrng)− nr//2 (100)

Environment parameters for Figure 2. For the experiment of Fig. 2, we use 6 actions and a depth806

of 4. We plotted the variance of the COCOA estimator for encodings U corresponding to ng = 4 and807

ng = 32.808

E.6 Training details809

E.6.1 Architecture810

We use separate fully-connected ReLU networks to parameterize the policy, value function, and811

action-value function. For the policy we use two hidden layers of size 64, for the value function812

and action-value function respectively we use a single hidden layer of size 256. For the hindsight813

model of both HCA and COCOA we found a simple multilayer perceptron with the state s and814

rewarding outcome encoding u′ as inputs to perform poorly. We hypothesize that this is due to815

the policy dependence of the hindsight distribution creating a moving target during learning as the816

policy changes. Leveraging Proposition 5, we therefore add the policy logits as an extra input to817

the hindsight network to ease tracking the changing policy. We found good performance using a818

simple hypernetwork, depicted in Fig. 7 that combines the policy logits with the state and hindsight819

object inputs through a multiplicative interaction, outputting a logit for each possible action. The820

multiplicative interaction denoted by ⊗ consists of a matrix multiplication of a matrix output by the821

network with the policy logits, and can be interpreted as selecting a combination of policy logits to822

add to the output channel. In order to allow gating with both positive and negative values, we use a823

gated version of the ReLU nonlinearity in the second layer which computes the difference between824

the split, rectified input effectively halving the output dimension:825

ReLU-g(x) = ReLU(x0:n/2)− ReLU(xn/2:n) (101)

with n the dimension of x. Gating in combination with the multiplicative interaction is a useful826

inductive bias for the hindsight model, since for actions which have zero contribution towards the827

rewarding outcome u the hindsight distribution is equal to the policy. To increase the performance828

of our HCA+ baseline, we provide both the policy logits and one minus the policy logits to the829

multiplicative interaction.830

E.6.2 Optimization831

For training of all models we use the AdamW optimizer with default parameters only adjusting the832

learning rates and clipping the global norm of the policy gradient. We use entropy regularization833

in combination with epsilon greedy to ensure sufficient exploration to discover the optimal policy.834

To estimate (action-) value functions we use TD(λ) treating each λ as a hyperparemeter. For all835

linear layers we use the default initialization of Haiku [80] where biases are initialized as zero and836

weights are sample from a truncated Gaussian with standard deviation 1√
ninput

where ninput is the input837

dimension of the respective layer and.838
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Table 2: The range of values swept over for each hyperparameter in a grid search for the linear
key-to-door environment.
Hyperparameter Range

lr_agent {0.003, 0.001, 0.0003, 0.0001}
lr_hindsight {0.01, 0.003, 0.001}
lr_value {0.01, 0.003, 0.001}
lr_qvalue {0.01, 0.003, 0.001}
lr_features {0.01, 0.003, 0.001}
td_lambda_value {0., 0.5, 0.9, 1.}
td_lambda_qvalue {0., 0.5, 0.9, 1.}
entropy_reg {0.3, 0.1, 0.03, 0.01}

E.6.3 Reward features839

Learned reward features should both be fully predictive of the reward (c.f. Theorem 1), and contain840

as little additional information about the underlying state-action pair as possible (c.f. Theorem 3).841

We can achieve the former by training a network to predict the rewards given a state-action pair, and842

take the penultimate layer as the feature u = f(s, a). For the latter, there exist multiple approaches.843

When using a deterministic encoding u = f(s, a), we can bin the features such that similar features844

predicting the same reward are grouped together. When using a stochastic encoding p(U | S,A) we845

can impose an information bottleneck on the reward features U , enforcing the encoding to discard as846

much information about U as possible [81, 82]. We choose the deterministic encoding approach, as847

our Dynamic Programming routines require a deterministic encoding.1 We group the deterministic848

rewarding outcome encodings by discretizing the reward prediction network up to the penultimate849

layer.850

Architecture. For the neural architecture of the reward prediction network we choose a multilayer851

perceptron with a single hidden layer of size 128 per action that takes as input the state representation.852

We use the threshold function, 1x>0.05, as nonlinearity and use straight-through estimation when853

computing gradients. We apply the same nonlinearity to the weights before the penultimate layer and854

initialize them with a Gaussian distribution of mean 0.05 and unit variance. Weights of the readout855

layer are initialized with a Gaussian distribution of mean 0 and std 1√
128

.856

Loss function. We train the reward network on the mean squared error loss against the reward.857

To avoid spurious contributions (c.f. 3.3), we encourage the network to learn sparse features that858

discard information irrelevant to the prediction of the reward, by adding a L1 regularization term859

to all weights up to the penultimate layer with a strength of ηL1
= 0.001. The readout weights are860

trained with standard L2 regularization with strength ηL2 = 0.03. All weights regularization are861

treated as weight decay, with the decay applied after the gradient update.862

Pretraining. To learn the reward features, we collect the first 30 mini-batches of episodes in a863

buffer using a frozen random policy. We then sample triplets (s, a, r) from the buffer and train with864

full-batch gradient descent using the Adam optimizer over 20000 steps with a learning rate of 0.003.865

Once trained, the reward network is frozen, and the features at the penultimate layer are used to train866

the contribution coefficient as in other COCOA methods. To ensure a fair comparison, other methods867

are already allowed to train the policy on the first 30 batches of episodes.868

E.6.4 Hyperparameters869

Linear key-to-door setup (performance) For all our experiments on the linear key-to-door en-870

vironment, we chose a batch size of 8, while using a batch size of 512 to compute the average871

performance, SNR, bias and variance metrics. We followed a 2-step selection procedure for selecting872

the hyperparameters: first, we retain the set of hyperparameters for which the environment can be873

solved for at least 90% of all seeds, given a large amount of training budget. An environment is874

considered to be solved for a given seed when the probability of picking up the treasure is above 90%.875

Then, out of all those hyperparameters, we select the one which maximizes the cumulative amount of876

treasures picked over 10000 training batches. We used 30 seeds for each set of hyperparameters to877

1In principle, our dynamic programming routines can be extended to allow for probabilistic rewarding
outcome encodings and probabilistic environment transitions, which we leave to future work.
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Table 3: The value selected for each hyperparameter on the linear key-to-door environment. The best
performing hyperparameters were identical accross all environment lenght.
Hyperparameter COCOA-reward COCOA-feature HCA+ Q-critic Advantage REINFORCE

lr_agent 0.0003 0.0003 0.0003 0.0003 0.001 0.0003
lr_hindsight 0.003 0.003 0.003 - - -
lr_value - - - - 0.001 -
lr_qvalue - - - 0.003 - -
lr_features - 0.003 - - - -
td_lambda_value - - - - 1. -
td_lambda_qvalue - - - 0.9 - -

Table 4: The entropy regularization value selected for each environment length of the linear key-to-
door environment. The values were obtained by linearly interpolating in log-log space between the
best performing entropy regularization strength between environment length 20 and 100.
Environment length 20 40 60 80 100 100 (reward-aliasing)

entropy_reg 0.03 0.0187 0.0142 0.0116 0.01 0.0062

identify the best performing ones, then drew 30 fresh seeds for our evaluation. The range considered878

for our hyperparameter search can be found in Table 2, and the selected hyperparameters in Table 3.879

Surprisingly, we found that for the environment length considered, the same hyperparameters were880

performing best, with the exception of entropy_reg. For the final values of entropy_reg for each881

environment length, we linearly interpolated in log-log space between the best performing values,882

0.03 for length 20 and 0.01 for 100. The values can be found in Table 4.883

Linear key-to-door setup (shadow training) For measuring the bias and variances of different884

methods in the shadow training setting, we used the best performing hyperparameters found in the885

performance setting. We kept a batch size of 8 for the behavior policy and shadow training, while886

using a batch size of 512 during evaluation.887

Reward switching setup For the reward switching experiment, we chose hyperparameters follow-888

ing a similar selection procedure as in the linear key-to-door setup, but in the simplified door-less889

environment of length 40, without any reward switching. We found very similar hyperparameters to890

work well despite the absence of a door compared to the linear key-to-door setup. However, in order891

to ensure that noisy methods such as REINFORCE fully converged before the moment of switching892

the reward, we needed to train the models for 60000 training batches before the switch. To stabilize893

the hindsight model during this long training period, we added coarse gradient norm clipping by 1..894

Furthermore, we found that a slightly decreased learning rate of 0.001 for the Q-critic performed best.895

Once the best hyperparameters were found, we applied the reward switching to record the speed of896

adaptation for each algorithm. We kept a batch size of 8 for the behavior policy and shadow training,897

while using a batch size of 512 during evaluation.898

E.7 Additional results899

We perform additional experiments to corroborate the findings of the main text. Specifically, we900

investigate how reward aliasing affects COCOA-reward and COCOA-feature and show that there is901

no significant difference in performance between HCA and our simplified version, HCA+.902

E.7.1 Reward aliasing903

For COCOA-reward we use the scalar reward value to identify rewarding outcomes in the hindsight904

distribution, i.e. U = R. In cases where multiple rewarding outcomes yield an identical scalar reward905

value, the hindsight distribution cannot distinguish between them and has to estimate a common906

hindsight probability, rendering learning of the contribution coefficients potentially more difficult.907

In contrast, COCOA-feature learns hindsight features of rewarding objects that are predictive of908

the reward. Even when multiple rewarding objects lead to an identical scalar reward value their909

corresponding features are likely different and hence the performance of COCOA-feature should be910

similar to the case where reward values differ.911
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Figure 8: COCOA-features is robust to reward aliasing. On a version of the linear key-to-door
environment where one of the distractor reward values has the same magnitude as the treasure reward,
COCOA-reward can no longer distinguish between the distractor and treasure reward and as a result
its performance decreases. COCOA-feature is robust to this manipulation since it relies on learned
features to distinguish rewarding objects.
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Figure 9: No performance difference between the original HCA method and our modified
variant HCA+. In the linear key-to-door environment of length 103 both the original HCA method
with an additional learned reward model and our simplified version HCA+ perform similarly in terms
of performance measured as the percentage of treasure reward collected.

In Fig. 8, we test this reward aliasing setting experimentally and slightly modify the linear key-to-door912

environment of length L = 100 by giving the treasure reward the same value as one of the two913

possible values of the stochastic distractor rewards. Concretely, we sample the distractor rewards914

uniformly as rdistractor ∼ U({ 2
L ,

18
L }) but now set the deterministic treasure reward to rtreasure = 2

L .915

As expected, COCOA-feature is robust to reward aliasing, continuing to perform well on the task916

of picking up the treasure while performance of COCOA-reward noticeably suffers. Note that the917

performance of all methods has slightly decreased compared to Fig. 3, as the magnitude of the918

treasure reward is now smaller relative to the variance of the distractor rewards, resulting in a worse919

SNR for all methods.920

E.7.2 HCA vs HCA+921

Our policy gradient estimator for U = S presented in Eq. 4 differs slightly from Eq. 2, the version922

originally introduced by Harutyunyan et al. [1], as we remove the need for a learned reward model923

r(s, a). We empirically verify that this simplification does not lead to a decrease in performance in924

Fig. 9. We run the longest and hence most difficult version of the linear key-to-door environment925

considered in our experiments and find no significant difference in performance between our simplified926

version (HCA+) and the original variant (HCA).927
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F Contribution analysis in continuous spaces and POMDPs928

In Section 3.3 we showed that HCA can suffer from spurious contributions, as state representations929

need to contain detailed features to allow for a capable policy. The same level of detail however is930

detrimental when assigning credit to actions for reaching a particular state, since at some resolution931

almost every action will lead to a slightly different outcome. Measuring the contribution towards a932

specific state ignores that often the same reward could be obtained in a slightly different state, hence933

overvaluing the importance of past actions. Many commonly used environments, such as pixel-based934

environments, continuous environments, and partially observable MDPs exhibit this property to a935

large extent due to their fine-grained state representations. Here, we take a closer look at how spurious936

contributions arise in continuous environments and Partially Observable MDPs (POMDPs).937

F.1 Spurious contributions in continuous state spaces938

When using continuous state spaces, pπ(Sk = s′ | s, a) represents a probability density function939

(PDF) instead of a probability. A ratio of PDFs p(X = x)/p(X = x′) can be interpreted as a940

likelihood ratio of how likely a sample X will be close to x versus x′. Using PDFs, the contribution941

coefficients with U = S used by HCA result in942

w(s, a, s′) =

∑
k≥1 p

π(St+k = s′ | St = s,At = a)∑
k≥1 p

π(St+k = s′ | St = s)
− 1 =

pπ(At = a | St = s, S′ = s′)
π(a | s) − 1

(102)

and can be interpreted as a likelihood ratio of encountering a state ‘close’ to s′, starting from943

(s, a) versus starting from s and following the policy. The contribution coefficient will be high if944

pπ(S′ = s′ | s, a) has a high probability density at s′ conditioned on action a, compared to the other945

actions a′ ̸= a. Hence, the less pπ(Sk = s′ | s, a) and pπ(Sk = s′ | s, a′) overlap around s′, the946

higher the contribution coefficient for action a. The variance of the distribution pπ(Sk = s′ | s, a),947

and hence its room for overlap, is determined by how diffuse the environment transitions and policy948

are. For example, a very peaked policy and nearly deterministic environment transitions leads to a949

sharp distribution pπ(Sk = s′ | s, a).950

The randomness of the policy and environment is a poor measure for the contribution of an action951

in obtaining a reward. For example, consider the musician’s motor system, that learns to both: (i)952

play the violin and (ii) play the keyboard. We assume a precise control policy and near deterministic953

environment dynamics, resulting in peaked distributions pπ(Sk = s′ | s, a). For playing the violin, a954

slight change in finger position significantly influences the pitch, hence the reward function sharply955

declines around the target state with perfect pitch. For playing the keyboard, the specific finger956

position matters to a lesser extent, as long as the correct key is pressed, resulting in a relatively flat957

reward function w.r.t. the precise finger positioning. The state-based contribution coefficients of958

Eq. 102 result in a high contribution for the action taken in the trajectory for both tasks. For playing959

violin, this could be a good approximation of what we intuitively think of as a ‘high contribution’,960

whereas for the keyboard, this overvalues the importance of the past action in many cases. From this961

example, it is clear that measuring contributions towards rewarding states in continuous state spaces962

can lead to spurious contributions, as the contributions mainly depend on how diffuse the policy and963

environment dynamics are, and ignore that different reward structures can require vastly different964

contribution measures.965

F.2 Deterministic continuous reward functions can lead to excessive variance966

Proposition 2 shows that HCA degrades to REINFORCE in environments where each action sequence967

leads to distinct states. In Section F.1, we discussed that continuous state spaces exhibit this property968

to a large extend due to their fine-grained state representation. If each environment state has a unique969

reward value, COCOA can suffer from a similar degradation to HCA. As the rewarding outcome970

encoding U needs to be fully predictive of the reward (c.f. Theorem 1), it needs to have a distinct971

encoding for each unique reward, and hence for each state.972

With a continuous reward function this can become a significant issue, if the reward function is973

deterministic. Due to the fine-grained state representation in continuous state spaces, almost every974

action will lead to a (slightly) different state. When we have a deterministic, continuous reward975

function, two nearby but distinct states will often lead to nearby but distinct rewards. Hence, to a large976

extent, the reward contains the information of the underlying state, encoded in its infinite precision of977

a real value, resulting in COCOA degrading towards the high-variance HCA estimator.978
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The above problem does not occur when the reward function p(R | S,A) is probabilistic, even for979

continuous rewards. If the variance of p(R | S,A) is bigger than zero, the variance of p(S,A | R) is980

also bigger than zero under mild assumptions. This means that it is not possible to perfectly decode981

the underlying state using a specific reward value r, and hence COCOA does not degrade towards982

HCA in this case. Intuitively, different nearby states can lead to the same sampled reward, removing983

the spurious contributions. In the following section, we will use this insight to alleviate spurious984

contributions, even for deterministic reward functions.985

F.3 Smoothing can alleviate excess variance trading variance for bias986

When each state has a unique reward, an unbiased COCOA estimator degrades to the high-variance987

HCA estimator, since U needs to be fully predictive of the reward, and hence each state needs a988

unique rewarding outcome encoding. Here, we propose two ways forward to overcome the excess989

variance of the COCOA estimator in this extreme setting that trade variance for bias.990

Rewarding outcome binning. One intuitive strategy to avoid that each state has a unique rewarding991

outcome encoding U , is to group rewarding outcome encodings corresponding to nearby rewards992

together, resulting in discrete bins. As the rewarding outcome encodings now contain less details,993

the resulting COCOA estimator will have lower variance. However, as now the rewarding outcome994

encoding is not anymore fully predictive of the reward, the COCOA estimator will be biased. An995

intimately connected strategy is to change the reward function in the environment to a discretized996

reward function with several bins. Policy gradients in the new discretized environments will not be997

exactly equal to the policy gradients in the original environment, however for fine discretizations, we998

would not expect much bias. Similarly for binning the rewarding outcome encodings, when we group999

few nearby rewarding outcome encodings together, we expect a low bias, but also a low variance1000

reduction. Increasing the amount of rewarding outcomes we group together we further lower the bias,1001

at a cost of an increasing bias, hence creating a bias-variance trade-off.1002

Stochastic rewarding outcomes. We can generalize the above binning technique towards rewarding1003

outcome encodings that bin rewards stochastically. In Section F.2, we discussed that when the reward1004

function is probabilistic, the excessive variance problem is less pronounced, as different states can lead1005

to the same reward. When dealing with a deterministic reward function, we can introduce stochasticity1006

in the rewarding outcome encoding to leverage the same principle and reduce variance at the cost1007

of increasing bias. For example, we can introduce the rewarding outcome encoding U ∼ N (R, σ),1008

with N corresponding to a Gaussian distribution. As this rewarding outcome encoding is not fully1009

predictive of the reward, it will introduce bias. We can control this bias-variance trade-off with the1010

variance σ: a small sigma corresponds to a sharp distribution, akin to a fine discretization in the above1011

binning strategy, and hence a low bias. Increasing σ leads to more states that could lead to the same1012

rewarding outcome encoding, hence lowering the variance at the cost of increasing the bias.1013

Implicit smoothing by noise perturbations or limited capacity networks. Interestingly, the1014

above strategy of defining stochastic rewarding outcomes is equivalent to adjusting the training1015

scheme of the hindsight model h(a | s, u′) by adding noise to the input u′. Here, we take U equal to1016

the (deterministic) reward R, but add noise to it while training the hindsight model. Due to the noise,1017

the hindsight model cannot perfectly decode the action a from its input, resulting in the same effects1018

as explicitly using stochastic rewarding outcomes. Adding noise to the input of a neural network1019

is a frequently used regularization technique. Hence, an interesting route to investigate is whether1020

other regularization techniques on the hindsight model, such as limiting its capacity, can result in a1021

bias-variance trade-off for HCA and COCOA.1022

Smoothing hindsight states for HCA. We can apply the same (stochastic) binning technique to1023

hindsight states for HCA, creating a more coarse-grained state representation for backward credit1024

assignment. However, the bias-variance trade-off is more difficult to control for states compared to1025

rewards. The sensitivity of the reward function to the underlying state can be big in some regions1026

of state-space, whereas small in others. Hence, a uniform (stochastic) binning of the state-space1027

will likely result in sub-optimal bias-variance trade-offs, as it will be too coarse-grained in some1028

regions causing large bias, whereas too fine-grained in other regions causing a low variance-reduction.1029

Binning rewards in contrast does not suffer from this issue, as binning is directly performed in a1030

space relevant to the task.1031

Proposition 8 provides further insight on what the optimal smoothing or binning for HCA looks1032

like. Consider the case where we have a discrete reward function with not too many distinct1033
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values compared to the state space, such that COCOA-reward is a low-variance gradient estimator.1034

Proposition 8 shows that we can recombine the state-based hindsight distribution pπ(A0 = a |1035

S0 = s, S′ = s′) into the reward-based hindsight distribution pπ(A0 = a | S0 = s,R′ = r′), by1036

leveraging a smoothing distribution
∑
s′∈S p

π(S′ = s′ | S0 = s,R′ = r′). When we consider a1037

specific hindsight state s′′, this means that we can obtain the low-variance COCOA-reward estimator,1038

by considering all states S′ that could have lead to the same reward r(s′′), instead of only s′′.1039

Hence, instead of using a uniform stochastic binning strategy with e.g. S′ ∼ N (s′′, σ), a more1040

optimal binning strategy is to take the reward structure into account through pπ(S′ | S0 = s,R′ =1041

r(s′′))1042

Proposition 8.

pπ(A0 = a | S0 = s,R′ = r′) =
∑

s′∈S
pπ(S′ = s′ | S0 = s,R′ = r′)pπ(A0 = a | S0 = s, S′ = s′)

(103)

Proof. As A0 is d-separated from R′ conditioned on S′ and S0 (c.f. Fig. 5b) we can use the implied1043

conditional independence to prove the proposition:1044

pπ(A0 = a | S0 = s,R′ = r′) (104)

=
∑

s′∈S
pπ(S′ = s′, A0 = a | S0 = s,R′ = r′) (105)

=
∑

s′∈S
pπ(S′ = s′ | S0 = s,R′ = r′)pπ(A0 = a | S0 = s, S′ = s′, R′ = r′) (106)

=
∑

s′∈S
pπ(S′ = s′ | S0 = s,R′ = r′)pπ(A0 = a | S0 = s, S′ = s′) (107)

1045

F.4 Continuous action spaces1046

In the previous section, we discussed how continuous state spaces can lead to spurious contributions1047

resulting high variance for the HCA estimator. Here, we briefly discuss how COCOA can be applied1048

to continuous action spaces, and how Proposition 2 translates to this setting.1049

Gradient estimator. We can adjust the COCOA gradient estimator of Eq. 4 towards continuous1050

action spaces by replacing the sum over a′A by an integral over the action space A′.1051

∇̂Uθ V π(s0) =
∑

t≥0

∇θ log π(At | St)Rt +
∫

A
da ∇θπ(a | St)

∑

k≥1

w(St, a, Ut+k)Rt+k (108)

In general, computing this integral is intractable. We can approximate the integral by standard1052

numerical integration methods, introducing a bias due to the approximation. Alternatively, we1053

introduced in App. C.3 another variant of the COCOA gradient estimator that samples independent1054

actions A′ from the policy instead of summing over the whole action space. This variant can readily1055

be applied to continuous action spaces, resulting in1056

∇̂θV π =
∑

t≥0

∇θ log π(At | St)Rt +
1

M

∑

m

∇θ log π(am | St)
∞∑

k=1

w(St, a
m, Ut+k)Rt+k (109)

where we sample M actions independently from am ∼ π(· | St). This gradient estimator is unbiased,1057

but introduces extra variance through the sampling of actions.1058

Spurious contributions. Akin to discrete action spaces, HCA in continuous action spaces can1059

suffer from spurious contributions when distinct action sequences lead to unique states. In this case,1060

previous actions can be perfectly decoded from the hindsight state, and we have that the probability1061

density function pπ(A0 = a | S0 = s, S′ = s′) is equal to the Dirac delta function δ(a = a0), with1062

a0 the action taken in the trajectory that led to s′. Substituting this Dirac delta function into the1063

policy gradient estimator of Eq. 108 results in the high-variance REINFORCE estimator. When we1064

use the COCOA estimator of Eq. 109 using action sampling, HCA will even have a higher variance1065

compared to REINFORCE.1066
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F.5 Partially Observable MDPs1067

In many environments, agents do not have access to the complete state information s, but instead1068

get observations with incomplete information. Partially observable Markov decision processes1069

(POMDPs) formalize this case by augmenting MDPs with an observation spaceO. Instead of directly1070

observing Markov states, the agent now acquires an observation ot at each time step. The probability1071

of observing o in state s after performing action a is given by po(o | s, a).1072

A popular strategy in deep RL methods to handle partial observability is learning an internal state xt1073

that summarizes the observation history ht = {ot′+1, at′ , rt′}t−1
t′=0, typically by leveraging recurrent1074

neural networks [83–86]. This internal state is then used as input to a policy or value function. This1075

strategy is intimately connected to estimating belief states [87]. The observation history ht provides1076

us with information on what the current underlying Markov state st is. We can formalize this by1077

introducing the belief state bt, which captures the sufficient statistics for the probability distribution1078

over the Markov states s conditioned on the observation history ht. Theoretically, such belief states1079

can be computed by doing Bayesian probability calculus using the environment transition model,1080

reward model and observation model:1081

pB(s | bt) = p(St = s | Ht = ht) (110)

Seminal work has shown that a POMDP can be converted to an MDP, using the belief states b as new1082

Markov states instead of the original Markov states s [88]. Now the conventional optimal control1083

techniques can be used to solve the belief-state MDP, motivating the use of standard RL methods1084

designed for MDPs, combined with learning an internal state x.1085

HCA suffers from spurious contributions in POMDPs. As the internal state x summarizes1086

the complete observation history h, past actions can be accurately decoded based on h, causing1087

HCA to degrade to the high-variance REINFORCE estimator (c.f. Proposition 2). Here, the tension1088

between forming good state representations for enabling capable policies and good representations for1089

backward credit assignment is pronounced clearly. To enable optimal decision-making, a good internal1090

state x needs to encode which underlying Markov states the agent most likely occupies, as well as the1091

corresponding uncertainty. To this end, the internal state needs to incorporate information about the1092

full history. However, when using the same internal state for backward credit assignment, this leads1093

to spurious contributions, as previous actions are encoded directly into the internal state.1094

To make the spurious contributions more tangible, let us consider a toy example where the state1095

space S consists of three states x, y and z. We assume the internal state represents a belief state1096

b = {b1, b2}, which is a sufficient statistic for the belief distribution:1097

p(S = x | b) = b1, p(S = y | b) = b2, p(S = z | b) = 1− b1 − b2 (111)

We assume that bt is deterministically computed from the history ht, e.g. by an RNN. Now consider1098

that at time step k, our belief state is bk = {0.5, 0.25} and we get a reward that resulted from the1099

Markov state x. As the belief states are deterministically computed, the distribution pπ(B′ = b′ | b, a)1100

is a Dirac delta distribution. Now consider that the action a does not influence the belief distribution1101

over the rewarding state x, but only changes the belief distribution over the non-rewarding states1102

(e.g. Bk = {0.5, 0.23} instead of Bk = {0.5, 0.25} when taking action a′ instead of a). As the1103

Dirac delta distributions pπ(B′ = b′ | b, a) for different a do not overlap, we get a high contribution1104

coefficient for the action a0 that was taken in the actual trajectory that led to the belief state b′, and1105

a low contribution coefficient for all other actions, even though the actions did not influence the1106

distribution over the rewarding state.1107

The spurious contributions originate from measuring contributions towards reaching a certain internal1108

belief state, while ignoring that the same reward could be obtained in different belief states as well.1109

Adapting Proposition 8 towards these internal belief states provides further insight on the difference1110

between HCA and COCOA-reward:1111

pπ(A0 = a | X0 = x,R′ = r′) =
∑

X′∈X
pπ(X ′ = x′ | X0 = x,R′ = r′)pπ(A0 = a | X0 = x,X ′ = x′)

(112)

Here, we see that the contribution coefficients of COCOA-reward take into account that the same1112

reward can be obtained while being in different internal belief states x′ by averaging over them, while1113

HCA only considers a single internal state.1114
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G Learning contribution coefficients from non-rewarding observations1115

G.1 Latent learning1116

Building upon HCA [1], we learn the contribution coefficients (3) by approximating the hindsight1117

distribution pπ(a | s, u′). The quality of this model is crucial for obtaining low-bias gradient1118

estimates. However, its training data is scarce, as it is restricted to learn from on-policy data, and1119

rewarding observations in case the reward or rewarding object is used as encoding U . We can make1120

the model that approximates the hindsight distribution less dependent on the policy by providing1121

the policy logits as input (c.f. Proposition 5). Enabling COCOA-reward or COCOA-feature to1122

learn from non-rewarding states is a more fundamental issue, as in general, the rewarding outcome1123

encodings corresponding to zero rewards do not share any features with those corresponding to1124

non-zero rewards.1125

Empowering COCOA with latent learning is an interesting direction to make the learning of contribu-1126

tion coefficients more sample efficient. We refer to latent learning as learning useful representations1127

of the environment structure without requiring task information, which we can then leverage for1128

learning new tasks more quickly [89]. In our setting, this implies learning useful representations1129

in the hindsight model without requiring rewarding observations, such that when new rewards are1130

encountered, we can quickly learn the corresponding contribution coefficients, leveraging the existing1131

representations.1132

G.2 Optimal rewarding outcome encodings for credit assignment.1133

Theorem 3 shows that the less information a rewarding outcome encoding U contains, the lower the1134

variance of the corresponding COCOA gradient estimator (4). Latent learning on the other hand1135

considers the sample-efficiency and corresponding bias of the learned contribution coefficients: when1136

the hindsight model can learn useful representations with encodings U corresponding to zero rewards,1137

it can leverage those representations to quickly learn the contribution coefficients for rewarding1138

outcome encodings with non-zero rewards, requiring less training data to achieve a low bias.1139

These two requirements on the rewarding outcome encoding U are often in conflict. To obtain a1140

low-variance gradient estimator, U should retain as little information as possible while still being1141

predictive of the reward. To enable latent learning for sample-efficient learning of the contribution1142

coefficients, the hindsight model needs to pick up on recurring structure in the environment, requiring1143

keeping as much information as possible in U to uncover the structural regularities. Using the1144

state as rewarding outcome encoding is beneficial for enabling latent learning, as it contains rich1145

information on the environment structure, but results in spurious contributions and a resulting high1146

variance. Using the rewards or rewarding object as rewarding outcome encoding removes spurious1147

contributions resulting in low variance, but renders latent learning difficult.1148

A way out of these conflicting pressures for an optimal rewarding outcome encoding is to use1149

rewards or rewarding objects as the optimal encoding for low variance, but extract these contribution1150

coefficients from models that allow for sample-efficient, latent learning. One possible strategy is1151

to learn probabilistic world models [18, 19, 86] which can be done using both non-rewarding and1152

rewarding observations, and use those to approximate the contribution coefficients of Eq. 3. Another1153

strategy that we will explore in more depth is to learn hindsight models based on the state as rewarding1154

outcome encoding to enable latent learning, but then recombine those learned hindsight models to1155

obtain contribution coefficients using the reward or rewarding object as U .1156

G.3 Counterfactual reasoning on rewarding states1157

HCA results in spurious contributions because it computes contributions towards reaching a precise1158

rewarding state, while ignoring that the same reward could be obtained in other (nearby) states.1159

Proposition 9 (a generalization of Proposition 8), shows that we can reduce the spurious contributions1160

of the state-based contribution coefficients by leveraging counterfactual reasoning on rewarding1161

states. Here, we obtain contribution coefficients for a certain rewarding outcome encoding (e.g. the1162

rewarding object) by considering which other states s′ could lead to the same rewarding outcome,1163

and averaging over the corresponding coefficients w(s, a, s′).1164

Proposition 9. Assuming S′ is fully predictive of U ′, we have that1165

w(s, a, u′) =
∑

s′∈S
pπ(S′ = s′ | S0 = s, U ′ = u′)w(s, a, s′) (113)
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Figure 10: Schematic of the graphical model used in our variational information bottleneck approach.

The proof follows the same technique as that of Proposition 8. Proposition 8) shows that it is possible1166

to learn state-based contribution coefficients, enabling latent learning, and obtain a low-variance1167

COCOA estimator by recombining the state-based contribution coefficients into coefficients with1168

less spurious contributions, if we have access to the generative model pπ(S′ = s′ | S0 = s, U ′ = u′).1169

This model embodies the counterfactual reasoning on rewarding states: ‘which other states s′ are1170

likely considering I am currently in u′ and visited state s somewhere in the past’.1171

In general, learning this generative model is as difficult or more difficult than approximating the1172

hindsight distribution pπ(a | s, u′), as it requires rewarding observations as training data. Hence, it is1173

not possible to directly use Proposition 9 to combine latent learning with low-variance estimators. In1174

the following section, we propose a possible way forward to circumvent this issue.1175

G.4 Learning credit assignment representations with an information bottleneck1176

Here, we outline a strategy where we learn a latent representation Z that retains useful information on1177

the underlying states S, and crucially has a latent space structure such that pπ(Z ′ = z′ | S = s, U ′ =1178

u′) is easy to approximate. Then, leveraging Proposition 9 (and replacing S′ by Z ′) allows us to1179

learn a hindsight representation based on Z, enabling latent learning, while reducing the spurious1180

contributions by counterfactual reasoning with pπ(z′ | s, u′).1181

To achieve this, we use the Variational Information Bottleneck approach [81, 90], closely related to1182

the β Variational Autoencoder [91]. Fig. 10 shows the graphical model with the relations between the1183

various variables and encoding: we learn a probabilistic encoding p(Z | S,A; θ) parameterized by θ,1184

and we assume that the latent variable Z is fully predictive of the rewarding outcome encoding U and1185

reward R. We aim to maximize the mutual information I(Z ′;S′, A′ | S,U ′) under some information1186

bottleneck. We condition on S and U ′, to end up later with a decoder and prior variational model that1187

we can combine with Proposition 9.1188

Following rate-distortion theory, Alemi et al. [90] consider the following tractable variational bounds1189

on the mutual information1190

H −D ≤ I(Z ′;S′, A′ | S,U ′) ≤ Rate (114)

with entropy H , distortion D and rate defined as follows:1191

H = −ES′,A′,S,U ′ [log pπ(S′, A′ | S,U ′)] (115)

D = −ES,U ′

[
ES′,A′|S,U ′

[∫
dz′p(z′ | s′, a′; θ) log q(s′, a′ | s, z′;ψ)

]]
(116)

Rate = ES,U ′
[
ES′,A′|S,U ′

[
DKL

(
p(z′ | s′, a′; θ)∥q(z′ | s, u′;ϕ)

)]]
(117)

where the decoder q(s′, a′ | s, z′;ψ) is a variational approximation to p(s′, a′ | s, z′), and the1192

marginal q(z′ | s, u′;ϕ) is a variational approximation to the true marginal p(z′ | s, u′). The1193

distortion D quantifies how well we can decode the state-action pair (s′, a′) from the encoding1194

z′, by using a decoder q(s′, a′ | s, z′;ψ) parameterized by ψ. The distortion is reminiscent of an1195

autoencoder loss, and hence encourages the encoding p(z′ | s′, a′) to retain as much information1196

as possible on the state-action pair (s′, a′). The rate measures the average KL-divergence between1197

the encoder and variational marginal. In information theory, this rate measures the extra number of1198

bits (or nats) required to encode samples from Z ′ with an optimal code designed for the variational1199

marginal q(z′ | s, u′;ϕ).1200

We can use the rate to impose an information bottleneck on Z ′. If we constrain the rate to Rate ≤ a1201

with a some positive constant, we restrict the amount of information Z ′ can encode about (S′, A′), as1202

p(z′ | s′, a′; θ) needs to remain close to the marginal q(z′ | s, u′;ϕ), quantified by the KL-divergence.1203

We can maximize the mutual information I(Z ′;S′, A′ | S,U ′) under the information bottleneck by1204
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minimizing the distortion under this rate constraint. Instead of imposing a fixed constraint on the rate,1205

we can combine the rate and distortion into an unconstrained optimization problem by leveraging the1206

Lagrange formulation1207

min
θ,ϕ,ψ

D + βRate (118)

Here, the β parameter determines the strength of the information bottleneck. This formulation1208

is equivalent to the β Variational Autoencoder [91], and for β = 1 we recover the Variational1209

Autoencoder [92].1210

To understand why this information bottleneck approach is useful to learn credit assignment represen-1211

tations Z, we examine the rate in more detail. We can rewrite the rate as1212

Rate = ES,U ′
[
DKL

(
p(z′ | s, u′)∥q(z′ | s, u′;ϕ)

)]
+ (119)

ES,U ′,Z′
[
DKL

(
p(s′, a′ | s, z′)∥p(s′, a′ | s, u′)

)]
(120)

Hence, optimizing the information bottleneck objective (118) w.r.t. ϕ fits the variational marginal1213

q(z′ | s, u′;ϕ) to the true marginal p(z′ | s, u′) induced by the encoder p(z′ | s′, a′; θ). Proposition 91214

uses this true marginal to recombine coefficients based on Z into coefficients based on U . Hence, by1215

optimizing the information bottleneck objective, we learn a model q(z′ | s, u′;ϕ) that approximates1216

the true marginal, which we then can use to obtain contribution coefficients with less spurious1217

contributions by leveraging Proposition 9. Furthermore, minimizing the rate w.r.t. θ shapes the latent1218

space of Z ′ such that the true marginal p(z′ | s, u′) moves closer towards the variational marginal1219

q(z′ | s, u′;ϕ).1220

In summary, the outlined information bottleneck approach for learning a credit assignment representa-1221

tion Z is a promising way forward to merge the powers of latent learning with a low-variance COCOA1222

gradient estimator. The distortion and rate terms in the information bottleneck objective of Eq. 1181223

represent a trade-off parameterized by β. Minimizing the distortion results in a detailed encoding1224

Z ′ with high mutual information with the state-action pair (S′, A′), which can be leveraged for1225

latent learning. Minimizing the rate shapes the latent space of Z ′ in such way that the true marginal1226

p(z′ | s, u′) can be accurately approximated within the variational family of q(z′ | s, u′;ϕ), and1227

fits the parameters ϕ resulting in an accurate marginal model. We can then leverage the variational1228

marginal q(z′ | s, u′;ϕ) to perform counterfactual reasoning on the rewarding state encodings Z ′1229

according to Proposition 9, resulting in a low-variance COCOA-estimator.1230

H Contribution analysis and causality1231

H.1 Causal interpretation of COCOA1232

COCOA is closely connected to causality theory [33], where the contribution coefficients (3) cor-1233

respond to performing Do − interventions on the causal graph to estimate their effect on future1234

rewards. To formalize this connection with causality, we need to use a new set of tools beyond1235

conditional probabilities, as causation is in general not the same as correlation. We start with rep-1236

resenting the MDP combined with the policy as a directed acyclic graphical model (c.f. Fig. 5a in1237

App. C.1). In causal reasoning, we have two different ‘modes of operation’. On the one hand, we can1238

use observational data, corresponding to ‘observing’ the states of the nodes in the graphical model,1239

which is compatible with conditional probabilities measuring correlations. On the other hand, we can1240

perform interventions on the graphical model, where we manually set a node, e.g. At to a specific1241

value a independent from its parents St, and see what the influence is on the probability distributions1242

of other nodes in the graph, e.g. Rt+1. These interventions are formalized with do-calculus [33],1243

where we denote an intervention of putting a node Vi equal to v as Do(Vi = v), and can be used to1244

investigate causal relations.1245

Using the graphical model of Fig. 5b that abstracts time, we can use do-interventions to quantify the1246

causal contribution of an action At = a taken in state St = s upon reaching the rewarding outcome1247

U ′ = u′ in the future as,1248

wDo(s, a, u
′) =

pπ
(
U ′ = u′ | St = s,Do(At = a)

)
∑
ã∈A π(ã | s)pπ

(
U ′ = u′ | St = s,Do(At = ã)

) − 1. (121)

As conditioning on S satisfies the backdoor criterion [33] for U ′ w.r.t. A, the interventional1249

distribution pπ
(
U ′ = u′ | St = s,Do(At = a)

)
is equal to the observational distribution1250

pπ
(
U ′ = u′ | St = s,At = a

)
. Hence, the causal contribution coefficients of Eq. 121 are1251

equal to the contribution coefficients of Eq. 3 used by COCOA.1252
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Figure 11: Structural causal model (SCM) of the MDP. Squares represent deterministic functions and
circles random variables.

H.2 Extending COCOA to counterfactual interventions1253

Within causality theory, counterfactual reasoning goes one step further than causal reasoning, by1254

incorporating the hindsight knowledge of the external state of the world in its reasoning. Applied to1255

COCOA, this more advanced counterfactual reasoning would evaluate the query: ‘How does taking1256

action a influence the probability of reaching a rewarding outcome, compared to taking alternative1257

actions a′, given everything else remains the same’. To formalize the difference between causal1258

and counterfactual reasoning, we need to convert the causal DAG of Figure 5a into a structural1259

causal model (SCM), as shown in Figure 11. The SCM expresses all conditional distributions as1260

deterministic functions with independent noise variables N , akin to the reparameterization trick1261

[92]. In causal reasoning, we perform do-interventions on nodes, which is equivalent to cutting all1262

incoming edges to a node. To compute the resulting probabilities, we still use the prior distribution1263

over the noise variablesN . Counterfactual reasoning goes one step further. First, it infers the posterior1264

probability pπ({N} | T = τ), with {N} the set of all noise variables, given the observed trajectory1265

τ . Then it performs a Do-intervention as in causal reasoning. However now, to compute the resulting1266

probabilities on the nodes, it uses the posterior noise distribution combined with the modified graph.1267

1268

One possible strategy to estimate contributions using the above counterfactual reasoning is to explicitly1269

estimate the posterior noise distribution and combine it with forward dynamics models to obtain1270

the counterfactual probability of reaching specific rewarding outcomes. Leveraging the work of1271

Buesing et al. [34] is a promising starting point for this direction of future work. Alternatively, we1272

can avoid explicitly modeling the posterior noise distribution, by leveraging the hindsight distribution1273

combined with the work of Mesnard et al. [3]. Here, we aim to learn a parameterized approximation1274

h to the counterfactual hindsight distribution pπτ
(
At = a | St = s, U ′ = u′

)
, where the τ -subscript1275

indicates the counterfactual distribution incorporating the noise posterior. Building upon the approach1276

of Mesnard et al. [3], we can learn h(a | s′, s,Φt(τ)) to approximate the counterfactual hindsight1277

distribution, with Φt(τ) a summary statistic trained to encapsulate the information of the posterior1278

noise distribution p({N} | T = τ). Mesnard et al. [3] show that such a summary statistic Φt(τ) can1279

be used to amortize the posterior noise estimation if it satisfies the following two conditions: (i) it1280

needs to provide useful information for predicting the counterfactual hindsight distribution and (ii)1281

it needs to be independent from the action At. We can achieve both characteristics by (i) training1282

h(a | s′, s,Φt(τ)) on the hindsight action classification task and backpropagating the gradients to1283

Φt(τ), and (ii) training Φt on an independence maximization loss LIM(s), which is minimized iff1284

At and Φt are conditionally independent given St. An example is to minimize the KL divergence1285

between π(at | st) and p(at | st,Φt(τ)) where the latter can be approximated by training a classifier1286

q(at | st,Φt(τ)). Leveraging this approach to extend COCOA towards counterfactual interventions1287

is an exciting direction for future research.1288

I Contribution analysis with temporal discounting1289

As discussed in Appendix B, we can implicitly incorporate discounting into the COCOA framework1290

by adjusting the transition probabilities to have a fixed probability of (1− γ) of transitioning to the1291

absorbing state s∞ at each time step.1292

We can also readily incorporate explicit time discounting into the COCOA framework, which we1293

discuss here. We consider now a discounted MDP defined as the tuple (S,A, p, pr, γ), with discount1294

factor γ ∈ [0, 1], and (S,A, p, pr) as defined in Section 2. The discounted value function V πγ (s) =1295
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Table 5: Comparison of discounted policy gradient estimators

Method Policy gradient estimator (∇̂θV π(s0))
REINFORCE

∑
t≥0 γ

t∇θ log π(At | St)
∑
k≥0 γ

kRt+k

Advantage
∑
t≥0 γ

t∇θ log π(At | St)
(∑

k≥0 γ
kRt+k − V πγ (St)

)

Q-critic
∑
t≥0 γ

t
∑
a∈A∇θπ(a | St)Qπγ (St, a)

COCOA
∑
t≥0 γ

t∇θ log π(At | St)Rt +
∑
a∈A∇θπ(a | St)

∑
k≥1 γ

kwγ(St, a, Ut+k)Rt+k
HCA+

∑
t≥0 γ

t∇θ log π(At | St)Rt +
∑
a∈A∇θπ(a | St)

∑
k≥1 γ

kwγ(St, a, St+k)Rt+k

ET∼T (s,π) [
∑∞
t=0 γ

tRt] and action value function Qπγ (s, a) = ET∼T (s,a,π) [
∑∞
t=0 γ

tRt] are the1296

expected discounted return when starting from state s, or state s and action a respectively. Table 51297

shows the policy gradient estimators of V πγ (s) for REINFORCE, Advantage and Q-critic.1298

In a discounted MDP, it matters at which point in time we reach a rewarding outcome u, as the1299

corresponding rewards are discounted. Hence, we adjust the contribution coefficients to1300

wγ(s, a, u
′) =

∑
k≥1 γ

kpπ(Ut+k = u′ | St = s,At = a)∑
k≥1 γ

kpπ(Ut+k = u′ | St = s)
− 1 (122)

=
pπγ (At = a | St = s, U ′ = u′)

π(a | s) − 1 (123)

Here, we define the discounted hindsight distribution pπγ (At = a | St = s, U ′ = u′) similarly to the1301

undiscounted hindsight distribution explained in Appendix C.1, but now using a different probability1302

distribution on the time steps k: pβ(K = k) = (1− β)βk−1, where we take β = γ. We can readily1303

extend Theorems 1-4 to the explicit discounted setting, by taking β = γ instead of the limit of β → 1,1304

and using the discounted COCOA policy gradient estimator shown in Table 5.1305

To approximate the discounted hindsight distribution pπγ (At = a | St = s, U ′ = u′), we need to1306

incorporate the temporal discounting into the classification cross-entropy loss:1307

Lγ = Eπ


∑

t≥0

∑

k≥1

γkCE
(
hγ(· | St, Ut+k), δ(a = At)

)

 , (124)

with CE the cross-entropy loss, hγ(· | St, Ut+k) the classification model that approximates the1308

discounted hindsight distribution, and δ(a = At) a one-hot encoding of At.1309

J Bootstrapping with COCOA1310

Here, we show how COCOA can be combined with n-step returns, and we make a correction to1311

Theorem 7 of Harutyunyan et al. [1] which considers n-step returns for HCA.1312

Consider the graphical model of Fig. 12a where we model time, K, as a separate node in the graphical1313

model (c.f. App. C.1). To model n-step returns, we now define the following prior probability on K,1314

parameterized by β:1315

pn,β(K = k) =

{
βk

z if 1 ≤ k ≤ n− 1

0 else
z = β

1− βn−1

1− β (125)

Using pπn,β as the probability distribution induced by this graphical model, we have that1316

pπn,β(U
′ = u | S = s,A = a) =

∑

k

pπn,β(U
′ = u,K = k | S = s,A = a) (126)

=
∑

k

pn,β(K = k)pπn,β(U
′ = u | S = s,A = a,K = k) (127)

=
1− β

β(1− βn−1)

n−1∑

k=1

βkpπ(Uk = u | S0 = s,A0 = a) (128)
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(a) (b)

Figure 12: (a) Graphical model where we abstract time. (b) Graphical model implicitly used in the
proof of Theorem 7 in Harutyunyan et al. [1].

We introduce the following contribution coefficients that we will use for n-step returns1317

wn,β(s, a, u
′) =

∑n−1
k=1 β

kpπ(Uk = u′ | S0 = s,A0 = a)
∑n−1
k=1 β

kpπ(Uk = u′ | S0 = s)
(129)

=
pπn,β(U

′ = u′ | S = s,A = a)

pπn,β(U
′ = u′ | S = s)

− 1 =
pπn,β(A = a | S = s, U ′ = u′)

π(a | s) − 1 (130)

wn(s, a, s
′) =

pπ(Sn = s′ | S0 = s,A0 = a)

pπ(Sn = s′ | S0 = s)
− 1 =

pπ(A = a | S = s, Sn = s′)
π(a | s) − 1 (131)

Now we are ready to prove the n-step return theorem for the discounted MDP setting. We can recover1318

the undiscounted setting by taking the limit of γ → 1−.1319

Theorem 10. Consider state s and action a for which it holds that π(a | s) > 0 and take β equal to the1320

discount factor γ ∈ [0, 1]. Furthermore, assume that the rewarding outcome encoding u = f(s, a, r)1321

is fully predictive of the reward (c.f. Definition 1). Then the advantage Aπ(s, a) = Qπ(s, a)− V π(s)1322

is equal to1323

Aπ(s, a) = r(s, a)− rπ(s) + ET (s,π)

[
n−1∑

k=1

γkwn,β(s, a, Uk)Rk + γnwn(s, a, Sn)V
π(Sn)

]

(132)

with r(s, a) the reward model and rπ(s) =
∑
a π(a | s)r(s, a).1324

Proof. We start with the action-value function Qπ , and will subtract the value V π to obtain the result1325

on the advantage function.1326

Q(s, a) = ET∼T (s,a,π)


∑

k≥1

γkRk


 (133)

= r(s, a) +
∑

r′∈R

∑

k≥1

γkpπ(Rk = r′ | s, a)r′ (134)

= r(s, a) +
∑

r′∈R

∑

u′∈U

n−1∑

k=1

γkpπ(Rk = r′, Uk = u′ | s, a)r′+ (135)

γn
∑

s′∈S
pπ(Sn = s′ | s, a)V π(s′) (136)

= r(s, a) +
∑

r′∈R

∑

u′∈U

n−1∑

k=1

γkpπ(R′ = r′ | U ′ = u′)pπ(Uk = u′ | s, a)r′+ (137)

γn
∑

s′∈S
pπ(Sn = s′ | s, a)V π(s′) (138)

= r(s, a) +
∑

u′∈U
r(u′)

n−1∑

k=1

γkpπ(Uk = u′ | s, a) + γn
∑

s′∈S
pπ(Sn = s′ | s, a)V π(s′)

(139)
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= r(s, a) +
∑

u′∈U
r(u′)

n−1∑

k=1

γkpπ(Uk = u′ | s)
∑n−1
k′=1 γ

k′pπ(Uk′ = u | s, a)
∑n−1
k′=1 γ

k′pπ(Uk′ = u | s)
+ (140)

γn
∑

s′∈S
pπ(Sn = s′ | s)p

π(Sn = s′ | s, a)
pπ(Sn = s′ | s) V π(s′) (141)

= r(s, a) +
∑

u′∈U
r(u′)

n−1∑

k=1

γkpπ(Uk = u′ | s)(wn,β(s, a, u′) + 1) (142)

+ γn
∑

s′∈S
pπ(Sn = s′ | s)(wn(s, a, s′) + 1)V π(s′) (143)

(144)

where we use that U ′ is fully predictive of the reward R′, and define r(u′) =
∑
r′∈R p(R′ = r′ |1327

U ′ = u′)r′ By subtracting the value function, we get1328

A(s, a) = r(s, a)− rπ(s) +
∑

u′∈U
r(u′)

n−1∑

k=1

γkpπ(Uk = u′ | s)wn,β(s, a, u′) (145)

+ γn
∑

s′∈S
pπ(Sn = s′ | s)wn(s, a, s′)V π(s′) (146)

= r(s, a)− rπ(s) + ET (s,π)

[
n−1∑

k=1

γkwn,β(s, a, Uk)Rk + γnwn(s, a, Sn)V
π(Sn)

]
(147)

1329

Finally, we can sample from this advantage function to obtain an n-step COCOA gradient estimator,1330

akin to Theorem 1.1331

Note that we require to learn the state-based contribution coefficients wn(s, a, s′) to bootstrap the1332

value function into the n-step return, as the value function requires a Markov state s′ as input instead1333

of a rewarding outcome encoding u′. Unfortunately, these state-based contribution coefficients will1334

suffer from spurious contributions, akin to HCA, introducing a significant amount of variance into1335

the n-step COCOA gradient estimator. We leave it to future research to investigate whether we1336

can incorporate value functions into an n-step return, while using rewarding-outcome contribution1337

coefficients w(s, a, u′) instead of state-based contribution coefficients wn(s, a, s′).1338

Learning the contribution coefficients. We can learn the contribution coefficients wβ,n(s, a, u′)1339

with the same strategies as described in Section 3, but now with training data from n-step trajectories1340

instead of complete trajectories. If we use a discount γ ̸= 1, we need to take this discount factor into1341

account in the training distribution or loss function (c.f. App. I).1342

Correction to Theorem 7 of Harutyunyan et al. [1]. Harutyunyan et al. [1] propose a theorem1343

similar to Theorem 10, with two important differences. The first one concerns the distribution on K1344

in the graphical model of Fig. 12a. Harutyunyan et al. [1] implicitly use this graphical model, but1345

with a different prior probability distribution on K:1346

pHCAn,β (K = k) =





βk−1(1− β) if 1 ≤ k ≤ n− 1

βn−1 if k = n

0 else
(148)

The graphical model combined with the distribution on K defines the hindsight distribution1347

pπn,β,HCA(A = a | S = s, S′ = s′). The second difference is the specific Q-value estimator Haru-1348

tyunyan et al. [1] propose. They use the hindsight distribution pπn,β,HCA(A = a | S = s, S′ = s′) in1349

front of the value function (c.f. Theorem 10), which considers that s′ can be reached at any time step1350

k ∼ pHCAn,β (k), whereas Theorem 10 uses wn(s, a, s′) which considers that s′ is reached exactly at1351

time step k = n.1352

To the best of our knowledge, there is an error in the proposed proof of Theorem 7 by Harutyunyan et al.1353

[1] for which we could not find a simple fix. For the interested reader, we briefly explain the error. One1354
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indication of the problem is that for β → 1, all the probability mass of pHCAn,β (K = k) is concentrated1355

at k = n, hence the corresponding hindsight distribution pπn,β,HCA(A = a | S = s, S′ = s′)1356

considers only hindsight states s′ encountered at time k = n. While this is not a mathematical error, it1357

does not correspond to the intuition of a ‘time independent hindsight distribution’ the authors provide.1358

In the proof itself, a conditional independence relation is assumed that does not hold. The authors1359

introduce a helper variable Z defined on the state space S, with a conditional distribution1360

µk(Z = z | S′ = s′) =

{
δ(z = s′) if 1 ≤ k ≤ n− 1

d̃π(z | s′) if k = n
(149)

with the normalized discounted visit distribution d̃π(z | s′) = (1− γ)∑k γ
kpπ(Sk = z | S0 = s).1361

We can model this setting as the graphical model visualized in Fig. 12b. In the proof (last line on page1362

15 in the supplementary materials of Harutyunyan et al. [1]), the following conditional independence1363

is used:1364

pπ(A0 = a | S0 = s, S′ = s′, Z = z) = pπ(A0 = a | S0 = s, S′ = s′) (150)

However, Fig. 12b shows that S′ is a collider on the path A0 → S′ ← K → Z. Hence, by1365

conditioning on S′ we open this collider path, making A0 dependent on Z conditioned on S0 and S′,1366

thereby invalidating the assumed conditional independence. For example, if Z is different from S′,1367

we know that K = n (c.f. Eq. 149), hence Z can contain information about action A0, beyond S′, as1368

S′ ignores at which point in time s′ is encountered.1369

K Additional details1370

K.1 Compute resources1371

We used Linux workstations with Nvidia RTX 2080 and Nvidia RTX 3090 GPUs for development1372

and conducted hyperparameter searches and experiments using 5 TPUv2-8, 5 TPUv3-8 and 1 Linux1373

server with 8 Nvidia RTX 3090 GPUs over the course of 9 months. All of the final experiments1374

presented take less than a few hours to complete using a single Nvidia RTX 3090 GPU. In total, we1375

spent an estimated amount of 2 GPU months.1376

K.2 Software and libraries1377

For the results produced in this paper we relied on free and open-source software. We implemented1378

our experiments in Python using JAX [93, Apache License 2.0] and the Deepmind Jax Ecosystem1379

[80, Apache License 2.0]. For experiment tracking we used wandb [94, MIT license] and for the1380

generation of plots we used plotly [95, MIT license].1381
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Schmidhuber. Training Agents using Upside-Down Reinforcement Learning, September 2021.1616

arXiv:1912.02877 [cs].1617

[76] Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter1618

Abbeel, Aravind Srinivas, and Igor Mordatch. Decision Transformer: Reinforcement Learning1619

via Sequence Modeling. In Advances in Neural Information Processing Systems, volume 34,1620

pages 15084–15097. Curran Associates, Inc., 2021.1621

[77] Michael Janner, Qiyang Li, and Sergey Levine. Offline Reinforcement Learning as One1622

Big Sequence Modeling Problem. In Advances in Neural Information Processing Systems,1623

volume 34, pages 1273–1286. Curran Associates, Inc., 2021.1624

[78] Richard S. Sutton. Learning to predict by the methods of temporal differences. Machine1625

Learning, 3(1):9–44, August 1988.1626

[79] Hado van Hasselt, Sephora Madjiheurem, Matteo Hessel, David Silver, André Barreto, and1627

Diana Borsa. Expected Eligibility Traces. In Association for the Advancement of Artificial1628

Intelligence. arXiv, February 2021. arXiv:2007.01839 [cs, stat].1629

35



[80] Igor Babuschkin, Kate Baumli, Alison Bell, Surya Bhupatiraju, Jake Bruce, Peter Buchlovsky,1630

David Budden, Trevor Cai, Aidan Clark, Ivo Danihelka, Antoine Dedieu, Claudio Fantacci,1631

Jonathan Godwin, Chris Jones, Ross Hemsley, Tom Hennigan, Matteo Hessel, Shaobo Hou,1632

Steven Kapturowski, Thomas Keck, Iurii Kemaev, Michael King, Markus Kunesch, Lena1633

Martens, Hamza Merzic, Vladimir Mikulik, Tamara Norman, George Papamakarios, John1634

Quan, Roman Ring, Francisco Ruiz, Alvaro Sanchez, Rosalia Schneider, Eren Sezener, Stephen1635

Spencer, Srivatsan Srinivasan, Wojciech Stokowiec, Luyu Wang, Guangyao Zhou, and Fabio1636

Viola. The DeepMind JAX Ecosystem, 2020.1637

[81] Alexander A. Alemi, Ian Fischer, Joshua V. Dillon, and Kevin Murphy. Deep Variational1638

Information Bottleneck. 2017.1639

[82] Naftali Tishby, Fernando C. Pereira, and William Bialek. The information bottleneck method,1640

April 2000. arXiv:physics/0004057.1641

[83] Matthew Hausknecht and Peter Stone. Deep Recurrent Q-Learning for Partially Observ-1642

able MDPs. In Association for the Advancement of Artificial Intelligence. arXiv, 2015.1643

arXiv:1507.06527 [cs].1644

[84] Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and1645

James Davidson. Learning Latent Dynamics for Planning from Pixels. In Proceedings of the1646

36th International Conference on Machine Learning, pages 2555–2565. PMLR, May 2019.1647

ISSN: 2640-3498.1648

[85] Karol Gregor, Danilo Jimenez Rezende, Frederic Besse, Yan Wu, Hamza Merzic, and Aaron1649

van den Oord. Shaping Belief States with Generative Environment Models for RL. In 33rd1650

Conference on Neural Information Processing Systems (NeurIPS 2019). arXiv, June 2019.1651

Number: arXiv:1906.09237 arXiv:1906.09237 [cs, stat].1652

[86] Karol Gregor, George Papamakarios, Frederic Besse, Lars Buesing, and Theophane Weber.1653

Temporal Difference Variational Auto-Encoder. 2019.1654

[87] Matthijs T J Spaan. Partially Observable Markov Decision Processes. Reinforcement Learning,1655

page 27.1656

[88] K. J. Astrom. Optimal Control of Markov decision processes with incomplete state estimation.1657

J. Math. Anal. Applic., 10:174–205, 1965.1658

[89] Edward C. Tolman. Cognitive maps in rats and men. Psychological Review, 55:189–208, 1948.1659

Place: US Publisher: American Psychological Association.1660

[90] Alexander A. Alemi, Ben Poole, Ian Fischer, Joshua V. Dillon, Rif A. Saurous, and Kevin1661

Murphy. Fixing a Broken ELBO. In Proceedings of the 35 th International Conference on1662

Machine Learning,. arXiv, February 2018. arXiv:1711.00464 [cs, stat].1663

[91] Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick,1664

Shakir Mohamed, and Alexander Lerchner. beta-VAE: Learning Basic Visual Concepts with a1665

Constrained Variational Framework. July 2022.1666

[92] Diederik P. Kingma and Max Welling. Auto-Encoding Variational Bayes. arXiv, May 2014.1667

Number: arXiv:1312.6114 arXiv:1312.6114 [cs, stat].1668

[93] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal1669

Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao1670

Zhang. JAX: composable transformations of Python+NumPy programs, 2018.1671

[94] Lukas Biewald. Experiment Tracking with Weights and Biases, 2020.1672

[95] Plotly Technologies Inc. Collaborative data science, 2015. Place: Montreal, QC Publisher:1673

Plotly Technologies Inc.1674

36


