
A Discussions

In this section, we are going to discuss: some other types of robust MDPs appearing in existing works,
including d-rectangular robust linear MDPs [29] and RMDPs with S-rectangular robust sets [61], see
Section A.1 and A.2 respectively.

A.1 d-rectangular robust linear MDPs

Recently [29] proposed the d-rectangular robust linear MDP to study offline robust RL with linear
structures. We use the following example to show how a d-rectangular robust linear MDP is
represented by our general framework of RMDP.
Example A.1 (d-rectangular robust linear MDP [29]). A d-rectangular robust linear MDP is equipped
with d-rectangular robust sets. Linear MDP is an MDP that enjoys a d-dimensional linear decompo-
sition of its reward function and transition kernel [15]. We define the model space PM as

PM =
{
P (s′|s, a) = ϕ(s, a)⊤µ(s′) : µi(·) ∈ ∆(S),∀i ∈ [d]

}
,

where ϕ : S ×A 7→ Rd is a known feature mapping satisfying that
d∑

i=1

ϕi(s, a) = 1, ϕi(s, a) ≥ 0, ∀i ∈ [d].

We then assume that P ⋆
h (s

′|s, a) = ϕ(s, a)⊤µ⋆(s′) ∈ PM, and Rh(s, a) = ϕ(s, a)⊤θh for some
θh ∈ Rd with ∥θh∥2 ≤

√
d. We define the mapping Φ as

Φ(P ) =

{
d∑

i=1

ϕi(s, a)µ̃i(s
′) : µ̃i(·) ∈ ∆(S), D(µ̃(·)∥µi(·)) ≤ ρ,∀i ∈ [d]

}
.

This is called a d-rectangular robust set and is first considered by [29]. As is argued in [29], d-
rectangular robust set is not so conservative as S ×A-rectangular robust set in certain cases, which
is more natural for linear MDPs due to the special linear structure.

While not satisfying Assumption 2.2 (S ×A-rectangular robust sets), it can be proved that RMDP
in Example A.1 also satisfies the robust Bellman equation in Proposition 2.3 (similar to the proof
in Appendix B for S ×A-rectangular robust MDPs). Our algorithm P2MPO (Algorithm 1) can also
be applied to offline solve robust RL with RMDP in Example A.1, under certain partial coverage
assumption (Assumption A.2).

Model estimation. In the following, we give a specific implementation of the model estimation
step for RMDPs in Example A.1, and we provide theoretical guarantees for this specification of our
algorithm P2MPO. Suppose we are given a function class V ⊆ {v : S 7→ [0, 1]} which depends on the
choice of distance D(·∥·) of the robust set. Then, we define that

P̂h =

{
P ∈ PM : sup

v∈V

1

n

n∑
τ=1

∣∣∣∣∫
S
P (ds′|sτh, aτh)v(s′)− ϕ(sτh, aτh)⊤θ̂v

∣∣∣∣2 ≤ ξ

}
, (A.1)

where ξ > 0 is a tuning parameter that controls the size of the confidence region, and the vector θ̂v
depends on the specific function v ∈ V , given by

θ̂v = arg min
θ∈Rd

1

n

n∑
τ=1

(
ϕ(sτh, a

τ
h)

⊤θ − v(sτh+1)
)2

+
α

n
· ∥θ∥22

= Λ−1
h,α

(
1

n

n∑
τ=1

ϕ(sτh, a
τ
h)v(s

τ
h+1)

)
, (A.2)

for some tuning parameter α > 0, where Λh,α is the regularized covariance matrix, defined as

Λh,α =
1

n

n∑
τ=1

ϕ(sτh, a
τ
h)ϕ(s

τ
h, a

τ
h)

⊤ +
α

n
· Id.

Similar constructions for standard linear MDPs are also considered by [51, 34, 54]. We will specify
the choice of the function class V in the theoretical guarantees of this implementation.
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Suboptimality analysis. In the following, we provide suboptimality bounds for the above imple-
mentation of P2MPO for d-rectangular robust linear MDP. Regarding the offline data, we impose the
following robust partial coverage assumption.
Assumption A.2 (Robust partial coverage covariance matrix). We assume that for some constant
c† > 0,

Λh,α ⪰ α

n
· Id + c† · E(sh,ah)∼dπ⋆

P,h
[(ϕi(sh, ah)1i)(ϕi(sh, ah)1i)

⊤] (A.3)

for any i ∈ [d], h ∈ [H], and Ph ∈ Φ(P ⋆
h ).

Theorem A.3 (Suboptimality of P2MPO: d-rectangular robust linear MDP). Suppose that the RMDP
is d-rectangular robust linear MDP in Example A.1 with D(·∥·) being KL-divergence or TV-distance
and that Assumption A.2 holds, choosing the tuning parameter α = 1 in (A.2).

♠ when D(·∥·) is KL-divergence and Assumption F.1 holds with parameter λ, then by setting

V =

{
v(s) = exp

(
−max

a∈A
ϕ(s, a)⊤w/λ

)
: ∥w∥2 ≤ H

√
d, λ ∈ [λ,H/ρ]

}
,

and

ξ =
C1d

2
(
log(1 + C2nH/δ) + log(1 + C3ndH/(ρλ

2))
)

n
,

for some constants C1, C2, C3 > 0, it holds with probability at least 1− 2δ that,

SubOpt(π̂; s1) ≤
d2H2 exp(H/λ)

c†ρ
·

√
C ′

1

(
log(1 + C ′

2nH/δ) + log(1 + C ′
3ndH/(ρλ

2))
)

n
.

♠ when D(·∥·) is TV-distance, then by setting

V =

{
v(s) =

(
λ−max

a∈A
ϕ(s, a)⊤w

)
+

: ∥w∥2 ≤ H
√
d, λ ∈ [0, H]

}
,

and

ξ =
C1d

2H2 log(C2ndH/δ)

n
,

for some constants C1, C2 > 0, it holds with probability at least 1− 2δ that,

SubOpt(π̂; s1) ≤
d2H2

c†
·
√
C ′

1 log(C
′
2ndH/δ)

n
.

Here c is from Assumption A.2 and C ′
1, C

′
2, C

′
3 > 0 are universal constants.

Proof of Theorem A.3. See Appendix F for a detailed proof.

A.2 RMDPs with S-rectangular robust sets

Besides S × A-rectangular, there exists another type of generic rectangular assumption on robust
sets called S-rectangular [61, 67]. See the following assumption.
Assumption A.4 (S-rectangular robust sets [61]). An S-rectangular robust MDP is equipped with
S-rectangular robust sets. The mapping Φ is defined as, for ∀P ∈ PM,

Φ(P ) =
⊗
s∈S

Pρ(s;P ), Pρ(s;P ) =

{
P̃ (·|·) : A 7→ ∆(S) :

∑
a∈A

D(P̃ (·|a)∥P (·|s, a)) ≤ ρ|A|

}
,

for some (pseudo-)distance D(·∥·) on ∆(S) and some real number ρ ∈ R+.

RMDP with S-rectangular robust sets (Assumption A.4) also satisfies Proposition 2.3 [61]. Unfor-
tunately, our algorithm framework is unable to deal with this kind of rectangular robust sets in the
context of partial coverage data due to some technical problems in applying the partial coverage
coefficient (Assumption 3.3) under this kind of robust sets. To our best knowledge, how to design
provably efficient algorithms for S-rectangular RMDP with partial coverage data is still unknown. It
is an exciting future work to fill this gap for robust offline reinforcement learning.
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B Proof of Robust Bellman Equation

Proof of Proposition 2.3 for S ×A-rectangular robust MDP. Instead of directly proving the robust
Bellman equation (2.5), we prove the following stronger results via induction from step h = H to 1:
there exists a set of transition kernels Pπ,† = {Pπ,†

h }Hh=1 with Pπ,†
h ∈ Φ(Ph) such that

1. Robust Bellman equation holds, i.e.,

V π
h,P,Φ(s) = Ea∼πh(·|s)[Q

π
h,P,Φ(s, a)],

Qπ
h,P,Φ(s, a) = Rh(s, a) + inf

P̃h∈Φ(Ph)
Es′∼P̃h(·|s,a)[V

π
h+1,P,Φ(s

′)].

2. The following expressions for robust value functions hold,

V π
h,P,Φ(s) = V π

h (s; {Pπ,†
i }Hi=h),

Qπ
h,P,Φ(s, a) = Qπ

h(s, a; {P
π,†
i }Hi=h).

Firstly, for step h = H , the conclusion 1. and 2. hold directly because no transitions are involved.
Now supposing that the conclusion 1. and 2. hold for some step h+ 1, which means that there exist
transition kernels {Pπ,†

i }Hi=h+1 such that the following condition hold for any s ∈ S,

V π
h+1,P,Φ(s) = V π

h+1(s; {P
π,†
i }Hi=h+1). (B.1)

By the definition of robust value function Qπ
h,P,Φ in (2.2), we can derive that for any (s, a) ∈ S ×A,

Qπ
h,P,Φ(s, a) = inf

P̃i∈Φ(Pi),h≤i≤H
E{P̃i}H

i=h,π

[
H∑
i=h

Ri(si, ai)

∣∣∣∣∣sh = s, ah = a

]

= Rh(s, a) + inf
P̃i∈Φ(Pi),h≤i≤H

∫
S
P̃h(ds

′|s, a)E{P̃i}H
i=h+1,π

[
H∑

i=h+1

Ri(si, ai)

∣∣∣∣∣sh+1 = s′

]

≤ Rh(s, a) + inf
P̃h∈Φ(Ph)

∫
S
P̃h(ds

′|s, a)E{Pπ,†
i }H

i=h+1,π

[
H∑

i=h+1

Ri(si, ai)

∣∣∣∣∣sh+1 = s′

]
.

(B.2)

On the one hand, for S ×A-rectangular robust MDP, the robust set Φ(Ph) is decoupled for different
(s, a) pairs, i.e.,

Φ(Ph) =
⊗

(s,a)∈S×A

Pρ(s, a;Ph),

and therefore we can find a single transition kernel Pπ,†
h such that for any (s, a) ∈ S ×A,

Pπ,†
h (·|s, a) = arginf

P̃h∈Φ(Ph)

∫
S
P̃ (ds′|s, a)E{Pπ,†

i }H
i=h+1,π

[
H∑

i=h+1

Ri(si, ai)

∣∣∣∣∣sh+1 = s′

]
. (B.3)

On the other hand, using condition (B.1) and the definition of (robust) value function V π
h,P,Φ and V π

h

in (2.1) and (2.3), we can also deduce that,

Qπ
h,P,Φ(s, a) ≤ Rh(s, a) + inf

P̃h∈Φ(Ph)

∫
S
P̃h(ds

′|s, a)V π
h+1(s

′; {Pπ,†
i }Hi=h+1)

= Rh(s, a) + inf
P̃h∈Φ(Ph)

∫
S
P̃h(ds

′|s, a)V π
h+1,P,Φ(s

′) (B.4)

= Rh(s, a) + inf
P̃h∈Φ(Ph)

∫
S
P̃h(ds

′|s, a) inf
P̃i∈Φ(Pi),h+1≤i≤H

V π
h+1(s

′; {P̃i}Hi=h+1)

≤ Rh(s, a) + inf
P̃i∈Φ(Pi),h≤i≤H

∫
S
P̃h(ds

′|s, a)V π
h+1(s

′; {P̃i}Hi=h+1), (B.5)

18



where the first inequality follows from inequality (B.2) and the definition of V π
h+1 in (2.3), the

first equality follows from condition (B.1), and the second equality follows from the definition of
V π
h+1,P,Φ in (2.1). Note that the right hand side of (B.5) equals to Qπ

h,P,Φ(s, a). Therefore, all the
inequalities are actually equalities. On the one hand, from (B.4), we can know that,

Qπ
h,P,Φ(s, a) = Rh(s, a) + inf

P̃h∈Φ(Ph)

∫
S
P̃h(ds

′|s, a)V π
h+1,P,Φ(s

′).

This proves the Qπ
h,P,Φ part of the conclusion 1. for step h. On the other hand, by combining (B.3)

and (B.2), one can further obtain that,

Qπ
h,P,Φ(s, a) = E{Pπ,†

i }H
i=h,π

[
H∑
i=h

Ri(si, ai)

∣∣∣∣∣sh = s, ah = a

]
= Qπ

h(s, a; {P
π,†
i }Hi=h). (B.6)

This proves the existence of {Pπ,†
i }Hi=h in the conclusion 2. for step h and Qπ

h,P,Φ. The remaining of
the proof is to prove the V π

h,P,Φ part of the conclusion 1. and 2. for step h using {Pπ,†
i }Hi=h found in

the previous proof. Specifically, by the definition of V π
h,P,Φ in (2.1), we have that,

V π
h,P,Φ(s) = inf

P̃i∈Φ(Pi),h≤i≤H
E{P̃i}H

i=h,π

[
H∑
i=h

Ri(si, ai)

∣∣∣∣∣sh = s

]

= inf
P̃i∈Φ(Pi),h≤i≤H

∑
a∈A

πh(a|s)E{P̃i}H
i=h,π

[
H∑
i=h

Ri(si, ai)

∣∣∣∣∣sh = s, ah = a

]

≤
∑
a∈A

πh(a|s)E{Pπ,†
i }H

i=h,π

[
H∑
i=h

Ri(si, ai)

∣∣∣∣∣sh = s, ah = a

]
. (B.7)

Now applying (B.6) to (B.7), we can further obtain that

V π
h,P,Φ(s) ≤

∑
a∈A

πh(a|s)Qπ
h,P,Φ(s, a) (B.8)

=
∑
a∈A

πh(a|s) inf
P̃i∈Φ(Pi),h≤i≤H

E{P̃i}H
i=h,π

[
H∑
i=h

Ri(si, ai)

∣∣∣∣∣sh = s, ah = a

]

≤ inf
P̃i∈Φ(Pi),h≤i≤H

∑
a∈A

πh(a|s)E{P̃i}H
i=h,π

[
H∑
i=h

Ri(si, ai)

∣∣∣∣∣sh = s, ah = a

]
, (B.9)

where the equality follows from the definition of Qπ
h,P,Φ in (2.2). Now note that the right hand side

of (B.9) equals to V π
h,P,Φ. Therefore, all the inequalities are actually equalities. On the one hand, by

(B.8), we know that,

V π
h,P,Φ(s) =

∑
a∈A

πh(a|s)Qπ
h,P,Φ(s, a). (B.10)

This proves the V π
h,P,Φ part of the conclusion 1. for step h. On the other hand, by combining (B.10)

with (B.6), we can further deduce that,

V π
h,P,Φ(s) = E{Pπ,†

i }H
i=h,π

[
H∑
i=h

Ri(si, ai)

∣∣∣∣∣sh = s

]
.

This proves the V π
h,P,Φ part of the conclusion 2. for step h. Finally, by using an induction argument,

we can finish the proof of the conclusion 1. and 2.

Now according to the conclusion 1., we have that

V π
h,P,Φ(s) = Ea∼πh(·|s)[Rh(s, a)] + Ea∼πh(·|s)

[
inf

P̃h∈Φ(Ph)
Es′∼P̃h(·|s,a)[V

π
h+1,P,Φ(s

′)

]
. (B.11)
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By the conclusion 2. and the definition of Pπ,†
h in (B.3), we can obtain from (B.11) that

V π
h,P,Φ(s) = Ea∼πh(·|s)[Rh(s, a)] + Ea∼πh(·|s),s′∼Pπ,†

h (·|s,a)[V
π
h+1,P,Φ(s

′)]

= Ea∼πh(·|s)[Rh(s, a)] + inf
P̃h∈Φ(Ph)

Ea∼πh(·|s),s′∼P̃h(·|s,a)[V
π
h+1,P,Φ(s

′)].

This finishes the proof of Proposition 2.3 under Assumption 2.2.

C Proof of Main Theoretical Result (Theorem 3.4)

In this section, we prove Theorem 3.4. Let E† denote the event that both Condition 3.1 and 3.2 hold,
which happens with probability at least 1− 2δ. In the following, we always assume that E† holds.

Proof of Theorem 3.4. By the definition of SubOpt(π̂; s) in (2.11), we have that

SubOpt(π̂; s1) = V π⋆

1,P⋆,Φ(s1)− V π̂
1,P⋆,Φ(s1)

= V π⋆

1,P⋆,Φ(s1)− inf
P∈P̂

V π⋆

1,P,Φ(s1) + inf
P∈P̂

V π⋆

1,P,Φ(s1)− V π̂
1,P⋆,Φ(s1)

≤ V π⋆

1,P⋆,Φ(s1)− inf
P∈P̂

V π⋆

1,P,Φ(s1) + inf
P∈P̂

V π̂
1,P,Φ(s1)− V π̂

1,P⋆,Φ(s1) (C.1)

≤ V π⋆

1,P⋆,Φ(s1)− inf
P∈P̂

V π⋆

1,P,Φ(s1) (C.2)

= sup
P∈P̂

{
V π⋆

1,P⋆,Φ(s1)− V π⋆

1,P,Φ(s1)
}
. (C.3)

Here (C.1) follows from our choice of π̂ in (3.2), and (C.2) follows from Condition 3.1. In the sequel,
we present the upper bound on the right hand side of (C.3). For notational simplicity, for any P in
the confidence region P̂ and any step h ∈ [H], we denote that

∆h,P,Φ(sh, ah) = Qπ⋆

h,P⋆,Φ(sh, ah)−Qπ⋆

h,P,Φ(sh, ah). (C.4)

Using the robust Bellman equation in Proposition 2.3, we can derive that

∆h,P,Φ(sh, ah)

= inf
P̃h∈Φ(P⋆

h )
Es′∼P̃h(·|sh,ah)

[V π⋆

h+1,P⋆,Φ(s
′)]− inf

P̃h∈Φ(Ph)
Es′∼P̃h(·|sh,ah)

[V π⋆

h+1,P,Φ(s
′)

= inf
P̃h∈Φ(P⋆

h )
Es′∼P̃h(·|sh,ah)

[V π⋆

h+1,P⋆,Φ(s
′)]− inf

P̃h∈Φ(P⋆
h )

Es′∼P̃h(·|sh,ah)
[V π⋆

h+1,P,Φ(s
′)]︸ ︷︷ ︸

Term (i)

+ inf
P̃h∈Φ(P⋆

h )
Es′∼P̃h(·|sh,ah)

[V π⋆

h+1,P,Φ(s
′)]− inf

P̃h∈Φ(Ph)
Es′∼P̃h(·|sh,ah)

[V π⋆

h+1,P,Φ(s
′)]︸ ︷︷ ︸

Term (ii)

.

Term (i). For the term (i), considering denote that

Pπ⋆,†
h = arginf

P̃h∈Φ(P⋆
h )

Es′∼P̃h(·|s,a)[V
π⋆

h+1,P,Φ(s
′)], ∀(s, a) ∈ S ×A. (C.5)

This notation is consistent with the notation of Pπ,†
h in (B.3) in the proof of Proposition 2.3 (robust

Bellman equation). It is because Assumption 2.2 (S ×A-rectangular robust set) that we can choose a
single transition kernel Pπ⋆,†

h that satisfies (C.5) for each (s, a)-pair. Using the definition of Pπ⋆,†
h ,

we observe that the following two relationships hold for any state (sh, ah) ∈ S,

inf
P̃h∈Φ(P⋆

h )
Es′∼P̃h(·|sh,ah)

[V π⋆

h+1,P⋆,Φ(s
′)] ≤ E

s′∼Pπ⋆,†
h (·|sh,ah)

[V π⋆

h+1,P⋆,Φ(s
′)],

inf
P̃h∈Φ(P⋆

h )
Es′∼P̃h(·|sh,ah)

[V π⋆

h+1,P,Φ(s
′)] = E

s′∼Pπ⋆,†
h (·|sh,ah)

[V π⋆

h+1,P,Φ(s
′)].

20



Using these two observations, we can upper bound the term (i) as

Term (i) ≤ E
s′∼Pπ⋆,†

h (·|sh,ah)
[V π⋆

h+1,P⋆,Φ(s
′)]− E

s′∼Pπ⋆,†
h (·|sh,ah)

[V π⋆

h+1,P,Φ(s
′)]

= E
s′∼Pπ⋆,†

h (·|sh,ah),a′∼π⋆
h+1(·|s′)

[∆h+1,P,Φ(s
′, a′)], (C.6)

where in the equality we use the robust Bellman equation (Proposition 2.3).

Term (ii). For the term (ii), currently we simply denote this term by ∆
(ii)
h,P,Φ(sh, ah). Combining

this with (C.6), we can derive that,

∆h,P,Φ(sh, ah) = Term (i) + Term (ii)

≤ E
s′∼Pπ⋆,†

h (·|sh,ah),a′∼π⋆
h+1(·|s′)

[∆h+1,P,Φ(s
′, a′)] + ∆

(ii)
h,P,Φ(sh, ah). (C.7)

By recursively applying (C.7) and then plugging in the definition of ∆(ii)
h,P,Φ, we can obtain that

Ea1∼π⋆
1 (·|s1)[∆1,P,Φ(s1, a1)] ≤

H∑
h=1

E(sh,ah)∼dπ⋆

Pπ⋆,†,h

[∆
(ii)
h,P,Φ(sh, ah)]

=

H∑
h=1

E(sh,ah)∼dπ⋆

Pπ⋆,†,h

[
inf

P̃h∈Φ(P⋆
h )

Es′∼P̃h(·|sh,ah)
[V π⋆

h+1,P,Φ(s
′)]

− inf
P̃h∈Φ(Ph)

Es′∼P̃h(·|sh,ah)
[V π⋆

h+1,P,Φ(s
′)]

]
, (C.8)

where dπ
⋆

Pπ⋆,†,h
is the state action visitation distribution induced by the transition kernels Pπ⋆,† =

{Pπ⋆,†
h }Hh=1 and the policy π⋆. Now we bound the right hand side of (C.8) using Condition 3.2. By

Cauchy-Schwartz inequality, we have that for each h ∈ [H],

E(sh,ah)∼dπ⋆

Pπ⋆,†,h

[
inf

P̃h∈Φ(P⋆
h )

Es′∼P̃h(·|sh,ah)
[V π⋆

h+1,P,Φ(s
′)]− inf

P̃h∈Φ(Ph)
Es′∼P̃h(·|sh,ah)

[V π⋆

h+1,P,Φ(s
′)]

]

= E
(sh,ah)∼dπb

P⋆,h

[
dπ

⋆

Pπ⋆,†,h
(sh, ah)

dπ
b

P⋆,h(sh, ah)
·
(

inf
P̃h∈Φ(P⋆

h )
Es′∼P̃h(·|sh,ah)

[V π⋆

h+1,P,Φ(s
′)]

− inf
P̃h∈Φ(Ph)

Es′∼P̃h(·|sh,ah)
[V π⋆

h+1,P,Φ(s
′)]

)]

≤

√√√√√E
(sh,ah)∼dπb

P⋆,h

(dπ⋆

Pπ⋆,†,h
(sh, ah)

dπ
b

P⋆,h(sh, ah)

)2
 ·
√

ErrΦh (n), (C.9)

where the last inequality follows from Condition 3.2. Furthermore, by Assumption 3.3, we know that

E
(sh,ah)∼dπb

P⋆,h

(dπ⋆

Pπ⋆,†,h
(sh, ah)

dπ
b

P⋆,h(sh, ah)

)2
 ≤ sup

P={Ph}H
h=1,Ph∈Φ(P⋆

h )

E
(sh,ah)∼dπb

P⋆,h

( dπ
⋆

P,h(sh, ah)

dπ
b

P⋆,h(sh, ah)

)2


≤ C⋆
P⋆,Φ,

where C⋆
P⋆,Φ is defined in Assumption 3.3. Applying this to (C.8) and (C.9), we can derive that

sup
P∈P̂

{
V π⋆

1,P⋆,Φ(s1)− V π⋆

1,P,Φ(s1)
}
= sup

P∈P̂
{Ea1∼π⋆(·|s1)[∆1,P,Φ(s1, a1)]} ≤

√
C⋆

P⋆,Φ ·
H∑

h=1

√
ErrΦh (n).

Finally, by inequality (C.3), we finish the proof of Theorem 3.4.
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D Proofs for General RMDPs with S ×A-rectangular Robust Sets

Proof of Corollary 4.1. We first introduce the following proposition, which shows that the model
estimation step (4.2) satisfies Condition 3.1 and Condition 3.2.

Proposition D.1 (Guarantees for model estimation). Under Assumption 2.2, choosing the (pseudo)
distance D(·∥·) as KL-divergence or TV-distance, setting the tuning parameter ξ as

ξ =
C1 log(C2HN[](1/n

2,PM, ∥ · ∥1,∞)/δ)

n
,

for some constants C1, C2 > 0, then Condition 3.1 and 3.2 are satisfied respectively by,

♠ when D(·∥·) is KL-divergence and Assumption D.3 (See Appendix D.1) holds with parameter λ,
ErrΦh (n, δ) is given by√

ErrΦh,KL(n, δ) =
H exp(H/λ)

ρ
·
√
C ′

1 log(C
′
2HN[](1/n2,PM, ∥ · ∥1,∞)/δ)

n
.

♠ when D(·∥·) is TV-distance, ErrΦh (n, δ) is given by√
ErrΦh,TV(n, δ) = H ·

√
C ′

1 log(C
′
2HN[](1/n2,PM, ∥ · ∥1,∞)/δ)

n
.

Here c, C ′
1, C ′

2 > 0 stand for three universal constants.

Proof of Proposition D.1. See Appendix D.1 for a detailed proof.

By Combing Proposition D.1 and Theorem 3.4, we can obtain Corollary 4.1.

D.1 Proof of Proposition D.1

Lemma D.2 (Duality for KL-robust set). The following duality for KL-robust set holds,

inf
Q(·):DKL(Q(·)∥Q⋆(·))≤σ

∫
f(x)Q(dx) = sup

λ∈R+

{
−λ log

(∫
exp {−f(x)/λ}Q⋆(dx)

)
− λσ

}
.

Proof of Lemma D.2. See [12, 68] for a detailed proof.

Assumption D.3 (Regularity of KL-divergence duality variable). We assume that the optimal dual
variable λ⋆ for the following optimization problem

sup
λ∈R+

{
−λ log

(
Es′∼Ph(·|sh,ah)

[
exp

{
−V π⋆

h+1,Q,Φ(s
′)/λ

}])
− λρ

}
,

is lower bounded by λ > 0 for any transition kernels Ph ∈ PM, Q = {Qh}Hh=1 ⊆ PM, and step
h ∈ [H].
Lemma D.4 (Duality for TV-robust set). The following duality for TV-robust set holds,

inf
Q(·):DTV(Q(·)∥Q⋆(·))≤σ

∫
f(x)Q(dx) = sup

λ∈R

{
−
∫

(λ− f(x))+Q
⋆(dx)− σ

2
(λ− inf

x
f(x))+ + λ

}
.

Proof of Lemma D.4. See [68] for a detailed proof.

Proof of Proposition D.1 with KL-divergence. Firstly, by invoking the first conclusion of Lemma
G.1, we know that the Condition 3.1 holds. In the following, we prove the Condition 3.2. By applying
the dual formulation of the KL-robust set (Lemma D.2), we can derive that

inf
P̃h∈Φ(P⋆

h )
Es′∼P̃h(·|sh,ah)

[V π⋆

h+1,P,Φ(s
′)]− inf

P̃h∈Φ(Ph)
Es′∼P̃h(·|sh,ah)

[V π⋆

h+1,P,Φ(s
′)]

= sup
λ≥0

{
−λ log

(
Es′∼P⋆

h (·|sh,ah)

[
exp

{
−V π⋆

h+1,P,Φ(s
′)/λ

}])
− λρ

}
− sup

λ≥0

{
−λ log

(
Es′∼Ph(·|sh,ah)

[
exp

{
−V π⋆

h+1,P,Φ(s
′)/λ

}])
− λρ

}
. (D.1)
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By Assumption D.3 and Lemma H.7, we know that the optimal value of λ for both two optimization
problems in (D.1) lies in [λ,H/ρ] for some λ > 0. Thus we can further upper bound the right hand
side of (D.1) as

(D.1) = sup
λ≤λ≤H/ρ

{
−λ log

(
Es′∼P⋆

h (·|sh,ah)

[
exp

{
−V π⋆

h+1,P,Φ(s
′)/λ

}])
− λρ

}
− sup

λ≤λ≤H/ρ

{
−λ log

(
Es′∼Ph(·|sh,ah)

[
exp

{
−V π⋆

h+1,P,Φ(s
′)/λ

}])
− λρ

}

≤ sup
λ≤λ≤H/ρ

λ log
Es′∼Ph(·|sh,ah)

[
exp

{
−V π⋆

h+1,P,Φ(s
′)/λ

}]
Es′∼P⋆

h (·|sh,ah)

[
exp

{
−V π⋆

h+1,P,Φ(s
′)/λ

}]
 , (D.2)

where in the second inequality we use the basic fact that supx f(x)−supx g(x) ≤ supx{f(x)−g(x)}.
Now we work on the right hand side of (D.2) and obtain that

(D.2) = sup
λ≤λ≤H/ρ

λ log
1 +

(
Es′∼Ph(·|sh,ah) − Es′∼P⋆

h (·|sh,ah)

) [
exp

{
−V π⋆

h+1,P,Φ(s
′)/λ

}]
Es′∼P⋆

h (·|sh,ah)

[
exp

{
−V π⋆

h+1,P,Φ(s
′)/λ

}]


≤ sup
λ≤λ≤H/ρ

λ ·

(
Es′∼Ph(·|sh,ah) − Es′∼P⋆

h (·|sh,ah)

) [
exp

{
−V π⋆

h+1,P,Φ(s
′)/λ

}]
Es′∼P⋆

h (·|sh,ah)

[
exp

{
−V π⋆

h+1,P,Φ(s
′)/λ

}]
 ,

(D.3)

where we use the fact of log(1 + x) ≤ x in the second inequality. Now we can further bound the
right hand side of (D.3) by

(D.3) ≤ H exp(H/λ)

ρ
·
∣∣∣(Es′∼Ph(·|sh,ah) − Es′∼P⋆

h (·|sh,ah)

) [
exp

{
−V π

h+1,P,Φ(s
′)/λ

}]∣∣∣
≤ H exp(H/λ)

ρ
·
∫
S
|Ph(ds

′|sh, ah)− P ⋆
h (ds

′|sh, ah)|

=
H exp(H/λ)

ρ
· ∥Ph(·|sh, ah)− P ⋆

h (·|sh, ah)∥TV. (D.4)

Thus by combining (D.1), (D.2), (D.3), and (D.4) we obtain that

inf
P̃h∈Φ(P⋆

h )
Es′∼P̃h(·|sh,ah)

[V π⋆

h+1,P,Φ(s
′)]− inf

P̃h∈Φ(Ph)
Es′∼P̃h(·|sh,ah)

[V π⋆

h+1,P,Φ(s
′)]

≤ H exp(H/λ)

ρ
· ∥Ph(·|sh, ah)− P ⋆

h (·|sh, ah)∥TV. (D.5)

By using a same argument for deriving (D.5), we can also obtain that

inf
P̃h∈Φ(Ph)

Es′∼P̃h(·|sh,ah)
[V π⋆

h+1,P,Φ(s
′)]− inf

P̃h∈Φ(P⋆
h )

Es′∼P̃h(·|sh,ah)
[V π⋆

h+1,P,Φ(s
′)]

≤ H exp(H/λ)

ρ
· ∥Ph(·|sh, ah)− P ⋆

h (·|sh, ah)∥TV. (D.6)

Therefore, due to (D.5) and (D.6), we can finally arrive at the following upper bound,

E
(sh,ah)∼dπb

P⋆,h

( inf
P̃h∈Φ(Ph)

Es′∼P̃h(·|sh,ah)
[V π⋆

h+1,P,Φ(s
′)]− inf

P̃h∈Φ(P⋆
h )

Es′∼P̃h(·|sh,ah)
[V π⋆

h+1,P,Φ(s
′)]

)2


≤ H2 exp(2H/λ)

ρ2
· E

(sh,ah)∼dπb

P⋆,h

[∥Ph(·|sh, ah)− P ⋆
h (·|sh, ah)∥2TV]. (D.7)

By invoking the second conclusion of Lemma G.1, we have that with probability at least 1− δ,

E
(sh,ah)∼dπb

P⋆,h

[∥Ph(·|sh, ah)− P ⋆
h (·|sh, ah)∥2TV] ≤

C ′
1 log(C

′
2HN[](1/n

2,PM, ∥ · ∥1,∞)/δ)

n
,

(D.8)
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for some absolute constant C ′
1, C

′
2 > 0. Now combining (D.7) and (D.8), we have that√

ErrΦh,KL(n) =
H exp(H/λ)

ρ
·
√
C ′

1 log(C
′
2HN[](1/n2,PM, ∥ · ∥1,∞)/δ)

n
.

This finishes the proof of Proposition D.1 under KL-divergence.

Proof of Proposition D.1 with TV-distance. Firstly, by invoking the first conclusion of Lemma G.1,
we know that the Condition 3.1 holds. In the following, we prove the Condition 3.2. By applying the
dual formulation of the TV-robust set (Lemma D.4), we can similarly derive that∣∣∣∣∣ inf
P̃h∈Φ(P⋆

h )
Es′∼P̃h(·|sh,ah)

[V π⋆

h+1,P,Φ(s
′)]− inf

P̃h∈Φ(Ph)
Es′∼P̃h(·|sh,ah)

[V π⋆

h+1,P,Φ(s
′)]

∣∣∣∣∣
=

∣∣∣∣∣ supλ∈R

{
−Es′∼P⋆

h (·|sh,ah)

[(
λ− V π⋆

h+1,P,Φ(s
′)
)
+

]
− ρ

2

(
λ− inf

s′′∈S
V π⋆

h+1,P,Φ(s
′′)

)
+ λ

}

− sup
λ∈R

{
−Es′∼Ph(·|sh,ah)

[(
λ− V π⋆

h+1,P,Φ(s
′)
)
+

]
− ρ

2

(
λ− inf

s′′∈S
V π⋆

h+1,P,Φ(s
′′)

)
+ λ

} ∣∣∣∣∣
(D.9)

≤
∣∣∣∣sup
λ∈R

{(
Es′∼P⋆

h (·|sh,ah) − Es′∼Ph(·|sh,ah)

)[(
λ− V π⋆

h+1,P,Φ(s
′)
)
+

]}∣∣∣∣ (D.10)

As is shown in Lemma H.8, the optimal value of λ for both two optimization problems in (D.9) lies
in [0, H]. Thus we can further upper bound the right hand side of (D.10) as

(D.10) ≤ H · ∥Ph(·|sh, ah)− P ⋆
h (·|sh, ah)∥TV. (D.11)

By applying the second conclusion of Lemma G.1, we conclude that with probability at least 1− δ,

E
(sh,ah)∼dπb

P⋆,h

( inf
P̃h∈Φ(Ph)

Es′∼P̃h(·|sh,ah)
[V π⋆

h+1,P,Φ(s
′)]− inf

P̃h∈Φ(P⋆
h )

Es′∼P̃h(·|sh,ah)
[V π⋆

h+1,P,Φ(s
′)]

)2


≤ H2 · E
(sh,ah)∼dπb

P⋆,h

[∥Ph(·|sh, ah)− P ⋆
h (·|sh, ah)∥2TV]

≤
C ′

1H
2 log(C ′

2HN[](1/n
2,PM, ∥ · ∥1,∞)/δ)

n
. (D.12)

Therefore, it suffices to choose ErrΦh,TV(n) as√
ErrΦh,TV(n) = H ·

√
C ′

1 log(C
′
2HN[](1/n2,PM, ∥ · ∥1,∞)/δ)

n
.

This finishes the proof of Proposition D.1 under TV-distance.

D.2 Proofs for S ×A-rectangular Robust Tabular MDP (Equation (4.4))

The model class PM can be considered as a subspace of F = {f(s, a, s′) : ∥f∥∞ ≤ 1} with finite S
and A. Consider the collection of brackets B containing brackets in the form of [g, g + 1/n2], where
g(s, a, s′) ∈ {0, 1/n2, 2/n2, · · · , (n2 − 1)/n2}. Then we can see that B is actually a 1/n2-bracket
of F . Thus we know that the bracket number of PM is bounded by,

N[](1/n
2,PM, ∥ · ∥1,∞) ≤ N[](1/n

2,FM, ∥ · ∥∞) ≤ |B| ≤ n2|S|2|A|.

This finishes the proof of (4.4).

D.3 S ×A-rectangular Robust MDPs with Kernel Function Approximations

D.3.1 A Basic Review of Reproducing Kernel Hilbert Space

We briefly review the basic knowledge of a reproducing kernel Hilbert space (RKHS). We say H is a
RKHS on a set Y with the reproducing kernel K : Y × Y → R if its inner product ⟨·, ·⟩H satisfies,
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for any f ∈ H and y ∈ Y , we have that f(y) = ⟨f,K(y, ·)⟩H. The mapping K(y, ·) : Y 7→ H is
called the feature mapping of H, denoted by ψ(y) : Y 7→ H.

When the reproducing kernel K is continuous, symmetric, and positive definite, Mercer’s theorem
[50] says that K has the following representation,

K(x, y) =

∞∑
j=1

λjψj(x)ψj(y), ∀x, y ∈ Y,

where ψj : Y 7→ R and {
√
λj · ψj}∞j=1 forms an orthonormal basis of H with λ1 ≥ λ2 ≥ · · · ≥ 0.

Also, the feature mapping ψ(y) can be represented as

ψ(y) =

+∞∑
j=1

λjψj(y)ψj , ∀y ∈ Y.

D.3.2 Bracket Number of Kernel Function Model Class and Suboptimality of Algorithm 1

For kernel function approximations via RKHS, our theoretical results rely on the following regularity
assumptions on the RKHS involved in Example 2.7, which is commonly adopted in kernel function
approximation literature for RL [70, 4, 23]. Specifically, the kernel K can be decomposed as
K(x, y) =

∑+∞
j=1 λjψj(x)ψj(y) for some {λj}+∞

j=1 ⊆ R and {ψj : X 7→ R}+∞
j=1 with X = S×A×S

(See Appendix D.3 for details). Our assumption on K is summarized in the following.
Assumption D.5 (Regularity of RKHS). We assume that the kernel K of the RKHS satisfies that:

1. (Boundedness) It holds that |K(x, y)| ≤ 1, |ψj(x)| ≤ 1, and |λj | ≤ 1 for any j ∈ N+, x, y ∈ X .
2. (Eigenvalue decay) There exists some γ ∈ (0, 1/2), C1, C2 > 0 such that |λj | ≤ C1 exp(−C2j

γ)
for any j ∈ N+.

Under Assumption D.5, we can upper bound the bracket number N[] of the realizable model space
PM defined in (2.7) as (see Appendix D.3.3 for a proof),

log(N[](1/n
2,PM, ∥ · ∥1,∞)) ≤ CK · 1/γ · log2(1/γ) · log1+1/γ(nVol(S)BK), (D.13)

where CK > 0 is an absolute constant, Vol(S) is the measure of the state space S , and BK is defined
in Example 2.7. Combining (D.13) and Corollary 4.1, we can conclude that: i) under TV-distance the
suboptimality of P2MPO for S ×A-rectangular robust MDPs with kernel function approximations is,

SubOpt(π̂; s1) ≤ O
(
H2 log(1/γ)

√
C⋆

P⋆,Φ/γ · log1+1/γ(nHVol(S)/δ)/n
)
, (D.14)

and ii) under KL-divergence the suboptimality of P2MPO for S ×A-rectangular robust MDPs with
kernel function approximations is,

SubOpt(π̂; s1) ≤ O
(
H2 exp(H/λ) log(1/γ)/ρ

√
C⋆

P⋆,Φ/γ · log1+1/γ(nHVol(S)/δ)/n
)
.

(D.15)

D.3.3 Proof of Equation (D.13)

We invoke the following lemma to bound the bracket number of PM in Example 2.7.
Lemma D.6 (Bracket number of kernel function class [25]). Under Assumption D.5, the bracket
number of PM given by

PM =
{
P (s′|s, a) = ⟨ψ(s, a, s′),f⟩H : f ∈ H, ∥f∥H ≤ BK

}
is bounded by, for any ϵ > 0,

log(N[](ϵ,PM, ∥ · ∥1,∞)) ≤ CK · 1/γ · log2(1/γ) · log1+1/γ(Vol(S)BK/ϵ).

Proof of Lemma D.6. We refer to Lemma B.11 in [25] for a detailed proof.

By taking ϵ = 1/n2 in Lemma D.6, we can finish the proof of (D.13).
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D.4 S ×A-rectangular Robust MDPs with Neural Function Approximations

For neural function approximations, we borrow the tool of neural tangent kernel (NTK [14]), which
relates overparameterized neural networks (2.8) to kernel function approximations.

To this end, given the neural network (2.8), we define its NTK KNTK : X × X 7→ R as

KNTK(x, y) := ∇WNN(x,W0,a0)⊤∇WNN(y,W0,a0), ∀x, y ∈ X . (D.16)

Assumption D.7 (Regularity of Neural Tangent Kernel). We assume that the neural tangent kernel
KNTK defined in (D.16) satisfies Assumption D.5 with constant γN ∈ (0, 1/2).

This assumption on the spectral perspective of NTK is justified by [67]. As we prove in Appendix
D.4.1, when the number of hidden units is large enough, i.e., overparameterized, the neural network
is well approximated by its linear expansion at initialization (Lemma D.8), where we can apply the
tool of NTK. Under Assumption D.7, the bracket number N[] of PM defined in (2.9) is bounded by
(see Appendix D.4.2 for a proof), for number of hidden units m ≥ dXn

4B4
N,

log(N[](1/n
2,PM, ∥ · ∥1,∞)) ≤ CN · 1/γN · log2(1/γN) · log1+1/γN(nVol(S)BN), (D.17)

where CN > 0 is an absolute constant, γN ∈ (0, 1/2) is specified in Assumption D.7, and BN

is defined in Example 2.8. Combining (D.17) and Corollary 4.1, we can conclude that, in the
overparameterized paradigm, i.e., m ≥ dXn

4B4
N: i) under TV-distance the suboptimality of P2MPO

for S ×A-rectangular robust MDPs with neural function approximations is,

SubOpt(π̂; s1) ≤ O
(
H2 log(1/γN)

√
C⋆

P⋆,Φ/γN · log1+1/γN(nHVol(S)/δ)/n
)
, (D.18)

and ii) under KL-divergence the suboptimality of P2MPO for S ×A-rectangular robust MDPs with
kernel function approximations is,

SubOpt(π̂; s1) ≤ O
(
H2 exp(H/λ) log(1/γN)/ρ

√
C⋆

P⋆,Φ/γN · log1+1/γN(nHVol(S)/δ)/n
)
.

(D.19)

D.4.1 Neural Tangent Kernel and Implicit Linearization

We consider the overparameterized paradigm of the neural network (2.8) in the sense that the neural
network is very wide, i.e., the number of hidden units m is large. The following lemma shows that in
this paradigm, neural networks in PM are well approximated by a linear expansion at initialization.

Lemma D.8 (Implicit Linearization [4]). Consider the two-layer neural network NN defined in
(2.8). Assuming that the activation function σ(·) is 1-Lipschitz continuous and the input space X is
normalized via ∥x∥2 ≤ 1 for any x ∈ X . Then it holds that

sup
x∈X ,NN(·;W,a0)∈PM

∣∣NN(x;W,a0)−∇WNN(x;W0,a0)⊤(W −W0)
∣∣ ≤ d

1/2
X B2

Nm
−1/2.

Proof of Lemma D.8. See the proof of Lemma 4.5 in [4] for a detailed proof.

In view of Lemma D.8, we can study the linearization of the neural networks in PM as a surrogate.
To this end, we introduce the neural tangent kernel KNTK of NN as

KNTK(x, y) := ∇WNN(x,W0,a0)⊤∇WNN(y,W0,a0), ∀x, y ∈ X .

The idea is to approximate the functions in PM via the RKHS induced by the kernel KNTK. According
to Lemma D.8, when the width of the neural network is large enough, i.e.,m→ ∞, the approximation
error is negligible. See the following Section D.4.2 for detailed proofs.

D.4.2 Proof of Equation (D.17)

Now we use Lemma D.8 to bound the bracket number of PM in Example 2.8.
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Lemma D.9 (Bracket number of neural function class). Under Assumption D.7, for the number of
hidden units m ≥ dXB

4
N/ϵ

2, the bracket number of PM given by

PM =
{
P (s′|s, a) = NN((s, a, s′);W,a0) : ∥W −W0∥2 ≤ BN

}
,

is bounded by, for any ϵ > 0,

log(N[](ϵ,PM, ∥ · ∥1,∞)) ≤ CN · 1/γN · log2(1/γN) · log1+1/γN(Vol(S)BK/ϵ).

Proof of Lemma D.9. We denote the RKHS induced by the neural tangent kernel KNTK as PNTK

PNTK =
{
P̄ (x) = ∇WNN(x;W0,a0)⊤(W −W0) : ∥W −W0∥2 ≤ BN

}
. (D.20)

For any NN(·;W,a0) ∈ PM, we denote its linear expansion at initialization as NN(·;W, a0) ∈
PNTK. Here we use the fact that for NN(·;W,a0) ∈ PM, ∥W −W0∥2 ≤ BN. Now according to
Lemma D.6 and Assumption D.7, we know that the bracket number of PNTK is bounded by

log(N[](ϵ,PNTK, ∥ · ∥1,∞)) ≤ C · 1/γN · log2(1/γN) · log1+1/γN(Vol(S)BN/ϵ), (D.21)

for some constant C > 0. Therefore, we can find a collect of brackets B0 =
{[glj , guj ]}j∈[N[](ϵ,PNTK,∥·∥1,∞)] such that for any P̄ ∈ PNTK, there exists a bracket [glj , g

u
j ] ∈ B0

such that glj(x) ≤ P̄ (x) ≤ guj (x) and ∥glj − guj ∥1,∞ ≤ ϵ. Now for any P = NN(·;W,a0) ∈ PM,
by Lemma D.8, we have that

NN(x;W,a0)− ϵN ≤ NN(x;W,a0) ≤ NN(x;W,a0) + ϵN,

where ϵN = d
1/2
X B2

Nm
−1/2. By previous arguments, there exists a bracket [glj , g

u
j ] ∈ B0 such that

glj(x)− ϵN ≤ NN(x;W,a0) ≤ guj (x) + ϵN.

Now it suffices to define a new collect of brackets B = {[glj−ϵN, guj +ϵN]}j∈[N[](ϵ,PNTK,∥·∥1,∞)]. For
any P = NN(·;W,a0) ∈ PM, there exists a bracket [g̃lj , g̃

u
j ] ∈ B such that g̃lj(x) ≤ P (x) ≤ g̃uj (x),

and

∥g̃lj(x)− g̃uj (x)∥1,∞ ≤ ∥glj(x)− guj (x)∥∞ + 2ϵN ≤ ϵ+ 2ϵN.

By taking m ≥ dXB
4
N/ϵ

2, we obtain that ∥g̃lj(x)− g̃uj (x)∥1,∞ ≤ 3ϵ. Therefore, we can conclude
that the bracket number of PM is bounded by,

N[](ϵ,PM, ∥ · ∥1,∞) = N[](ϵ/3,PNTK, ∥ · ∥1,∞). (D.22)

Finally, by combining (D.21) and (D.22), we have that, for m ≥ dXB
4
N/ϵ

2,

log(N[](ϵ,PM, ∥ · ∥1,∞)) ≤ CN · 1/γN · log2(1/γN) · log1+1/γN(Vol(S)BN/ϵ),

for some constant CN > 0. This finishes the proof of Lemma D.9.

Now by taking ϵ = 1/n2, i.e., m ≥ dXn
4B4

N, we can derive the desired result in (D.17).

E Proofs for S ×A-rectangular Robust Factored MDPs

Proof of Corollary 4.3. We first introduce the following proposition, which shows that te model
estimation step (4.6) satisfies Condition 3.1 and Condition 3.2.

Proposition E.1 (Guarantees for model estimation). Suppose the RMDP is the S ×A-rectangular
robust factored MDP in Example 2.9 with D(·∥·) being KL-divergence or TV-distance. By choosing
the tuning parameter ξi defined in (4.6) as

ξi =
C1|O|1+|pai||A| log(C2ndH/δ)

n

for constants C1, C2 > 0 and each i ∈ [d], then Condition 3.1 and 3.2 are satisfied respectively by,
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♣ when D(·∥·) is KL-divergence and Assumption E.2 (See Appendix E.1) holds with parameter λ,
then ErrΦh (n, δ) is given by

√
ErrΦh,KL(n, δ) =

H exp(H/λ)

ρmin
·

√
dC ′

1

∑d
i=1 |O|1+|pai||A| log(C ′

2nd/δ)

n
,

where ρmin = mini∈[d] ρi.
♣ when D(·∥·) is TV-distance, then ErrΦh (n, δ) is given by

√
ErrΦh,KL(n, δ) = H

√
dC ′

1

∑d
i=1 |O|1+|pai||A| log(C ′

2nd/δ)

n
.

Here c, C ′
1, C ′

2 > 0 stand for three universal constants.

Proof of Proposition E.1. See Appendix E.1 for a detailed proof.

By Combing Proposition E.1 and Theorem 3.4, we can obtain Corollary 4.3.

E.1 Proof of Proposition E.1

Assumption E.2 (Regularity of KL-divergence duality variable). We assume that the optimal dual
variable λ⋆ for the following optimization problem

sup
λ∈R+

{
−λ log

(
Es′[j]∼Ph,j(·|sh[paj ],ah)

[
exp

{
−υjh,T,Q,Φ(s

′[j])/λ
}])

− λρ
}
,

is lower bounded by λ > 0 for any transition kernel Ph ∈ PM, T = {Th}Hh=1 ⊆ PM, Q =

{Qh}Hh=1 ⊆ PM, step h ∈ [H], and factor j ∈ [d]. Here the function υjh,T,Q,Φ(s
′[j]) is defined as

υjh,T,Q,Φ(s
′[j]) =

∫
Od−1

d∏
i=1
i ̸=j

Th,i(ds
′[i])V π⋆

h+1,Q,Φ(s
′[1], · · · , s′[j − 1], s[j], s′[j + 1], · · · , s′[d]).

Proof of Proposition E.1 with KL-divergence. Firstly, by invoking the first conclusion of Lemma
G.2, we know that the Condition 3.1 holds. In the following, we prove the Condition 3.2. By the
definition of robust set in Example 2.9,

inf
P̃h∈Φ(Ph)

Es′∼P̃h(·|sh,ah)
[V π⋆

h+1,P,Φ(s
′)]− inf

P̃h∈Φ(P⋆
h )

Es′∼P̃h(·|sh,ah)
[V π⋆

h+1,P,Φ(s
′)]

= inf
P̃h,i∈∆(O):DKL(P̃h,i(·)∥Ph,i(·|sh[pai],ah))≤ρi,i∈[d]

∫
Od

d∏
i=1

P̃h,i(ds
′[i])V π⋆

h+1,P,Φ(s
′)

− inf
P̃h,i∈∆(O):DKL(P̃h,i(·)∥P⋆

h,i(·|sh[pai],ah))≤ρi,i∈[d]

∫
Od

d∏
i=1

P̃h,i(ds
′[i])V π⋆

h+1,P,Φ(s
′).

(E.1)

Consider the following decomposition of the right hand side of (E.1),

(E.1) =
d∑

j=1

inf
P̃h,i∈∆(O):DKL(P̃h,i(·)∥Ph,i(·|sh[pai],ah))≤ρi,1≤i≤j

P̃h,i∈∆(O):DKL(P̃h,i(·)∥P⋆
h,i(·|sh[pai],ah))≤ρi,j+1≤i≤d

∫
Od

d∏
i=1

P̃h,i(ds
′[i])V π⋆

h+1,P,Φ(s
′)

− inf
P̃h,i∈∆(O):DKL(P̃h,i(·)∥Ph,i(·|sh[pai],ah))≤ρi,1≤i≤j−1

P̃h,i∈∆(O):DKL(P̃h,i(·)∥P⋆
h,i(·|sh[pai],ah))≤ρi,j≤i≤d

∫
Od

d∏
i=1

P̃h,i(ds
′[i])V π⋆

h+1,P,Φ(s
′).

28



For each 1 ≤ j ≤ d, we denote that

(P̃ ∗,j
h,1 , · · · , P̃

∗,j
h,d) = arginf

P̃h,i∈∆(O):DKL(P̃h,i(·)∥Ph,i(·|sh[pai],ah))≤ρi,1≤i≤j−1

P̃h,i∈∆(O):DKL(P̃h,i(·)∥P⋆
h,i(·|sh[pai],ah))≤ρi,j≤i≤d

∫
Od

d∏
i=1

P̃h,i(ds
′[i])V π⋆

h+1,P,Φ(s
′)

By the definition of taking infimum over d variables, we can conclude that

inf
P̃h,i∈∆(O):DKL(P̃h,i(·)∥Ph,i(·|sh[pai],ah))≤ρi,1≤i≤j−1

P̃h,i∈∆(O):DKL(P̃h,i(·)∥P⋆
h,i(·|sh[pai],ah))≤ρi,j≤i≤d

∫
Od

d∏
i=1

P̃h,i(ds
′[i])V π⋆

h+1,P,Φ(s
′)

= inf
P̃h,j∈∆(O):DKL(P̃h,j(·)∥P⋆

h,j(·|sh[paj ],ah))≤ρj

∫
Od

P̃h,j(ds
′[j])

d∏
i=1
i ̸=j

P̃ ∗,j
h,i (ds

′[i])V π⋆

h+1,P,Φ(s
′).

(E.2)

Meanwhile, it naturally holds that for each 1 ≤ j ≤ d,

inf
P̃h,i∈∆(O):DKL(P̃h,i(·)∥Ph,i(·|sh[pai],ah))≤ρi,1≤i≤j

P̃h,i∈∆(O):DKL(P̃h,i(·)∥P⋆
h,i(·|sh[pai],ah))≤ρi,j+1≤i≤d

∫
Od

d∏
i=1

P̃h,i(ds
′[i])V π⋆

h+1,P,Φ(s
′)

≤ inf
P̃h,j∈∆(O):DKL(P̃h,j(·)∥Ph,j(·|sh[paj ],ah))≤ρj

∫
Od

P̃h,j(ds
′[j])

d∏
i=1
i ̸=j

P̃ ∗,j
h,i (ds

′[i])V π⋆

h+1,P,Φ(s
′).

(E.3)

Thus by combining (E.2) and (E.3), we have that

(E.1) ≤
d∑

j=1

inf
P̃h,j∈∆(O):DKL(P̃h,j(·)∥Ph,j(·|sh[paj ],ah))≤ρj

∫
Od

P̃h,j(ds
′[j])

d∏
i=1
i ̸=j

P̃ ∗,j
h,i (ds

′[i])V π⋆

h+1,P,Φ(s
′)

− inf
P̃h,j∈∆(O):DKL(P̃h,j(·)∥P⋆

h,j(·|sh[paj ],ah))≤ρj

∫
Od

P̃h,j(ds
′[j])

d∏
i=1
i̸=j

P̃ ∗,j
h,i (ds

′[i])V π⋆

h+1,P,Φ(s
′).

(E.4)

Now for simplicity, for each 1 ≤ j ≤ d, we denote a function υjh(s
′[j]) : O 7→ R as

υjh(s
′[j]) =

∫
Od−1

d∏
i=1
i ̸=j

P̃ ∗,j
h,i (ds

′[i])V π⋆

h+1,P,Φ(s
′[1], · · · , s′[j − 1], s[j], s′[j + 1], · · · , s′[d]), (E.5)

which satisfies 0 ≤ υjh ≤ H . For each 1 ≤ j ≤ d, we can then upper bound

∆j
h(sh, ah) = inf

P̃h,j∈∆(O):DKL(P̃h,j(·)∥Ph,j(·|sh[paj ],ah))≤ρj

∫
O
P̃h,j(ds

′[j])υjh(s
′[j])

− inf
P̃h,j∈∆(O):DKL(P̃h,j(·)∥P⋆

h,j(·|sh[paj ],ah))≤ρj

∫
O
P̃h,j(ds

′[j])υjh(s
′[j]) (E.6)

using the same argument as in the proof of Proposition D.1 under KL-divergence in Appendix D.1, in
which we apply Assumption E.2 and Lemma H.7. The corresponding result is given by

∆j
h(sh, ah) ≤

H exp(H/λ)

ρj
· ∥Ph,j(·|sh[paj ], ah)− P ⋆

h,j(·|sh[paj ], ah)∥TV. (E.7)
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Thus plugging (E.7) into (E.4) and (E.1), we can arrive at

inf
P̃h∈Φ(Ph)

Es′∼P̃h(·|sh,ah)
[V π⋆

h+1,P,Φ(s
′)]− inf

P̃h∈Φ(P⋆
h )

Es′∼P̃h(·|sh,ah)
[V π⋆

h+1,P,Φ(s
′)]

≤
d∑

j=1

H exp(H/λ)

ρj
· ∥Ph,j(·|sh[paj ], ah)− P ⋆

h,j(·|sh[paj ], ah)∥TV. (E.8)

By using the same argument for deriving (E.8), we can also obtain that

inf
P̃h∈Φ(P⋆

h )
Es′∼P̃h(·|sh,ah)

[V π⋆

h+1,P,Φ(s
′)]− inf

P̃h∈Φ(Ph)
Es′∼P̃h(·|sh,ah)

[V π⋆

h+1,P,Φ(s
′)]

≤
d∑

j=1

H exp(H/λ)

ρj
· ∥Ph,j(·|sh[paj ], ah)− P ⋆

h,j(·|sh[paj ], ah)∥TV. (E.9)

Therefore, due to (E.8) and (E.9), we can finally arrive at the following upper bound,

E
(sh,ah)∼dπb

P⋆,h

( inf
P̃h∈Φ(Ph)

Es′∼P̃h(·|sh,ah)
[V π⋆

h+1,P,Φ(s
′)]− inf

P̃h∈Φ(P⋆
h )

Es′∼P̃h(·|sh,ah)
[V π⋆

h+1,P,Φ(s
′)]

)2


≤ E
(sh,ah)∼dπb

P⋆,h


 d∑

j=1

H exp(H/λ)

ρj
· ∥Ph,j(·|sh[paj ], ah)− P ⋆

h,j(·|sh[paj ], ah)∥TV

2


≤ dH2 exp(2H/λ)

ρmin
·

d∑
j=1

E
(sh[paj ],ah)∼dπb

P⋆,h

[
∥Ph,j(·|sh[paj ], ah)− P ⋆

h,j(·|sh[paj ], ah)∥2TV

]
,

(E.10)

where the last inequality is from Cauchy-Schwartz inequality and ρmin = mini∈[d] ρi. Now invoking
the second conclusion of Lemma G.2, we have that with probability at least 1− δ,

E
(sh[paj ],ah)∼dπb

P⋆,h

[∥Ph,j(·|sh[paj ], ah)− P ⋆
h,j(·|sh[paj ], ah)∥2TV] ≤

C ′
1|O|1+|paj ||A| log(C ′

2ndH/δ)

n
,

(E.11)

for some absolute constant C ′
1, C

′
2 > 0 and each j ∈ [d]. Combining (E.10) and (E.11), we have that√

ErrΦh,KL(n) =
H exp(H/λ)

ρmin
·

√
dC ′

1

∑d
i=1 |O|1+|pai||A| log(C ′

2ndH/δ)

n
.

This finishes the proof of Proposition E.1 under KL-divergence.

Proof of Proposition E.1 with TV-distance. Firstly, by invoking the first conclusion of Lemma G.2,
we know that the Condition 3.1 holds. In the following, we prove the Condition 3.2. Using the same
argument as in the proof of Proposition E.1 under KL-divergence, we can derive that

inf
P̃h∈Φ(Ph)

Es′∼P̃h(·|sh,ah)
[V π⋆

h+1,P,Φ(s
′)]− inf

P̃h∈Φ(P⋆
h )

Es′∼P̃h(·|sh,ah)
[V π⋆

h+1,P,Φ(s
′)] ≤

d∑
j=1

∆j
h(sh, ah),

(E.12)

where ∆j
h(sh, ah) is defined in (E.6). Now applying the same argument as in the proof of Proposition

D.1 under TV-divergence, we can derive that

∆j
h(sh, ah) ≤ H · ∥Ph,j(·|sh[paj ], ah)− P ⋆

h,j(·|sh[paj ], ah)∥TV, (E.13)

where we have applied Lemma H.8. Therefore, by combining (E.12) and (E.13), we can derive that

inf
P̃h∈Φ(Ph)

Es′∼P̃h(·|sh,ah)
[V π⋆

h+1,P,Φ(s
′)]− inf

P̃h∈Φ(P⋆
h )

Es′∼P̃h(·|sh,ah)
[V π⋆

h+1,P,Φ(s
′)]

≤ H ·
d∑

j=1

∥Ph,j(·|sh[paj ], ah)− P ⋆
h,j(·|sh[paj ], ah)∥TV. (E.14)
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By the same argument as in deriving (E.14), we can also obtain that,

inf
P̃h∈Φ(P⋆

h )
Es′∼P̃h(·|sh,ah)

[V π⋆

h+1,P,Φ(s
′)]− inf

P̃h∈Φ(Ph)
Es′∼P̃h(·|sh,ah)

[V π⋆

h+1,P,Φ(s
′)]

≤ H ·
d∑

j=1

∥Ph,j(·|sh[paj ], ah)− P ⋆
h,j(·|sh[paj ], ah)∥TV. (E.15)

Now by combining (E.14) and (E.15), we can derive the following upper bound,

E
(sh,ah)∼dπb

P⋆,h

( inf
P̃h∈Φ(Ph)

Es′∼P̃h(·|sh,ah)
[V π⋆

h+1,P,Φ(s
′)]− inf

P̃h∈Φ(P⋆
h )

Es′∼P̃h(·|sh,ah)
[V π⋆

h+1,P,Φ(s
′)]

)2


≤ E
(sh,ah)∼dπb

P⋆,h


H ·

d∑
j=1

∥Ph,j(·|sh[paj ], ah)− P ⋆
h,j(·|sh[paj ], ah)∥TV

2


≤ dH2 ·
d∑

j=1

E
(sh[paj ],ah)∼dπb

P⋆,h

[
∥Ph,j(·|sh[paj ], ah)− P ⋆

h,j(·|sh[paj ], ah)∥2TV

]
, (E.16)

where the last inequality follows from Cauchy-Schwartz inequality. Now invoking the second
conclusion of Lemma G.2, we have that with probability at least 1− δ,

E
(sh[paj ],ah)∼dπb

P⋆,h

[∥Ph,j(·|sh[paj ], ah)− P ⋆
h,j(·|sh[paj ], ah)∥2TV] ≤

C ′
1|O|1+|paj ||A| log(C ′

2ndH/δ)

n
,

(E.17)

for some absolute constant C ′
1, C

′
2 > 0 and each j ∈ [d]. Combining (E.16) and (E.17), we have that√

ErrΦh,KL(n) = H ·

√
dC ′

1

∑d
i=1 |O|1+|pai||A| log(C ′

2ndH/δ)

n
.

This finishes the proof of Proposition E.1 under TV-distance.

F Proofs for d-rectangular Robust Linear MDP

Assumption F.1 (Regularity of KL-divergence duality variable). We assume that the optimal dual
variable λ⋆ for the following optimization problem

sup
λ∈R+

{
−λ log

(
Es′∼µ(·)

[
exp

{
−V π⋆

h+1,Q,Φ(s
′)/λ

}])
− λρ

}
,

is lower bounded by λ > 0 for any distribution µ ∈ ∆(S), transition kernels Q = {Qh}Hh=1 ⊆ PM,
and step h ∈ [H].

Proof of Theorem A.3 with KL-divergence. Recall that we consider the following definition of V ,

V =

{
v(s) = exp

(
−max

a∈A
ϕ(s, a)⊤w/λ

)
: ∥w∥2 ≤ H

√
d, λ ∈ [λ,H/ρ]

}
. (F.1)

Following the Section 7 of [54] as well as the Section 8 of [1], we introduce the notion P̂h that
satisfies for any v ∈ V and (s, a) ∈ S ×A,∫

S
P̂h(ds

′|s, a)v(s′) = ϕ(s, a)⊤θ̂v, (F.2)

where θ̂v is defined in (A.2). Actually P̂h takes the following closed form,

P̂h(ds
′|s, a) = ϕ(s, a)⊤ 1

n

n∑
τ=1

Λ−1
h,αϕ(s

τ
h, a

τ
h)δsτh+1

(ds′), (F.3)

where δs(·) is the dirac measure centering at s. Regarding the estimator P̂h, we have the following.
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Lemma F.2. Setting α = 1 and choosing the function class V as (F.1), then the estimator P̂h defined
in (F.3) satisfies that, with probability at least 1− δ,

sup
v∈V

∣∣∣∣∫
S

(
P ⋆
h (ds

′|s, a)− P̂h(ds
′|s, a)

)
v(s′)

∣∣∣∣2
≤ C1 · ∥ϕ(s, a)∥2Λ−1

h,α

·
d
(
log(1 + C2nH/δ) + log(1 + C3ndH/(ρλ

2))
)

n
,

for any step h ∈ [H], where C1, C2, C3 > 0 are three constants.

Proof of Lemma F.2. See Appendix F.1 for a detailed proof.

With Lemma F.2, we can further derive that, with probability at least 1− δ, for any h ∈ [H],

sup
v∈V

1

n

n∑
τ=1

∣∣∣∣∫
S

(
P ⋆
h (ds

′|sτh, aτh)− P̂h(ds
′|sτh, aτh)

)
v(s′)

∣∣∣∣2
≤ 1

n

n∑
τ=1

∥ϕ(sτh, aτh)∥2Λ−1
h,α

·
C1d

(
log(1 + C2nH/δ) + log(1 + C3ndH/(ρλ

2))
)

n
.

In the right hand side of the above inequality, it holds that,

1

n

n∑
τ=1

∥ϕ(sτh, aτh)∥2Λ−1
h,α

=
1

n

n∑
i=1

Tr
(
ϕ(sτh, a

τ
h)

⊤Λ−1
h,αϕ(s

τ
h, a

τ
h)
)

= Tr

(
1

n

n∑
i=1

ϕ(sτh, a
τ
h)ϕ(s

τ
h, a

τ
h)

⊤Λ−1
h,α

)
≤ Tr

(
Λh,αΛ

−1
h,α

)
= d. (F.4)

Thus, we have that with probability at least 1− δ, for each step h ∈ [H],

sup
v∈V

1

n

n∑
τ=1

∣∣∣∣∫
S

(
P ⋆
h (ds

′|sτh, aτh)− P̂h(ds
′|sτh, aτh)

)
v(s′)

∣∣∣∣2
≤
C1d

2
(
log(1 + C2nH/δ) + log(1 + C3ndH/(ρλ

2))
)

n
= ξ.

This proves Condition 3.1 in Section 3.2. In the following, we prove Theorem A.3 given Condition
3.1 holds. Using the definition of robust set Φ(·) in Example A.1, we can derive that

inf
P̃h∈Φ(P⋆

h )
Es′∼P̃h(·|sh,ah)

[V π⋆

h+1,P,Φ(s
′)]− inf

P̃h∈Φ(Ph)
Es′∼P̃h(·|sh,ah)

[V π⋆

h+1,P,Φ(s
′)]

= inf
P̃h∈Φ(P⋆

h )

d∑
i=1

ϕi(sh, ah)

∫
S
µ̃i(ds

′)V π⋆

h+1,P,Φ(s
′)− inf

P̃h∈Φ(Ph)

d∑
i=1

ϕi(s, a)

∫
S
µ̃i(ds

′)V π⋆

h+1,P,Φ(s
′)

=

d∑
i=1

ϕi(sh, ah) inf
µ̃h,i∈∆(S):D(µ̃h,i(·)∥µ⋆

h,i(·))≤ρ

∫
S
µ̃h,i(ds

′)V π⋆

h+1,P,Φ(s
′)

−
d∑

i=1

ϕi(sh, ah) inf
µ̃h,i∈∆(S):D(µ̃h,i(·)∥µh,i(·))≤ρ

∫
S
µ̃h,i(ds

′)V π⋆

h+1,P,Φ(s
′), (F.5)

where the last equality follows from ϕ(s, a) ≥ 0 for any i ∈ [d]. Now invoking the dual formulation
of KL-divergence in Lemma D.2, we can derive that

(F.5) =
d∑

i=1

ϕi(sh, ah) ·

[
sup
λi≥0

{
−λi log

(
Es′∼µ⋆

h,i(·)

[
exp

{
−V π⋆

h+1,P,Φ(s
′)/λi

}])
− λiρ

}
− sup

λi≥0

{
−λi log

(
Es′∼µh,i(·)

[
exp

{
−V π⋆

h+1,P,Φ(s
′)/λi

}])
− λiρ

}]
(F.6)
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Following the same argument in the proof of Proposition D.1 (derivation of (D.3)), during which we
invoke Assumption F.1 and Lemma H.7 to bound the optimal dual variable λ, we can derive that

(F.6) ≤
d∑

i=1

ϕi(sh, ah) · sup
λ≤λi≤H/ρ

{
g(λi, µ

⋆
h,i)

∫
S

(
µ⋆
h,i(ds

′)− µh,i(ds
′)
)
exp

{
−V π⋆

h+1,P,Φ(s
′)/λi

}}
,

=

d∑
i=1

sup
λ≤λi≤H/ρ

{
g(λi, µ

⋆
h,i)ϕi(sh, ah)

∫
S

(
µ⋆
h,i(ds

′)− µh,i(ds
′)
)
exp

{
−V π⋆

h+1,P,Φ(s
′)/λi

}}
,

(F.7)

where we have defined g(λi, µh,i) = λi/(
∫
S µh,i(ds

′) exp{−V π⋆

h+1,P,Φ(s
′)/λi}) for simplicity, and

in the equality we have used the fact that ϕi(s, a) ≥ 0. To go ahead, we rewrite the summand in (F.7)
for each i ∈ [d]. To be specific, recall the regularized covariance matrix Λh,α of the feature ϕ,

Λh,α =
1

n

n∑
τ=1

ϕ(sτh, a
τ
h)ϕ(s

τ
h, a

τ
h)

⊤ +
α

n
· Id.

Then, by denoting 1i = (0, · · · , 0, 1, 0, · · · , 0)⊤ where 1 is at the i-th coordinate, we have the
following,

ϕi(sh, ah)

∫
S

(
µ⋆
h,i(ds

′)− µh,i(ds
′)
)
exp

{
−V π⋆

h+1,P,Φ(s
′)/λi

}
= ϕi(sh, ah)1

⊤
i Λ

−1/2
h,α Λ

1/2
h,α

∫
S
(µ⋆

h(ds
′)− µh(ds

′)) exp
{
−V π⋆

h+1,P,Φ(s
′)/λi

}
≤ ∥ϕi(sh, ah)1i∥Λ−1

h,α︸ ︷︷ ︸
Term (i)

·
∥∥∥∥∫

S
(µ⋆

h(ds
′)− µh(ds

′)) exp
{
−V π⋆

h+1,P,Φ(s
′)/λi

}∥∥∥∥
Λh,α︸ ︷︷ ︸

Term (ii)

. (F.8)

For the term (ii) in (F.8), by the definition of Λh,α, we have that,

Term (ii)2 =
1

n

n∑
τ=1

∣∣∣∣ϕ(sτh, aτh)⊤ ∫
S
(µ⋆

h(ds
′)− µh(ds

′)) exp
{
−V π⋆

h+1,P,Φ(s
′)/λi

}∣∣∣∣2
+
α

n
·
∥∥∥∥∫

S
(µ⋆

h(ds
′)− µh(ds

′)) exp
{
−V π⋆

h+1,P,Φ(s
′)/λi

}∥∥∥∥2
2

=
1

n

n∑
τ=1

∣∣∣∣∫
S
(P ⋆

h (ds
′|sτh, aτh)− Ph(ds

′|sτh, aτh)) exp
{
−V π⋆

h+1,P,Φ(s
′)/λi

}∣∣∣∣2
+
α

n
·
∥∥∥∥∫

S
(µ⋆

h(ds
′)− µh(ds

′)) exp
{
−V π⋆

h+1,P,Φ(s
′)/λi

}∥∥∥∥2
2

. (F.9)

In the following, we upper bound the right hand side of (F.9). On the one hand, we have that

1

n

n∑
τ=1

∣∣∣∣∫
S
(P ⋆

h (ds
′|sτh, aτh)− Ph(ds

′|sτh, aτh)) exp
{
−V π⋆

h+1,P,Φ(s
′)/λi

}∣∣∣∣2
≤ sup

v∈V

1

n

n∑
τ=1

∣∣∣∣∫
S

(
P ⋆
h (ds

′|sτh, aτh)− P̂h(ds
′|sτh, aτh)

)
v(s′)

∣∣∣∣2
+ sup

v∈V

1

n

n∑
τ=1

∣∣∣∣∫
S

(
P̂h(ds

′|sτh, aτh)− Ph(ds
′|sτh, aτh)

)
v(s′)

∣∣∣∣2
≤ 2ξ, (F.10)

with probability at least 1− δ, where the first inequality holds since exp{−V π⋆

h+1,P,Φ(s
′)/λi} ∈ V ,

and the last inequality follows from the fact that Condition 3.1 holds and the fact that Ph ∈ P̂h. On
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the other hand, by setting the regularization parameter α = 1 we have that

α

n
·
∥∥∥∥∫

S
(µ⋆

h(ds
′)− µh(ds

′)) exp
{
−V π⋆

h+1,P,Φ(s
′)/λi

}∥∥∥∥2
2

=
1

n
·

d∑
i=1

∣∣∣∣∫
S

(
µ⋆
h,i(ds

′)− µh,i(ds
′)
)
exp

{
−V π⋆

h+1,P,Φ(s
′)/λi

}∣∣∣∣2

≤ 1

n
·

d∑
i=1

∥µ⋆
h,i(·)− µh,i(·)∥2TV ≤ 2d

n
. (F.11)

By combining (F.9), (F.10) and (F.11), we can conclude that with probability at least 1− δ,

Term (ii)2 ≤ 2ξ +
2d

n
≤ 3ξ. (F.12)

Now by combining (F.7), (F.8), (F.12), we can conclude that with probability at least 1− δ,

inf
P̃h∈Φ(P⋆

h )
Es′∼P̃h(·|sh,ah)

[V π⋆

h+1,P,Φ(s
′)]− inf

P̃h∈Φ(Ph)
Es′∼P̃h(·|sh,ah)

[V π⋆

h+1,P,Φ(s
′)]

≤
d∑

i=1

sup
λ≤λi≤H/ρ

{
∥ϕi(sh, ah)1i∥Λ−1

h,α
· g(λi, µ⋆

h,i) ·
√

3ξ
}

≤ 2
√
ξ ·H exp(H/λ)

ρ
·

d∑
i=1

∥ϕi(sh, ah)1i∥Λ−1
h,α

, (F.13)

for any step h ∈ [H], (sh, ah) ∈ S × A, and Ph ∈ P̂h, where we apply the definition of g(λi, µi).
Now using the same argument as in the proof of Theorem 3.4, using Condition 3.1, we can derive that

SubOpt(π̂; s1) ≤ sup
P∈P̂

H∑
h=1

E(sh,ah)∼dπ⋆

Pπ⋆,†,h

[
inf

P̃h∈Φ(P⋆
h )

Es′∼P̃h(·|sh,ah)
[V π⋆

h+1,P,Φ(s
′)]

− inf
P̃h∈Φ(Ph)

Es′∼P̃h(·|sh,ah)
[V π⋆

h+1,P,Φ(s
′)]

]

≤ 2
√
ξ ·H exp(H/λ)

ρ
·

H∑
h=1

d∑
i=1

E(sh,ah)∼dπ⋆

Pπ⋆,†,h

[
∥ϕi(sh, ah)1i∥Λ−1

h,α

]
, (F.14)

where we have used (F.13). Here Pπ⋆,†
h is some transition kernel chosen from Φ(P ⋆

h ). Now we upper
bound the right hand side of (F.14) using Assumption A.2. Consider that

d∑
i=1

E(sh,ah)∼dπ⋆

Pπ⋆,†,h

[
∥ϕi(sh, ah)1i∥Λ−1

h,α

]
=

d∑
i=1

E(sh,ah)∼dπ⋆

Pπ⋆,†,h

[√
Tr
(
(ϕi(sh, ah)1i)(ϕi(sh, ah)1i)⊤Λ

−1
h,α

)]

≤
d∑

i=1

√
Tr

(
E(sh,ah)∼dπ⋆

Pπ⋆,†,h

[(ϕi(sh, ah)1i)(ϕi(sh, ah)1i)⊤]Λ
−1
h,α

)
. (F.15)

For notational simplicity, in the sequel, we denote by

ΣP,h,i = E(sh,ah)∼dπ⋆

P,h

[
(ϕi(sh, ah)1i)(ϕi(sh, ah)1i)

⊤]
Note that the matrix ΣP,h,i has non-zero element only at (ΣP,h,i)(i,i), which equals to ϕi(s, a)2.
Under Assumption A.2 and the fact that Pπ⋆,†

h ∈ Φ(P ⋆
h ), we have that

Λh,α ⪰ α

n
· Id + c† ·ΣPπ⋆,†,h,i.
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Thus, using (F.15) and under α = 1, we have that,

d∑
i=1

E(sh,ah)∼dπ⋆

Pπ⋆,†,h

[
∥ϕi(sh, ah)1i∥Λ−1

h,α

]
≤

d∑
i=1

√
Tr

(
ΣPπ⋆ ,h,i

(α
n
· Id + c† ·ΣPπ⋆ ,h,i

)−1
)

=

d∑
i=1

√
ϕi(s, a)2

n−1 + c† · ϕi(s, a)2
≤ d

c†
. (F.16)

Therefore, by combining (F.14) and (F.16), we have that with probability at least 1− δ,

SubOpt(π̂; s1) ≤
2
√
ξ ·H exp(H/λ)

ρ
·

H∑
h=1

d

c†
=

2d
√
ξ ·H2 exp(H/λ)

c†ρ
.

Using the definition of ξ, we can finally derive that with probability at least 1− δ,

SubOpt(π̂; s1) ≤
d2H2 exp(H/λ)

c†ρ
·

√
C ′

1

(
log(1 + C ′

2nH/δ) + log(1 + C ′
3ndH/(ρλ

2))
)

n
.

This finishes the proof of Theorem A.3 under KL-divergence.

Proof of Theorem A.3 with TV-divergence. We use the same notation of P̂h introduced in the proof
of KL-divergence case, which satisfies (F.2) with V defined as

V =

{
v(s) =

(
λ−max

a∈A
ϕ(s, a)⊤w

)
+

: ∥w∥2 ≤ H
√
d, λ ∈ [0, H]

}
. (F.17)

Regarding the estimator P̂h with V defined in (F.17), we have the following.

Lemma F.3. Setting α = 1 and choosing the function class V as (F.17), then the estimator P̂h

defined in (F.3) satisfies that, with probability at least 1− δ,

sup
v∈V

∣∣∣∣∫
S

(
P ⋆
h (ds

′|s, a)− P̂h(ds
′|s, a)

)
v(s′)

∣∣∣∣2
≤ C1 · ∥ϕ(s, a)∥2Λ−1

h,α

· dH
2 log(C2ndH/δ)

n
,

for any step h ∈ [H], where C1, C2 > 0 are two constants.

Proof of Lemma F.3. See Appendix F.1 for a detailed proof.

With Lemma F.3, we can further derive that, with probability at least 1− δ, for any h ∈ [H],

sup
v∈V

1

n

n∑
τ=1

∣∣∣∣∫
S

(
P ⋆
h (ds

′|sτh, aτh)− P̂h(ds
′|sτh, aτh)

)
v(s′)

∣∣∣∣2 ≤ 1

n

n∑
τ=1

∥ϕ(sτh, aτh)∥2Λ−1
h,α

· C1dH
2 log(C2ndH/δ)

n
.

In the right hand side of the above inequality, it holds that,

1

n

n∑
τ=1

∥ϕ(sτh, aτh)∥2Λ−1
h,α

=
1

n

n∑
i=1

Tr
(
ϕ(sτh, a

τ
h)

⊤Λ−1
h,αϕ(s

τ
h, a

τ
h)
)
≤ Tr

(
Λh,αΛ

−1
h,α

)
= d.

(F.18)

Thus, we have that with probability at least 1− δ, for each step h ∈ [H],

sup
v∈V

1

n

n∑
τ=1

∣∣∣∣∫
S

(
P ⋆
h (ds

′|sτh, aτh)− P̂h(ds
′|sτh, aτh)

)
v(s′)

∣∣∣∣2 ≤ C1d
2H2 log(C2ndH/δ)

n
= ξ.
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This proves Condition 3.1 in Section 3.2. In the following, we prove Theorem A.3 given Condition
3.1 holds. Using the definition of robust set Φ(·) in Example A.1, following the same argument as
(F.5), we have that,

inf
P̃h∈Φ(P⋆

h )
Es′∼P̃h(·|sh,ah)

[V π⋆

h+1,P,Φ(s
′)]− inf

P̃h∈Φ(Ph)
Es′∼P̃h(·|sh,ah)

[V π⋆

h+1,P,Φ(s
′)]

=

d∑
i=1

ϕi(sh, ah) inf
µ̃h,i∈∆(S):D(µ̃h,i(·)∥µ⋆

h,i(·))≤ρ

∫
S
µ̃h,i(ds

′)V π⋆

h+1,P,Φ(s
′)

−
d∑

i=1

ϕi(sh, ah) inf
µ̃h,i∈∆(S):D(µ̃h,i(·)∥µh,i(·))≤ρ

∫
S
µ̃h,i(ds

′)V π⋆

h+1,P,Φ(s
′). (F.19)

Now invoking the dual formulation of TV-distance in Lemma D.4, we can further derive that

(F.19) =
d∑

i=1

ϕi(sh, ah) ·
[
sup
λ∈R

{
−Es′∼µ⋆

h,i(·)

[(
λ− V π⋆

h+1,P,Φ(s
′)
)
+

]
− ρ

2

(
λ− inf

s′′∈S
V π
h+1,P,Φ(s

′′)

)
+ λ

}
− sup

λ∈R

{
−Es′∼µh,i(·)

[(
λ− V π⋆

h+1,P,Φ(s
′)
)
+

]
− ρ

2

(
λ− inf

s′′∈S
V π
h+1,P,Φ(s

′′)

)
+ λ

}]
≤

d∑
i=1

ϕi(sh, ah) · sup
λ∈[0,H]

{(
Es′∼µ⋆

h,i(·) − Es′∼µh,i(·)

)[(
λ− V π⋆

h+1,P,Φ(s
′)
)
+

]}

=

d∑
i=1

sup
λ∈[0,H]

{
ϕi(sh, ah)

∫
S

(
µ⋆
h,i(ds

′)− µh,i(ds
′)
) (
λ− V π⋆

h+1,P,Φ(s
′)
)
+

}
. (F.20)

where in the first inequality we use Lemma H.8 to bound λ ∈ [0, H]. Now we consider each summand
i ∈ [d] in the right hand side of (F.20). We rewrite it as

ϕi(sh, ah)

∫
S

(
µ⋆
h,i(ds

′)− µh,i(ds
′)
) (
λ− V π⋆

h+1,P,Φ(s
′)
)
+

= ϕi(sh, ah)1
⊤
i Λ

−1/2
h,α Λ

1/2
h,α

∫
S
(µ⋆

h(ds
′)− µh(ds

′))
(
λ− V π⋆

h+1,P,Φ(s
′)
)
+

≤ ∥ϕi(sh, ah)1i∥Λ−1
h,α︸ ︷︷ ︸

Term (i)

·
∥∥∥∥∫

S
(µ⋆

h(ds
′)− µh(ds

′))
(
λ− V π⋆

h+1,P,Φ(s
′)
)
+

∥∥∥∥
Λh,α︸ ︷︷ ︸

Term (ii)

. (F.21)

Following the same argument as (F.9), (F.10), and (F.11), using the fact that (λ−V π⋆

h+1,P,Φ(s
′))+ ∈ V

with V in (F.17), we can derive that with probability at least 1− δ,

Term(ii)
2 ≤ 3ξ (F.22)

Now by combining (F.19), (F.21), (F.22), we can conclude that with probability at least 1− δ,

inf
P̃h∈Φ(P⋆

h )
Es′∼P̃h(·|sh,ah)

[V π⋆

h+1,P,Φ(s
′)]− inf

P̃h∈Φ(Ph)
Es′∼P̃h(·|sh,ah)

[V π⋆

h+1,P,Φ(s
′)]

≤
d∑

i=1

sup
0≤λiH

{
∥ϕi(sh, ah)1i∥Λ−1

h,α
·
√
3ξ
}
≤ 2
√
ξ ·

d∑
i=1

∥ϕi(sh, ah)1i∥Λ−1
h,α

, (F.23)

for any step h ∈ [H], (sh, ah) ∈ S ×A, and Ph ∈ P̂h. Now using the same argument as in the proof
of Theorem 3.4, using Condition 3.1, we can derive that with probability at least 1− δ,

SubOpt(π̂; s1) ≤ sup
P∈P̂

H∑
h=1

E(sh,ah)∼dπ⋆

Pπ⋆,†,h

[
inf

P̃h∈Φ(P⋆
h )

Es′∼P̃h(·|sh,ah)
[V π⋆

h+1,P,Φ(s
′)]

− inf
P̃h∈Φ(Ph)

Es′∼P̃h(·|sh,ah)
[V π⋆

h+1,P,Φ(s
′)]

]

≤ 2
√
ξ ·

H∑
h=1

d∑
i=1

E(sh,ah)∼dπ⋆

Pπ⋆,†,h

[
∥ϕi(sh, ah)1i∥Λ−1

h,α

]
, (F.24)
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where in the last inequality we apply (F.23). Here Pπ⋆,†
h is some transition kernel chosen from

Φ(P ⋆
h ). Now we use the same argument as (F.15) and (F.16) to upper bound the right hand side of

(F.24) using Assumption A.2, which gives that,

d∑
i=1

E(sh,ah)∼dπ⋆

Pπ⋆,†,h

[
∥ϕi(sh, ah)1i∥Λ−1

h,α

]
≤ d

c†
. (F.25)

Therefore, by combining (F.24) and (F.25), we have that with probability at least 1− δ,

SubOpt(π̂; s1) ≤ 2
√
ξ ·

H∑
h=1

d

c†
=

2d
√
ξ ·H
c†

.

Using the definition of ξ, we can finally derive that with probability at least 1− δ,

SubOpt(π̂; s1) ≤
d2H2

c†
·
√
C ′

1 log(C
′
2ndH/δ)

n
.

This finishes the proof of Theorem A.3 under TV-distance.

F.1 Proof of Lemma F.2 and Lemma F.3

Proof of Lemma F.2. The proof of Lemma F.2 follows from the main proofs in Section 8 of [1] and
the covering number of the function class V (Lemma F.4). Denote CV,ϵ as an ϵ-cover of the function
class V under ∥ · ∥∞. Following the exact same argument of Lemma 8.7 in [1], we can derive that
with probability at least 1− δ, for any h and v ∈ CV,ϵ.

∥∥∥∥∥
n∑

τ=1

ϕ(sτh, a
τ
h)

(∫
S
P ⋆
h (ds

′|sτh, aτh)v(s′)− v(sτh+1)

)∥∥∥∥∥
2

Λ−1
h,α

≤ 9n · (log(H/δ) + log(|CV,ϵ|) + d log(1 +N)) , (F.26)

where we have taken α = 1, which we will keep in the following. For any function v ∈ V , take
v̂ ∈ CV,ϵ such that ∥v − v̂∥∞ ≤ ϵ. Then we have that

∥∥∥∥∥
n∑

τ=1

ϕ(sτh, a
τ
h)

(∫
S
P ⋆
h (ds

′|sτh, aτh)v(s′)− v(sτh+1)

)∥∥∥∥∥
2

Λ−1
h,α

≤ 2

∥∥∥∥∥
n∑

τ=1

ϕ(sτh, a
τ
h)

(∫
S
P ⋆
h (ds

′|sτh, aτh)v̂(s′)− v̂(sτh+1)

)∥∥∥∥∥
2

Λ−1
h,α

+ 2

∥∥∥∥∥
n∑

τ=1

ϕ(sτh, a
τ
h)

(∫
S
P ⋆
h (ds

′|sτh, aτh)(v̂ − v)(s′)− (v̂ − v)(sτh+1)

)∥∥∥∥∥
2

Λ−1
h,α

≤ 18n · (log(H/δ) + log(|CV,ϵ|) + d log(1 + n)) + 8ϵ2n2. (F.27)
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Now we apply the definition of P̂h and we can then derive that

∣∣∣∣∫
S

(
P ⋆
h (ds

′|s, a)− P̂h(ds
′|s, a)v(s′)

)∣∣∣∣2
=

∣∣∣∣∣ϕ(s, a)⊤
(∫

S
µ⋆(ds′)v(s′)− 1

n

n∑
τ=1

Λ−1
h,αϕ(s

τ
h, a

τ
h)v(s

τ
h+1)

)∣∣∣∣∣
2

=

∣∣∣∣∣ϕ(s, a)⊤Λ−1
h,α

(
Λh,α

∫
S
µ⋆(ds′)v(s′)− 1

n

n∑
τ=1

ϕ(sτh, a
τ
h)v(s

τ
h+1)

)∣∣∣∣∣
2

=

∣∣∣∣∣ϕ(s, a)⊤Λ−1
h,α

(
1

n

∫
S
µ⋆

h(ds
′)v(s′) +

1

n

n∑
τ=1

ϕ(s, a)

∫
S
P ⋆
h (ds

′|sτh, aτh)v(s′)

− 1

n

n∑
τ=1

ϕ(sτh, a
τ
h)v(s

τ
h+1)

)∣∣∣∣∣
2

≤ 2

n2
· ∥ϕ(s, a)∥2

Λ−1
h,α

·
∥∥∥∥∫

S
µ⋆(ds′)v(s′)

∥∥∥∥2
Λ−1

h,α

+
2

n2
· ∥ϕ(s, a)∥2

Λ−1
h,α

·

∥∥∥∥∥
n∑

τ=1

ϕ(sτh, a
τ
h)

(∫
S
P ⋆
h (ds

′|sτh, aτh)v(s′)− v(sτh+1)

)∥∥∥∥∥
2

Λ−1
h,α

.

(F.28)

On the one hand, the first term in the right hand side of (F.28) is bounded by

2

n2
· ∥ϕ(s, a)∥2

Λ−1
h,α

·
∥∥∥∥∫

S
µ⋆(ds′)v(s′)

∥∥∥∥2
Λ−1

h,α

≤ 2

n
· ∥ϕ(s, a)∥2

Λ−1
h,α

·
∥∥∥∥∫

S
µ⋆(ds′)v(s′)

∥∥∥∥2
2

≤ 2d

n
· ∥ϕ(s, a)∥2

Λ−1
h,α

, (F.29)

where we use the fact that Λh,α ⪰ (1/n) · Id and ∥v(·)∥∞ ≤ 1 for any v ∈ V . On the other hand,
the second term in the right hand side of (F.28) is bounded by

2

n2
· ∥ϕ(s, a)∥2

Λ−1
h,α

·

∥∥∥∥∥
n∑

τ=1

ϕ(sτh, a
τ
h)

(∫
S
P ⋆
h (ds

′|sτh, aτh)v(s′)− v(sτh+1)

)∥∥∥∥∥
2

Λ−1
h,α

≤
(
36

n
· (log(H/δ) + log(|CV,ϵ|) + d log(1 + n)) + 16ϵ2

)
· ∥ϕ(s, a)∥2

Λ−1
h,α

,

where we have applied (F.27). Now taking ϵ = 1/
√
n, applying Lemma F.4 to bound the covering

number of V , we can further derive that,

2

n2
· ∥ϕ(s, a)∥2

Λ−1
h,α

·

∥∥∥∥∥
n∑

τ=1

ϕ(sτh, a
τ
h)

(∫
S
P ⋆
h (ds

′|sτh, aτh)v(s′)− v(sτh+1)

)∥∥∥∥∥
2

Λ−1
h,α

≤ 36

n
·
(
log(H/δ) + d log(1 + 4

√
nHd/(λ)) + log(1 + 4

√
nHd/(λ2ρ)) + d log(1 + n)

)
· ∥ϕ(s, a)∥2

Λ−1
h,α

+
16

n
· ∥ϕ(s, a)∥2

Λ−1
h,α

,

≤
C1d

(
log(1 + C2nH/δ) + log(1 + C3ndH/(ρλ

2))
)

n
· ∥ϕ(s, a)∥2

Λ−1
h,α

, (F.30)
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where C1, C2, C3 > 0 are three constants. Finally, by combining (F.28), (F.29), and (F.30), we can
conclude that with probability at least 1− δ, for each step h ∈ [H],

sup
v∈V

∣∣∣∣∫
S

(
P ⋆
h (ds

′|s, a)− P̂h(ds
′|s, a)

)
v(s′)

∣∣∣∣2
≤ C ′

1 · ∥ϕ(s, a)∥2Λ−1
h,α

·
d
(
log(1 + C2nH/δ) + log(1 + C3ndH/(ρλ

2))
)

n
.

where C ′
1 is another constant. This finishes the proof of Lemma F.2.

Proof of Lemma F.3. The proof of Lemma F.3 follows the same argument as proof of Lemma F.2,
except a different covering number of the function class V which we show in the following. Using
the same argument as the proof of Lemma F.2, with probability at least 1− δ, for any v ∈ V ,∣∣∣∣∫

S

(
P ⋆
h (ds

′|s, a)− P̂h(ds
′|s, a)v(s′)

)∣∣∣∣2
≤ 2H2

n2
· ∥ϕ(s, a)∥2

Λ−1
h,α

·
∥∥∥∥∫

S
µ⋆(ds′)v(s′)

∥∥∥∥2
Λ−1

h,α

+
2H2

n2
· ∥ϕ(s, a)∥2

Λ−1
h,α

·

∥∥∥∥∥
n∑

τ=1

ϕ(sτh, a
τ
h)

(∫
S
P ⋆
h (ds

′|sτh, aτh)v(s′)− v(sτh+1)

)∥∥∥∥∥
2

Λ−1
h,α

≤ H2 ·
(
36

n
· (log(H/δ) + log(|CV,ϵ|) + d log(1 + n)) + 16ϵ2 +

2d

n

)
· ∥ϕ(s, a)∥2

Λ−1
h,α

,

(F.31)

where CV,ϵ is an ϵ-covering of the function class V defined in (F.17). Now taking ϵ = 1/
√
n, applying

Lemma F.5 to bound the covering number of V , we can further derive that,

sup
v∈V

∣∣∣∣∫
S

(
P ⋆
h (ds

′|s, a)− P̂h(ds
′|s, a)v(s′)

)∣∣∣∣2
≤ H2 · ∥ϕ(s, a)∥2

Λ−1
h,α

·
(
36

n
· (log(H/δ)

+d log(1 + 4
√
nHd) + log(1 + 4

√
nH) + d log(1 + n)

)
+

16 + 2d

n

)
≤ C1 · ∥ϕ(s, a)∥2Λ−1

h,α

· dH
2 log(C2ndH/δ)

n
. (F.32)

This finishes the proof of Lemma F.3.

F.2 Other Lemmas

Lemma F.4 (Covering number of V: KL-divergence case). The ϵ-covering number of function class
V defined in (F.1) under ∥ · ∥∞-norm is bounded by

log(N (ϵ,V, ∥ · ∥∞)) ≤ d log(1 + 4Hd/(λϵ)) + log(1 + 4H2d/(λ2ρϵ)).

Proof of Lemma F.4. Consider any two pairs of parameters (w, λ) and (ŵ, λ̂), and denote the func-
tions they induce as v and v̂. Then we have that

|v(s)− v̂(s)| =
∣∣∣∣exp{−max

a∈A
ϕ(s, a)⊤w/λ

}
− exp

{
−max

a∈A
ϕ(s, a)⊤ŵ/λ̂

}∣∣∣∣
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Using the fact that, for any x, y > 0, exp(−x) − exp(−y) = exp(−ζ(x, y)) · (y − x) for some
ζ(x, y) between x and y, we know that

|v(s)− v̂(s)|

≤ exp

{
−ζ
(
max
a∈A

ϕ(s, a)⊤w/λ,max
a∈A

ϕ(s, a)⊤ŵ/λ̂

)}
·
∣∣∣∣max
a∈A

ϕ(s, a)⊤w/λ−max
a∈A

ϕ(s, a)⊤ŵ/λ̂

∣∣∣∣
≤
∣∣∣∣max
a∈A

{
ϕ(s, a)⊤w/λ− ϕ(s, a)⊤ŵ/λ̂

}∣∣∣∣
=

∣∣∣∣max
a∈A

{
ϕ(s, a)⊤w/λ− ϕ(s, a)⊤ŵ/λ+ ϕ(s, a)⊤ŵ/λ− ϕ(s, a)⊤ŵ/λ̂

}∣∣∣∣ .
Notice that ∥ϕ(s, a)∥2 ≤

√
d (because

∑d
i=1 ϕi(s, a) = 1), ∥ŵ∥2 ≤ H

√
d, and λ, λ̂ ≥ λ, we have,∣∣∣ϕ(s, a)⊤w/λ− ϕ(s, a)⊤ŵ/λ+ ϕ(s, a)⊤ŵ/λ− ϕ(s, a)⊤ŵ/λ̂

∣∣∣
≤
∣∣λ−1ϕ(s, a)⊤(w − ŵ)

∣∣+ ∣∣∣λ−1λ̂−1ϕ(s, a)⊤ŵ(λ− λ̂)
∣∣∣

≤ λ−1
√
d · ∥w − ŵ∥2 + λ−2Hd · |λ− λ̂|.

Thus we conclude that to form an ϵ-cover of V under ∥ · ∥∞-norm, it suffices to consider the product
of an λϵ/(2

√
d)-cover of {w : ∥w∥2 ≤ H

√
d} under ∥ · ∥2-norm and an λ2ϵ/(2Hd)-cover of the

interval [λ,H/ρ]. Therefore, we can derive that

log(N (ϵ,V, ∥ · ∥∞)) ≤ d log(1 + 4Hd/(λϵ)) + log(1 + 4H2d/(λ2ρϵ)).

This finishes the proof of Lemma F.4.

Lemma F.5 (Covering number of V: TV-distance case). The ϵ-covering number of function class V
defined in (F.17) under ∥ · ∥∞-norm is bounded by

log(N (ϵ,V, ∥ · ∥∞)) ≤ d log(1 + 4Hd/ϵ) + log(1 + 4H/ϵ).

Proof of Lemma F.5. Consider any two pairs of parameters (w, λ) and (ŵ, λ̂), and denote the func-
tions they induce as v and v̂. Then we have that,

|v(s)− v̂(s)| =

∣∣∣∣∣
(
λ−max

a∈A
ϕ(s, a)⊤w

)
+

−
(
λ̂−max

a∈A
ϕ(s, a)⊤ŵ

)
+

∣∣∣∣∣
≤ |λ− λ̂|+

∣∣∣∣max
a∈A

ϕ(s, a)⊤w −max
a∈A

ϕ(s, a)⊤ŵ

∣∣∣∣
≤ |λ− λ̂|+ sup

(s,a)∈S×A
∥ϕ(s, a)∥2 · ∥w − ŵ∥2

≤ |λ− λ̂|+
√
d · ∥w − ŵ∥2

Thus we conclude that to form an ϵ-cover of V under ∥ · ∥∞-norm, it suffices to consider the product
of an ϵ/(2

√
d)-cover of {w : ∥w∥2 ≤ H

√
d} under ∥ · ∥2-norm and an ϵ/2-cover of the interval

[0, H]. Therefore, we can derive that

log(N (ϵ,V, ∥ · ∥∞)) ≤ d log(1 + 4Hd/ϵ) + log(1 + 4H/ϵ).

This finishes the proof of Lemma F.5.

G Analysis of Maximum Likelihood Estimator

Lemma G.1 (MLE estimator guarantee: infinite model space). The maximum likelihood estimator
procedure given by (4.1) and (4.2) for S ×A-rectangular robust MDP with tuning parameter ξ given
by Proposition D.1 satisfies that w.p. at least 1− δ,

1. P ⋆
h ∈ P̂h for any step h ∈ [H].
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2. for any step h ∈ [H] and Ph ∈ P̂h, it holds that

E(sh,ah)∼db
P⋆,h

[∥Ph(·|sh, ah)− P ⋆
h (·|sh, ah)∥2TV]

≤
C1 log(C2HN[](1/n

2,PM, ∥ · ∥1,∞)/δ)

n
.

for some absolute constant C1, C2 > 0. Here dbP⋆,h is the state-action visitation measure
induced by the behavior policy πb and transition kernel P ⋆.

Proof of Lemma G.1. See Appendix G.1 for a detailed proof.

Lemma G.2 (MLE estimator guarantee: factored model space). The maximum likelihood estimator
procedure given by (4.5) and (4.6) for S×A-rectangular robust factored MDP with tuning parameter
ξi given by Proposition E.1 satisfies that w.p. at least 1− δ,

1. P ⋆
h ∈ P̂h for any step h ∈ [H].

2. for any step h ∈ [H], Ph ∈ P̂h, and any factor i ∈ [d] it holds that

E(sh[pai],ah)∼db
P⋆,h

[∥Ph,i(·|sh[pai], ah)− P ⋆
h,i(·|sh[pai], ah)∥2TV]

≤ C1|O|1+|pai||A| log(C2ndH/δ)

n
.

for some absolute constant C1, C2 > 0. Here dbP⋆,h is the state-action visitation measure
induced by the behavior policy πb and transition kernel P ⋆.

Proof of Lemma G.2. See Appendix G.2 for a detailed proof.

G.1 Proof of Lemma G.1

In this section, we establish the proof of Lemma G.1. We firstly introduce several notations. For any
function f : S ×A 7→ R, we denote

EDh
[f ] =

1

n

n∑
τ=1

f(sτh, a
τ
h).

Proof of Lemma G.1. We follow the proof of similar MLE guarantees in [54] and [25]. We begin
with proving the first conclusion of Lemma G.1, i.e., P ⋆

h ∈ P̂h for each step h ∈ [H]. For notational
simplicity, we define

gh(P )(s, a) = ∥P (·|s, a)− P ⋆
h (·|s, a)∥21, ∀P ∈ PM. (G.1)

To prove the first conclusion, it suffices to show that

EDh
[gh(P̂h)] ≤ ξ, ∀h ∈ [H]. (G.2)

where P̂h is the MLE estimator given in (4.1) and the parameter ξ is given by Proposition D.1. To
this end, we first invoke Lemma H.1, which gives that with probability at least 1− δ,

Edb
P⋆,h

[gh(P̂h)] ≤ c1
(
ζh +

√
log(c2/δ)/n

)2
, (G.3)

for some absolute constants c1, c2 > 0. Here ζh is a solution to the inequality
√
nϵ2 ≥

c0Gh(ϵ) w.r.t ϵ, with some carefully chosen function Gh which is specified in Lemma H.1.
As proved in Lemma H.2, choosing Gh(ϵ) = (ϵ − ϵ2/2)

√
log(N[](ϵ4/2,PM, ∥ · ∥1,∞)) and

ζh = c3
√

log(N[](1/n2,PM, ∥ · ∥1,∞))/n for some absolute constant c3 > 0 can satisfy the in-
equality and the requirements on Gh. Thus we can obtain from (G.3) that, with probability at least
1− δ,

Edb
P⋆,h

[gh(P̂h)] ≤ c1

(
c3

√
log(N[](1/n2,PM, ∥ · ∥1,∞))

n
+

√
log(c2/δ)

n

)2

≤
c′1 log(c

′
2N[](1/n

2,PM, ∥ · ∥1,∞)/δ)

n
, (G.4)
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for some absolute constants c′1, c
′
2 > 0. Now to prove (G.2), it suffices to relate the expectation w.r.t.

dataset Dh and the expectation w.r.t. visitation measure dbP⋆,h. To bridge this gap, we invoke Lemma
H.3, which is a Bernstein style concentration inequality and gives that with probability at least 1− δ,

|EDh
[gh(P̂h)]− Edb

P⋆,h
[gh(P̂h)]| ≤

c4 log(c5N[](1/n
2,PM, ∥ · ∥1,∞)/δ)

n
, (G.5)

for some absolute constant c4 > 0. Now combining (G.4) and (G.5), we can obtain that,

EDh
[gh(P̂h)] = EDh

[gh(P̂h)]− Edb
P⋆,h

[gh(P̂h)] + Edb
P⋆,h

[gh(P̂h)]

≤
c′′1 log(c

′′
2N[](1/n

2,PM, ∥ · ∥1,∞)/δ)

n
,

for some absolute constants c′′1 , c
′′
2 > 0. Finally, taking a union bound over step h ∈ [H] and rescaling

δ, we obtain that, with probability at least 1− δ/2,

EDh
[gh(P̂h)] ≤

C̃1 log(C̃2HN[](1/n
2,PM, ∥ · ∥1,∞)/δ)

n
= ξ, ∀h ∈ [H], (G.6)

for some absolute constants C̃1, C̃2 > 0. This finishes the proof of the first conclusion of Lemma
G.1.

The following of the proof is to prove the second conclusion of Lemma G.1. With the notation of gh,
it suffices to prove that with probability at least 1− δ/2,

sup
h∈[H],Ph∈P̂h

Edb
P⋆,h

[gh(Ph)] ≤
C1 log(C2HN[](1/n

2,PM, ∥ · ∥1,∞)/δ)

n
,

for some absolute constants C1, C2 > 0. To this end, for any step h ∈ [H] and Ph ∈ P̂h, consider
the following decomposition of Edb

P⋆,h
[gh(Ph)],

Edb
P⋆,h

[gh(Ph)] = Edb
P⋆,h

[gh(Ph)]− EDh
[gh(Ph)] + EDh

[gh(Ph)]. (G.7)

Note that the term EDh
[gh(Ph)] in (G.7) satisfies, with probability at least 1− δ/2,

EDh
[gh(Ph)] = EDh

[∥Ph(·|s, a)− P ⋆
h (·|s, a)∥21]

= EDh
[∥Ph(·|s, a)− P̂h(·|s, a) + P̂h(·|s, a)− P ⋆

h (·|s, a)∥21]
≤ 2EDh

[∥Ph(·|s, a)− P̂h(·|s, a)∥21] + 2EDh
[∥P̂h(·|s, a)− P ⋆

h (·|s, a)∥21]
≤ 4ξ, (G.8)

where the last inequality follows from the definition of confidence region P̂h and the first conclusion
of Lemma G.1, i.e., (G.6). Thus by taking (G.8) back into (G.7), we obtain that,

Edb
P⋆,h

[gh(Ph)] ≤ 4ξ + Edb
P⋆,h

[gh(Ph)]− EDh
[gh(Ph)]. (G.9)

Finally, invoking another Bernstein style concentration inequality (Lemma H.4), we have that with
probability at least 1− δ,

sup
Ph∈P̂h

|EDh
[gh(Ph)]− Edb

P⋆,h
[gh(Ph)]| ≤

c6 log(c7N[](1/n
2,PM, ∥ · ∥1,∞)/δ)

n
(G.10)

Thus by combining (G.9) and (G.10), taking a union bound over step h ∈ [H], rescaling δ, and using
the definition of ξ, we can conclude that with probability at least 1− δ/2,

sup
h∈[H],Ph∈P̂h

Edb
P⋆,h

[gh(Ph)] ≤
C1 log(C2HN[](1/n

2,PM, ∥ · ∥1,∞)/δ)

n
,

for some absolute constants C1, C2 > 0. This finishes the proof of Lemma G.1.

G.2 Proof of Lemma G.2

Proof of Lemma G.2. This is a direct corollary of Lemma G.1 in the finite state space case: for each
factor i ∈ [d], consider O as the state finite space and apply the upper bound of bracket number (4.4)
for finite state space proved in Appendix D.2. This proves Lemma G.2.
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H Technical Lemmas

H.1 Lemmas for Maximum Likelihood Estimator

In this section, we give technical lemmas for the maximum likelihood estimator. We firstly introduce
several notations which are also considered by [54] and [25], We define a localized model space
Ph(ϵ) as

Ph(ϵ) =
{
P ∈ PM,h : Edb

P⋆,h
[D2

Hellinger(P (·|s, a)∥P ⋆
h (·|s, a))] ≤ ϵ2

}
,

where DHellinger(·∥·) is the Hellinger distance between two probability measures, and PM,h is called
a modified space PM, defined as PM,h = {(P + P ⋆

h )/2 : P ∈ PM}. Also, we define the entropy
integral of Ph(ϵ) under the ∥ · ∥2,db

P⋆,h
-norm as

JB(ϵ,Ph(ϵ), ∥ · ∥2,db
P⋆,h

) = max

{
ϵ,

∫ ϵ

ϵ2/2

√
log(N[](u,Ph(ϵ), ∥ · ∥2,db

P⋆,h
))du

}
.

Lemma H.1 (MLE Gaurantee, [55]). Take a function Gh(ϵ) : [0, 1] → R s.t. Gh(ϵ) ≥
JB(ϵ,Ph(ϵ), ∥ · ∥2,db

P⋆,h
) and Gh(ϵ)/ϵ

2 non-increasing w.r.t ϵ. Then, letting ζh be a solution to
√
nϵ2 ≥ c0Gh(ϵ) w.r.t ϵ, where c0 is an absolute constant. With probability at least 1− δ, we have

that

Edb
P⋆,h

[∥P̂h(·|s, a)− P ⋆
h (·|s, a)∥21] ≤ c1

(
ζh +

√
log(c2/δ)/n

)2
.

Proof of Lemma H.1. We refer to Theorem 7.4 in [55] for a detailed proof.

Lemma H.2 (Choice of Gh(ϵ) and ζh in Lemma H.1). In Lemma H.1, we can choose Gh(ϵ) as

Gh(ϵ) = (ϵ− ϵ2/2)
√
log(N[](ϵ4/2,PM, ∥ · ∥1,∞)),

In this case, ζh = c0
√

log(N[](1/n2,PM, ∥ · ∥1,∞))/n solves the inequality
√
nϵ2 ≥ c0Gh(ϵ) w.r.t

ϵ.

Proof of Lemma H.2. We first check the conditions that Gh should satisfy. By the choice of Gh,

Gh(ϵ) = (ϵ− ϵ2/2)
√
log(N[](ϵ4/2,PM, ∥ · ∥1,∞))

≥ (ϵ− ϵ2/2)
√
log(N[](ϵ2/2,Ph(ϵ), ∥ · ∥2,db

P⋆,h
))

≥ max

{
ϵ,

∫ ϵ

ϵ2/2

√
log(N[](u,Ph(ϵ), ∥ · ∥2,db

P⋆,h
))du

}
= JB(ϵ,Ph(ϵ), ∥ · ∥2,db

P⋆,h
),

where the first inequality follows from Lemma H.6, the second inequality follows from the fact that
N[](u1,Ph(ϵ), ∥ · ∥2,db

P⋆,h
) ≥ N[](u2,Ph(ϵ), ∥ · ∥2,db

P⋆,h
) for u1 ≤ u2. In the second inequality we

assume without loss of generality that log(N[](ϵ
2/2,Ph(ϵ), ∥ · ∥2,db

P⋆,h
)) ≥ 4. Besides, since

Gh(ϵ)/ϵ
2 = (1/ϵ− 1/2)

√
log(N[](ϵ4/2,PM, ∥ · ∥1,∞))

is non-increasing w.r.t ϵ for ϵ ∈ [0, 1], we can confirm that Gh satisfy the conditions in Lemma H.1.
With this choice of Gh, the inequality

√
nϵ2 ≥ c0Gh(ϵ) reduces to

√
n ≥ c0(1/ϵ− 1/2)

√
log(N[](ϵ4/2,PM, ∥ · ∥1,∞)),

which equivalents to

ϵ ≥
c0
√
log(N[](ϵ4/2,PM, ∥ · ∥1,∞))

√
n+ c0

2

√
log(N[](ϵ4/2,PM, ∥ · ∥1,∞))

. (H.1)
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Taking ζh = c0
√
log(N[](1/n2,PM, ∥ · ∥1,∞))/n, when c0

√
log(N[](1/n2,PM, ∥ · ∥1,∞)) ≥ 21/4,

we can check that ζh satisfies the inequality (H.1) by,

ζh =
c0
√

log(N[](1/n2,PM, ∥ · ∥1,∞))
√
n

≥
c0

√
log(N[](ζ

2
h/2,PM, ∥ · ∥1,∞))

√
n+ c0

2

√
log(N[](ζ

2
h/2,PM, ∥ · ∥1,∞))

.

This finishes the proof of Lemma H.2.

H.2 Lemmas for Concentration Inequalities and Bracket Numbers

Lemma H.3 (Bernstein inequality I). For any step h ∈ [H], with probability at least 1− δ,

|EDh
[gh(P̂h)]− Edb

P⋆,h
[gh(P̂h)]| ≤

c1 log(c2N[](1/n
2,PM, ∥ · ∥1,∞)/δ)

n
.

Proof of Lemma H.3. Motivated by [54] and [25], to obtain a fast rate of convergence, we will utilize
the localization technique in proving concentration. To this end, we first define the following localized
realizable model space,

PLoc
M,h =

{
P ∈ PM : Edb

P⋆,h
[gh(P )] ≤

c′1 log(c
′
2N[](1/n

2,PM, ∥ · ∥1,∞)/δ)

n

}
,

where absolute constants c′1 and c′2 are specified in (G.4). According to the proof of (G.4), we know
that with probability at least 1− δ, the event E1 = {P̂h ∈ PLoc

M,h} holds. In the sequel, we will always
condition on the event E1. Now we define another function class as

Fh =
{
gh(P ) : P ∈ PLoc

M,h

}
.

Then applying Bernstein inequality with union bound (Lemma H.5) on the function class Fh, we can
obtain that with probability at least 1− δ, for any P ∈ PLoc

M,h, (denote M(ϵ) = N (ϵ,Fh, ∥ · ∥∞))

|EDh
[gh(P )]− Edb

P⋆,h
[gh(P )]| (H.2)

≤

√
2Vdb

P⋆,h
[gh(P )] log(M(ϵ)/δ)

n
+ 8

√
ϵ log(M(ϵ)/δ)

n
+

8 log(M(ϵ)/δ)

3n
+ 2ϵ

≤

√
8Edb

P⋆,h
[gh(P )] log(M(ϵ)/δ)

n
+ 8

√
ϵ log(M(ϵ)/δ)

n
+

8 log(M(ϵ)/δ)

3n
+ 2ϵ

≤
√
8c′1 log(c

′
2N[](1/n2,PM, ∥ · ∥1,∞)/δ) · log(M(ϵ)/δ)

n
+ 8

√
ϵ log(M(ϵ)/δ)

n

+
8 log(M(ϵ)/δ)

3n
+ 2ϵ,

where the first inequality follows from Lemma H.5, both the first and the second inequality use the
fact that supP∈PLoc

M,h
|gh(P )| ≤ 4, and the last inequality uses the definition of PLoc

M,h. If we denote

F ′
h = {gh(P ) : P ∈ PM} , (H.3)

we can upper bound the covering number M(ϵ) via the following sequence of inequalities,

M(ϵ) = N (ϵ,Fh, ∥ · ∥∞) ≤ N (ϵ,F ′
h, ∥ · ∥∞) ≤ N (ϵ,PM, ∥ · ∥1,∞) ≤ N[](ϵ,PM, ∥ · ∥1,∞),

(H.4)

where the first inequality follows from Fh ⊆ F ′
h, the second inequality can be easily derived from the

relationship between F ′
h and PM, and the last inequality follows from the fact that covering number

can be bounded by bracket number. Therefore, by combining (H.2) and (H.4), letting ϵ = 1/n2, we
can derive that, conditioning on E1 = {P̂h ∈ PLoc

M,h}, with probability at least 1− δ,

|EDh
[gh(P̂h)]− Edb

P⋆,h
[gh(P̂h)]| ≤

c1 log(c2N[](1/n
2,PM, ∥ · ∥1,∞)/δ)

n
,

for some absolute constant c1, c2 > 0. Finally, since the event E1 holds with probability at least
1− δ, by rescaling δ, we can finish the proof.
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Lemma H.4 (Bernstein inequality II). For any step h ∈ [H], with probability at least 1− δ,

|EDh
[gh(Ph)]− Edb

P⋆,h
[gh(Ph)]| ≤

c1 log(c2N[](1/n
2,PM, ∥ · ∥1,∞)/δ)

n
, ∀Ph ∈ P̂h.

Proof of Lemma H.4. According to the proof of (G.8), we know that the event E2 defined as

E2 =
{
EDh

[gh(Ph)] ≤ 4ξ, ∀Ph ∈ P̂h

}
holds with probability at least 1− δ/2. In the sequel, we always condition on the event E2. Now we
define a function class Gh as following,

Gh =
{
gh(Ph) : Ph ∈ P̂h

}
.

Applying Bernstein inequality with union bound (Lemma H.5) on the function class Gh, we can
obtain that with probability at least 1− δ, for any Ph ∈ P̂h, (denote M′(ϵ) = N (ϵ,Gh, ∥ · ∥∞))

|EDh
[gh(Ph)]− Edb

P⋆,h
[gh(Ph)]|

≤

√
2Vdb

P⋆,h
[gh(Ph)] log(M′(ϵ)/δ)

n
+ 8

√
ϵ log(M′(ϵ)/δ)

n
+

8 log(M′(ϵ)/δ)

3n
+ 2ϵ

≤

√
8Edb

P⋆,h
[gh(Ph)] log(M′(ϵ)/δ)

n
+ 8

√
ϵ log(M′(ϵ)/δ)

n
+

8 log(M′(ϵ)/δ)

3n
+ 2ϵ

≤

√
8(|Edb

P⋆,h
[gh(Ph)]− EDh

[gh(Ph)]|+ 4ξ) log(M′(ϵ)/δ)

n

+ 8

√
ϵ log(M′(ϵ)/δ)

n
+

8 log(M′(ϵ)/δ)

3n
+ 2ϵ, (H.5)

where the first inequality follows from Lemma H.5, both the first and the second inequality use the
fact that supPh∈P̂h

|gh(Ph)| ≤ 4, and the last inequality uses the definition of event E2. By using
the fact that the function class Gh ⊆ F ′

h where F ′
h is defined in (H.3) in the proof of Lemma H.3,

we can apply the same argument as (H.4) to derive that M′(ϵ) ≤ N[](ϵ,PM, ∥ · ∥1,∞). Thus taking
ϵ = 1/n2, denoting ∆h(Ph) = |EDh

[gh(Ph)]− Edb
P⋆,h

[gh(Ph)]|, we can derive from (H.5) that,

∆h(Ph) ≤
√

8(∆h(Ph) + 4ξ) log(N[](ϵ,PM, ∥ · ∥1,∞)/δ)

n

+ 8

√
log(N[](ϵ,PM, ∥ · ∥1,∞)/δ)

n3
+

8 log(N[](ϵ,PM, ∥ · ∥1,∞)/δ)

3n
+

2

n2

≤
√

8(∆h(Ph) + 4ξ) log(N[](ϵ,PM, ∥ · ∥1,∞)/δ)

n
+
c′1 log(N[](ϵ,PM, ∥ · ∥1,∞)/δ)

n

≤
√

8∆h(Ph) log(N[](ϵ,PM, ∥ · ∥1,∞)/δ)

n
+
c′′1 log(c

′′
2N[](ϵ,PM, ∥ · ∥1,∞)/δ)

n
, (H.6)

for some absolute constants c′1, c
′′
1 , c

′′
2 > 0, where in the last inequality we have applied the definition

of ξ. Now solving this quadratic inequality (H.6) w.r.t ∆h(Ph), we can obtain that,

∆h(Ph) ≤
c1 log(c2N[](ϵ,PM, ∥ · ∥1,∞)/δ)

n
,

for some absolute constants c1, c2 > 0. Thus we obtain that when conditioning on the event E2, with
probability at least 1− δ, for any Ph ∈ P̂h, the desired concentration inequality holds. Finally, since
E2 holds with probability at least 1− δ/2, by rescaling δ, we can finish the proof of Lemma H.4.

Lemma H.5 (Bernstein inequality with union bound). Consider a function class F ⊂ {f : X 7→ R},
where X is a probability space. If we assume that the ϵ-covering number of F under infinity-norm is
finite, that is, M = N (ϵ,F , ∥ · ∥∞) <∞, and we also assume that there exists an absolute constant
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R such that |f(X)| ≤ R, then with probability at least 1− δ the following inequality holds for all
f ∈ F ,∣∣∣∣∣ 1n

n∑
τ=1

f (Xτ )− E[f(X)]

∣∣∣∣∣ ≤ 2ϵ+

√
2V[f(X)] log(M/δ)

n
+ 4

√
Rϵ log(M/δ)

n
+

2R log(M/δ)

3n
,

where X,X1, . . . , Xn are i.i.d. samples on the probability space X .

Proof of Lemma H.5. We refer to Lemma F.1 in [25] for a detailed proof.

Lemma H.6 (Bracket number I). It holds for any ϵ ≥ 0 that

N[](ϵ, Ph(ϵ), ∥ · ∥2,db
P⋆,h

) ≤ N[](2ϵ
2,PM, ∥ · ∥1,∞).

Proof of Lemma H.6. We refer to Lemma G.2 in [25] for a detailed proof.

H.3 Lemmas for Dual Variables

Lemma H.7 (Dual variable for KL-divergence). The optimal solution to the following optimization
problem

λ⋆ = argsup
λ∈R+

{
−λ log

(∫
exp {−f(x)/λ}P (dx)

)
− λσ

}
,

with ∥f∥∞ ≤ H and some probability measure P satisfies that λ⋆ ≤ H/σ.

Proof of Lemma H.7. For simplicity, denote by g(λ) = −λ log
(∫

exp {−f(x)/λ}P (dx)
)
− λσ.

Notice that g(0) = 0, and for λ > H/σ, due to ∥f∥∞ ≤ H , we have that

g(λ) < −λ log(exp{−H/(H/σ)})− λσ = λσ − λσ = 0.

Thus we can conclude that λ⋆ ≤ H/σ.

Lemma H.8 (Dual variable for TV-distance). The optimal solution to the following optimization
problem

λ⋆ = argsup
λ∈R

{
−
∫
(λ− f(x))+P (dx)−

σ

2
(λ− inf

x
f(x))+ + λ

}
.

with ∥f∥∞ ≤ H and some probability measure P satisfies that 0 ≤ λ⋆ ≤ H .

Proof of Lemma H.8. For simplicity, denote g(λ) = −
∫
(λ−f(x))+P (dx)− σ

2 (λ−infx f(x))++λ.
We can observe that g(0) = 0, and g(λ) ≤ 0 for λ ≤ 0. Thus we have shown that λ⋆ ≥ 0. Also, for
λ ≥ H , due to ∥f∥∞ ≤ H , we can write g(λ) as

g(λ) = −
∫
λ− f(x)P (dx)− σ

2
(λ− inf

x
f(x)) + λ

=

∫
f(x)P (dx) +

σ

2
inf
x
f(x)− σ

2
λ,

which is a monotonically decreasing function with respect to λ. Thus we prove that λ⋆ ≤ H .
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