
A Proof440

A.1 Proof of Performance Difference Distinction via State Sequences441

Following the previous work [19], our analysis will make use of the discounted future state distribution,442

dπ , which is defined as443

dπ(s) = (1− γ)
∞∑
t=0

γtP (st = s|π,M)

It allows us to express the expected discounted total reward compactly as444

J(π) =

∞∑
t=0

γtEst,at,st+1 [R(st, at, st+1)|π,M]

=

∞∑
t=0

γt
∫
S
Rπ(s)P (st = s|π,M) ds

=

∫
S
Rπ(s)

∞∑
t=0

γtP (st = s|π,M) ds (1)

=
1

1− γ

∫
S
Rπ(s)dπ(s) ds

=
1

1− γ
Es∼dπ

a∼π
s′∼P

[R(s, a, s′)] , (2)

where we define Rπ(s) := Ea∼π,s′∼P [R(s, a, s
′)]. It should be clear from a ∼ π(·|s) and s′ ∼445

P (·|s, a) that a and s′ depend on s. Thus, the reward function Rπ is only related to s when the policy446

π is fixed.447

Firstly, we prove that the distance between two state sequence distributions obtained from two distinct448

policies serves as an upper bound on the performance difference between those policies, provided449

that certain assumptions regarding the reward function hold.450

Theorem 1. Suppose that the reward function R(s, a, s′) = R(s) is related to the state s, then the451

performance difference between two arbitrary policies π1 and π2 is bounded by the L1 norm of the452

difference between their state sequence distributions:453

|J(π1)− J(π2)| ≤
Rmax

1− γ
· ∥P (s0, s1, s2, . . . |π1,M)− P (s0, s1, s2, . . . |π2,M)∥1 , (3)

where P (s0, s1, s2, . . . |π1,M) means the joint distribution of the infinite-horizon state sequence454

S = {s0, s1, s2, . . . } conditioned on the policy π and the environment modelM.455

Proof. According to the equation (1), the difference in performance between two policies π1, π2 can456

be bounded as follows.457

|J(π1)− J(π2)| ≤ Rmax ·
∞∑
t=0

γt
∫
S

∣∣P (st = s|π1,M)− P (st = s|π2,M)
∣∣ds

≤ Rmax ·
T∑

t=0

γt
∫
S

∣∣∣∣ ∫
ST

P (s0, . . . , st−1, s, st+1, . . . , sT |π1,M)

− P (s0, . . . , st−1, s, st+1 . . . , sT |π2,M) ds0 · · · dst−1dst+1 · · · dsT
∣∣∣∣ds

+Rmax · 2
∞∑

t=T+1

γt, ∀T ≥ 1
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≤ Rmax

T∑
t=0

γt
∫
ST+1

∣∣P (s0, . . . , sT |π1,M)− P (s0 . . . , sT |π2,M)
∣∣ds0 · · · dsT

+Rmax · 2
∞∑

t=T+1

γt, ∀T ≥ 1

=
Rmax

1− γ
·
∫
ST+1

∣∣P (s0, . . . , sT |π1,M)− P (s0 . . . , sT |π2,M)
∣∣ds0 · · · dsT

+Rmax · 2
∞∑

t=T+1

γt, ∀T ≥ 1.

Let T →∞, then we obtain the bound proposed by (3).458

We are further interested in bounding the performance difference between two policies by their459

state sequences in the frequency domain. Benefiting from the properties of the discrete-time Fourier460

transform (DTFT), we can constrain the performance difference using the Fourier transform over the461

interval [0, 2π], instead of using the distribution functions of the state sequences in unbounded space.462

Theorem 2. Suppose that S ⊂ RD the reward function R(s, a, s′) = R(s) is an nth-degree463

polynomial function with respect to s ∈ S, then for any two policies π1 and π2, their performance464

difference can be bounded as follows:465

|J(π1)− J(π2)| ≤
√
D

1− γ
·

n∑
k=1

∥∥R(k)(0)
∥∥
D

k!
· max
1≤i≤D

sup
ωi∈[0,2π]

∣∣∣F (k)
π1

(ωi)− F (k)
π2

(ωi)
∣∣∣ , (4)

where F (k)
π (ω) denotes the DTFT of the time series S(k) = {s0k, s1k, s2k, . . . } for any integer466

k ∈ [1, n] and S(k) means the kth power of the state sequence produced by the policy π. The467

dimensionality of ω is the same as s.468

Proof. For sake of simplicity, we define pt(s|πi) = P (st = s|πi,M) for i = 1, 2. We denote εt as469

εt =

∫
S
R(s)

[
pt(s|π1)− pt(s|π2)

)
] ds. (5)

Based on the Taylor series expansion, we can rewrite the reward function asR(s) =
∑n

k=0
R(k)(0)T

k! sk,470

then for any integer k ∈ [1, n], we have471

|εt| ≤
n∑

k=0

∥∥R(k)(0)
∥∥
D

k!
·
∥∥∥∥∫

S

[
skpt(s|π1)− skpt(s|π2)

]
ds

∥∥∥∥
D

=

n∑
k=0

∥∥R(k)(0)
∥∥
D

k!

∥∥∥∥ E
s∼pt(·|π1)

[
sk
]
− E

s∼pt(·|π2)

[
sk
]∥∥∥∥

D

. (6)

Since the inverse DTFT of F (k)
π (ω) is the original time series S(k), we have472

E
si∼pt(·|π)

[
ski
]
=

1

2π

∫ 2π

0

F (k)
π (ωi)e

jωit dωi, ∀i = 1, 2, . . . , D. (7)

Then we have473 ∣∣∣∣ E
si∼pt(·|π1)

[
ski
]
− E

si∼pt(·|π2)

[
ski
]∣∣∣∣ ≤ 1

2π

∫ 2π

0

∣∣∣F (k)
π1

(ωi)− F (k)
π2

(ωi)
∣∣∣ · ∣∣ejωit

∣∣ dωi

≤ sup
ωi∈[0,2π]

∣∣∣F (k)
π1

(ωi)− F (k)
π2

(ωi)
∣∣∣ . (8)

Substituting (8) into (6), then we obtain474

|εt| ≤
√
D ·

n∑
k=1

∥∥R(k)(0)
∥∥
D

k!
· max
1≤i≤D

sup
ωi∈[0,2π]

∣∣∣F (k)
π1

(ωi)− F (k)
π2

(ωi)
∣∣∣ .
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For the sake of DTFT, the upper bound of ϵt is independent of t, then we could derive the performance475

difference bound as follows.476

|J(π1)− J(π2)| ≤
∞∑
t=0

γt · |εt|

≤ 1

1− γ
·
√
D ·

n∑
k=1

∥∥R(k)(0)
∥∥
D

k!
· max
1≤i≤D

sup
ωi∈[0,2π]

∣∣∣F (k)
π1

(ωi)− F (k)
π2

(ωi)
∣∣∣ ,

and so we immediately achieve the desired bound in (4).477

A.2 Proof of the Asymptotic Periodicity of States in MDP478

This section focuses on analyzing the asymptotic behavior of the state sequences generated from an479

MDP. We begin by discussing the limiting process of MDP with a finite state space S. Let P be the480

transition probability matrix and let µi be the probability distribution of the states at time ti. Then we481

have µi+1 = Pµi for any i ≥ 0. If the sequence {µi}∞i=0 splits into d subsequences with d cyclic482

limits {µr
∞}d−1

r=0 that follow the cycle:483

µ0
∞ → µ1

∞ → · · · → µd−1
∞ → µ0

∞,

then we say that the states of the MDP exhibit asymptotic periodicity. Such cyclic asymptotic behavior484

implies that the limiting distribution of the states eventually repeats in a specific period after a certain485

number of steps.486

We begin by providing some essential definitions in the field of stochastic processes [28], which will487

be utilized in the following proof. Let P be a transition probability matrix corresponding to n states488

(n ≥ 1). Two states i and j are said to intercommunicate if there exist paths from i to j as well as489

from j to i. The matrix P is called irreducible if any two states intercommunicate. A set of states is490

called irreducible if any two states in the set intercommunicate. Moreover, a state i is called recurrent491

if the probability of eventual return to i, having started from i, is 1. If this probability is strictly less492

than 1, the state i is called transient.493

Note that if the whole state space S is irreducible, then its transition matrix P is also irreducible. The494

following lemma demonstrates that if the state space is irreducible, then its asymptotical periodicity495

is determined by the eigenvalues with modulus 1 of its transition matrix.496

Lemma 1. Suppose that the state space S is finite with a transition probability matrix P ∈ R|S|×|S|.497

If P is an irreducible matrix with d eigenvalues of modulus 1, then for any initial distribution µ0,498

Pnµ0 is asymptotically periodic with a period of d when d > 1 and asymptotically aperiodic when499

d = 1.500

Proof. According to the Perron-Frobenius theorem for irreducible non-negative matrices, all eigen-501

values of P of modulus 1 are exactly the d complex roots of the equation λd − 1 = 0. They can502

be formulated as λ0 = 1, λ1 = ξ1, . . . , λd−1 = ξd−1, where ξ = e
2πj
d . Each of them is a simple503

root of the characteristic polynomial of the matrix P . Since P is a transition probability matrix, the504

remaining eigenvalues λd, . . . , λs satisfy |λr| < 1. Therefore, the Jordan matrix of P has the form505

J =



λ0
λ1

. . .
λd−1

Jd
. . .

Js


,where Jk =


λk 1

λk 1
. . . . . .

λk 1
λk

 .

We refer to Jk as Jordan cells.506

Let |S| = D, we can rewrite P in its Jordan canonical form P = XJX−1 where507

X = [x⃗0, x⃗1, . . . , x⃗D−1].
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Note that for k < d, xk is the eigenvector corresponding to λk. Since the column vectors of X are508

linearly dependent, there exist c⃗ = [c0, c1, . . . , cD−1] not all zero, such that µ0 =
D−1∑
k=0

ckx⃗k = Xc⃗.509

Thus, we have510

Pnµ0 =

d−1∑
k=0

ckλ
n
k x⃗k +

D−1∑
k=d

ckP
nx⃗k. (9)

For any Jordan cell Jk, let αk be the multiplicity of λk, then511

Jn
k =


λk 1

λk 1
. . . . . .

λk 1
λk


n

αk×αk

=


λnk Cn−1

n λn−1
k · · · Cn−αk+1

n λn−αk+1
k

λnk · · · Cn−αk+2
n λn−αk+2

k
. . .

...
λnk

 .
Since αk is fixed for matrix P , we have lim

n→∞
Jn
k = 0 for each k = d, . . . ,D − 1. Then the limiting512

vector of (9), denoted by P∞µ0, satisfies:513

P∞µ0 = lim
n→∞

XJnX−1Xc⃗ = lim
n→∞

d−1∑
k=0

ckλ
n
k x⃗k = lim

n→∞
µ(n),

where we denote µ(n) =
d−1∑
k=0

ck(e
j 2πk

d )nx⃗k. Let r = n (mod d), then we have514

µ(n) = µ(r) =

d−1∑
k=0

ck(ξ
k)rx⃗k, ∀n ≥ 1.

Therefore, the probability sequence {Pnµ0}n≥1 will split into d converging subsequences and has d515

cyclic limiting probability distributions when n→∞, denoted as516

µr
∞ =

d−1∑
k=0

ck(ξ
k)rx⃗k, r = 0, 1, . . . , d− 1.

Thus, Pnµ0 is asymptotically periodic with period d if d > 1 and asymptotically aperiodic if517

d = 1.518

We now consider a more general state space that may not necessarily be irreducible. According to519

the Decomposition theorem of the Markov chain [28], the finite state space S can be partitioned520

uniquely as a set of transient states and one or several irreducible closed sets of recurrent states.521

According to [29], after performing an appropriate permutation of rows and columns, we can rewrite522

the transition probability matrix P in its canonical form:523

P =



R1 0 · · · 0 0
0 R2 · · · 0 0
...

...
. . .

...
...

0 0 · · · Rα 0

T1 T2 · · · Tα Q

 ,

where R1, . . . , Rα represent the probability submatrices corresponding to the recurrent classes, Q524

represents the probability submatrix corresponding to the transient states, and T1, . . . , Tα represent525

the probability submatrices corresponding to the transitions between transient and recurrent classes526

R1, . . . , Rα respectively.527

Theorem 3. Suppose that the state space S is finite with a transition probability matrix P ∈ R|S|×|S|528

and S has α recurrent classes. Let R1, R2, . . . , Rα be the probability submatrices corresponding529

to the recurrent classes and let d1, d2, . . . , dα be the number of the eigenvalues of modulus 1 that530

the submatrices R1, R2, . . . , Rα has. Then for any initial distribution µ0, Pnµ0 is asymptotically531

periodic with period d = lcm(d1, d2, . . . , dα) when d > 1 and asymptotically aperiodic when d = 1.532
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Proof. Since P is a block upper-triangular, it can be shown that the eigenvalues of P are equal to533

the union of the eigenvalues of the diagonal blocks R1, . . . , Rα, Q. Note that the nth-power of P534

satisfies the following expression:535

Pn =



Rn
1 0 · · · 0 0
0 Rn

2 · · · 0 0
...

...
. . .

...
...

0 0 · · · Rn
α 0

T
(n)
1 T

(n)
2 · · · T

(n)
α Qn


,

where T (n)
r is related to the (n− 1)-th or the lower power of Rr and Q. From Theorem 4.3 of [29],536

we obtain that lim
n→∞

Qn = 0, which implies that all eigenvalues of Q have modulus less than 1.537

On the other hand, note that the sum of every row in matrix Rr is equal to 1, which means λ = 1 is538

an eigenvalue of Rr and all eigenvalues of Rr satisfy |λ| ≤ 1. Thus, the spectral radius of P is equal539

to 1.540

Note that the proof of Lemma 1 implies that the asymptotic periodicity of Pnµ0 depends on the541

eigenvalues of P that have modulus 1. Since Rr is non-negative irreducible with spectral radius 1,542

based on the Perron-Frobenius theorem used in Lemma 1, we can express the eigenvalues of Rr in543

modulus 1 as:544

λr,k = ej
2πk
dr , , k = 0, 1, . . . , dr − 1.

Based on the above discussion, it is easy to check that
α⋃

r=1
{λr,0, . . . , λr,dr−1} is the set of all545

eigenvalues of modulus 1 of P . Rewrite P in its Jordan canonical form P = XJX−1, where546

J =



λ1,0
. . .

λ1,d1−1

λ2,0
. . .

λα,dα−1

Jd1+···+dα

. . .
Js


and X = [x⃗0, x⃗1, . . . , x⃗D−1] is an invertible matrix. Similar to the proof in Lemma 1, we get547

P∞µ0 = lim
n→∞

α∑
r=1

dr−1∑
k=0

ck(e
j 2πk

dr )nx⃗k := lim
n→∞

µ(n).

Let d = lcm(d1, d2, . . . , dα) and r = n (mod d), then we have548

µ(n) = µ(r), ∀n ≥ 1.

Therefore, the probability sequence {Pnµ0}n≥1 will split into d converging subsequences and has d549

cyclic limiting probability distributions when n→∞, denoted as550

µr
∞ =

α∑
r=1

dr−1∑
k=0

cke
j 2πkr

dr x⃗k, r = 0, 1, . . . , d− 1.

Thus, Pnµ0 is asymptotically periodic with period d if d > 1 and asymptotically aperiodic if d = 1.551

This completes the proof.552
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A.3 Proof of the Convergence of Our Auxiliary Loss553

In this section, we provide a detailed derivation of the learning objective of SPF. As the DTFT of554

discrete-time state sequences is a continuous function that is difficult to compute, we practically555

sample the DTFT at L equally-spaced points.556

[F s̃t]k =

+∞∑
n=0

[s̃t]n e
−j 2πk

L n, k = 0, 1, . . . , L− 1. (10)

As a result, the prediction target takes the form of a matrix with dimensions of L∗D, whereD denotes557

the dimension of the state space. The auxiliary task is designed to encourage the representation558

to predict the Fourier transform of the state sequences using the current state-action pair as input.559

Specifically, we define the prediction target Fπ,p(st, at) as follows:560

Fπ,p(st, at) = F s̃(st, at) =

{
+∞∑
n=0

[s̃(st, at)]n e
−j 2πk

L n

}L−1

k=0

, (11)

For simplicity of notation, we substitute F (st, at) for Fπ,p(st, at) in the following. We can derive561

that the DTFT functions at successive time steps are related to each other in a recursive form:562

[F (st, at)]k =

+∞∑
n=0

γn · e−j 2πk
L n · Eπ,p

[
st+n+1

∣∣st = s, at = a
]

= Ep

[
st+1

∣∣st = s, at = a
]
+ γ · e−j 2πk

L ·

Est+1∼p,at+1∼π

[
+∞∑
n=0

γn · e−j 2πk
L n · Ep

[
st+n+2

∣∣st+1, at+1

]]
= [s̃t]0 + γ · e−j 2πk

L · Eπ,p [[F (st+1, at+1)]k] , ∀ k = 0, 1, . . . L− 1.

We can further express the above equation as a matrix-form recursive formula as follows:563

F (st, at) = S̃t + ΓEπ,p [F (st+1, at+1)] , (12)

where564

S̃t = [[s̃t]0, . . . , [s̃t]0]
T ∈ RL×D,

565

Γ = γ


1

e−j 2π
L

e−j 4π
L

. . .

e−j
(L−1)π

L

 .

Similar to the TD-learning of value functions, we can prove that the above recursive relationship (12)566

can be reformulated as a contraction mapping T . Due to the properties of contraction mappings, we567

can iteratively apply the operator T to compute the target DTFT function until convergence in tabular568

settings.569

Theorem 4. Let F denote the set of all functions F : S ×A → CL∗D and define the norm on F as570

∥F∥F := sup
s∈S
a∈A

max
0≤k<L

∥∥[F (s, a)]
k

∥∥
D
,

where
[
F (s, a)

]
k

represents the kth row vector of F (s, a). We show that the mapping T : F → F571

defined as572

T F (st, at) = S̃t + ΓEπ,P [F (st+1, at+1)] (13)

is a contraction mapping, where S̃t and Γ are defined as above.573
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Proof. For any F1, F2 ∈ F , we have574

∥T F1 − T F2∥F = sup
s∈S
a∈A

max
0≤k<L

∥∥∥∥∥s+ γe−j 2πk
K Es′∼P (·|s,a)

a′∼π(·|s′)

[[
F1(s

′, a′)
]
k

∣∣s, a]

− s− γe−j 2πk
K Es′∼P (·|s,a)

a′∼π(·|s′)

[[
F2(s

′, a′)
]
k

∣∣s, a]∥∥∥∥∥
D

≤ γ · max
0≤k<L

sup
s∈S
a∈A

∥∥∥∥∥Es′∼P (·|s,a)
a′∼π(·|s′)

[[
F1(s

′, a′)
]
k
−

[
F2(s

′, a′)
]
k

∣∣s, a]∥∥∥∥∥
D

≤ γ · max
0≤k<L

sup
s′∈S
a′∈A

∥∥[F1(s
′, a′)− F2(s

′, a′)
]
k

∥∥
D

= γ · ∥F1 − F2∥F .
Note that γ ∈ [0, 1), which implies that T is a contraction mapping.575

B Pseudo-code of SPF576

The training procedure of SPF is shown in the pseudo-code as follows:

Algorithm 1 State Sequences Prediction via Fourier Transform (SPF)
Denote parameters of the online encoder (ϕs, ϕs,a), predictor F , and projection ψ as θaux

Denote parameters of the target encoder (ϕ̂s, ϕ̂s,a), predictor F̂ , and projection ψ̂ as θ̂aux
Denote parameters of actor model π and critic model Q for RL agents as θRL
Denote the smoothing coefficient and update interval for target network updates as τ and K
Initialize replay buffer D and parameters θaux, θRL
for each environment step t do
at ∼ π(·|ϕs(st))
st+1, rt+1 ∼ p(·|st, at)
D ← D ∪ (st, at, st+1, rt+1)
sample a minibatch of {(st, at, st+1, rt+1)} from D
θaux ← θaux − αaux∇θauxLpred(θaux, θ̂aux)
resampling a minibatch of {(st, at, st+1, rt+1)} from D
st ← ϕs(st)
zst,at

← ϕs,a(ϕs(st), at)
update the RL agent parameters θRL with the representations st, zst,at

update parameters of target networks with θ̂aux ← τθaux + (1− τ)θ̂aux every K steps
end for

577

C Network Details578

The encoders ϕs and ϕs,a share the same architecture. Each layer of the encoders uses MLP-579

DenseNet [16], a slightly modified version of DenseNet. For each MuJoCo task, the incremental580

number of hidden units per layer is selected from {30, 40}, while the number of layers is selected581

from {6, 8} (see Table 1). Both the predictor F and the projection ψ apply a 2-layer MLP. We582

divide the last layer of the predictor into two heads as the real part FRe and the imaginary part FIm,583

respectively, since the prediction target of our auxiliary task is complex-valued. With respect to the584

projection module, we add an additional 2-layer MLP (referred to as Projection2) after the original585

online projection to perform a dimension-invariant nonlinear transformation on the predicted DTFT586

that has been projected to a lower-dimensional space. We do not apply this nonlinear operation to the587

target projection. This additional step is carried out to prevent the projection from collapsing to a588

constant value in the case where the online and target projections share the same architecture.589

In Fourier analysis, the low-frequency components of the DTFT contain information about the590

long-term trends of the signal, with higher signal energy, while the high-frequency components of the591
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Table 1: Detailed setting of the encoder for six MuJoCo tasks.

Environment Number of Layers Number of Units per Layer Activation Function
HalfCheetah-v2 8 30 Swish
Walker2d-v2 6 40 Swish
Hopper-v2 6 40 Swish
Ant-v2 6 40 Swish
Swimmer-v2 6 40 Swish
Humanoid-v2 8 40 Swish

DTFT reflect the amount of short-term variation present in the state sequences. Therefore, we attempt592

to preserve the overall information of the low and high-frequency components of the predicted DTFT593

by directly computing the cosine similarity distance without undergoing the dimensionality reduction594

process. For the remaining frequency components of the predicted DTFT, we first utilize projection595

layers to perform dimensionality reduction, followed by calculating the cosine similarity distance.596

The sum of these three distances is used as the final loss function, which we call freqloss.597

D Hyperparameters598

Table 2: Hyperparameters of auxiliary prediction tasks.

Hyperparameter Setting
Optimizer Adam
Discount γ 0.99
Learning rate 0.0003
Number of batch size 256
Predictor: Number of hidden layers 1
Predictor: Number of hidden units per layer 1024
Predictor: Activation function ReLU
Projection: Number of hidden layers 1
Projection: Number of hidden units per layer 512
Projection: Activation function ReLU
Projection2: Number of hidden layers 1
Projection2: Number of hidden units per layer 512
Projection2: Activation function ReLU
Number of discrete points for sampling the DTFT L 128
The dimensionality of the output of projection 512
Replay buffer size 100,000
Pre-training steps 10000
Target smoothing coefficient τ 0.01
Target update interval K 1000

Hyperparameters of SPF-SAC
Each module: Normalization Layer BatchNormalization
Random collection steps before pre-training 10,000

Hyperparameters of SPF-PPO
Each module: Normalization Layer LayerNormalization
Random collection steps before pre-training 4,000
θaux update interval K2

HalfCheetah-v2 5
Walker2d-v2 2
Hopper-v2 150
Ant-v2 150
Swimmer-v2 200
Humanoid-v2 1
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We select L = 128 as the number of discrete points sampled over one period of DTFT. In practice, due599

to the symmetry conjugate of DTFT, the predictor F only predicts L
2 +1 points on the left half of our600

frequency map, as mentioned in Section 5.2. The projection module described in Section 5.3 projects601

the predicted value, a matrix with the dimension of L ∗D, into a 512-dimensional vector. To update602

target networks, we overwrite the target network parameters with an exponential moving average of603

the online network parameters, with a smoothing coefficient of τ = 0.01 for every K = 1000 steps.604

In order to eliminate dependency on the initial parameters of the policy, we use a random policy to605

collect transitions into the replay buffer [30] for the first 10K time steps for SAC, and 4K time steps606

for PPO. We also pretrain the representations with the aforementioned random collected samples to607

stabilize inputs to each RL algorithm, as described in [16].608

The network architectures, optimizers, and hyperparameters of SAC and PPO are the same as those609

used in their original papers, except that we use mini-batches of size 256 instead of 100. As for PPO,610

we perform K2 gradient updates of θaux for every K2 steps of data sampling. The update interval K2611

is set differently for six MuJoCo tasks and can be found in Table 2.612

E Visualization613

To demonstrate that the representations learned by SPF effectively capture the structural information614

contained in infinite-step state sequences, we compare the true state sequences with the states615

recovered from the predicted DTFT via the inverse DTFT.616

Specifically, we first generate a state sequence from the trained policy and select a goal state st at a617

certain time step. Next, we choose a historical state st−k located k steps past the goal state and select618

an action at−k based on the trained policy π(·|st−k) as the inputs of our trained predictor. We then619

obtain the DTFT Ft−k := Fπ(st−k, at−k) of state sequences starting from the state st−k+1. Next,620

we compute the kth element of the inverse DTFT of Ft−k and obtain a recovered state ŝt, which621

represents that we predict the future goal state using the historical state located k steps past the goal622

state. By selecting a sequence of states over a specific time interval as the goal states and repeating623

the aforementioned procedures, we will obtain a state sequence recovered by k-step prediction. In624

Figure 5(b), 6(b), 7(b), 8(b), 9(b) and 10(b), we visualize the true state sequence (the blue line) and625

the recovered state sequences (the red lines) via k-step predictions for k = 1, 2, 3, 4, 5. Note that626

the lighter red line corresponds to predictions made by historical states from a more distant time627

step. We conduct the visualization experiment on six MuJoCo tasks using the representations and628

predictors trained by SPF-SAC or SPF-PPO. Due to the large dimensionality of the states in Ant-v2629

and Humanoid-v2, which contain many zero values, we have chosen to visualize only six dimensions630

of their states, respectively. The fine distinctions between the true state sequences and the recovered631

state sequences from our trained representations and predicted FT indicates that our representation632

effectively captures the inherent structures of future state sequences.633

Furthermore, we provide a visualization that compares the true DTFT and the predicted DTFT in634

Figure 5(a), 6(a), 7(a), 8(a), 9(a) and 10(a). To accomplish this, we use our trained policies to interact635

with the environments and select the state sequences of the 200 last steps of an episode. The blue636

lines represent the true DTFT of these state sequences, while the orange line represents the predicted637

DTFT using the online encoder and predictor trained by our learned policies. It is evident that the true638

DTFT and the predicted DTFT exhibit significant differences. These results demonstrate the ability639

of SPF to effectively extract the underlying structural information in infinite-step state sequences640

without relying on high prediction accuracy.641

F Code642

Codes for the proposed method are available at https://anonymous.4open.science/r/spf_nips_2023-643

10D1/README.md.644
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(b) True and recovered state sequences

Figure 5: Predicted values via representations trained by SPF-SAC on HalfCheetah-v2
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(b) True and recovered state sequences

Figure 6: Predicted values via representations trained by SPF-SAC on Walker2d-v2
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(a) True and predicted DTFT
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(b) True and recovered state sequences

Figure 7: Predicted values via representations trained by SPF-SAC on Humanoid-v2
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(b) True and recovered state sequences

Figure 8: Predicted values via representations trained by SPF-PPO on Hopper-v2
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(b) True and recovered state sequences

Figure 9: Predicted values via representations trained by SPF-PPO on Ant-v2
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(a) True and predicted DTFT
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(b) True and recovered state sequences

Figure 10: Predicted values via representations trained by SPF-PPO on Swimmer-v2
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