A Discussions

In this section, we are going to discuss: some other types of robust MDPs appearing in existing works,
including d-rectangular robust linear MDPs [29] and RMDPs with S-rectangular robust sets [61], see
Section A.1 and A.2 respectively.

A.1 d-rectangular robust linear MDPs

Recently [29] proposed the d-rectangular robust linear MDP to study offline robust RL with linear
structures. We use the following example to show how a d-rectangular robust linear MDP is
represented by our general framework of RMDP.

Example A.1 (d-rectangular robust linear MDP [29]). A d-rectangular robust linear MDP is equipped
with d-rectangular robust sets. Linear MDP is an MDP that enjoys a d-dimensional linear decompo-
sition of its reward function and transition kernel [15]. We define the model space Py as

Pyt = {P(s’|s,a) — p(s,a)Tp(s)) : () € AS), Vi € [d]},

where ¢ : S x A+ R? is a known feature mapping satisfying that
d
> ¢i(s,a) =1, @i(s,a) >0, Vield].
i=1

We then assume that P (s'|s,a) = ¢(s,a)" p*(s') € P, and Ry, (s,a) = ¢(s,a)' 6y, for some
), € R with ||0y||2 < Vd. We define the mapping ® as

d
P) = {Z¢i(87a)ﬁi(5’) () € A(S), D(u()lpa(-) < p, Vi € [d]} :

This is called a d-rectangular robust set and is first considered by [29]. As is argued in [29], d-
rectangular robust set is not so conservative as S x A-rectangular robust set in certain cases, which
is more natural for linear MDPs due to the special linear structure.

While not satisfying Assumption 2.2 (S x A-rectangular robust sets), it can be proved that RMDP
in Example A.1 also satisfies the robust Bellman equation in Proposition 2.3 (similar to the proof
in Appendix B for S x A-rectangular robust MDPs). Our algorithm P2MPQ (Algorithm 1) can also
be applied to offline solve robust RL with RMDP in Example A.1, under certain partial coverage
assumption (Assumption A.2).

Model estimation. In the following, we give a specific implementation of the model estimation
step for RMDPs in Example A.1, and we provide theoretical guarantees for this specification of our
algorithm P2MPQ. Suppose we are given a function class V C {v : S + [0, 1]} which depends on the
choice of distance D(+||-) of the robust set. Then, we define that

Ph =
UEV n

where £ > 0 is a tuning parameter that controls the size of the confidence region, and the vector 5,,
depends on the specific function v € V), given by

|8h7 a‘h ( ) d)(S;) a;)TO’U

2
S§}7 (A.D)

n

n 1 T T T 2 @
01} = argmin — Z (d)(sha ah)Ta - U(Sthl)) + E ) ||0||%

n
OcR4 —1

1 n
= A (n Zcb(s;,a;)v(sm) : (A2)
T=1

for some tuning parameter o > 0, where Ay, ,, is the regularized covariance matrix, defined as
1 — o
T
= E Z d)(s;a a;)d)(s;v a‘ll;) + 5 : Id'
=1

Similar constructions for standard linear MDPs are also considered by [51, 34, 54]. We will specify
the choice of the function class V in the theoretical guarantees of this implementation.
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Suboptimality analysis. In the following, we provide suboptimality bounds for the above imple-
mentation of P2MPOQ for d-rectangular robust linear MDP. Regarding the offline data, we impose the
following robust partial coverage assumption.

ATssumption A.2 (Robust partial coverage covariance matrix). We assume that for some constant
c' >0,
@
Apo = -~ Iy+ct Eig, anymarns, [(Di(shy an)1i)(i(sn, an)1;) '] (A.3)
foranyi € [d], h € [H|, and P, € ®(P}).

Theorem A.3 (Suboptimality of P2MPO: d-rectangular robust linear MDP). Suppose that the RMDP
is d-rectangular robust linear MDP in Example A.1 with D(-||-) being KL-divergence or TV-distance
and that Assumption A.2 holds, choosing the tuning parameter o = 1 in (A.2).

& when D(-||-) is KL-divergence and Assumption F.1 holds with parameter )\, then by setting

v = {uts) = exp (~magots.0)Tw/A) < e < HV A€ 1/l

and

‘= C1d?(log(1 + ConH/S) + log(1 + CsndH/(pA?)))

n
for some constants Cy,Cy, Cs > 0, it holds with probability at least 1 — 20 that,

SubOpt(7; s1)

< d*H?exp(H/A) \/C’{(log(l + CynH/8) + log(1 + CindH/(pA?)))
ctp n '

& when D(-||-) is TV-distance, then by setting
V= {U(s) = <)\ - maj‘(qb(s,a)T'w) wlle < HVd, N € [O,H]} ,
ac +
and
¢ = C1d?H? log(CondH /6)

n
for some constants C1,Cy > 0, it holds with probability at least 1 — 2§ that,

~ d*H? C} log(CindH /o
SubOPH(F: 1) < LA ¢ tlog(CandH}9)
c n
Here c is from Assumption A.2 and C, C4, C% > 0 are universal constants.

Proof of Theorem A.3. See Appendix F for a detailed proof. O

A.2 RMDPs with S-rectangular robust sets

Besides S x A-rectangular, there exists another type of generic rectangular assumption on robust
sets called S-rectangular [61, 67]. See the following assumption.

Assumption A.4 (S-rectangular robust sets [61]). An S-rectangular robust MDP is equipped with
S-rectangular robust sets. The mapping ® is defined as, for VP € Py,

(P) = QPpl(si P), Ppls; P) = {ﬁ(-l-) : A A(S) 0 ) D(P([a)||P(]s,a)) < pIAI} ;

seS acA
for some (pseudo-)distance D(-||-) on A(S) and some real number p € R

RMDP with S-rectangular robust sets (Assumption A.4) also satisfies Proposition 2.3 [61]. Unfor-
tunately, our algorithm framework is unable to deal with this kind of rectangular robust sets in the
context of partial coverage data due to some technical problems in applying the partial coverage
coefficient (Assumption 3.3) under this kind of robust sets. To our best knowledge, how to design
provably efficient algorithms for S-rectangular RMDP with partial coverage data is still unknown. It
is an exciting future work to fill this gap for robust offline reinforcement learning.
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B Proof of Robust Bellman Equation

Proof of Proposition 2.3 for S x A-rectangular robust MDP. Instead of directly proving the robust
Bellman equation (2.5), we prove the following stronger results via induction from step h = H to 1:
there exists a set of transition kernels P™1 = {P,;T’T}le with P,TLF’T € ®(Py,) such that

1. Robust Bellman equation holds, i.e.,

V}:P,@(S) = Ea’\"ﬂ'h('ls) [QZ,P,@(S» a)l,

Qhpa(s,a)=Ru(s,a)+ _inf E, 5 Vil pa(s))
PpLe®(Py)

2. The following expressions for robust value functions hold,

Virpa(s) = Vir(s; {PTYL,),
QZ7P7‘1’(57 a’) = QZ(Sa a; {szT}zI—I:h)

Firstly, for step h = H, the conclusion 1. and 2. hold directly because no transitions are involved.
Now supposing that the conclusion 1. and 2. hold for some step h + 1, which means that there exist

transition kernels { Pf’T} 7, 1 such that the following condition hold for any s € S,

Vit1,pa(s) = Vi (s; {Piﬁ’T}{ih-&-l)' (B.1)

By the definition of robust value function Q p & in (2.2), we can derive that for any (s, a) € S x A,

H
Qnpae(s,a)=_  inf Epyn, Z&(%m)

Pic®(P,),h<i<H

s

sh:s7ah:a]

i=h
~ H
= Rp(s,a) + inf /P ds'ls,a)E, 5 Ri(si,ai)|snss = o'
n(s,a) Pe®(P),h<i<H Js n(ds'ls, a) {PYL, o L_Zh;‘_l ( )| Sh+1
~ H
< Rp(s,a) + _ inf /Ph(ds’|s,a)E ot . Ri(siyai)|snet = 8| .
PLe®(Py)JS P }1{{:)14»17 i:zh_:pl

(B.2)

On the one hand, for § x A-rectangular robust MDP, the robust set ® (P, ) is decoupled for different
(s, a) pairs, i.e.,

®(P) = ® P,(s,a; Pr),
(s,a)eSxA

and therefore we can find a single transition kernel P, T such that for any (s,a) € S x A,

H
Pri(]s,a) = _arginf /P(d5'|57a)E{p;=f}zgh+lm [ Z Ri(siya;)|sh+1 = 8/1 . (B3)
PLEe®(Py) VS = i=h+1

On the other hand, using condition (B.1) and the definition of (robust) value function V,Zr P& and V;©
in (2.1) and (2.3), we can also deduce that,

Qh,pa(s,a) < Ru(s,a) + _ inf )/ﬁh(dS’lsva)Vhﬁl(S’;{Pf’f}fihﬂ)
S

PLe® (P,

= Rp(s,a) + _ inf / ﬁh(ds’|s,a)Vhﬂ+l_P¢(s') (B.4)
P,e®(Pn)JS Y

= Rp(s,a) +  inf / ]Sh(ds’|s7a) B inf Vi (s {f’i}fihﬂ)
Prc®(Py) Js B,c®(P,),h+1<i<H

< Ru(s,a)+ i / Bu(ds s, a) Vo (8 (B, (B.5)
Be®(P;),h<i<H JS
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where the first inequality follows from inequality (B.2) and the definition of V;7 ; in (2.3), the
first equality follows from condition (B.1), and the second equality follows from the definition of
Viti1 p.a in (2.1). Note that the right hand side of (B.5) equals to QF p 4(s,a). Therefore, all the
inequalities are actually equalities. On the one hand, from (B.4), we can know that,

QF po(s.a) = Ru(s,a) + _ inf / Bu(ds']s, a) Vi pa(s).
Ph,€<I>(Ph,) S

This proves the Q} p g part of the conclusion 1. for step . On the other hand, by combining (B.3)
and (B.2), one can further obtain that,

H

> Ri(si, ai)
i=h

™ _
Qh.pa(s,a) = E{Pi"’f}{'l T

Sp = S8,ap = a] = Q} (s, q; {Pi”’T}f{:h). (B.6)

This proves the existence of {PZ-”’T}f: », in the conclusion 2. for step h and Q] p g The remaining of

the proof is to prove the V} 5 part of the conclusion 1. and 2. for step % using {PZT’T}fi ;, found in
the previous proof. Specifically, by the definition of V" p 4 in (2.1), we have that,

H
> Ri(si,ai)|sn = 8]
i=h

T — 3 ~
Vh,P,@(S) = _ inf ) E{Pq}H,, -
Pic®(P),h<i<H i=h

H
= inf mn(als)E, = R;(si,a;)|sn = s,ap = a
ﬁiG@(Pi),ngigH(;A n(al9)E pyn, - ; (53, i) s h ]
H
< .y (85, a5)|sn = =al.
< Zﬂh(a|s)E{Pi AyH ZRz(sz,az) sp =8, ap a] (B.7)
a€A i=h
Now applying (B.6) to (B.7), we can further obtain that
Vipa(s) < Z mh(als)Qh pa(s, a) (B.8)
aceA
H
= Z 7h(als) inf E{E}H N ZRi(si,ai) Sp = S8,ap = a}
oA P,e®(P;),h<i<H =t
< inf Z wh(a|s)E{1;_}H . ZRi(si,ai) sp=8,an,=al|, (B.9)
PiE‘I’(Pi),hSiSHaeA tli=h? i—h

where the equality follows from the definition of ()} p g in (2.2). Now note that the right hand side
of (B.9) equals to V" . Therefore, all the inequalities are actually equalities. On the one hand, by
(B.8), we know that,

Vi pa(s) = Z mn(als)Q pa(s,a). (B.10)
acA

This proves the V", 4 part of the conclusion 1. for step /. On the other hand, by combining (B.10)
with (B.6), we can further deduce that,
Sp = ;| .

This proves the V," , 5 part of the conclusion 2. for step h. Finally, by using an induction argument,
we can finish the proof of the conclusion 1. and 2.

H

ZRi(Si,ai)

i=h

Vipa(s) = E{P;*T}H x

i=h>

Now according to the conclusion 1., we have that

V}:P@(S) = EaNWh(.|S)[Rh(S,a)] + Eanrn(ls) l~ inf Es’wlsh(~|s,a) [Wf+17p7¢(8/)] . (B.11)
P}LEQ(P;L)
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By the conclusion 2. and the definition of P,?’T in (B.3), we can obtain from (B.11) that

Vhﬂ,P,‘I’(S) = anﬂh('|s)[Rh(s7 a)] + anﬂh,('\S),s’~P:’T('\s,a) [VfZTJrl,P,‘P(s/)]

=Equn (1s)[Br(s,a)]+ inf E B Vi s')].
armn(-|s) [B2n (s, @)] BLca(Py) armn(]s),s Nph(.|s,a)[ h+1,P,<I>( )]

This finishes the proof of Proposition 2.3 under Assumption 2.2. O

C Proof of Main Theoretical Result (Theorem 3.4)

In this section, we prove Theorem 3.4. Let £ T denote the event that both Condition 3.1 and 3.2 hold,
which happens with probability at least 1 — 26. In the following, we always assume that £ holds.

Proof of Theorem 3.4. By the definition of SubOpt(7; s) in (2.11), we have that
SubOpt(7; s1) = foz*v*,é(sl) - VfA,FP*,q»(Sl)

= Wpea(s1) — inf VTpg(s1)+ inf Vi'pa(s1) — Vi'ps a(s51)

pPeP PeP

< Vf,r;*,@(Sl) — inf Vf,r};,@(sl) + inf VfTP,@(Sl) - V17A,FP*,<1>(51) (C.1
PeP PeP

< Vipe a(s1) — inf Vi g(s1) (C2)
PeP

= sup {Vl’f;;*ﬁ,(sl) — Vlf;@(sl)}. (C.3)

PeP

Here (C.1) follows from our choice of 7 in (3.2), and (C.2) follows from Condition 3.1. In the sequel,
we present the upper bound on the right hand side of (C.3). For notational simplicity, for any P in

the confidence region P and any step h € [H|, we denote that
Anpa(sn.an) = QF pe o (sh,an) — QF pg(sh, an). (C4)
Using the robust Bellman equation in Proposition 2.3, we can derive that

Ay pa(Sh,an)

* *

_ s - ™ !/ _ : . ™ /
B ﬁhelgfpm]Eslwph("sh’“h)[VhH’P*’@(s ) ﬁhelgfpwES’NPh(-Iswh)[Vh+1,P,<I>(S )
_ ; _ 7 ny _ : _ ™ /
= Phelgfpﬁ)]Eswph(-\sh,ah)[Vh+1,P*,q>(5 )] ﬁhelgfpﬁ)Eswph(-\smam[Vh+1,P,<1>(5 )]
Term (i)
: _ m* N : _ T /
+ ﬁhelng,:) ES/Nph(.mah)[Vh+1,P,<I>(5 ) ﬁhelgfph) ]ES/NPh(.‘Sh’ah)[‘/IL+1,P,<I>(5 )]
Term (ii)

Term (i). For the term (i), considering denote that

Pit= arginf B 5 10 Viiipe(s)], V(s,a)€SxA €5
Bued(p})

This notation is consistent with the notation of P,;T T in (B.3) in the proof of Proposition 2.3 (robust
Bellman equation). It is because Assumption 2.2 (S x A-rectangular robust set) that we can choose a

single transition kernel P,’; 1 that satisfies (C.5) for each (s, a)-pair. Using the definition of P;LT ’ ’T,
we observe that the following two relationships hold for any state (s, ar) € S,

_ inf ES’NIS;L('IS}L»G}L)[VJ+17P*7‘I>(S/)] < ES'NP;*’T('ISh,ah)[V}ZT‘FLP*,*I’(S/)]’
h

*

_ inf Eswﬁh(.bh,ah)[V}ZT+1,P,<I>(3/)] = ES'NP;***(<|sh,,ah,)[szil,P,@(S/)]'
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Using these two observations, we can upper bound the term (i) as

*

Term (i) < ES/NP:*«THS}HG}L)[Vhw+1,P*,~I>(5/)] - ES/NP}T*#(.‘S}HG,L)[Vhﬂ+1,P,<I>(5l)]
=E Apir,pa(s’,d)], (C.6)

8’~P,f*’T(-ISh,ah)ya’~ﬂ;+1(~|8’)[

where in the equality we use the robust Bellman equation (Proposition 2.3).

Term (ii). For the term (ii), currently we simply denote this term by Asi; q, (sh,ap). Combining
this with (C.6), we can derive that,
Ay p & (sh,ar) = Term (i) + Term (ii)

<E ConBnipa(sa)] + A g (snan). (€

*
S/NP;T Y1‘('|Sh73}1)711/’\‘7"';*,_;_1

By recursively applying (C.7) and then plugging in the definition of A;L";D &> We can obtain that

H
Eaymori Clon[A1,pa(51,a1)] < DBy, ayears, (D1 pg(sn an)]
1 Jh

>
Il

*

I
M=

E - inf E_, 5 Vi (s")]
: ~dT* - "By (- O Vht1,Pe
—~ (snsan)~do, o Prea(py) ° Pp(-[sn,an)t” bt
— _inf E, 5. Viier,pa(s)] (C.8)
I3he<I>(Ph) s'~Pp(+|sp,an) +1,P, ’
where d}r;,,*’T ,, 1s the state action visitation distribution induced by the transition kernels Pt =

{P; *’T}thl and the policy 7*. Now we bound the right hand side of (C.8) using Condition 3.2. By
Cauchy-Schwartz inequality, we have that for each h € [H],

E . [ inf E_, 5 Vi pa(s))—  inf E, 5 Vi pa(s)]
L s@p, )~ d™ ~ s/~ P, (+|sh,an h+1,P,® ~ s/~ Py, (*|sn,an h+1,P,®
(smoan)~di w4 Poea(pr) ° h(-[Sh,an) Boea(py) h(-[sh,an)

d;;*’f7ll(8h7ah)

=E b
(sh,an)~dy

. ( inf Es/Nﬁh(,|Sh7ah)[V}Zr-i-l,P,@(s’ﬂ

b ~
dp p(sn,an) Pre®(Py)

— inf E_, 3 Vi s'>
T B )]

ar, (sn,an) 2

T, hyWh

E b Pt h TR . \/EI‘I‘E (n), (C.9
(sn,an)~dps ),

dgb*,h(sh’ ah)

<

where the last inequality follows from Condition 3.2. Furthermore, by Assumption 3.3, we know that

* 2 *
d;n—*‘f h(shaah) dT};h(shaah)

E(sh‘ah)r\zd”& b , < sup E(Shyah)’\‘dwi wb,
’ P*h dp. (sn,an) P={P,}[_ . P,e®(P}) Prn |\ dpe (80, an)

S O;;*,dﬂ

where C%. 4 is defined in Assumption 3.3. Applying this to (C.8) and (C.9), we can derive that

H
sup {ViTp @ (1) = ViTpa(s1) } = Sup (B, (o) [Arpa(s1,1)]} < /Cp - D 4/ Enift (n).
pPeP h=1

PecP

Finally, by inequality (C.3), we finish the proof of Theorem 3.4. O
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D Proofs for General RMDPs with S x A-rectangular Robust Sets

Proof of Corollary 4.1. We first introduce the following proposition, which shows that the model
estimation step (4.2) satisfies Condition 3.1 and Condition 3.2.

Proposition D.1 (Guarantees for model estimation). Under Assumption 2.2, choosing the (pseudo)
distance D(-||-) as KL-divergence or TV-distance, setting the tuning parameter £ as

- C11og(CoHN(1/n?, P, || - [11,00)/9)
n )
for some constants C1,Cy > 0, then Condition 3.1 and 3.2 are satisfied respectively by,

& when D(-||-) is KL-divergence and Assumption D.3 (See Appendix D.1) holds with parameter )\,
Err¥ (n, 8) is given by

C1log(CLHNy(1/n2, P, || - 1l1,00) /0
L L (S e S T RS )
: P "
& when D(-||-) is TV-distance, Exry (n,8) is given by

C1 log(CLHN(1/n2, P, || - 11,00) /6
\/Err;ﬁTv(n,é):H-\/ 1 108(C5 HN ( /Z 0 V)

Here ¢, C1, C > 0 stand for three universal constants.

Proof of Proposition D.1. See Appendix D.1 for a detailed proof. O
By Combing Proposition D.1 and Theorem 3.4, we can obtain Corollary 4.1. O

D.1 Proof of Proposition D.1

Lemma D.2 (Duality for KL-robust set). The following duality for KL-robust set holds,

Q(~)1DKL(Cj121(1-f;HQ*(~))SU/f(I)Q(dz) B Aseuﬂgr {—/\log (/ e {=f @)/} Q*(dx)) - )\G} .

Proof of Lemma D.2. See [12, 68] for a detailed proof. [

Assumption D.3 (Regularity of KL-divergence duality variable). We assume that the optimal dual
variable \* for the following optimization problem

ey {—Mog (Eswph(.|sh,ah> [exp {—Vh’il,g,¢(8’)/AH) - /\p} ,
s

is lower bounded by \ > 0 for any transition kernels P, € Py, Q = {Qn}L, C Py, and step
h € [H].
Lemma D.4 (Duality for TV-robust set). The following duality for TV-robust set holds,

Q<~>:DTV<2213-f>HQ*<->>so/ﬂx)Q(dw) e { /(A ~ f@)+Q7(dw) = 5 (A ~inf f(@))+ + A} '

Proof of Lemma D.4. See [68] for a detailed proof. O

Proof of Proposition D.1 with KL-divergence. Firstly, by invoking the first conclusion of Lemma
G.1, we know that the Condition 3.1 holds. In the following, we prove the Condition 3.2. By applying
the dual formulation of the KL-robust set (Lemma D.2), we can derive that

inf. E, = Vv = inf E, > Vv s’
From(Pi) SNph(.|5h7ah)[ i1, pa(s)] Bren(ry) SNph(.\sh,ah)[ i1, pe(s)]

=sup {2108 (Earpyponany [exp { ~Virtrpa(s)/A}]) = Ao}

—sup {108 (Eaop, (oo [ex0 { Vi1 pa(s)/A}]) =20} @D
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By Assumption D.3 and Lemma H.7, we know that the optimal value of A for both two optimization
problems in (D.1) lies in [\, H/p] for some A > 0. Thus we can further upper bound the right hand
side of (D.1) as

(D.1) = Aﬁiirl){/p {—/\log (]ESINP};(‘H,L@,L) [exp {*Vhﬂ-}tl,P,Q(S/)/A}}> - AP}

_ A<§1£1/p {—)\log (Es'~P,,,(~|sh.,ah) [exp {_Vhﬂ;I,P,é(sl)/)\}]) — Ap}

Eg Py, (1sn.an) [exp{—Vh’:LP@(s’)/)\}
< sup Alog
A<SA<H/p Eg/npr(|sn.an) [exp{—V,f+17P7(I,(s’)/)\}
x

where in the second inequality we use the basic fact that sup,, f(z)—sup,, g(z)
Now we work on the right hand side of (D.2) and obtain that

(ES/NPh,(‘lshyahr) - ES/NP;f(‘|Sh7ah,)) [exp {_V}ZT-;LP,Q(SI)/)‘}}
(D.2) = sup Aog | 1+
ASA<H/p Es Py (-15n,an) [exp {*Vif-s-LP,@(s/)/)\H
(ESINPh("Sh,ah) - Es’~P;f('\Sh,ah)> [exp {_szilypﬁ’(sl)/)\}}
< sup A-

ASA<Hp Eg P (snan) [exp {—Vhﬂil,P@(S')/)\H

} , (D.2)
}
<

sup,{f(z)—g(z)}.

(D.3)

where we use the fact of log(1 + z) < z in the second inequality. Now we can further bound the
right hand side of (D.3) by

(D.3) < Hexpp(H/)\) . ’(Es/wPh(~|sh,ah) - ]ES'NP}:(~|S;L,(L},)> [exp {_Vhﬂ+1,P,<I>(s/)/)‘}]‘
< He’q)p(H/A) . /S |PL(ds'[sn, an) — Py (ds'|sn, an)|
= SR i Csnsan) = P Clsnsan) v ®4)
Thus by combining (D.1), (D.2), (D.3), and (D.4) we obtain that
ﬁheiggp,;) Esrwﬁh(.‘sh,ah)[Vhﬂ+*1,P,<1>(sl)] - ﬁhei(ril’f(.Ph) B B lsnan) [ViZTJ:LP,@(S/)]

Hexp(H/A .
< SR 1) = P Clsns ) . ®3)
By using a same argument for deriving (D.5), we can also obtain that

inf E_, 3 7 s))— inf E, 5 |74 s
o B o Ve (0] = 00 By [ ()
Hexp(H/A
< P 1y lsnean) — Py Clsns ) v, ®6)

Therefore, due to (D.5) and (D.6), we can finally arrive at the following upper bound,

2
E b inf E, = Vv HN— inf E, 5 7 s
(shyan)~dE. <ﬁ}L€*I>(Ph) SNPh(‘lSh,,U.h’)[ h+1,P,¢'( )] Ighe*i(P,;) SNPh('lsh,yah,)[ h+17p7q>( )])

H2 exp(2H/A X
< HTOPCH) g P (fsnan) — P Clsnsan)v) (D.7)
p (sn,an)~dps ),

By invoking the second conclusion of Lemma G.1, we have that with probability at least 1 — §,
_ Cilog(CoHN(1/n?, Pa || - 11,00)/9)

sz, 1P Clsnsan) = PiClonsan)fBy] < - ,
(D.8)
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for some absolute constant C, C% > 0. Now combining (D.7) and (D.8), we have that

® Hexp(H/))  [Cilog(CoHN(1/n?, P, || - [[1,00)/9)
Erry gy, (n) = : .
p n
This finishes the proof of Proposition D.1 under KL-divergence. O

Proof of Proposition D.1 with TV-distance. Firstly, by invoking the first conclusion of Lemma G.1,
we know that the Condition 3.1 holds. In the following, we prove the Condition 3.2. By applying the
dual formulation of the TV-robust set (Lemma D.4), we can similarly derive that

* *

inf E, s v s — inf E_, 5 v s’
From(pr) SNPh(.|3h’ah)[ i1, pe(s)] Bren(ry) SNPh(.\Sh,ah)[ i1.pe(s)]

* P . T*
sup {ES/NPJ(-IS;L,(“L) {(/\ - Vh+1,P,<1>(5/)>J 5 <)\ — inf Vh+1,P,<I>(s//)> + A}

AER s"’eS

. —Forpr (e </\f ™ ) O A ONESY
ilelg{ Py (-Isn,an) { Vi1, pa(s) . 5 St Vik1.pa(s”) | +

D.9)
sup { (ES/NP;f('\Sh,ah) - ES/"’Ph('ISh,ﬂ«h)) |:<)‘ - V}fﬂtl,P,Q(S/))+:| }‘ (D.10)

A€R

<

As is shown in Lemma H.8, the optimal value of A for both two optimization problems in (D.9) lies
in [0, H]. Thus we can further upper bound the right hand side of (D.10) as

(D.10) < H - [|Pu(-|sn, an) — Py (“|sn, an)||ITv. (D.11)

By applying the second conclusion of Lemma G.1, we conclude that with probability at least 1 — 6,

*

2
E b inf E_, = Vi = inf E, 5 Vv s’
(Sh:ah)’\’dp*,h <}3h€‘1’(Ph) s NP}L('lsluaiz)[ h+1aP7‘I>( )] ﬁhecb(P}:) s NP’L(‘lshvah)[ h+1,P,<I>( )]>

<H?-Ey, g UPaClsnan) = BiClsn,an)fy]
’ P*.h

_ CLH?1og(CL N (1/n%, P | - 1.00)/9)

(D.12)
n
Therefore, it suffices to choose ErriTV(n) as
C1 log(CLHN[ (1/n?, P, || - |11,00) /0
o) = 1 . CLoBCNO 2 Pos T o)1)
’ n
This finishes the proof of Proposition D.1 under TV-distance. O

D.2 Proofs for S x A-rectangular Robust Tabular MDP (Equation (4.4))

The model class Py can be considered as a subspace of F = {f(s,a, ') : || flleo < 1} with finite S
and A. Consider the collection of brackets B containing brackets in the form of [g, g + 1/n?%], where
g(s,a,s") € {0,1/n%,2/n? -, (n? — 1)/n?}. Then we can see that 3 is actually a 1/n?-bracket
of F. Thus we know that the bracket number of Py is bounded by,

Ny (1/n2, P, || - [l100) < Nj(1/02, Fas | - [loo) < |B] < 29T
This finishes the proof of (4.4).
D.3 S x A-rectangular Robust MDPs with Kernel Function Approximations
D.3.1 A Basic Review of Reproducing Kernel Hilbert Space

We briefly review the basic knowledge of a reproducing kernel Hilbert space (RKHS). We say H is a
RKHS on a set ) with the reproducing kernel K : ) x ) — R if its inner product (-, )4 satisfies,
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forany f € H and y € Y, we have that f(y) = (f, K(y,))n. The mapping K(y,-) : Y — H is
called the feature mapping of H, denoted by ¥ (y) : J — H.

When the reproducing kernel C is continuous, symmetric, and positive definite, Mercer’s theorem
[50] says that K has the following representation,

j=1

where ¢; : Y — Rand {{/); - ¢, 5=, forms an orthonormal basis of H with Ay > Ay > --- > 0.
Also, the feature mapping ) (y) can be represented as

+oo
Y(y) =D M)y, Vye.
j=1

D.3.2 Bracket Number of Kernel Function Model Class and Suboptimality of Algorithm 1

For kernel function approximations via RKHS, our theoretical results rely on the following regularity
assumptions on the RKHS involved in Example 2.7, which is commonly adopted in kernel function
approximation literature for RL [70, 4, 23]. Specifically, the kernel IC can be decomposed as
K(z,y) = Y12 At (@) (y) for some {\; 1125 € Rand {; : X — R} with X = SxAxS
(See Appendix D.3 for details). Our assumption on X is summarized in the following.
Assumption D.5 (Regularity of RKHS). We assume that the kernel IC of the RKHS satisfies that:

1. (Boundedness) It holds that |KC(z,y)| < 1, |¢;(z)| <1, and |\;| < 1foranyj € Ny, z,y € X.

2. (Eigenvalue decay) There exists some v € (0,1/2), C1,Ca > 0 such that |\j| < Cq exp(—Caj57)
forany 3 € N4.

Under Assumption D.5, we can upper bound the bracket number /\/ﬂ of the realizable model space
‘Pum defined in (2.7) as (see Appendix D.3.3 for a proof),

log(N (1/n?, Pu, || - l1,00)) < Cx - 1/7 - log?(1/7) 1og 7 (nvol(8)Bk), (D.13)

where Cx > 0 is an absolute constant, Vo1(S) is the measure of the state space S, and By is defined
in Example 2.7. Combining (D.13) and Corollary 4.1, we can conclude that: i) under TV-distance the
suboptimality of P2MPO for S x A-rectangular robust MDPs with kernel function approximations is,

SubOpt(7;51) < O (H2 log(1/7) \/05*74, /7 - log 7 (nHV01(S)/6) /n> , (D.14)

and ii) under KL-divergence the suboptimality of P2MPO for S x A-rectangular robust MDPs with
kernel function approximations is,

SubOpt(7;s1) < O <H2 exp(H/A) 10g(1/7)/p¢0**7@/y : log1+1/"’(nHVol(8)/5)/n> .
(D.15)
D.3.3 Proof of Equation (D.13)

We invoke the following lemma to bound the bracket number of Py; in Example 2.7.

Lemma D.6 (Bracket number of kernel function class [25]). Under Assumption D.5, the bracket
number of Pyt given by

Py = {P(s'|s,a) = <’¢'(S,G/,S/),f>ﬂ : .f € H? ||fHH < BK}
is bounded by, for any € > 0,

log(N (&, Pats || - [l1,00)) < Cic - 1/ -1og®(1/) - log' ™1/ (Vo1(S) By /e).
Proof of Lemma D.6. We refer to Lemma B.11 in [25] for a detailed proof. O

By taking € = 1/n? in Lemma D.6, we can finish the proof of (D.13).
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D4 S x A-rectangular Robust MDPs with Neural Function Approximations

For neural function approximations, we borrow the tool of neural tangent kernel (NTK [14]), which
relates overparameterized neural networks (2.8) to kernel function approximations.

To this end, given the neural network (2.8), we define its NTK Kyt : X X X — R as
Kxrk(z,y) == VwNN(z, W°,a°) TVwNN(y, W%, a%), Vaz,ycX.  (D.16)

Assumption D.7 (Regularity of Neural Tangent Kernel). We assume that the neural tangent kernel
Kntk defined in (D.16) satisfies Assumption D.5 with constant yx € (0,1/2).

This assumption on the spectral perspective of NTK is justified by [67]. As we prove in Appendix
D.4.1, when the number of hidden units is large enough, i.e., overparameterized, the neural network
is well approximated by its linear expansion at initialization (Lemma D.8), where we can apply the
tool of NTK. Under Assumption D.7, the bracket number /\/H of Py defined in (2.9) is bounded by

(see Appendix D.4.2 for a proof), for number of hidden units m > dyn* By,
log(NV(1/n2, Pat, || - [|1,00)) < O - 1/9x - log?(1/x) - log" ™/ (nV01(S)By),  (D.17)

where Cy > 0 is an absolute constant, yn € (0,1/2) is specified in Assumption D.7, and By
is defined in Example 2.8. Combining (D.17) and Corollary 4.1, we can conclude that, in the
overparameterized paradigm, i.e., m > dyn*By: i) under TV-distance the suboptimality of P2MPO
for S x A-rectangular robust MDPs with neural function approximations is,

SubOpt(7;51) < O <H2 log(l/’yN)\/Cl*:*@/’YN log! T/ (nHVol(S)/é)/n) ,  (D.18)

and ii) under KL-divergence the suboptimality of P2MPO for S x A-rectangular robust MDPs with
kernel function approximations is,

SubOpt(7; s1) < O <H2 exp(H/\) log(l/'yN)/p\/C**’q,/vN -log! 1/~ (nHVol(S)/é)/n) .
(D.19)

D.4.1 Neural Tangent Kernel and Implicit Linearization

We consider the overparameterized paradigm of the neural network (2.8) in the sense that the neural
network is very wide, i.e., the number of hidden units m is large. The following lemma shows that in
this paradigm, neural networks in Py; are well approximated by a linear expansion at initialization.

Lemma D.8 (Implicit Linearization [4]). Consider the two-layer neural network NN defined in
(2.8). Assuming that the activation function o(-) is 1-Lipschitz continuous and the input space X is
normalized via ||x||2 < 1 for any x € X. Then it holds that

sup INN(x; W, a%) — VwNN(x; W0, a%) T (W — WO)| < di/*BZm~1/2,
xEX ,NN(-;W,a%)ePu

Proof of Lemma D.8. See the proof of Lemma 4.5 in [4] for a detailed proof. O

In view of Lemma D.8, we can study the linearization of the neural networks in Py as a surrogate.
To this end, we introduce the neural tangent kernel Tk of NN as

ICNTK(Ivy) = VWNN(‘T7W07a0)TvWNN(y7WOaaO)7 VI, (JBS X.

The idea is to approximate the functions in PPy via the RKHS induced by the kernel k. According
to Lemma D.8, when the width of the neural network is large enough, i.e., m — oo, the approximation
error is negligible. See the following Section D.4.2 for detailed proofs.

D.4.2 Proof of Equation (D.17)

Now we use Lemma D.8 to bound the bracket number of Py; in Example 2.8.
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Lemma D.9 (Bracket number of neural function class). Under Assumption D.7, for the number of
hidden units m > dx By /€%, the bracket number of Py given by

Pu = {P(s]s,a) = NN((s,a,s'); W,a%) : [W — W?||, < By},
is bounded by, for any € > 0,
log(V (€, Par, || - [l1,00)) < O - 1/ - log?(1/9x) - log" /7 (Vo1(8) Bk /e).

Proof of Lemma D.9. We denote the RKHS induced by the neural tangent kernel Kntk as PnTk
Prnrr = {P(x) = VwNN(x; W, a%) (W — W) : [W — W°|, < By} . (D.20)

For any NN(-; W, a") € Py, we denote its linear expansion at initialization as NN(-; W, a") €
Pnri. Here we use the fact that for NN(; W, a%) € Py, [[W — WPy < By. Now according to
Lemma D.6 and Assumption D.7, we know that the bracket number of PxTk is bounded by

log(N (e, Prxc, || - h.00)) < €+ 1/ - log?(1/ ) - log! /7 (Vo1(S) B /e),  (D:21)

for some constant C' > 0. Therefore, we can find a collect of brackets By =
{[9}’g;'l]}je[/\fu(67PNTK,H-|I1,OO)] such that for any P € Pnrk, there exists a bracket [g;-,g;-l] € By

such that g} (x) < P(x) < g¥(x) and ||g; — g%ll1,00 < €. Now for any P = NN(; W, a") € Py,
by Lemma D.8, we have that

NN(x; W,a") — ey < NN(x; W,a%) < NN(x; W,a") + ey,
where ex = d;(/QBl%m’l/ 2. By previous arguments, there exists a bracket [g; , g;l] € By such that
9;(x) — ex <NN(x; W, a%) < g (x) + en.

Now it suffices to define a new collect of brackets B = {[g} — ex, g} +x}j e Wi (e, Prvrrcs |- 1,00)]- FOT
any P = NN(-; W, a?) € Py, there exists a bracket [5;, g3] € B such that ﬁi(x) < P(x) < gj(x),
and

195(%) = 35 ()00 < N195(x) = g5 (%) oo + 2en < €+ 2en.

By taking m > dx By /€2, we obtain that Hﬁg (x) — gj (%)[[1,00 < 3¢. Therefore, we can conclude
that the bracket number of Py is bounded by,

M] (G,PM7 || : ||1700) = 'A/[] (6/3,PNTK, H ’ ||1700)' (D.22)
Finally, by combining (D.21) and (D.22), we have that, for m > d XBI%I /€2,

log(N (&, Pats || - [l1,00)) < Cn - 1/ - log (1/w) - log' ™1/ (Vo1 (8) B /e),
for some constant C'x > 0. This finishes the proof of Lemma D.9. O

Now by taking € = 1/n2, ie.,m > dxn4B§, we can derive the desired result in (D.17).

E Proofs for S x A-rectangular Robust Factored MDPs

Proof of Corollary 4.3. We first introduce the following proposition, which shows that te model
estimation step (4.6) satisfies Condition 3.1 and Condition 3.2.

Proposition E.1 (Guarantees for model estimation). Suppose the RMDP is the S x A-rectangular
robust factored MDP in Example 2.9 with D(-||-) being KL-divergence or TV-distance. By choosing
the tuning parameter &; defined in (4.6) as
_ C1|O) M Pail| Al log (Cond H /)

n

&

Sor constants C1,Cy > 0 and each i € [d), then Condition 3.1 and 3.2 are satisfied respectively by,
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& when D(-||) is KL-divergence and Assumption E.2 (See Appendix E.1) holds with parameter )\,
then Exr;¥ (n, 8) is given by

(Cynd/s)

)

Hexp(H/)) . \/dC{ E?ﬂ |O

Pmin

ErrﬁKL(n7 0) =

where pmin = minie[d] Di-
& when D(-|-) is TV-distance, then Exry (n, ) is given by

/ d
\/ ErrﬁKL(n, 5) = ]q—\/dc’1 Z

Here ¢, C1, CY, > 0 stand for three universal constants.

(Cynd/9)

Proof of Proposition E.1. See Appendix E.1 for a detailed proof. O
By Combing Proposition E.1 and Theorem 3.4, we can obtain Corollary 4.3. O

E.1 Proof of Proposition E.1

Assumption E.2 (Regularity of KL-divergence duality variable). We assume that the optimal dual
variable \* for the following optimization problem

sup {—Mog (Es'mwh,j(-\sh[paj],ah) [GXP {—UZ,TQ,@(S’UD/A}D - Ap} ,

AERL

is lower bounded by A > 0 for any transition kernel P, € Py, T = (T, C Pu, Q =
{QnY_, C P, step h € [H), and factor j € [d]. Here the function V3, 7.0.0(8'4]) is defined as

irgai) = [ TTB VL ol 0, 515~ 13141 1)
=1

1#£]

Proof of Proposition E.I with KL-divergence. Firstly, by invoking the first conclusion of Lemma
G.2, we know that the Condition 3.1 holds. In the following, we prove the Condition 3.2. By the
definition of robust set in Example 2.9,

inf E 3 Vﬂ—* S/ N inf E L= Vﬂ_* s/
ﬁhe<I>(P,,,) s~Ph(-\sh,ah)[ h+1,P,<I>( )] 13;16<I>(P,f) S"‘Ph("sh,,ah,)[ h+1,P,<I>( )]

= inf / thz (ds'[d Vh+1 pa(s’)
Ph G EA(O):DKL(Pr,i ()| Ph.i (-Isnlpasl,an)) <pi,i€ld] ot

- ~ lnf /(QdHPhZ dS Vh+1P<I>( )

P, €A(0): DKL (Ph,i (P ; (-1snlpa;],an))<ps.i€ld]
(E.1)

Consider the following decomposition of the right hand side of (E.1),

M&

(E1) = inf / [T @S DV s ()
1 <J O

P, € A(O): DL (Pr,i ()| Pri (|snpag],an)) <pi, 1<i<j 4

j=1 X
Pp i €A(0):Dicr (Pr,i ()1 P7 i (1sn[pag],an)) <pi,j+1<i<d

— inf /
P, i €A(O): DL (Pr,i ()l Pri (|snlpas],an)) <pi,1<i<j—1J O
Pp; €A(0): DKL (Ph,i (|| Py ; (-|snlpag],an))<ps,j<i<d

thz (ds'i Vh+1 pa(s).

d
i=1
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For each 1 < j < d, we denote that

d
(P;;’f, e ,P,’;’gl) = arginf / H Py i(ds'[i)ViT 1 pa(s')
P, €A(0): Dk, (Pr,i ()| Pri(Csnlpag],an)) <pi1<i<j—1 7 04
Py, i €A(0): Dy (Ph,i (- WP Clsnlpasl,an))<pi,j<i<d

By the definition of taking infimum over d variables, we can conclude that

inf / HthdS Vh+1P<I>( s')
0d i

Py, €A(O):Dkr (Pr,i ()| Pri(Isnlpas],an)) <pi,1 <i<j—1
Ph,s €A(0):Dir (Pr,i (VI P} i (1snlpag).an)) <pi,j<i<d

d

— inf / Ph_] dS h,Z dS Vh+1 pq>( /)

Ph GEA(O):DxL (P ; ()1 Py (|snlpas].an))<p; J Od i=1
1#]
(E.2)

Meanwhile, it naturally holds that foreach 1 < j < d,

d

in / [ oslds T)Viss pa(s)
Pr,i €A(0): D (Pr,i ()| P i (lsn[pag],an)) <pis1<i<j Jod ;5

Ph LEA(O) DKL(P}L 1( )th, l( |9h[p'1 ] ah))<p1 ,J+1<i<d

Pri(ds'[iVirly pa(s).

—.

< _ inf / Py ;(ds'[j])
Pp, j€A(O):DKL(Pr i ()| Pr,j (-Isnpa;],an))<p; JOI 1
J

K

(E.3)
Thus by combining (E.2) and (E.3), we have that

d

.::1&

(E.1) < inf / Py Pri(ds i) Vi1 pa(s)
Ph GEA(O):DKL(Pr () Ph,;(-1snlpa;],an))<p; J 04

[
Sl
S

P f(ds [i ])Vh+1 P<I>( ).

_::1&

- _inf / Ph]
P, ;€A(0):DxL(Ph,; OIIP; ;(snlpasl,an))<p; J O4

%i}
(E4)
Now for simplicity, for each 1 < j < d, we denote a function vfl(s’ [71]) : O = Ras
~/(9d 1HP ] ds Vh+1 P<I>( [ } 78/[j_1]75[j]7sl[j+1]7"' 75/[d])7 (E.5)
i=1
1#£]

which satisfies 0 < vh < H. Foreach 1 < j < d, we can then upper bound

Al (snoan) =  inf / By ;(ds'[i])vl (')
Pp, ;€A(O): Dy (Pr,j ()| Pr,; (-|snpa,],an))<p; JO

-~ iuf | Bus@s il () (e6)
Pp ; €A(O):DkL(Pr,; ()IIPy ;(-Isnlpaslan))<p;

using the same argument as in the proof of Proposition D.1 under KL-divergence in Appendix D.1, in
which we apply Assumption E.2 and Lemma H.7. The corresponding result is given by

Hexp(H/)N)

AJ (Sh, ah)
h p;

“NPn s Clsnlpag), an) — P (-lsnlpagl, an)llov. (BT
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Thus plugging (E.7) into (E.4) and (E.1), we can arrive at

ﬁheigf(‘Ph)]Es’wﬁh(~|sh,ah)[VIZ::LR@(S/)] - ﬁheigfp}:)Es'~15n(~|sh,ah)[VFZTJ:LP@(SI)]
Edj PP P Csnloal. ) = P Clsnloag) ). E8)
By using the samt: argument for deriving (E.8), we can also obtain that
s By 5 omaan [Vim1,pa(5)] — 5ol Bl Vitspa(s)]
< Zd: HeXl;iH/)\) [P, (|snpas], an) — Py ;(|snlpa], an)|lTv- (E.9)
=1
Therefore, due 0J E.8) and (E.9), we can finally arrive at the following upper bound,
2
E s am) [(Phelgf(‘})h Es’wﬁh(ﬁsh,ah)[VfZTJ:l,P,@(S/)] - ﬁheigfpg)Eswﬁhush,ah)[V}ZTJ:LP,@(SI)O

2

d
Hexp(H/)) .
SE, anmdrs | 21 Y | Prj(-[snlpa;], an) — Py ;(-[snlpal, an)llTv
J
d

S Bt et [IPhiClsnloas)san) = P Clsnloa) an) ]
j=1

(E.10)

where the last inequality is from Cauchy-Schwartz inequality and pyi, = min;e[q) p;- Now invoking
the second conclusion of Lemma G.2, we have that with probability at least 1 — 9,

CilofHt Pl log(CgndH/9)

< dH? exp(2H/))

Pmin

E oz, (1P Clsnlpal an) = P Clsnpa ], an) ] <

(E.11)
for some absolute constant C}, C% > 0 and each j € [d]. Combining (E.10) and (E.11), we have that

Hexp(H/A)  [dC1 Y, |0 (CyndH /5)
Errh kL(n) = :
pmm n
This finishes the proof of Proposition E.1 under KL-divergence. O

Proof of Proposition E.I with TV-distance. Firstly, by invoking the first conclusion of Lemma G.2,
we know that the Condition 3.1 holds. In the following, we prove the Condition 3.2. Using the same
argument as in the proof of Proposition E.1 under KL-divergence, we can derive that

*

inf ES/Nﬁ}L('Ishyah) [V;+17P7q>(s,)] S inf Es/Nﬁh('lshyah) [Vh-’_l P, <I>

_ 3h7 ah
PhEQ(Ph) PhE‘I)(P;)

||M:_

(E.12)

where Afl (Sh, ap) is defined in (E.6). Now applying the same argument as in the proof of Proposition
D.1 under TV-divergence, we can derive that

A (sn,an) < H - | Poj(-|su[pa,], an) — P, (snlpa], an)| v, (E.13)
where we have applied Lemma H.8. Therefore, by combining (E.12) and (E.13), we can derive that

inf E, 5 Vv sV— inf E, 5 V7 s’
B Ve = B B (0 Vi1 (o)
d
< H Y |1Pa;(lsnlpay], an) — Py ;(-Isn[pa], an)llry. (E.14)
j=1
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By the same argument as in deriving (E.14), we can also obtain that,

: T / . _ T* /
ﬁhelgfp,n EvputiananVirnpe ()]l = By et oy T~ P Clsnaan) Vi1.p.a(s)]
d
< H Y ||Pa;(lsnlpay],an) — Py ;(-Isn[pa], an)llry. (E.15)
j=1

Now by combining (E.14) and (E.15), we can derive the following upper bound,

2
E o inf E, 5,,. Vv $N— inf E, 5. . Vv s'
(sh,ah)rvdp*’h (ﬁhE‘i’(Ph) 5~P;L(~\(s;“ah)[ h+1,P,‘i’( )] IB;LE‘I’(P,:) bNP}L("é}L,(L’L)[ h-&-LP,‘i’( )])
d 2
< ]E@h,ah)Nd;:h H- Zl | Pn,; (-|sn[pa], an) — Py ;(-[sn[pajl], an)llTv
iz
d
< dH? - Z]E(Sh[paj],ah)Nd;g X (1P (-1snpay], an) — By ;(-[snpa,], an)ltv] ,  (E.16)
j=1 ‘

where the last inequality follows from Cauchy-Schwartz inequality. Now invoking the second
conclusion of Lemma G.2, we have that with probability at least 1 — 9,

N C}|OH 1Pl Al log(ChndH /6
oy [1Pa s Clsnlagl,an) — Py Clsnfpa, ) [y < SO ALB(CEnAHD)

(snlpa; n
(E.17)
for some absolute constant C}, C% > 0 and each j € [d]. Combining (E.16) and (E.17), we have that

DY L+Ipa || A log(Chnd H
[Er® e (n) = H - dC1 22119 [A[ log(CyndH/6)

n

This finishes the proof of Proposition E.1 under TV-distance. O

F Proofs for d-rectangular Robust Linear MDP

Assumption F.1 (Regularity of KL-divergence duality variable). We assume that the optimal dual
variable \* for the following optimization problem

sup {~Aog (Evmpy [exp {~Viroa()/A}]) ~ Ao}
f

is lower bounded by \ > 0 for any distribution u € A(S), transition kernels Q = {Qn}_, C Py,
and step h € [H).

Proof of Theorem A.3 with KL-divergence. Recall that we consider the following definition of V),
Y= {v(s) = exp <— majc¢>(s,a)Tw/)\> S wlle < HVd, A € [, H/p}} . (F.1)
ac

Following the Section 7 of [54] as well as the Section 8 of [1], we introduce the notion 13h that
satisfies for any v € V and (s,a) € S X A,

/ Py(ds'|s, a)v(s') = ¢(s,a)T B, (F2)
s
where év is defined in (A.2). Actually P, takes the following closed form,
~ 1 <&
_ T -1 T T
Pi(ds'|s,a) = ¢p(s,a) " Z:l Aj o d(sq, af)ds (ds)), (F3)

where d4(-) is the dirac measure centering at s. Regarding the estimator Igh, we have the following.
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Lemma F.2. Setting o = 1 and choosing the function class V as (F.1), then the estimator ﬁh defined
in (E.3) satisfies that, with probability at least 1 — 6,

/s (P}f(dsl|5,a) — ]Bh(dsl|s, a))v(s’)

<Oy |o(s a)||2 n d(log(l + ConH/S) + log(1 + C3TldH/(pAQ)))

n

2

sup
veVY

for any step h € [H|, where C1,Ca, C3 > 0 are three constants.
Proof of Lemma F.2. See Appendix F.1 for a detailed proof. O

With Lemma F.2, we can further derive that, with probability at least 1 — ¢, for any h € [H],

2
Ph (ds'|s}, ap) — Pu(ds'|s},, a))v(s")

veY ’I’L

1 @& . Crd(log(1 + ConH/8) + log(1 + CsndH/(pA?))
gEZw(sh,ah)n?;; il : - )

T=1

In the right hand side of the above inequality, it holds that,

1 . T T 1 = T T - T T
=3 ligtsian)la s = =" Tr (@(sh.a7) AL L S(shap)
T=1 o«

n

i=1
1 n
=Tr (n Z @ Shvah)¢(3h7ah)TAhla>
=1
< Tr (Ah WA ) —d. (F4)

Thus, we have that with probability at least 1 — 4, for each step h € [H],

n 2

sup — Pr(ds'|s],a} — P, (ds’ st ar))v(s

sup 3| [ (P 1o aF) — Pafdoh ) o)
< C1d?(log(1 4 ConH/6) + log(1 + andH/(pAQ))) _¢
< " —=¢.

This proves Condition 3.1 in Section 3.2. In the following, we prove Theorem A.3 given Condition
3.1 holds. Using the definition of robust set ®(-) in Example A.1, we can derive that

inf E, s Vv N — inf E, = V. s’
Fronirs) 1By Clsmam Vi1, p.a ()] g simBy Clsman) Vir1,p.a ()]

inf Z¢z Shy,Qh [Sﬁi(d51>Vf;1,P7¢( — _ inf Z¢z $,a /Mz dS>Vh+1 Pq>( )

PLe®(P}) iz PLe®(Py) i 2
d
= i\Sh, @ nf i dS V, !
;(b " h)umemsw(uh1<>\|uhl(>><p/“h (Vi ()
d
— i(Sh,a inf /~ J(dsHVr s, (E.5)
;¢ M) o ey Ol Js P3P (s)

where the last equality follows from ¢(s,a) > 0 for any ¢ € [d]. Now invoking the dual formulation
of KL-divergence in Lemma D.2, we can derive that

d
(E5)=>_ ¢i(sn, an) -
=1

e {3108 (B0 o { Vst ]]) - 20}

— sup {_/\i log (Es’Nuh,i(-) [GXP {—V;Z:LP@(S/)//\'L}D - /\ip}] (F.6)

>0
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Following the same argument in the proof of Proposition D.1 (derivation of (D.3)), during which we
invoke Assumption F.1 and Lemma H.7 to bound the optimal dual variable A, we can derive that

d
6 <3 onlsnaan)_sw i) [ (10 = sas)) exp { Vi a1/}
1=1

A<N<H/p

d
:Z sup {g()‘ivﬂz,i)gbi(shaah)/

i=1 A<N<H/p S

(17,,4(ds") = pan,i(ds")) exp {Vhw—itl,P,@(Sl)//\i}} ;
(E7)
where we have defined g(\i, pn,i) = Ai/ ([g pn,i(ds’) exp{—V}ZT_;17P7(I>(s’)/)\i}) for simplicity, and

in the equality we have used the fact that ¢;(s,a) > 0. To go ahead, we rewrite the summand in (F.7)
for each ¢ € [d]. To be specific, recall the regularized covariance matrix Ay, ,, of the feature ¢,

1 . T T T T «
Apo = - ; d(sh.ap)p(s ap) " + o 1;.

Then, by denoting 1; = (0,---,0,1,0,---,0)T where 1 is at the i-th coordinate, we have the
following,

o) [ (15,05 = s 0s) exp { Vi1 p o)/
= 01lon @)1 AL A [ (3 (08) = n (@) exp { Vs pa()/A0 )

< ||¢i(5h7ah)]-i||A;1a : H/S (p7,(ds") — pn(ds’)) exp {*VhﬂLPﬁb(S/)/)\i} (E.8)

Term (i)

Ap o

Term (ii)
For the term (ii) in (F.8), by the definition of A}, ,, we have that,

n

1
Term (ii)? = = Z
n

2

BeTal)” [t (a5) = (a5 exp { Vi1 p )/}

2

/S (13(05") — pun @) exp { Vi1 o ()/A0 )

2
2

[ (P17, af) = Pa(ds'lsF, af)) exp { Vi1 pa(s)/\

2
/ (i 0') = (05 exp { Vi, p.as)/ ) ®9)
S

o
_|_ —_ .
n 2

In the following, we upper bound the right hand side of (F.9). On the one hand, we have that

2
Ph dS Ish,ar,) — Ph(ds’|s;,a;))exp {_VfZTH,P,@(S/)/)\i}’

2

( (as'Is7,, a7) — Pu(ds'|s7, a7)) o)

T wev n
2

2P (Ph (ds'|s},,ap) — Ph(ds’\s;,a;)) v(s")

< 2, (F.10)

with probability at least 1 — d, where the first inequality holds since exp{th’Z:l’ pa(s)/Ait €V,
and the last inequality follows from the fact that Condition 3.1 holds and the fact that P, € 73h. On
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the other hand, by setting the regularization parameter « = 1 we have that

2
67
n

2

[ 005 = (a5 exp { Vi (/0
)

2

d
1 . .
“n Z / ('uh’i(dsl) - “hvi(ds/)) exp {_Vh+1,P,<I>(3/)/)\i}
i=1
d
* 2 2d
s Z ”/‘h,z‘(') = i)y < o (F11)
i=1

By combining (F.9), (F.10) and (F.11), we can conclude that with probability at least 1 — 6,

Term (ii)? < 2¢ + 2d < 3€. (F.12)
n

Now by combining (F.7), (F.8), (F.12), we can conclude that with probability at least 1 — 4,

— inf Es'Nﬁh(~|sh,ah)[szr+17p7‘1’(sl)]

inf Es/Nﬁ;L('\S;L,ah)[VhTrJrl:P,‘I’(S/)] Bred(P)

Prc®(Py)

d
< su i(Sp,ap)1;l[A-1 - )\i7*i' 3
;ASAiSpH/p{lqs(h h) ”Ah,la g( /J“h,) \/?}
d
2¢/€ - Hexp(H/\
< 2E pp( /,).Z||¢i(sh,ah)1i||A;L7 E13)
i=1 ’

for any step h € [H], (sp,an) € S x A, and Py, € Py, where we apply the definition of g( Ny ).
Now using the same argument as in the proof of Theorem 3.4, using Condition 3.1, we can derive that

H
SubOpt(7;s1) < sup » E, . yoge inf E_, 5. v (s")]
Peﬁhz::l (sman)~dion s PLe®(Py) Fhllon,an)ht LB

—_ inf Eswﬁh(-sh,aw[V’ﬁl’P’@(S/)}]

ﬁheé(Ph)
2VE- Hexp(H/)) <~
< ; Y B a6 an)Lilla 1 | E14)
h=1 i=1 ’

where we have used (F.13). Here P71 is some transition kernel chosen from ®(Py). Now we upper
bound the right hand side of (F.14) using Assumption A.2. Consider that

d
X B, (1693 (sn, a) i ;1 |

\/Tr ((84Cman) 1) (6150 an) 1) TAG L)

d
Z E(shﬁlh)’\‘d;;*,]\ h
i=1

\/TI‘ (E(sh,ah)Nd;;*wT [(qsl(shﬂ ah)li)((bi(sm ah)li)T] Ah}a) : (F.15)

M=

<

Jh

i=1

For notational simplicity, in the sequel, we denote by
Xphi = E(sh,,ah)wd;jh [(#i(sh, an)1:)(di(sh,an)1i) "]

Note that the matrix 3 p 5, ; has non-zero element only at (Xp,4,:)(;,s), Which equals to ¢; (s, a)?.
Under Assumption A.2 and the fact that P}’ St ®(P7), we have that

(6%
Apoz —-da+ - Sprt g
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Thus, using (F.15) and under o = 1, we have that,

d

d
o —1
Z]Em,ah)w;; . [||¢z(8h,ah JLilla, } <D T <2P"* i (n Id+0T'EP**,h,i) >
i=1

i=1

d

¢i(s,a)? d

< = F.16

; n~t+ct - gi(s,a)? =t (10
Therefore, by combining (F.14) and (F.16), we have that with probability at least 1 — 4,
H
2¢/€ - Hexp(H/A d  2d/E H?exp(H A)
SubOpt(7; 51) < V& Hexp(H/)) 27 V€ TGXD( /2)
P c ctp

h=1

Using the definition of £, we can finally derive that with probability at least 1 — 9,

SubOpt(7; s1) <

d*H?exp(H/\) \/C{(log(l + CynH/5) + log(1 + CyndH/(pA?)))

ctp n

This finishes the proof of Theorem A.3 under KL-divergence. O

Proof of Theorem A.3 with TV-divergence. We use the same notation of 13h introduced in the proof
of KL-divergence case, which satisfies (F.2) with V' defined as

V= {v(s) = (A—m?ﬁi{qﬁ(s,a)Tw) wle < HVA, N € [O,H]}. (E17)
+

ac

Regarding the estimator 13h with V defined in (F.17), we have the following.

Lemma F.3. Setting o = 1 and choosing the function class V as (F.17), then the estimator ﬁh
defined in (F.3) satisfies that, with probability at least 1 — 9,

2

sup / (P;(ds']s, a) —ﬁh(ds’|s,a))v(s')
veV |JS
dH?log(CondH /6§
< Oy (s, - THECIHT),

for any step h € [H], where C1,Co > 0 are two constants.
Proof of Lemma F.3. See Appendix F.1 for a detailed proof. O

With Lemma F.3, we can further derive that, with probability atleast 1 — §, for any h € [H],

C1dH? log(CandH/5)
Ph (ds'|sh, af) — Ph(ds \Sh»ah Z |P(sh, ar, ||A— - n 2 :

veEVY n

In the right hand side of the above inequality, it holds that,

= Z Ip(shvai)l3 = ZTr (#(skan) T AL LD (sh ap) ) < Tr (Anahyl) =d
(F.18)
Thus, we have that with probability at least 1 — ¢, for each step h € [H],
2 _ C1dH?log(CondH/9)
- n

(ds'|F. af) — Pu(ds'|sT, af))o(s)

=¢.

veY Tl
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This proves Condition 3.1 in Section 3.2. In the following, we prove Theorem A.3 given Condition
3.1 holds. Using the definition of robust set ®(-) in Example A.1, following the same argument as
(F.5), we have that,

* *

inf E, 3 vir s — inf E_, 5 V, s’
o By (fmany) Vi1, P (87)] pt By (lmany Vi1, P (7))
d
= i(Sn,an inf /~h7i ds )V, s’
;qﬁ( ) s DOl o Js 11 Virsre ()
d
_ (S, inf J(ds )V s'). F.19)
;¢ MOk A DO (lns() ><p/”h’( Wiipa(s)-

Now invoking the dual formulation of TV-distance in Lemma D.4, we can further derive that

d
(F.19) = Z oi(sn,an) - {sup {—ES/N%J_(,) [(/\ - Vhﬂ_;17p7q>(5'))+} 5 (/\ — inf V0 pq>( )) + )\}
i=1

AER s"'es

T p
ilelﬁ{]ES/N“h’i(‘) [()\ - Vh+1,P,<I>(5,))+] ) <>\ - s}'nefs Vh+1 P<1>( )> JF/\H

< Zd: Gi(sn,an) - sup {(Eswu;,i() - Es'~uh,7¢(-)) [(/\ - Vhﬂ-itl,P,Q(Sl)) +] }

A€[0,H]

_ Z sup {gbz Sh, an) /S (15.:(ds”) — pns(ds")) (A - Vhﬂ;,P@(s’))J. (F20)

=1 Ael0,H]

where in the first inequality we use Lemma H.8 to bound A € [0, H]. Now we consider each summand
i € [d] in the right hand side of (F.20). We rewrite it as

o) [ (1,605 = s 0) (A= Vi ()

= dulsm an) 1AM [ (i (08) = (@) (A= Vi pa(5)

+

+
< Jostsnan il | [ 0500 < n @) (3= Vi pnls)) ®21)

Term (i)

Apo

Term (ii)

Following the same argument as (F.9), (F.10), and (F.11), using the fact that (A — VhﬂJ:l,P,Q ()t €V
with V in (F.17), we can derive that with probability at least 1 — 4,

Term(ii)® < 3¢ (F.22)
Now by combining (F.19), (F.21), (F.22), we can conclude that with probability at least 1 — 4,

inf E, = Vo s — inf E_, 5 Vv s’
From(pr) SNPh(.|5h’ah)[ i1, pa(s)] Bren(ry) SNPh(.\Sh,ah)[ mi1.pe(s)]

<3

for any step h € [H|, (sp,an) € S x A, and Py, € Pp. Now using the same argument as in the proof
of Theorem 3.4, using Condition 3.1, we can derive that with probability at least 1 — 9,

d
 {9x(on an) Ll - VEER <2VE D ldu(n )l (B23)
i=1

su
S
SubOpt(7;s1) < sup Y E oy inf E_, 5. v s’
( 1) Pephzl ( hs h d ’TTh lﬁhEQ(Pﬁ) S P]L( ‘Sh,ah)[ h+1,P,<1>( )]

— _inf E, 3 Viry pa(s’
D B Vet

H d
<2v¢- ZZE(S;L,%)WQ;*M {||¢i(5h7ah)1i|\,\;ﬂ ; (F.24)

h=11i=1
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where in the last inequality we apply (F.23). Here P T is some transition kernel chosen from
®(P}). Now we use the same argument as (F.15) and (F 16) to upper bound the right hand side of
(F.24) using Assumption A.2, which gives that,

d

> Elonanymarr. [Ilcbi(Sh, ah)lillA;ﬂ <

i=1

Q|

(F.25)
Therefore, by combining (F.24) and (F.25), we have that with probability at least 1 — §,
SubOpt(7; s1)

1 d Zd\fH
DTS

Using the definition of £, we can finally derive that with probability at least 1 — §,

d*H? \/ O log(CyndH /)

SubOpt(7; s1) < o

n

This finishes the proof of Theorem A.3 under TV-distance. O

F.1 Proof of Lemma F.2 and Lemma F.3

Proof of Lemma F.2. The proof of Lemma F.2 follows from the main proofs in Section 8 of [1] and
the covering number of the function class V (Lemma F.4). Denote Cy, . as an e-cover of the function
class V under || - ||o. Following the exact same argument of Lemma 8.7 in [1], we can derive that
with probability at least 1 — J, for any A and v € Cy .

n 2

> oo ([ P asshan)ote) - olsi) )

T=1

Aia
< 9n - (log(H/d) +log(|Cy.e|) + dlog(l + N)), (F.26)

where we have taken o = 1, which we will keep in the following. For any function v € V), take
¥ € Cy . such that |[v — U||c < €. Then we have that

n 2

S (s af) ( /S P (ds'|F. af)o(s') — v(szm)

T=1

-1
Ay

n 2
215" g(sp.a) ( [ Piassh.apyats) - 6<sz+1>)
T=1

-1
Ah,a

2

2|3 p(sh ap) ( /5 P (ds'|sf, a7)(® — v)(s) — (6 — v)(s,;n)
=1 A
< 18n - (log(H/8) + log(|Cy.|) + dlog(1 + n)) + 8€*n?. (F.27)
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Now we apply the definition of ﬁh and we can then derive that

2

/S(P,;(dsqs,a) — Py(ds']s, a)v(s"))

2

2

= |(s.0)7 ( st - ;TZ_IA;,w(s;,a;)v(szm)
A

3

=1

1 1<
= cj)(s,a)TA;jl <n/5u,*1(ds 72 d(s,a /Ph (ds’|s},, ap)v(s")

n

= |¢(s,a) T Aj g, (Ah,a/su*(dS’)v(S’)—12(1)(82,@2) (SEH))

2

-2 Z¢<sz,a2>v<s;ﬂ>)

2

L H [wa@sus)

IN
ol
S
)
&
S
|

-1
Ay o

5" (s a) ([ Picassh,amyots) - o))

T=1

2

2 2
+ ? : ||¢(S7a)||A;1u :

AL
(F.28)

On the one hand, the first term in the right hand side of (F.28) is bounded by

% : ||¢(s,a)\|2A;’1q : H/Su*(ds’)u(s') i ~||¢(57a)||2;11a . "[Su*(dsl)v(sl) i

Ay
(s, a)l3-1 (F.29)
h,a

IN

sy =l

IN

where we use the fact that Ay, o = (1/n) - Iy and ||v(-)|lec < 1 for any v € V. On the other hand,
the second term in the right hand side of (F.28) is bounded by

2

S (s af) ([ Prtastsranes) - oisin) ) 2

=1 A

< <3: - (log(H/6) +log(|Cy.c|) + dlog(1 + n)) + 1662) o, a)ls

where we have applied (F.27). Now taking e = 1/4/n, applying Lemma F.4 to bound the covering
number of V, we can further derive that,

||d>8a||A L

) ([ Pi@slshaf)o) - o6i0) 2

A

o
36
n
16 )
+ ; ’ H¢(S? a)”AZ,L’
_ C1d(log(1 + ConH/S) + log(1 + CyndH/(pA?)))
- n

< - - (log(H/6) + dlog(1 + 4v/nHd/(2)) + log(1 + 4V/nHd/(X*p)) + dlog(1 +n)) - (s, a) [} -+

(s, a3 (F.30)
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where C1, Cy, C3 > 0 are three constants. Finally, by combining (F.28), (F.29), and (F.30), we can
conclude that with probability at least 1 — ¢, for each step h € [H],

2

sup
veV

/S (P (ds']s,a) — Bu(ds']s, a))u(s")

d(log(1 + ConH/5) + log(1 + C3ndH/(pA?)))

< Ci : ||¢(57CL)||2 ;L :

where (' is another constant. This finishes the proof of Lemma F.2. O

Proof of Lemma F.3. The proof of Lemma F.3 follows the same argument as proof of Lemma F.2,
except a different covering number of the function class V which we show in the following. Using
the same argument as the proof of Lemma F.2, with probability at least 1 — §, for any v € V,

MS (Pi(ds'|s,a) = Pu(ds']s, a)o(s")) 2

2H? )
< ol | [arasus)
h,« S

2
-1
Ah,a

2
2H2 . T T * T T T
20 el | eleta) ([ A Ishae) - o))
ol Ai
, (36 . 2d ,
<12 (% (tog(11/8) + 10g(1Cy. o)) + dlog(1 +m)) + 166 + 2 - (s 3 .

(F31)

where Cy . is an e-covering of the function class V defined in (F.17). Now taking ¢ = 1/4/n, applying
Lemma E.5 to bound the covering number of V), we can further derive that,

2

sup / (Pp(ds’|s,a) — ﬁh(ds'|s,a)v(5’))
veV |JS

< 12 |(s,0) 3 - (2 - (log(H/9)

16 + 2d
+dlog(1 4+ 4y/nHd) + log(1 4+ 4y/nH) + dlog(1 + n)) +
dH?log(CondH /5§
< Cr- (s, )l - PR d0) F32)
This finishes the proof of Lemma F.3. O

F.2 Other Lemmas

Lemma F.4 (Covering number of V: KL-divergence case). The e-covering number of function class
V defined in (F.1) under || - ||oco-norm is bounded by

log(A (e V. | - loc)) < dlog(L + 4Hd/(e)) + log( + 4Hd/ (X pe)).

Proof of Lemma F.4. Consider any two pairs of parameters (w, \) and (W, X) and denote the func-
tions they induce as v and ©. Then we have that

v(s) —0(s)| =

exp {— max &(s, a)Tw/)\} — exp {— max o(s, G)T@/XH

39



Using the fact that, for any =,y > 0, exp(—z) — exp(—y) = exp(—((z,y)) - (y — x) for some
¢(x,y) between x and y, we know that

v(s) —v(s)|
< exp {—C <m€aj< o(s,a)Tw/\, max &(s, a)ﬂﬁ/X) } . ‘meaj‘( o(s,a)Tw/\ — max o(s, a)T'lﬁ/:\\

<

max {¢(s, a)Tw/\— ¢(s, a)T'Lﬁ/X}‘

ac

acA

max {gi)(s, a)tw/\— ¢(s,a) " W/N+ ¢(s,a) wW/\ - ¢(s, a)T@/X}‘ )
Notice that ||¢(s, a)||2 < v/d (because Zle di(s,a) = 1), ||@|2 < HVd, and A\, X > A, we have,
@(s,0) "w/A — (s, 0) B/A+ d(s,a) BN~ Bls,0) @/

<\l ) (w - @) + [ (s, 0) B - )|

<AV w—wllz + AT Hd |3 - A

Thus we conclude that to form an e-cover of V under || - ||oo-norm, it suffices to consider the product

of an \e/(2v/d)-cover of {w : ||wl||s < H+/d} under || - ||2-norm and an \?e/(2H d)-cover of the
interval [\, H/p]. Therefore, we can derive that

log(N (e, V, | - [loo)) < dlog(1 +4Hd/(Ac)) + log(1 + 4H?d/(X?pe)).
This finishes the proof of Lemma F.4. O

Lemma F.5 (Covering number of V: TV-distance case). The e-covering number of function class V
defined in (F.17) under || - ||oo-norm is bounded by

log(N (e, V, || - loo)) < dlog(1 +4Hd/e) + log(1 + 4H /¢).

Proof of Lemma F.5. Consider any two pairs of parameters (w, ) and (@, A), and denote the func-
tions they induce as v and . Then we have that,

lv(s) —o(s)| = <)\ - gleaj(qﬁ(s,a)Tw)_k - <)\ - %aj(¢(s,a)Tw>+
< A=A+ ‘gleajc o(s,a)"w — max b(s, a)Tlﬁ‘
<SP=A+ sup lg(s,0)]f2 1w — @]l
(s,a)eSxA
<A= A+ V- |w - @
Thus we conclude that to form an e-cover of VV under || - ||o-norm, it suffices to consider the product

of an €/(2v/d)-cover of {w : |w|s < H+/d} under | - ||z-norm and an €/2-cover of the interval
[0, H]. Therefore, we can derive that

og(N (6, V, || - lso)) < dlog(1 + 4Hd/€) + log(1 + 4H /).
This finishes the proof of Lemma F.5. O

G Analysis of Maximum Likelihood Estimator

Lemma G.1 (MLE estimator guarantee: infinite model space). The maximum likelihood estimator
procedure given by (4.1) and (4.2) for S x A-rectangular robust MDP with tuning parameter & given
by Proposition D. 1 satisfies that w.p. at least 1 — 6,

1. Pfe Py, for any step h € [H).
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2. forany step h € [H| and Py, € Py, it holds that

E(onamy~dr,,  1Pn(Clsn,an) — Pr(-|sn, an)||7v]

P*.h
- ol log(CgH./\/[](l/n27PM» - 1l1,00)/6)
—_ n :

for some absolute constant Cy, Co > 0. Here d‘fg* ,, IS the state-action visitation measure
induced by the behavior policy 7 and transition kernel P*.

Proof of Lemma G.1. See Appendix G.1 for a detailed proof. O

Lemma G.2 (MLE estimator guarantee: factored model space). The maximum likelihood estimator
procedure given by (4.5) and (4.6) for S x A-rectangular robust factored MDP with tuning parameter
&; given by Proposition E. 1 satisfies that w.p. at least 1 — 6,

1. P} e P, for any step h € [H].

2. forany step h € [H), Py, € Py, and any factor i € [d] it holds that

E(sppa )~ , U PhiClsnpasl,an) = Py i(-lsnlpag], an)[v]

- C1 |0 *IP2il| Al log(Cond H /6)
— n .

for some absolute constant Cy,Co > 0. Here dE’J* n, IS the state-action visitation measure
induced by the behavior policy ©° and transition kernel P*.

Proof of Lemma G.2. See Appendix G.2 for a detailed proof. [

G.1 Proof of Lemma G.1

In this section, we establish the proof of Lemma G.1. We firstly introduce several notations. For any
function f : S x A — R, we denote

B0, (] = = 3 F(sFaf).
T=1

Proof of Lemma G.1. We follow the proof of similar MLE guarantees in [54] and [25]. We begin

with proving the first conclusion of Lemma G.1, i.e., P;; € 73h for each step h € [H]. For notational
simplicity, we define

gn(P)(s,a) = ||P(‘]s,a) — Pf:(~|s,a)||%, VP € Py. (G.1)
To prove the first conclusion, it suffices to show that
Ep, [gn(Pn)] < &, Vh € [H]. (G.2)

where 13h is the MLE estimator given in (4.1) and the parameter £ is given by Proposition D.1. To
this end, we first invoke Lemma H. 1, which gives that with probability at least 1 — 6,

Ed;*yh [gh(ﬁh)] < (G + log(62/5)/n)2, (G.3)

for some absolute constants c;,co > 0. Here (; is a solution to the inequality \/ﬁez >
coGp(€) wrt €, with some carefully chosen function G}, which is specified in Lemma H.I.
As proved in Lemma H.2, choosing Gp(e) = (e — €2/2)/log(N}(€*/2, P, [[ - [[1,00)) and
Ch = c31/10g(Nj(1/n2, Pu, || - [l1,00))/n for some absolute constant ¢z > 0 can satisfy the in-
equality and the requirements on G,. Thus we can obtain from (G.3) that, with probability at least

1-9,
Ed%*,h [9n(P)] < 1 <03\/log(/\[[](1/n2,n731\/1, - l1,00)) n \/10g(7c12/6))

- c} log(chNy(1/n?, Py, || - ||1700)/5), (G4)

n
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for some absolute constants ¢}, ¢y > 0. Now to prove (G.2), it suffices to relate the expectation w.r.t.
dataset D, and the expectation w.r.t. visitation measure d. - To bridge this gap, we invoke Lemma
H.3, which is a Bernstein style concentration inequality and gives that with probability at least 1 — 9,
5 5 calog(esNy(1/n?, Pa, | - [l1,00)/9)

B, [gn (Ph)] = Eqy,  on(Ph)]] < - ~

h n
for some absolute constant ¢4 > 0. Now combining (G.4) and (G.5), we can obtain that,
Epy, [9n(Pn)] = Epy, [gn(Pa)] = Ego gn(Pa)] +Eg [gn(Pn)]

sh Jh

A log (BN (1/n, Pats || - [11,00)/9)

n

for some absolute constants ¢/, ¢4 > 0. Finally, taking a union bound over step h € [H] and rescaling
J, we obtain that, with probability at least 1 — §/2,

~ 6 1 6 HN 1 2,73 - - 5
Ep, [gn(Ph)] < — og(CoHN(1/n%, P, || - [11,00)/0)

, (G.S5)

- =¢, VYhe[H], (G.6)
for some absolute constants 51, C~’2 > 0. This finishes the proof of the first conclusion of Lemma
G.1.

The following of the proof is to prove the second conclusion of Lemma G.1. With the notation of gy,
it suffices to prove that with probability at least 1 — §/2,
C1log(C2HN} (1/n?, Pat, || - [11.00)/9)

sup Ego  [gn(Pn)] < ;
he[H],PnePr, ’ n

for some absolute constants C'1, Co > 0. To this end, for any step h € [H] and P, € 73;1, consider
the following decomposition of E, [gn(Pr)],

Eay, , lon(Pn)] = Eqy, | (9n(Pn)] — Eny, [92(P2)] + En, [9n(Pr)]- (G.7)

Note that the term Ep, [g, (Py)] in (G.7) satisfies, with probability at least 1 — §/2,
Ep, [9n(Pn)] = Ep, [||P(-]s,a) — P (]s,a)ll3)
= Ep, [ Pa (s, a) — Pu(-|s,a) + Py(-|s.a) — Pi(-|s,a)[3]
< 2By, [||P4(-|s,a) — Pu([s,a)|}] + 2Ep, [| Pu(-|s, a) — P (|s, a)|3]
< 4g, (G.8)

where the last inequality follows from the definition of confidence region ’ﬁh and the first conclusion
of Lemma G.1, i.e., (G.6). Thus by taking (G.8) back into (G.7), we obtain that,

Eay,  l9n(Pn)] <4€+Eqy  [9n(Pn)] = En, [gn(Fn)]- (G9)

Finally, invoking another Bernstein style concentration inequality (Lemma H.4), we have that with
probability at least 1 — 6,

(G.10)

sup |Ep, [9n(Pn)] — Ed'}* [9n(Pr)]| < < 1Og(C7N[](1/”27PMv - ll1,00)/9)

. h
PPy, n

Thus by combining (G.9) and (G.10), taking a union bound over step h € [H], rescaling d, and using
the definition of &, we can conclude that with probability at least 1 — §/2,

C log(CoHNy(1/n?, P, || - [l1,00)/9)
sup  Egp [gn(Pn)] < [ ;
h€[H],PLEPy, ' n
for some absolute constants C7,Cy > 0. This finishes the proof of Lemma G.1. O

G.2 Proof of Lemma G.2
Proof of Lemma G.2. This is a direct corollary of Lemma G.1 in the finite state space case: for each

factor ¢ € [d], consider O as the state finite space and apply the upper bound of bracket number (4.4)
for finite state space proved in Appendix D.2. This proves Lemma G.2. O
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H Technical Lemmas

H.1 Lemmas for Maximum Likelihood Estimator

In this section, we give technical lemmas for the maximum likelihood estimator. We firstly introduce
several notations which are also considered by [54] and [25], We define a localized model space

Phe) as
Pule) = {P € Pain: Bay. [Diotges (PC1s, @) | P (s, 0)] < €2,

where Dyellinger (+||-) is the Hellinger distance between two probability measures, and fM p, 1s called
a modified space Py, defined as Py, = {(P + P7)/2 : P € Pu}. Also, we define the entropy
integral of P, (¢) under the || - ||2’d1},3 . -horm as

JB<e,Ph<e>,||~||2,d;*,h>max{e /2/2 o (. P, - ||2,dp*h>>du}.

Lemma H.1 (MLE Gaurantee, [55]). Take a function Gp(e) : [0,1] — R sz Gp(e) >

Jp(e, Prle), || - |l b ) and G (€)/€® non-increasing w.r.t . Then, letting 5, be a solution to

Vne? > coG(€) w.rt €, where cq is an absolute constant. With probability at least 1 — §, we have
that

By, [1PaCls,0) = PiCls a)l3] < o1 (G + VViog(ea/0) n)”

Proof of Lemma H.1. We refer to Theorem 7.4 in [55] for a detailed proof. O
Lemma H.2 (Choice of G},(¢) and ¢;, in Lemma H.1). In Lemma H.1, we can choose Gy, (¢€) as
Ghr(e) = (e — 62/2)\/105;(/\/[1 (€/2,Pus || - [l,00))

In this case, C, = cor/1og(N(1/n2, Pu, [ - [[1,00)) /1 solves the inequality \/ne* > coGp(€) w.rt
€.

Proof of Lemma H.2. We first check the conditions that G, should satisfy. By the choice of G},
Gh(e) = (e — €/2), o8Ny (4/2, Par, || - 1,00))
> (e~ /2), flos W (/2. Pn(), |- oy )

> max {6,/2/2 \/log(-/\/’[](uaﬁh(e% I ll2,qn ,d2, h))du}

= (e Pu(. ] 2. ).
where the first inequality follows from Lemma H.6, the second inequality follows from the fact that
Njj(u1, Pr(e), || - b)) 2> Njj(uz, Pr(e), || - ll2,az,, ) for uy < us. In the second inequality we

assume without loss of generality that log(N(€2/2, P (e), || - H27d1;3* ’ )) > 4. Besides, since

Gn(e)/e* = (1/e~ 1/2)\/10g(/\/[] (€/2, Py, [l - ll1.00))

is non-increasing w.r.t e for € € [0, 1], we can confirm that G}, satisfy the conditions in Lemma H.1.
With this choice of G}, the inequality /ne? > coG},(€) reduces to

Vi > co(1/e = 1/2),log(Vy (/2. Pt ||+ 11.50)),

which equivalents to

. cor/log(N(e2/2, P, [ - [l1,00))
T Vn+ 7\/10g N (e?/2,Pars T T11,00))

H.1)
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Taking Gy, = co /108N (1712, Par, [T~ 1,00}/ when co/Tog(Ny (1702, Par. T T1)) > 2174,
we can check that (j, satisfies the inequality (H.1) by,

¢o/T0g (NG (/1% o, T Thoo)) 0\ log(N (/2. Pai |- l.00))

v V4 log WG /2. P [ ,e0)
This finishes the proof of Lemma H.2. O

Ch =

H.2 Lemmas for Concentration Inequalities and Bracket Numbers

Lemma H.3 (Bernstein inequality I). For any step h € [H|, with probability at least 1 — 6,

Ep, [gh(ﬁh)] B Edg*’h[gh(ﬁh)ﬂ < c1 lOg(CZM](l/n2,PM7 Il - ”1700)/6).

n

Proof of Lemma H.3. Motivated by [54] and [25], to obtain a fast rate of convergence, we will utilize
the localization technique in proving concentration. To this end, we first define the following localized
realizable model space,

ey log(hNn(1/n2, P, || - ||1.00) /0
Pl = {Pepu By, lan(p) < SEEROI Pl O,

where absolute constants ¢j and ¢/, are specified in (G.4). According to the proof of (G.4), we know

that with probability at least 1 — §, the event F; = {ﬁh € 731{7[",3} holds. In the sequel, we will always
condition on the event ;. Now we define another function class as

Fn={gn(P) : P € Piy%,

Then applying Bernstein inequality with union bound (Lemma H.5) on the function class F},, we can
obtain that with probability at least 1 — ¢, for any P € 771{‘/[02 (denote M(€) = N (€, Fn, |l - lloo))

Ep, [90(P)] ~ Egs lon(P)] (H2)

s \/2Vd';*'h[gh(P)]IOg(M(G)/(S)+8 og(M(I/3) , Slog(M()/)

n n 3n
)

b og(Mi(e)/d
. \/SEdP*’h [gh(qul g(M(e)/9) s elog(/\:(e)/é) N 810g(./?:(e)/5) ey
- \/80’1 log(chN(1/n2, P, || - [[1,00)/9) - log(M((e) /6) +8 elog(M(€)/0)

N 810g(/;:11(6)/5)

where the first inequality follows from Lemma H.5, both the first and the second inequality use the
fact that sup peproe |gn(P)] < 4, and the last inequality uses the definition of Pyt If we denote

Fh=A{gn(P) : P € Pu}, (H.3)
we can upper bound the covering number M (¢) via the following sequence of inequalities,

M(e) = N(e. Fs [ lloo) N (&, Fps [l - lloo) < N(&;Prs [ - ll.00) < Nj(&, Py [ - ll1,00):
(H4)

where the first inequality follows from F;, C F;, the second inequality can be easily derived from the
relationship between F; and Py, and the last inequality follows from the fact that covering number
can be bounded by bracket number. Therefore, by combining (H.2) and (H.4), letting € = 1/n?, we

can derive that, conditioning on E; = {ISh € PI\L/I‘?E}, with probability at least 1 — 4,

Ep, [gh(ﬁh)] Eg,. [gh(ﬁh)ﬂ < c1log(caNpy (1/n?, P, || - ”1,00)/5)’

h n
for some absolute constant c;, ca > 0. Finally, since the event E; holds with probability at least
1 — 4, by rescaling §, we can finish the proof. O

+ 2e,
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Lemma H.4 (Bernstein inequality IT). For any step h € [H|, with probability at least 1 — 6,

1 Ny(1/n2, P, || - Nl100) /6 ~
|]E1D>h[9h(Ph)]*Ed\;* gn(PW)]| < 1 log (e []( /n M, || ||1 )/ )’ VP, € Py

h n

Proof of Lemma H.4. According to the proof of (G.8), we know that the event E; defined as
By = {Ep, [9:(P)] < 46, VP, € Py}

holds with probability at least 1 — §/2. In the sequel, we always condition on the event Es. Now we
define a function class Gy, as following,

Gn = {gh(Ph) Py e ﬁh} .

Applying Bernstein inequality with union bound (Lemma H.5) on the function class G, we can
obtain that with probability at least 1 — §, for any Py, € Py, (denote M’ (e) = N (€, Gp, || - ||0))

B, [9n(Pr)] = Eqv,  [9n(Pn)]]

,h

. \/ Vo, [gh(Pth log(M’(e€)/9) s elog(/\z’(e) /9 . 81og(/;4n'(e)/5) ey
. \/ SEdl};*yh[gh<Ph:L] log(M’(€)/6) s elog(A:Lf(e) /%) 8log(/?\:l7;(e)/5) o
- \/ 8(IEqy, , [9n(FPn)] — En, [gn(Ph)]| + 4€) log(M'(€) /6)
48 elog(M’(€)/d) N 8log(M'(€)/) Lo (H.5)

n 3n
where the first inequality follows from Lemma H.5, both the first and the second inequality use the
fact that supp, 5, |9n(P%)| < 4, and the last inequality uses the definition of event E5. By using
the fact that the function class G, C Fj, where Fj is defined in (H.3) in the proof of Lemma H.3,
we can apply the same argument as (H.4) to derive that M’ (e) < Njj(e, Put, || - ||1,00). Thus taking
€ = 1/n?, denoting Ay, (Py,) = |Ep, [gn(Pr)] — Ed;* X [grn(Pn)]|, we can derive from (H.5) that,

An(Py) < \/S(Ah(Ph) + 4¢) 1og(,:\1/[](e,7DM, I 11.00)/9)
n 8\/]0§(M1(€,PM;H “N1,00)/9) n 8log(./\/[](e,73M, | l1.00)/6) . %
" 3n n
< ¢ S(An(Pn) +4€) log Wy (e, Par, | T1.00)/9) | ¢ log (e, P | - l.0) /)
< : :
DY oV AT Y Y TSV AL AT T e
" n

for some absolute constants ¢, ¢{, ¢§ > 0, where in the last inequality we have applied the definition

of £. Now solving this quadratic inequality (H.6) w.r.t A (P},), we can obtain that,

An(Py) < ‘1 IOg(CQ./\f[] (&, Pu, || - [l1,00)/6)

)
n

for some absolute constants ¢, co > 0. Thus we obtain that when conditioning on the event Es, with

probability at least 1 — &, for any P, € 73;“ the desired concentration inequality holds. Finally, since
E holds with probability at least 1 — §/2, by rescaling 0, we can finish the proof of Lemma H.4. [

Lemma H.5 (Bernstein inequality with union bound). Consider a function class F C {f : X — R},
where X is a probability space. If we assume that the e-covering number of F under infinity-norm is
Sfinite, that is, M = N (e, F, || - ||oo) < 00, and we also assume that there exists an absolute constant
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R such that | f(X)| < R, then with probability at least 1 — § the following inequality holds for all
feF,

gze+\/2V[f<X>]nlog<M/6> +4\/Relogn(M/5) +2310§7(1M/5>’

L3 F(X) ~ BIA(X)

where X, X1, ..., X, are i.i.d. samples on the probability space X.

Proof of Lemma H.5. We refer to Lemma F.1 in [25] for a detailed proof. O
Lemma H.6 (Bracket number I). It holds for any € > 0 that
M](67Ph(6)7 ” . ||2,db ) < ./\/[] (2627731\/[7 H :

. 1,00)-

Proof of Lemma H.6. We refer to Lemma G.2 in [25] for a detailed proof. O

H.3 Lemmas for Dual Variables

Lemma H.7 (Dual variable for KL-divergence). The optimal solution to the following optimization
problem

A* = argsup {—)\log (/ exp {—f(z)/A} P(da:)) - /\a} )
AER,
with || fllcoc < H and some probability measure P satisfies that \* < H/o.

Proof of Lemma H.7. For simplicity, denote by g(\) = —Alog ([‘exp{—f(z)/A} P(dz)) — Ao.
Notice that g(0) = 0, and for A > H/o, due to || f||oc < H, we have that

g(A\) < =Alog(exp{—H/(H/0)}) — Ao = o — Ao = 0.
Thus we can conclude that \* < H/o. O

Lemma H.8 (Dual variable for TV-distance). The optimal solution to the following optimization
problem

A* = argsup { /()\ — f(x))+ P(dz) — g()\ —inf f(x))+ + )\} .
A€ER T

with || flleoc < H and some probability measure P satisfies that 0 < \* < H.

Proof of Lemma H.8. For simplicity, denote g(A\) = — [(A—f(z)) 4 P(dx)—$(A—inf, f(x))++A.

We can observe that g(0) = 0, and g(A) < 0 for A < 0. Thus we have shown that \* > 0. Also, for
A> H,dueto ||f|lec < H, we can write g(\) as

o) == [ A= f@)P(do) = T~ inf f(@) + A
— [ f@P(a) + §int f) - T,

which is a monotonically decreasing function with respect to A. Thus we prove that \* < H. O
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