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Abstract

We study distributionally robust offline reinforcement learning (RL), which seeks
to find an optimal robust policy purely from an offline dataset that can perform well
in perturbed environments. We propose a generic algorithm framework Doubly
Pessimistic Model-based Policy Optimization (P2MPO) for robust offline RL, which
features a novel combination of a flexible model estimation subroutine and a doubly
pessimistic policy optimization step. Here the double pessimism principle is crucial
to overcome the distribution shift incurred by i) the mismatch between behavior
policy and the family of target policies; and ii) the perturbation of the nominal
model. Under certain accuracy assumptions on the model estimation subroutine,
we show that P2MPO is provably sample-efficient with robust partial coverage data,
which means that the offline dataset has good coverage of the distributions induced
by the optimal robust policy and perturbed models around the nominal model. By
tailoring specific model estimation subroutines for concrete examples including
tabular Robust Markov Decision Process (RMDP), factored RMDP, and RMDP
with kernel and neural function approximations, we show that P2MPO enjoys a
Õ(n−1/2) convergence rate, where n is the number of trajectories in the offline
dataset. Notably, these models, except for the tabular case, are first identified and
proven tractable by this paper. To the best of our knowledge, we first propose a
general learning principle — double pessimism — for robust offline RL and show
that it is provably efficient in the context of general function approximations.

1 Introduction

Reinforcement learning (RL) [52] aims to learn an optimal policy that maximizes the cumulative
rewards received in an unknown environment. Typically, deep RL algorithms learn a policy in an
online trial-and-error fashion using millions to billions of data. However, data collection could be
costly and risky in some practical applications such as healthcare [56] and autonomous driving [38].
To tackle this challenge, offline RL (also known as batch RL) [21, 22] learns a near-optimal policy
based on a dataset collected a priori without further interactions with the environment. Although
there has been great progress in offline RL [72, 20, 16, 54, 62, 6], these works implicitly require that
the offline dataset is generated by the real-world environment, which may fail in practice. Taking
robotics [18, 37] as an example, the experimenter trains agents in a simulated physical environment
and then deploy them in real-world environments. Since the experimenter does not have access to the
true physical environment, there is a mismatch between the simulated environment used to generate
the offline dataset and the real-world environment used to deploy the agents. Such a mismatch is
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commonly referred to as the sim-to-real gap [42, 76]. Since the optimal policy is sensitive to the
model [31, 9], the potential sim-to-real gap may lead to the poor performance of RL algorithms.

A promising solution to remedy this issue is robust RL [13, 9, 32] – training a robust policy that
performs well in a bad or even adversarial environment. A line of work on deep robust RL [43, 44, 41,
30, 53, 75, 19] demonstrates the superiority of the trained robust policy in real world environments.
Furthermore, the recent work of Hu et al. [11] theoretically proves that the ideal robust policy can
attain near optimality in dealing with problems with sim-to-real gap, but this work does not suggest
how to learn a robust policy from a theoretical perspective. In order to understand robust RL from the
theoretical side, robust Markov decision process (RMDP) [13, 9] has been proposed, and many recent
works [77, 47, 29] design sample-efficient learning algorithms for robust offline RL. These works
mainly focus on the tabular case, which is not capable of tackling large state spaces. Meanwhile,
in the non-robust setting, a line of works [16, 54, 62, 73, 45] show that “pessimism” is the general
learning principle for designing algorithms that can overcome the distributional shift problem faced
by offline RL. In particular, in the context of function approximation, Xie et al. [62] and Uehara and
Sun [54] leverage the pessimism principle and propose generic algorithms in the model-free and
model-based fashion, respectively. Hence, it is natural to ask the following questions:

Q1: What is the general learning principle for robust offline RL?
Q2: Based on this learning principle, can we design a generic algorithm for robust offline RL in the

context of function approximation?

To answer these two questions, we need to tackle the following two intertwined challenges: (i)
distributional shift, that is, the mismatch between offline data distribution and the distribution induced
by the optimal robust policy. In robust offline RL, the distributional shift has two sources – behavior
policy and perturbed model, where the latter is the unique challenge not presented in non-robust RL;
and (ii) function approximation. Existing works mainly focus on the tabular case, and it remains
elusive how to add reasonable structure conditions to make RMDPs with large state spaces tractable.
Despite these challenges, we answer the aforementioned two questions affirmatively.

Contributions. We study robust offline RL in a general framework, which not only includes existing
known tractable S × A-rectangular tabular RMDPs, but also subsumes several newly proposed
models (e.g., S ×A-rectangular factored RMDPs, S ×A-rectangular kernel RMDPs, and S ×A-
rectangular neural RMDPs) as special cases. Under this general framework, we propose a generic
model-based algorithm, dubbed as Doubly Pessimistic Model-based Policy Optimization (P2MPO),
which consists of a model estimation subroutine and a policy optimization step based on doubly
pessimistic value estimators. We note that the model estimation subroutine can be flexibly chosen
according to structural conditions of specific RMDP examples. Meanwhile, the adoption of doubly
pessimistic value estimators in the face of model estimation uncertainty and environment uncertainty
plays a key role in overcoming the distributional shift problem in robust offline RL.

From the theoretical perspective, we characterize the optimality of P2MPO with partial coverage. In
particular, we show that the suboptimality gap of P2MPO is upper bounded by the model estimation
error (see Condition 3.2) and the robust partial coverage coefficient (see Assumption 3.3). For
concrete examples of RMDPs, by customizing specific model estimation mechanisms and plugging
them into P2MPO, we show that P2MPO enjoys a n−1/2 convergence rate with robust partial coverage
data, where n is the number of trajectories in the offline dataset. In summary, we identify a general
learning principle — double pessimism — for robust offline RL. Based on this principle, we can
perform sample-efficient robust offline RL with robust partial coverage data via general function
approximation. See Table 1 for a summary of our results and a comparison with mostly related works.

1.1 Related Works

Robust reinforcement learning in robust Markov decision processes. Robust RL is usually
modeled as a robust MDP (RMDP) [13, 9], and its planning has been well studied [13, 9, 65, 60, 57].
Recently, robust RL in RMDPs has attracted considerable attention, and a growing body of works
studies this problem in the generative model [68, 39, 49, 58, 69, 66, 7], online setting [59, 3, 8],
and offline setting [77, 40, 47, 29]. Our work focuses on robust offline RL, and we provide a more
in-depth comparison with Zhou et al. [77], Shi and Chi [47], Ma et al. [29] as follows. Under the
full coverage condition (a uniformly lower bounded data distribution), Zhou et al. [77] provide the
first sample-efficient algorithm for S × A-rectangular tabular RMDPs. After, Shi and Chi [47]
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Table 1: A comparison with closely related works on robust offline RL. ✓means the work can tackle
this model with robust partial coverage data, ✓! means the work requires full coverage data to solve
the model, and ✗ means the work cannot tackle the model. Lightblue color denotes the models that
are first proposed and proved tractable in this work.

Zhou et al. [77] Shi and Chi [47] Ma et al. [29] This Work
S ×A-rectangular tabular RMDP ✓! ✓ ✗ ✓

d-rectangular linear RMDP ✗ ✗ ✓ ✓
S ×A-rectangular factored RMDP ✗ ✗ ✗ ✓
S ×A-rectangular kernel RMDP ✗ ✗ ✗ ✓
S ×A-rectangular neural RMDP ✗ ✗ ✗ ✓

leverage the pessimism principle and design a sample-efficient offline algorithm that only requires
robust partial coverage data for S × A-rectangular tabular RMDPs. Ma et al. [29] propose a new
d-rectangular RMDP and develop a pessimistic style algorithm that can find a near-optimal robust
policy with partial coverage data. In comparison, we provide a generic algorithm that can not only
solve the models in Zhou et al. [77], Shi and Chi [47], Ma et al. [29], but can also tackle various
newly proposed RMDP models such as S ×A-rectangular factored RMDP, S ×A-rectangular kernel
RMDP, and S ×A-rectangular neural RMDP. See Table 1 for a summary. Moreover, we propose a
new pessimistic type learning principle “double pessimism” for robust offline RL. Although Shi et al.
[48] and Ma et al. [29] adopt the similar algorithmic idea in tabular or linear settings, neither of them
have identified a general learning principle for robust offline RL in the regime of large state space.

Non-robust offline RL and pessimism principle. The line of works on offline RL aims to design
efficient learning algorithms that find an optimal policy given an offline dataset collected a priori.
Prior works [33, 2, 5] typically require a dataset of full coverage, which assumes that the offline data
have good coverage of all state-action pairs. In order to avoid such a strong coverage condition on
data, the pessimism principle – being conservative in policy or value estimation of those state-action
pairs that are not sufficiently covered by data – has been proposed. Based on this principle, a long line
of works [see e.g., 16, 54, 62, 63, 45, 73, 71, 64, 48, 24, 26, 74, 28, 46] propose algorithms that can
learn the optimal policy only with the partial coverage data. The partial coverage data only requires
to cover the state-action pairs visited by the optimal policy. Among these works, our work is mostly
related to the work of Uehara and Sun [54], which proposes a generic model-based algorithm for
non-robust offline RL. Our algorithm for robust offline RL is also in a model-based fashion, and our
study covers some models such as S ×A-rectangular kernel and neural RMDPs whose non-robust
counterparts are not studied by Uehara and Sun [54]. More importantly, our algorithm is based on a
newly proposed double pessimism principle, which is tailored for robust offline RL and is in parallel
with the pessimism principle used in non-robust offline RL. Also, we show that the performance of
our proposed algorithm depends on the notion of robust partial coverage coefficient, which is also
different from the notions of partial coverage coefficient in previous non-robust offline RL works
[16, 62, 54].

1.2 Notations

For any set A, we use 2A to denote the collection of all the subsets of A. For any measurable space
X , we use ∆(X ) to denote the collection of probability measures over X . For any integer n, we use
[n] to denote the set {1, · · · , n}. Throughout the paper, we use D(·∥·) to denote a (pseudo-)distance
between two probability measures (or densities). In specific, we define the KL-divergence DKL(p∥q)
between two probability densities p and q over X as

DKL(p∥q) =
∫
X
p(x) log

(
p(x)

q(x)

)
dx,

and we define the TV-distance DTV(p∥q) between two probability densities p and q over X as

DTV(p∥q) =
1

2

∫
X
|q(x)− p(x)|dx.

Given a function class F equipped with some norm ∥·∥F , we denote by N[](ϵ,F , ∥·∥F ) the ϵ-bracket
number of F , and N (ϵ,F , ∥ · ∥F ) the ϵ-covering number of F .
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2 Preliminaries

2.1 A Unified Framework of Robust Markov Decision Processes

We introduce a unified framework for studying episodic robust Markov decision processes (RMDP),
which we denote as a tuple (S,A, H, P ⋆, R,PM,Φ). The set S is the state space with possibly infinite
cardinality, A is the action space with finite cardinality. The integer H is the length of each episode.
The set P ⋆ = {P ⋆

h}Hh=1 is the collection of transition kernels where each P ⋆
h : S ×A 7→ ∆(S), and

R = {Rh}Hh=1 is the collection of reward functions where each Rh : S ×A 7→ [0, 1]. We use ∆(S)
to note the probability simplex on S (i.e. the space of probability measures with support on S).

We consider a model-based perspective of reinforcement learning, and we denote P = {P (·|·, ·) :
S × A 7→ ∆(S)} as the space of all transition kernels. The space PM ⊆ P of the RMDP is a
realizable model space which contains the transition kernel P ⋆, i.e., P ⋆

h ∈ PM for any step h ∈ [H].
Finally, the RMDP is equipped with a mapping Φ : PM 7→ 2P that characterizes the robust set of
any transition kernel in PM. Formally, for any transition kernel P ∈ PM, we call Φ(P ) the robust
set of P . One can interpret the transition kernel P ⋆

h ∈ PM as the transition kernel of the training
environment, while Φ(P ⋆

h ) contains all the possible transition kernels of the test environment.
Remark 2.1. The mapping Φ is defined on the realizable model space PM, while for generality we
allow the image of Φ to be outside of PM. That is, a P̃ ∈ Φ(P ) for some P ∈ PM might be in Pc

M.
Policy and robust value function. Given an RMDP (S,A, H, P ⋆, R,PM,Φ), we consider using
a Markovian policy to make decision. A Markovian policy π is defined as π = {πh}Hh=1 with
πh : A 7→ ∆(S) for each step h ∈ [H]. For simplicity, we use policy to refer to a Markovian policy.

Given any policy π, we define the robust value function of π with respect to any set of transition
kernels P = {Ph}Hh=1 ⊆ PM as the following, for each step h ∈ [H],

V π
h,P,Φ(s) = inf

P̃h∈Φ(Ph),1≤h≤H
V π
h (s; {P̃h}Hh=1), ∀s ∈ S, (2.1)

Qπ
h,P,Φ(s, a) = inf

P̃h∈Φ(Ph),1≤h≤H
Qπ

h(s, a; {P̃h}Hh=1), ∀(s, a) ∈ S ×A. (2.2)

Here V π
h (·; {P̃h}Hh=1) and Qπ

h(·; {P̃h}Hh=1) are the state-value function and the action-value function
[52] of policy π in the standard episodic MDP (S,A, H, {P̃h}Hh=1, R),

V π
h (s; {P̃h}Hh=1) = E{P̃h}H

h=1,π

[
H∑
i=h

Ri(si, ai)

∣∣∣∣∣sh = s

]
, ∀s ∈ S, (2.3)

Qπ
h(s, a; {P̃h}Hh=1) = E{P̃h}H

h=1,π

[
H∑
i=h

Ri(si, ai)

∣∣∣∣∣sh = s, ah = a

]
, ∀(s, a) ∈ S ×A, (2.4)

where the expectation E{P̃h}H
h=1,π

[·] is taken with respect to the trajectories induced by the transition

kernel {P̃h}Hh=1 and the policy π. Intuitively, the robust value function of a policy π given transition
kernel P is defined as the least expected cumulative reward achieved by π when the transition kernel
varies in the robust set of P . This is how an RMDP takes the perturbed models into consideration.

S ×A-rectangular robust set and robust Bellman equation. Ideally, we would like to consider
robust value function that has recursive expressions, just like the Bellman equation satisfied by (2.3)
in a standard MDP [52]. To this end, we focus on a generally adopted kind of robust set in our unified
framework, which is called the S ×A-rectangular robust set [13].
Assumption 2.2 (S × A-rectangular robust set). We assume that the mapping Φ induces S × A-
rectangular robust sets. Specifically, the mapping Φ satisfies, for ∀P ∈ PM,

Φ(P ) =
⊗

(s,a)∈S×A

Pρ(s, a;P ), Pρ(s, a;P ) =
{
P̃ (·) ∈ ∆(S) : D(P̃ (·)∥P (·|s, a)) ≤ ρ

}
,

for some (pseudo-) distance D(·∥·) on ∆(S) and some ρ ∈ R+. Intuitively, S × A-rectangular
requires that Φ(P ) gives decoupled robust sets for P (·|s, a) across different (s, a)-pairs. The
(pseudo-)distance D(·∥·) can be chosen as a ϕ-divergence [68, 10] or a p-Wasserstein-distance [35].
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Thanks to the S ×A-rectangular assumption on the mapping Φ, the robust value functions (2.1) of
any policy π then satisfy a recursive expression, which is called robust Bellman equation [13, 36].

Proposition 2.3 (Robust Bellman equation). Under Assumption 2.2, for any P = {Ph}Hh=1 where
Ph ∈ PM and any π = {πh}Hh=1 with πh : S 7→ ∆(A), the following robust Bellman equation holds,

V π
h,P,Φ(s) = Ea∼πh(·|s)[Q

π
h,P,Φ(s, a)], ∀s ∈ S, (2.5)

Qπ
h,P,Φ(s, a) = Rh(s, a) + inf

P̃h∈Φ(Ph)
Es′∼P̃h(·|s,a)[V

π
h+1,P,Φ(s

′)], ∀(s, a) ∈ S ×A. (2.6)

To be self-contained, in Appendix B we provide a detailed proof of the robust Bellman equation in our
framework under Assumption 2.2. Equation (2.5) actually says that the infimum over all the transition
kernels (recall the definition of V π

h,P,Φ in (2.1)) can be decomposed into a “one-step” infimum over
the current transition kernel, i.e., inf P̃h∈Φ(Ph)

, and an infimum over the future transition kernels, i.e.,
V π
h+1,P,Φ. Such a property is crucial to the algorithmic design and theoretical analysis for RMDPs.

2.2 Examples of Robust Markov Decision Processes

In this section, we give concrete examples for the general RMDP framework proposed in Section 2.1.
Most existing works on RMDPs hinge on the finiteness assumption on the state space, which fails to
deal with prohibitively large or even infinite state space. In our framework, RMDPs can be considered
in the paradigm of infinite state space, for which we adopt various powerful function approximation
tools including kernel and neural functions. Also, we introduce a new type of RMDP named robust
factored MDP, which is a robust extension of standard factored MDPs [17].

Remark 2.4. Besides S ×A-rectangular-type robust sets (Assumption 2.2), our unified framework
of RMDP can also cover other types of robust sets considered in some previous works as special
cases, including S-rectangular robust set [61] and d-rectangular robust set for linear MDPs [29].
See Section A for a discussion about these two types of robust sets.

In the sequel, we introduce concrete examples of our framework of RMDP.

Example 2.5 (S × A-rectangular robust tabular MDP). When the state space S is a finite set, we
call the corresponding model an S ×A-rectangular robust tabular MDP. Recently, there is a line of
works on the S ×A-rectangular robust tabular MDP [77, 68, 39, 27, 47, 40, 8, 10, 35, 58, 69, 66, 7].
For S ×A-rectangular robust tabular MDPs, we choose PM = P containing all possible transitions.

Remark 2.6. We point out that our framework of RMDP under S×A-rectangular assumption covers
substantially more model than S ×A-rectangular robust tabular MDP since our state space S can
be infinite. The model space PM can be adapted to function approximation methods to handle the
infinite state space. Thus any efficient algorithm developed for our framework of RMDPs can not be
covered by algorithms for S ×A-rectangular robust tabular MDPs. Example 2.7 and 2.8 are infinite
state space S ×A-rectangular robust MDPs with function approximations.

Example 2.7 (S ×A-rectangular robust MDP with kernel function approximations). We consider
an infinite state space S × A-rectangular robust MDP whose realizable model space PM is in a
reproduced kernel Hilbert space (RKHS). Let H be a RKHS associated with a positive definite kernel
K : (S ×A× S)× (S ×A× S) 7→ R+ (See Appendix D.3.1 for a review of the basics of RKHS).
We denote the feature mapping of H by ψ : S ×A× S 7→ H. With H, an S ×A-rectangular robust
MDP with kernel function approximation is defined as an S ×A-rectangular robust MDP with

PM =
{
P (s′|s, a) = ⟨ψ(s, a, s′),f⟩H : f ∈ H, ∥f∥H ≤ BK

}
, (2.7)

for some BK > 0. Here we implicitly identify P (·|·, ·) as the density of the corresponding distribution
with respect to a proper base measure on S ×A× S.

Example 2.8 (S ×A-rectangular robust MDP with neural function approximations). We consider an
infinite state space S×A-rectangular robust MDP whose realizable model space PM is parameterized
by an overparameterized neural network. We first define a two-layer fully-connected neural network
on some X ⊆ RdX as

NN(x;W,a) =
1√
m

m∑
j=1

ajσ(x
⊤wj), ∀x ∈ X , (2.8)
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where m ∈ N+ is the number of hidden units of NN, (W,a) is the parameters given by W =
(w1, · · · ,wm) ∈ Rd×m, a = (a1, · · · , am)⊤ ∈ Rm, and σ(·) is the activation function. Now we
assume that the state space S ⊆ RdS for some dS ∈ N+. Also, we identify actions via one-hot
vectors in R|A|, i.e., we represent a ∈ A by (0, · · · , 0, 1, 0, · · · , 0) with 1 in the a-th coordinate. Let
X = S ×A×S with dX = 2dS + |A|. Then an S ×A-rectangular robust MDP with neural function
approximation is defined as an S ×A-rectangular robust MDP with PM given by

PM =
{
P (s′|s, a) = NN((s, a, s′);W,a0) : ∥W −W0∥2 ≤ BN

}
, (2.9)

for some BN > 0 and some fixed (W0,a0) which can be interpreted as the initialization. We refer to
Appendix D.4.1 for more details about neural function approximations and analysis techniques.
Example 2.9 (S ×A-rectangular robust factored MDP). We consider a factored MDP equipped with
S ×A-rectangular factored robust set. A standard factored MDP [17] is defined as follows. Let d be
an integer and O be a finite set. The state space S is factored as S = Od. For each i ∈ [d], s[i] is
the i-coordinate of s and it is only influenced by s[pai], where pai ⊆ [d]. That is, the transition of a
factored MDP can be factorized as

P ⋆
h (s

′|s, a) =
d∏

i=1

P ⋆
h,i(s

′[i]|s[pai], a).

Here we let the realizable model space PM consist of all the factored transition kernels, i.e.,

PM =

{
P (s′|s, a) =

d∏
i=1

Pi(s
′[i]|s[pai], a) : Pi : S[pai]×A 7→ ∆(O),∀i ∈ [d]

}
.

For an S×A-rectangular robust factored MDP, we define Φ as, for any transition kernel P (s′|s, a) =∏d
i=1 Pi(s

′[i]|s[pai], a) ∈ PM, Φ(P ) =
⊗

(s,a)∈S×A PFac,ρ(s, a;P ), with

PFac,ρ(s, a;P ) =

{
d∏

i=1

P̃i(·) : P̃i(·) ∈ ∆(O), D(P̃i(·)∥Pi(·|s[pai], a)) ≤ ρi,∀i ∈ [d]

}
.

for some (pseudo-)distance D on ∆(O) and some positive real numbers {ρi}di=1.

2.3 Offline Reinforcement Learning in Robust Markov Decision Processes

In this section, we define the offline RL protocol in a RMDP (S,A, H, P ⋆, R,PM,Φ). The learner
is given the realizable model space PM and the robust mapping Φ, but the learner doesn’t know the
transition kernel P ⋆. For simplicity, we assume that the learner knows the reward function R2.

Offline dataset generation. We assume that the learner is given an offline dataset D that consists of
n i.i.d. trajectories generated from the standard MDP (S,A, H, P ⋆, R) using some behavior policy
πb. For each τ ∈ [n], the trajectory has the form of {(sτh, aτh, rτh)}Hh=1, satisfying that aτh ∼ πb

h(·|sτh),
rτh = Rh(s

τ
h, a

τ
h), and sτh+1 ∼ P ⋆

h (·|sτh, aτh) for each step h ∈ [H].

Given transition kernels P = {Ph}Hh=1 and a policy π, we use dπP,h(·, ·) to denote the state-action
visitation distribution at step h when following policy π and transition kernel P . With this notation,
the distribution of (sτh, a

τ
h) can be written as dπ

b

P⋆,h or simply dbP⋆,h, for each τ ∈ [n] and h ∈ [H].

We also use dπ
b

P⋆,h(·) to denote the marginal distribution of state at step h when there is no confusion.

Learning objective. In offline robust RL, the goal is to learn the policy π⋆ from the offline dataset D
which maximizes the robust value function V π

1,P⋆,Φ, that is,

π⋆ = argsup
π∈Π

V π
1,P⋆,Φ(s1), s1 ∈ S, (2.10)

where Π = {π = {πh}Hh=1 |πh : S 7→ ∆(A)} denotes the collection of all Markovian policies. In
view of (2.10), we call π⋆ the optimal robust policy. Equivalently, we want to learn a policy π̂ ∈ Π
which minimizes the suboptimality gap between π̂ and π⋆, defined as3

SubOpt(π̂; s1) := V π⋆

1,P⋆,Φ(s1)− V π̂
1,P⋆,Φ(s1), ∀s1 ∈ S. (2.11)

2This is reasonable since learning the reward function is easier than learning the transition kernel.
3Without loss of generality, we assume that the initial state is fixed to some s1 ∈ S . Our algorithm and theory

can be directly extended to the case when s1 ∼ ρ ∈ ∆(S).
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Algorithm 1 Doubly Pessimistic Model-based Policy Optimization (P2MPO)
1: Input: model space PM, mapping Φ, dataset D, policy class Π, algorithm ModelEst.
2: Model estimation step:
3: Obtain a confidence region P̂ = ModelEst(D,PM).
4: Doubly pessimistic policy optimization step:
5: Set policy π̂ as argsupπ∈Π JPess2(π), where JPess2(π) is defined in (3.1).
6: Output: π̂ = {π̂h}Hh=1.

3 Algorithm: Generic Framework and Unified Theory

In this section, we propose Doubly Pessimistic Model-based Policy Optimization (P2MPO) algorithm
to solve offline RL in the RMDP framework we introduce in Section 2.1, and we establish a unified
theoretical guarantee for P2MPO. Our proposed algorithm and theory show that double pessimism is a
general principle for designing efficient algorithms for offline robust RL. The algorithm features three
key points: i) learning the optimal robust policy π⋆ approximately; ii) requiring only a partial coverage
property of the offline dataset D; iii) able to handle infinite state space via function approximations.

We first introduce our proposed algorithm framework P2MPO in Section 3.1. Then we establish a
unified analysis for P2MPO in Section 3.2. Our algorithm framework can be specified to solve all the
concrete examples of RMDP we introduce in Section 2.2, which we show in Section 4.

3.1 Algorithm Framework: P2MPO

The P2MPO algorithm framework (Algorithm 1) consists of a model estimation step and a doubly
pessimistic policy optimization step, which we introduce in the following respectively.

Model estimation step (Line 3). The P2MPO algorithm framework first constructs an estimation
of the transition kernels P ⋆ = {P ⋆

h}Hh=1, i.e., it estimates the dynamic of the training environment.
It implements a sub-algorithm ModelEst(D,PM) that returns a confidence region P̂ for P ⋆ =

{P ⋆
h}Hh=1. Specifically, P̂ = {P̂h}Hh=1 with P̂h ⊆ PM for each step h ∈ [H].

The sub-algorithm ModelEst can be tailored to specific RMDPs. We refer to Section 4 for detailed
implementations of ModelEst for different examples of RMDPs introduced in Section 2.2. Ideally, to
ensure sample-efficient learning, we need P̂ = ModelEst(D,PM) to satisfy: i) the transition kernels
P ⋆ = {P ⋆

h}Hh=1 are contained in P̂ = {P̂h}Hh=1; ii) each transition kernel Ph ∈ P̂h enjoys a small
“robust estimation error” which is highly related to the robust Bellman equation in (2.5). We quantify
these two conditions of P̂ for sample-efficient learning in Section 3.2.

Doubly pessimistic policy optimization step (Line 5). After model estimation step, P2MPO
performs policy optimization to find the optimal robust policy. To learn the optimal robust policy in
the face of uncertainty, P2MPO adopts a double pessimism principle. To explain, this general principle
has two sources of pessimism: i) pessimism in the face of data uncertainty; ii) pessimism to find a
robust policy. Specifically, for any policy, we first estimate its robust value function via two infimums,
where one is an infimum over the confidence set constructed in the model estimation step, and one is
an infimum over the robust sets. Formally, for any π ∈ Π, we define the doubly pessimistic estimator

JPess2(π) = inf
Ph∈P̂h,1≤h≤H

inf
P̃h∈Φ(Ph),1≤h≤H

V π
1 (s1; {P̃h}Hh=1), (3.1)

where V π
1 is the standard value function of policy π defined in (2.3). Then P2MPO outputs the policy

π̂ that maximizes the doubly pessimistic estimator JPess2(π) defined in (3.1), i.e.,
π̂ = argsup

π∈Π
JPess2(π). (3.2)

The novelty of the doubly pessimistic policy optimization step is performing pessimism from the two
sources (data uncertainty and robust optimization) simultaneously. Compared with the previous works
on standard offline RL in MDPs [62, 54] and offline RL in RMDPs without pessimism [68, 77, 40],
they only contain one source of pessimism in algorithm design, contrasting with our algorithm.

We note that a recent work [47] also studied robust offline RL in S ×A-rectangular robust tabular
MDPs (Example 2.5) using pessimism techniques. Compared with our double pessimism principle,
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their algorithm performs pessimism in face of data uncertainty i) depending on the tabular structure
of the model since a point-wise pessimism penalty is needed and ii) depending on the specific form
of the robust set Φ(P ), which makes it difficult to adapt to the infinite state space case with general
function approximations and general types of robust set Φ(P ).

3.2 Unified Theoretical Analysis

In this section, we establish a unified theoretical analysis for the P2MPO algorithm framework proposed
in Section 3.1. We first specify the two conditions that the model estimation step of P2MPO should
satisfy in order for sample-efficient learning. Then we establish an upper bound of suboptimality of
the policy obtained by P2MPO given that these two conditions are satisfied. In Section 4, we show that
the specific implementations of the sub-algorithm ModelEst for the RMDPs examples in Section 2.2
satisfy these two conditions, which results in tailored suboptimality bounds for these examples.

Conditions. The two conditions on the model estimation step are given by the following.
Condition 3.1 (δ-accuracy). With probability at least 1− δ, it holds that P ⋆

h ∈ P̂h for any h ∈ [H].
Condition 3.2 (δ-model estimation error). With probability at least 1− δ, it holds that

E
(s,a)∼dπb

P⋆,h

[(
inf

P̃h∈Φ(Ph)
P̃h(V

π⋆

h+1,P,Φ)(s, a)− inf
P̃h∈Φ(P⋆

h )
P̃h(V

π⋆

h+1,P,Φ)(s, a)
)2]

≤ ErrΦh (n, δ).

for any P = {Ph}Hh=1 with Ph ∈ P̂h. Here P̃h(V
π⋆

h+1,P,Φ)(s, a) = Es′∼P̃h(·|s,a)[V
π⋆

h+1,P,Φ(s
′)]

Condition 3.1 requires that the confidence region P̂h contains the transition kernel of the training
environment P ⋆

h with high probability. Condition 3.2 requires that each transition kernel Ph ∈ P̂h

induces an error from P ⋆
h less than certain quantity ErrΦh (n, δ), where the error is adapted from

the robust Bellman equation (2.5) and involves an infimum over the robust set of Ph and P ⋆
h . In

specific implementations of ModelEst for RMDP examples in Section 4, we show that the quantity
ErrΦh (n, δ) generally scales with Õ(n−1), where n is the number of trajectories in the offline dataset.

Suboptimality analysis. Now we establish a unified suboptimality bound for the P2MPO algorithm
framework. Thanks to the double pessimism principle of P2MPO, we can prove a suboptimality bound
while only making a mild robust partial coverage assumption on the dataset.
Assumption 3.3 (Robust partial coverage). We assume that

C⋆
P⋆,Φ := sup

1≤h≤H
sup

P={Ph}H
h=1,Ph∈Φ(P⋆

h )

E
(s,a)∼dπb

P⋆,h

( dπ
⋆

P,h(s, a)

dπ
b

P⋆,h(s, a)

)2
 < +∞,

and we call C⋆
P⋆,Φ the robust partial coverage coefficient.

To interpret, Assumption 3.3 only requires that the dataset covers the visitation distribution of the
optimal policy π⋆, but in a robust fashion since C⋆

P⋆,Φ considers all possible transition kernels in
the robust set Φ(P ⋆). The robust consideration in C⋆

P⋆,Φ is because in RMDPs the policies are all
evaluated in a robust way. This partial-coverage-style assumption is much weaker than full-coverage-
style assumptions [68, 77, 40] which require either a uniformly lower bounded dataset distribution
or covering the visitation distribution of any π ∈ Π. For S × A-rectangular robust tabular MDPs
(Example 2.5), the robust partial coverage coefficient C⋆

P⋆,Φ is similar with the partial coverage
coefficient proposed by [47] who studied tabular RMDPs under partial coverage. We highlight that
beyond S ×A-rectangular robust tabular MDPs, our robust partial coverage assumption can handle
other examples of RMDPs (Section 2.2) under our unified theory.

Our main result is the following theorem. See Appendix C for a detailed proof.
Theorem 3.4 (Suboptimality of P2MPO). Under Assumptions 2.2 and 3.3, suppose that Algorithm 1
implements a sub-algorithm that satisfies Conditions 3.1 and 3.2, then with probability at least 1−2δ,

SubOpt(π̂; s1) ≤
√
C⋆

P⋆,Φ ·
H∑

h=1

√
ErrΦh (n, δ).

When ErrΦh (n, δ) achieves a rate of Õ(n−1), then P2MPO enjoys a Õ(n−1/2)-suboptimality. In the
following Section 4, we give specific implementations of the model estimation step of P2MPO for each
example of RMDP in Section 2. The implementations will make Conditions 3.1 and 3.2 satisfied and
thus specify the unified result Theorem 3.4.
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4 Implementations of P2MPO for Examples of RMDPs

In this section, we provide concrete implementations of the ModelEst sub-algorithm in P2MPO (Al-
gorithm 1). In Section 4.1, we implement ModelEst for all the RMDPs that satisfy Assumption 2.2,
and we specify the suboptimality bounds in Theorem 3.4 to Examples 2.5, 2.7, 2.8 in Section 2.2. In
Section 4.2, we implement ModelEst for S ×A-rectangular robust factored MDPs (Example 2.9)
and specify Theorem 3.4 to this example.

4.1 Model Estimation for General RMDPs with S ×A-rectangular Robust Sets

Using the offline data D, we first construct the maximum likelihood estimator (MLE) of the transition
kernel P ⋆. Specifically, for each step h ∈ [H], we define

P̂h = arg max
P∈PM

1

n

n∑
τ=1

logP (sτh+1|sτh, aτh). (4.1)

After, we construct a confidence region for the MLE estimator, denoted by P̂ . Specifically, P̂ contains
all transitions which have a small total variance distance from P̂ . For each step h ∈ [H], we define

P̂h =

{
P ∈ PM :

1

n

n∑
τ=1

∥P̂h(·|sτh, aτh)− P (·|sτh, aτh)∥21 ≤ ξ

}
. (4.2)

Here ξ > 0 is a tuning parameter that controls the size of the confidence region P̂h. Finally, we set
ModelEst(D,PM) = P̂ = {P̂h}Hh=1 with P̂h given in (4.2). In the sequel, we mainly consider the
distance D(·∥·) in Assumption 2.2 to be KL-divergence and TV-distance. The following corollary
specifies Theorem 3.4 to model estimation step given by (4.2). See Appendix D for a detailed proof.
Corollary 4.1 (Suboptimality of P2MPO: S ×A-rectangular robust MDP). Under Assumption 2.2,
3.3, setting the tuning parameter ξ as

ξ =
C1 log(C2HN[](1/n

2,PM, ∥ · ∥1,∞)/δ)

n
,

for some constants C1, C2 > 0, P2MPO with model estimation step given by (4.2) satisfies that
♠ when D(·∥·) is KL-divergence and Assumption D.3 holds with parameter λ, then with probability

at least 1− 2δ,

SubOpt(π̂; s1) ≤

√
C⋆

P⋆,ΦH
2 exp(H/λ)

ρ
·
√
C ′

1 log(C
′
2HN[](1/n2,PM, ∥ · ∥1,∞)/δ)

n
.

♠ when D(·∥·) is TV-divergence, then with probability at least 1− 2δ,

SubOpt(π̂; s1) ≤
√
C⋆

P⋆,ΦH
2 ·
√
C ′

1 log(C
′
2HN[](1/n2,PM, ∥ · ∥1,∞)/δ)

n
.

S ×A-rectangular robust tabular MDP (Example 2.5). When S is finite as in Example 2.5, the
MLE estimator (4.1) coincides the empirical estimator

P̂h(s
′|s, a) =

∑n
τ=1 1{sτh = s, aτh = a, sτh+1 = s′}
1 ∨

∑n
τ=1 1{sτh = s, aτh = a}

, (4.3)

which is adopted by [77, 68, 39, 47, 40]. Furthermore, in Example 2.5, the realizable model space
PM = {P : S ×A 7→ ∆(S)}. When S and A are finite, we can bound the bracket number of PM as

logN[](1/n
2,PM, ∥ · ∥1,∞) ≤ 2|S|2|A| log(n). (4.4)

Combining (4.4) and Corollary 4.1, we can conclude that: i) under TV-distance the suboptimality of
P2MPO for S×A-rectangular robust tabular RMDP is given by O(H2

√
C⋆

P⋆,Φ|S|2|A| log(nH/δ)/n),
ii) under KL-divergence the suboptimality of P2MPO for S × A-rectangular robust tabular MDP is
given by O(H2 exp(H/λ)/ρ ·

√
C⋆

P⋆,Φ|S|2|A| log(nH/δ)/n). We prove (4.4) in Appendix D.2.
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Remark 4.2. We note that for KL-divergence robust sets, the dependence on exp(H) is due to the
usage of general function approximations, which also appears in a recent work [29] for RMDPs
with linear function approximations. For the special case of robust tabular MDPs, under KL-
divergence, existing work [47] derived sample complexities without exp(H), but with an additional
dependence on 1/dbmin and 1/P ⋆

min Here dbmin = min
(s,a,h):dπb

P⋆,h
(s,a)>0

dπ
b

P⋆,h(s, a) and P ⋆
min =

min(s,s′,h):Ph(s′|s,π⋆
h(s))>0 P

⋆
h (s

′|s, π⋆
h(s)). We remark that our analysis for P2MPO algorithm can

be tailored to the tabular case and become exp(H)-free using their techniques, with the cost of
an additional dependence on 1/dbmin and 1/P ⋆

min. But we note that in the infinite state space case,
both the 1/dbmin-dependence and the 1/Pmin-dependence becomes problematic. So, it serves as an
interesting future work to answer whether one can derive both exp(H)-free and (1/dbmin, 1/P

⋆
min)-

free results for (general) function approximations under KL-divergence.

S ×A-rectangular robust MDP with kernel and neural function approximations (Examples 2.7
and 2.8). By specifying the bracket numbers in Corollary 4.1, we can provide the detailed subopti-
mality guarantees for S ×A-rectangular robust MDP with kernel and neural function approximations.
Due to space limitations, we defer the detailed results to Appendices D.3 and D.4.

4.2 Model Estimation for S ×A-rectangular Robust Factored MDPs (Example 2.9)

We first construct MLE estimator for each factor P ⋆
h,i of the transition P ⋆

h =
∏d

i=1 P
⋆
h,i, that is,

P̂h,i = arg max
Pi:S[pai]×A7→∆(O)

1

n

n∑
k=1

logP (sτh+1[i]|sτh[pai], aτh). (4.5)

Then given {P̂h,i}di=1 we construct a confidence region that is factored across i ∈ [d]. Specifically,

P̂h =

{
P (s′|s, a) =

d∏
i=1

Pi(s
′[i]|s[pai], a) :

1

n

n∑
i=1

∥(Pi − P̂h,i)(·|sτh[pai], aτh)∥21 ≤ ξi,∀i

}
. (4.6)

Finally, we set ModelEst(D,PM) = P̂ = {P̂}Hh=1 with P̂h given in (4.6). The following corollary
specifies Theorem 3.4 to model estimation step given by (4.6). See Appendix E for a detailed proof.
Corollary 4.3 (Suboptimality of P2MPO: S ×A-rectangular robust factored MDP). Supposing the
RMDP is an S ×A-rectangular robust factored MDP, under the same Assumptions and parameter
choice in Theorem 3.4 and Proposition E.1, P2MPO with model estimation step given by (4.6) satisfies
♣ when D(·∥·) is KL-divergence and Assumption D.3 holds with parameter λ, then with probability

at least 1− 2δ, (defining ρmin = mini∈[d] ρi)

SubOpt(π̂; s1) ≤

√
C⋆

P⋆,ΦH
2 exp(H/λ)

ρmin
·

√
dC ′

1

∑d
i=1 |O|1+|pai||A| log(C ′

2nd/δ)

n
.

♣ when D(·∥·) is TV-divergence, then with probability at least 1− 2δ,

SubOpt(π̂; s1) ≤
√
C⋆

P⋆,ΦH
2

√
dC ′

1

∑d
i=1 |O|1+|pai||A| log(C ′

2nd/δ)

n
.

Compared with the suboptimality bounds for S × A-rectangular robust MDPs in Section 4.1, the
suboptimality of S ×A-rectangular robust factored MDPs with ModelEst given in (4.6) only scales
with

∑d
i=1 |O|1+|pai| instead of scaling with |S| =

∏d
i=1 |O| which is of order exp(d). This justifies

the benefit of considering S ×A-rectangular robust factored MDPs when the transition kernels of
training and testing environments enjoy factored structures.

5 Conclusion and Discussions

This paper proposes a general learning principle — double pessimism — for robust offline RL. Based
on this learning principle, we propose a generic algorithm that only requires robust partial coverage
data to solve S ×A-rectangular RMDPs with general function approximation. Our results are ready
to be extended to d-rectangular linear RMDPs [29]. See Appendix A for details. In Appendix A, we
also provide some challenges to perform sample efficient RL in S-rectangular RMDPs.
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A Discussions

In this section, we are going to discuss: some other types of robust MDPs appearing in existing works,
including d-rectangular robust linear MDPs [29] and RMDPs with S-rectangular robust sets [61], see
Section A.1 and A.2 respectively.

A.1 d-rectangular robust linear MDPs

Recently [29] proposed the d-rectangular robust linear MDP to study offline robust RL with linear
structures. We use the following example to show how a d-rectangular robust linear MDP is
represented by our general framework of RMDP.
Example A.1 (d-rectangular robust linear MDP [29]). A d-rectangular robust linear MDP is equipped
with d-rectangular robust sets. Linear MDP is an MDP that enjoys a d-dimensional linear decompo-
sition of its reward function and transition kernel [15]. We define the model space PM as

PM =
{
P (s′|s, a) = ϕ(s, a)⊤µ(s′) : µi(·) ∈ ∆(S),∀i ∈ [d]

}
,

where ϕ : S ×A 7→ Rd is a known feature mapping satisfying that
d∑

i=1

ϕi(s, a) = 1, ϕi(s, a) ≥ 0, ∀i ∈ [d].

We then assume that P ⋆
h (s

′|s, a) = ϕ(s, a)⊤µ⋆(s′) ∈ PM, and Rh(s, a) = ϕ(s, a)⊤θh for some
θh ∈ Rd with ∥θh∥2 ≤

√
d. We define the mapping Φ as

Φ(P ) =

{
d∑

i=1

ϕi(s, a)µ̃i(s
′) : µ̃i(·) ∈ ∆(S), D(µ̃(·)∥µi(·)) ≤ ρ,∀i ∈ [d]

}
.

This is called a d-rectangular robust set and is first considered by [29]. As is argued in [29], d-
rectangular robust set is not so conservative as S ×A-rectangular robust set in certain cases, which
is more natural for linear MDPs due to the special linear structure.

While not satisfying Assumption 2.2 (S ×A-rectangular robust sets), it can be proved that RMDP
in Example A.1 also satisfies the robust Bellman equation in Proposition 2.3 (similar to the proof
in Appendix B for S ×A-rectangular robust MDPs). Our algorithm P2MPO (Algorithm 1) can also
be applied to offline solve robust RL with RMDP in Example A.1, under certain partial coverage
assumption (Assumption A.2).

Model estimation. In the following, we give a specific implementation of the model estimation
step for RMDPs in Example A.1, and we provide theoretical guarantees for this specification of our
algorithm P2MPO. Suppose we are given a function class V ⊆ {v : S 7→ [0, 1]} which depends on the
choice of distance D(·∥·) of the robust set. Then, we define that

P̂h =

{
P ∈ PM : sup

v∈V

1

n

n∑
τ=1

∣∣∣∣∫
S
P (ds′|sτh, aτh)v(s′)− ϕ(sτh, aτh)⊤θ̂v

∣∣∣∣2 ≤ ξ

}
, (A.1)

where ξ > 0 is a tuning parameter that controls the size of the confidence region, and the vector θ̂v
depends on the specific function v ∈ V , given by

θ̂v = arg min
θ∈Rd

1

n

n∑
τ=1

(
ϕ(sτh, a

τ
h)

⊤θ − v(sτh+1)
)2

+
α

n
· ∥θ∥22

= Λ−1
h,α

(
1

n

n∑
τ=1

ϕ(sτh, a
τ
h)v(s

τ
h+1)

)
, (A.2)

for some tuning parameter α > 0, where Λh,α is the regularized covariance matrix, defined as

Λh,α =
1

n

n∑
τ=1

ϕ(sτh, a
τ
h)ϕ(s

τ
h, a

τ
h)

⊤ +
α

n
· Id.

Similar constructions for standard linear MDPs are also considered by [51, 34, 54]. We will specify
the choice of the function class V in the theoretical guarantees of this implementation.
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Suboptimality analysis. In the following, we provide suboptimality bounds for the above imple-
mentation of P2MPO for d-rectangular robust linear MDP. Regarding the offline data, we impose the
following robust partial coverage assumption.
Assumption A.2 (Robust partial coverage covariance matrix). We assume that for some constant
c† > 0,

Λh,α ⪰ α

n
· Id + c† · E(sh,ah)∼dπ⋆

P,h
[(ϕi(sh, ah)1i)(ϕi(sh, ah)1i)

⊤] (A.3)

for any i ∈ [d], h ∈ [H], and Ph ∈ Φ(P ⋆
h ).

Theorem A.3 (Suboptimality of P2MPO: d-rectangular robust linear MDP). Suppose that the RMDP
is d-rectangular robust linear MDP in Example A.1 with D(·∥·) being KL-divergence or TV-distance
and that Assumption A.2 holds, choosing the tuning parameter α = 1 in (A.2).

♠ when D(·∥·) is KL-divergence and Assumption F.1 holds with parameter λ, then by setting

V =

{
v(s) = exp

(
−max

a∈A
ϕ(s, a)⊤w/λ

)
: ∥w∥2 ≤ H

√
d, λ ∈ [λ,H/ρ]

}
,

and

ξ =
C1d

2
(
log(1 + C2nH/δ) + log(1 + C3ndH/(ρλ

2))
)

n
,

for some constants C1, C2, C3 > 0, it holds with probability at least 1− 2δ that,

SubOpt(π̂; s1) ≤
d2H2 exp(H/λ)

c†ρ
·

√
C ′

1

(
log(1 + C ′

2nH/δ) + log(1 + C ′
3ndH/(ρλ

2))
)

n
.

♠ when D(·∥·) is TV-distance, then by setting

V =

{
v(s) =

(
λ−max

a∈A
ϕ(s, a)⊤w

)
+

: ∥w∥2 ≤ H
√
d, λ ∈ [0, H]

}
,

and

ξ =
C1d

2H2 log(C2ndH/δ)

n
,

for some constants C1, C2 > 0, it holds with probability at least 1− 2δ that,

SubOpt(π̂; s1) ≤
d2H2

c†
·
√
C ′

1 log(C
′
2ndH/δ)

n
.

Here c is from Assumption A.2 and C ′
1, C

′
2, C

′
3 > 0 are universal constants.

Proof of Theorem A.3. See Appendix F for a detailed proof.

A.2 RMDPs with S-rectangular robust sets

Besides S × A-rectangular, there exists another type of generic rectangular assumption on robust
sets called S-rectangular [61, 67]. See the following assumption.
Assumption A.4 (S-rectangular robust sets [61]). An S-rectangular robust MDP is equipped with
S-rectangular robust sets. The mapping Φ is defined as, for ∀P ∈ PM,

Φ(P ) =
⊗
s∈S

Pρ(s;P ), Pρ(s;P ) =

{
P̃ (·|·) : A 7→ ∆(S) :

∑
a∈A

D(P̃ (·|a)∥P (·|s, a)) ≤ ρ|A|

}
,

for some (pseudo-)distance D(·∥·) on ∆(S) and some real number ρ ∈ R+.

RMDP with S-rectangular robust sets (Assumption A.4) also satisfies Proposition 2.3 [61]. Unfor-
tunately, our algorithm framework is unable to deal with this kind of rectangular robust sets in the
context of partial coverage data due to some technical problems in applying the partial coverage
coefficient (Assumption 3.3) under this kind of robust sets. To our best knowledge, how to design
provably efficient algorithms for S-rectangular RMDP with partial coverage data is still unknown. It
is an exciting future work to fill this gap for robust offline reinforcement learning.
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B Proof of Robust Bellman Equation

Proof of Proposition 2.3 for S ×A-rectangular robust MDP. Instead of directly proving the robust
Bellman equation (2.5), we prove the following stronger results via induction from step h = H to 1:
there exists a set of transition kernels Pπ,† = {Pπ,†

h }Hh=1 with Pπ,†
h ∈ Φ(Ph) such that

1. Robust Bellman equation holds, i.e.,

V π
h,P,Φ(s) = Ea∼πh(·|s)[Q

π
h,P,Φ(s, a)],

Qπ
h,P,Φ(s, a) = Rh(s, a) + inf

P̃h∈Φ(Ph)
Es′∼P̃h(·|s,a)[V

π
h+1,P,Φ(s

′)].

2. The following expressions for robust value functions hold,

V π
h,P,Φ(s) = V π

h (s; {Pπ,†
i }Hi=h),

Qπ
h,P,Φ(s, a) = Qπ

h(s, a; {P
π,†
i }Hi=h).

Firstly, for step h = H , the conclusion 1. and 2. hold directly because no transitions are involved.
Now supposing that the conclusion 1. and 2. hold for some step h+ 1, which means that there exist
transition kernels {Pπ,†

i }Hi=h+1 such that the following condition hold for any s ∈ S,

V π
h+1,P,Φ(s) = V π

h+1(s; {P
π,†
i }Hi=h+1). (B.1)

By the definition of robust value function Qπ
h,P,Φ in (2.2), we can derive that for any (s, a) ∈ S ×A,

Qπ
h,P,Φ(s, a) = inf

P̃i∈Φ(Pi),h≤i≤H
E{P̃i}H

i=h,π

[
H∑
i=h

Ri(si, ai)

∣∣∣∣∣sh = s, ah = a

]

= Rh(s, a) + inf
P̃i∈Φ(Pi),h≤i≤H

∫
S
P̃h(ds

′|s, a)E{P̃i}H
i=h+1,π

[
H∑

i=h+1

Ri(si, ai)

∣∣∣∣∣sh+1 = s′

]

≤ Rh(s, a) + inf
P̃h∈Φ(Ph)

∫
S
P̃h(ds

′|s, a)E{Pπ,†
i }H

i=h+1,π

[
H∑

i=h+1

Ri(si, ai)

∣∣∣∣∣sh+1 = s′

]
.

(B.2)

On the one hand, for S ×A-rectangular robust MDP, the robust set Φ(Ph) is decoupled for different
(s, a) pairs, i.e.,

Φ(Ph) =
⊗

(s,a)∈S×A

Pρ(s, a;Ph),

and therefore we can find a single transition kernel Pπ,†
h such that for any (s, a) ∈ S ×A,

Pπ,†
h (·|s, a) = arginf

P̃h∈Φ(Ph)

∫
S
P̃ (ds′|s, a)E{Pπ,†

i }H
i=h+1,π

[
H∑

i=h+1

Ri(si, ai)

∣∣∣∣∣sh+1 = s′

]
. (B.3)

On the other hand, using condition (B.1) and the definition of (robust) value function V π
h,P,Φ and V π

h

in (2.1) and (2.3), we can also deduce that,

Qπ
h,P,Φ(s, a) ≤ Rh(s, a) + inf

P̃h∈Φ(Ph)

∫
S
P̃h(ds

′|s, a)V π
h+1(s

′; {Pπ,†
i }Hi=h+1)

= Rh(s, a) + inf
P̃h∈Φ(Ph)

∫
S
P̃h(ds

′|s, a)V π
h+1,P,Φ(s

′) (B.4)

= Rh(s, a) + inf
P̃h∈Φ(Ph)

∫
S
P̃h(ds

′|s, a) inf
P̃i∈Φ(Pi),h+1≤i≤H

V π
h+1(s

′; {P̃i}Hi=h+1)

≤ Rh(s, a) + inf
P̃i∈Φ(Pi),h≤i≤H

∫
S
P̃h(ds

′|s, a)V π
h+1(s

′; {P̃i}Hi=h+1), (B.5)
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where the first inequality follows from inequality (B.2) and the definition of V π
h+1 in (2.3), the

first equality follows from condition (B.1), and the second equality follows from the definition of
V π
h+1,P,Φ in (2.1). Note that the right hand side of (B.5) equals to Qπ

h,P,Φ(s, a). Therefore, all the
inequalities are actually equalities. On the one hand, from (B.4), we can know that,

Qπ
h,P,Φ(s, a) = Rh(s, a) + inf

P̃h∈Φ(Ph)

∫
S
P̃h(ds

′|s, a)V π
h+1,P,Φ(s

′).

This proves the Qπ
h,P,Φ part of the conclusion 1. for step h. On the other hand, by combining (B.3)

and (B.2), one can further obtain that,

Qπ
h,P,Φ(s, a) = E{Pπ,†

i }H
i=h,π

[
H∑
i=h

Ri(si, ai)

∣∣∣∣∣sh = s, ah = a

]
= Qπ

h(s, a; {P
π,†
i }Hi=h). (B.6)

This proves the existence of {Pπ,†
i }Hi=h in the conclusion 2. for step h and Qπ

h,P,Φ. The remaining of
the proof is to prove the V π

h,P,Φ part of the conclusion 1. and 2. for step h using {Pπ,†
i }Hi=h found in

the previous proof. Specifically, by the definition of V π
h,P,Φ in (2.1), we have that,

V π
h,P,Φ(s) = inf

P̃i∈Φ(Pi),h≤i≤H
E{P̃i}H

i=h,π

[
H∑
i=h

Ri(si, ai)

∣∣∣∣∣sh = s

]

= inf
P̃i∈Φ(Pi),h≤i≤H

∑
a∈A

πh(a|s)E{P̃i}H
i=h,π

[
H∑
i=h

Ri(si, ai)

∣∣∣∣∣sh = s, ah = a

]

≤
∑
a∈A

πh(a|s)E{Pπ,†
i }H

i=h,π

[
H∑
i=h

Ri(si, ai)

∣∣∣∣∣sh = s, ah = a

]
. (B.7)

Now applying (B.6) to (B.7), we can further obtain that

V π
h,P,Φ(s) ≤

∑
a∈A

πh(a|s)Qπ
h,P,Φ(s, a) (B.8)

=
∑
a∈A

πh(a|s) inf
P̃i∈Φ(Pi),h≤i≤H

E{P̃i}H
i=h,π

[
H∑
i=h

Ri(si, ai)

∣∣∣∣∣sh = s, ah = a

]

≤ inf
P̃i∈Φ(Pi),h≤i≤H

∑
a∈A

πh(a|s)E{P̃i}H
i=h,π

[
H∑
i=h

Ri(si, ai)

∣∣∣∣∣sh = s, ah = a

]
, (B.9)

where the equality follows from the definition of Qπ
h,P,Φ in (2.2). Now note that the right hand side

of (B.9) equals to V π
h,P,Φ. Therefore, all the inequalities are actually equalities. On the one hand, by

(B.8), we know that,

V π
h,P,Φ(s) =

∑
a∈A

πh(a|s)Qπ
h,P,Φ(s, a). (B.10)

This proves the V π
h,P,Φ part of the conclusion 1. for step h. On the other hand, by combining (B.10)

with (B.6), we can further deduce that,

V π
h,P,Φ(s) = E{Pπ,†

i }H
i=h,π

[
H∑
i=h

Ri(si, ai)

∣∣∣∣∣sh = s

]
.

This proves the V π
h,P,Φ part of the conclusion 2. for step h. Finally, by using an induction argument,

we can finish the proof of the conclusion 1. and 2.

Now according to the conclusion 1., we have that

V π
h,P,Φ(s) = Ea∼πh(·|s)[Rh(s, a)] + Ea∼πh(·|s)

[
inf

P̃h∈Φ(Ph)
Es′∼P̃h(·|s,a)[V

π
h+1,P,Φ(s

′)

]
. (B.11)
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By the conclusion 2. and the definition of Pπ,†
h in (B.3), we can obtain from (B.11) that

V π
h,P,Φ(s) = Ea∼πh(·|s)[Rh(s, a)] + Ea∼πh(·|s),s′∼Pπ,†

h (·|s,a)[V
π
h+1,P,Φ(s

′)]

= Ea∼πh(·|s)[Rh(s, a)] + inf
P̃h∈Φ(Ph)

Ea∼πh(·|s),s′∼P̃h(·|s,a)[V
π
h+1,P,Φ(s

′)].

This finishes the proof of Proposition 2.3 under Assumption 2.2.

C Proof of Main Theoretical Result (Theorem 3.4)

In this section, we prove Theorem 3.4. Let E† denote the event that both Condition 3.1 and 3.2 hold,
which happens with probability at least 1− 2δ. In the following, we always assume that E† holds.

Proof of Theorem 3.4. By the definition of SubOpt(π̂; s) in (2.11), we have that

SubOpt(π̂; s1) = V π⋆

1,P⋆,Φ(s1)− V π̂
1,P⋆,Φ(s1)

= V π⋆

1,P⋆,Φ(s1)− inf
P∈P̂

V π⋆

1,P,Φ(s1) + inf
P∈P̂

V π⋆

1,P,Φ(s1)− V π̂
1,P⋆,Φ(s1)

≤ V π⋆

1,P⋆,Φ(s1)− inf
P∈P̂

V π⋆

1,P,Φ(s1) + inf
P∈P̂

V π̂
1,P,Φ(s1)− V π̂

1,P⋆,Φ(s1) (C.1)

≤ V π⋆

1,P⋆,Φ(s1)− inf
P∈P̂

V π⋆

1,P,Φ(s1) (C.2)

= sup
P∈P̂

{
V π⋆

1,P⋆,Φ(s1)− V π⋆

1,P,Φ(s1)
}
. (C.3)

Here (C.1) follows from our choice of π̂ in (3.2), and (C.2) follows from Condition 3.1. In the sequel,
we present the upper bound on the right hand side of (C.3). For notational simplicity, for any P in
the confidence region P̂ and any step h ∈ [H], we denote that

∆h,P,Φ(sh, ah) = Qπ⋆

h,P⋆,Φ(sh, ah)−Qπ⋆

h,P,Φ(sh, ah). (C.4)

Using the robust Bellman equation in Proposition 2.3, we can derive that

∆h,P,Φ(sh, ah)

= inf
P̃h∈Φ(P⋆

h )
Es′∼P̃h(·|sh,ah)

[V π⋆

h+1,P⋆,Φ(s
′)]− inf

P̃h∈Φ(Ph)
Es′∼P̃h(·|sh,ah)

[V π⋆

h+1,P,Φ(s
′)

= inf
P̃h∈Φ(P⋆

h )
Es′∼P̃h(·|sh,ah)

[V π⋆

h+1,P⋆,Φ(s
′)]− inf

P̃h∈Φ(P⋆
h )

Es′∼P̃h(·|sh,ah)
[V π⋆

h+1,P,Φ(s
′)]︸ ︷︷ ︸

Term (i)

+ inf
P̃h∈Φ(P⋆

h )
Es′∼P̃h(·|sh,ah)

[V π⋆

h+1,P,Φ(s
′)]− inf

P̃h∈Φ(Ph)
Es′∼P̃h(·|sh,ah)

[V π⋆

h+1,P,Φ(s
′)]︸ ︷︷ ︸

Term (ii)

.

Term (i). For the term (i), considering denote that

Pπ⋆,†
h = arginf

P̃h∈Φ(P⋆
h )

Es′∼P̃h(·|s,a)[V
π⋆

h+1,P,Φ(s
′)], ∀(s, a) ∈ S ×A. (C.5)

This notation is consistent with the notation of Pπ,†
h in (B.3) in the proof of Proposition 2.3 (robust

Bellman equation). It is because Assumption 2.2 (S ×A-rectangular robust set) that we can choose a
single transition kernel Pπ⋆,†

h that satisfies (C.5) for each (s, a)-pair. Using the definition of Pπ⋆,†
h ,

we observe that the following two relationships hold for any state (sh, ah) ∈ S,

inf
P̃h∈Φ(P⋆

h )
Es′∼P̃h(·|sh,ah)

[V π⋆

h+1,P⋆,Φ(s
′)] ≤ E

s′∼Pπ⋆,†
h (·|sh,ah)

[V π⋆

h+1,P⋆,Φ(s
′)],

inf
P̃h∈Φ(P⋆

h )
Es′∼P̃h(·|sh,ah)

[V π⋆

h+1,P,Φ(s
′)] = E

s′∼Pπ⋆,†
h (·|sh,ah)

[V π⋆

h+1,P,Φ(s
′)].
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Using these two observations, we can upper bound the term (i) as

Term (i) ≤ E
s′∼Pπ⋆,†

h (·|sh,ah)
[V π⋆

h+1,P⋆,Φ(s
′)]− E

s′∼Pπ⋆,†
h (·|sh,ah)

[V π⋆

h+1,P,Φ(s
′)]

= E
s′∼Pπ⋆,†

h (·|sh,ah),a′∼π⋆
h+1(·|s′)

[∆h+1,P,Φ(s
′, a′)], (C.6)

where in the equality we use the robust Bellman equation (Proposition 2.3).

Term (ii). For the term (ii), currently we simply denote this term by ∆
(ii)
h,P,Φ(sh, ah). Combining

this with (C.6), we can derive that,

∆h,P,Φ(sh, ah) = Term (i) + Term (ii)

≤ E
s′∼Pπ⋆,†

h (·|sh,ah),a′∼π⋆
h+1(·|s′)

[∆h+1,P,Φ(s
′, a′)] + ∆

(ii)
h,P,Φ(sh, ah). (C.7)

By recursively applying (C.7) and then plugging in the definition of ∆(ii)
h,P,Φ, we can obtain that

Ea1∼π⋆
1 (·|s1)[∆1,P,Φ(s1, a1)] ≤

H∑
h=1

E(sh,ah)∼dπ⋆

Pπ⋆,†,h

[∆
(ii)
h,P,Φ(sh, ah)]

=

H∑
h=1

E(sh,ah)∼dπ⋆

Pπ⋆,†,h

[
inf

P̃h∈Φ(P⋆
h )

Es′∼P̃h(·|sh,ah)
[V π⋆

h+1,P,Φ(s
′)]

− inf
P̃h∈Φ(Ph)

Es′∼P̃h(·|sh,ah)
[V π⋆

h+1,P,Φ(s
′)]

]
, (C.8)

where dπ
⋆

Pπ⋆,†,h
is the state action visitation distribution induced by the transition kernels Pπ⋆,† =

{Pπ⋆,†
h }Hh=1 and the policy π⋆. Now we bound the right hand side of (C.8) using Condition 3.2. By

Cauchy-Schwartz inequality, we have that for each h ∈ [H],

E(sh,ah)∼dπ⋆

Pπ⋆,†,h

[
inf

P̃h∈Φ(P⋆
h )

Es′∼P̃h(·|sh,ah)
[V π⋆

h+1,P,Φ(s
′)]− inf

P̃h∈Φ(Ph)
Es′∼P̃h(·|sh,ah)

[V π⋆

h+1,P,Φ(s
′)]

]

= E
(sh,ah)∼dπb

P⋆,h

[
dπ

⋆

Pπ⋆,†,h
(sh, ah)

dπ
b

P⋆,h(sh, ah)
·
(

inf
P̃h∈Φ(P⋆

h )
Es′∼P̃h(·|sh,ah)

[V π⋆

h+1,P,Φ(s
′)]

− inf
P̃h∈Φ(Ph)

Es′∼P̃h(·|sh,ah)
[V π⋆

h+1,P,Φ(s
′)]

)]

≤

√√√√√E
(sh,ah)∼dπb

P⋆,h

(dπ⋆

Pπ⋆,†,h
(sh, ah)

dπ
b

P⋆,h(sh, ah)

)2
 ·
√

ErrΦh (n), (C.9)

where the last inequality follows from Condition 3.2. Furthermore, by Assumption 3.3, we know that

E
(sh,ah)∼dπb

P⋆,h

(dπ⋆

Pπ⋆,†,h
(sh, ah)

dπ
b

P⋆,h(sh, ah)

)2
 ≤ sup

P={Ph}H
h=1,Ph∈Φ(P⋆

h )

E
(sh,ah)∼dπb

P⋆,h

( dπ
⋆

P,h(sh, ah)

dπ
b

P⋆,h(sh, ah)

)2


≤ C⋆
P⋆,Φ,

where C⋆
P⋆,Φ is defined in Assumption 3.3. Applying this to (C.8) and (C.9), we can derive that

sup
P∈P̂

{
V π⋆

1,P⋆,Φ(s1)− V π⋆

1,P,Φ(s1)
}
= sup

P∈P̂
{Ea1∼π⋆(·|s1)[∆1,P,Φ(s1, a1)]} ≤

√
C⋆

P⋆,Φ ·
H∑

h=1

√
ErrΦh (n).

Finally, by inequality (C.3), we finish the proof of Theorem 3.4.
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D Proofs for General RMDPs with S ×A-rectangular Robust Sets

Proof of Corollary 4.1. We first introduce the following proposition, which shows that the model
estimation step (4.2) satisfies Condition 3.1 and Condition 3.2.

Proposition D.1 (Guarantees for model estimation). Under Assumption 2.2, choosing the (pseudo)
distance D(·∥·) as KL-divergence or TV-distance, setting the tuning parameter ξ as

ξ =
C1 log(C2HN[](1/n

2,PM, ∥ · ∥1,∞)/δ)

n
,

for some constants C1, C2 > 0, then Condition 3.1 and 3.2 are satisfied respectively by,

♠ when D(·∥·) is KL-divergence and Assumption D.3 (See Appendix D.1) holds with parameter λ,
ErrΦh (n, δ) is given by√

ErrΦh,KL(n, δ) =
H exp(H/λ)

ρ
·
√
C ′

1 log(C
′
2HN[](1/n2,PM, ∥ · ∥1,∞)/δ)

n
.

♠ when D(·∥·) is TV-distance, ErrΦh (n, δ) is given by√
ErrΦh,TV(n, δ) = H ·

√
C ′

1 log(C
′
2HN[](1/n2,PM, ∥ · ∥1,∞)/δ)

n
.

Here c, C ′
1, C ′

2 > 0 stand for three universal constants.

Proof of Proposition D.1. See Appendix D.1 for a detailed proof.

By Combing Proposition D.1 and Theorem 3.4, we can obtain Corollary 4.1.

D.1 Proof of Proposition D.1

Lemma D.2 (Duality for KL-robust set). The following duality for KL-robust set holds,

inf
Q(·):DKL(Q(·)∥Q⋆(·))≤σ

∫
f(x)Q(dx) = sup

λ∈R+

{
−λ log

(∫
exp {−f(x)/λ}Q⋆(dx)

)
− λσ

}
.

Proof of Lemma D.2. See [12, 68] for a detailed proof.

Assumption D.3 (Regularity of KL-divergence duality variable). We assume that the optimal dual
variable λ⋆ for the following optimization problem

sup
λ∈R+

{
−λ log

(
Es′∼Ph(·|sh,ah)

[
exp

{
−V π⋆

h+1,Q,Φ(s
′)/λ

}])
− λρ

}
,

is lower bounded by λ > 0 for any transition kernels Ph ∈ PM, Q = {Qh}Hh=1 ⊆ PM, and step
h ∈ [H].
Lemma D.4 (Duality for TV-robust set). The following duality for TV-robust set holds,

inf
Q(·):DTV(Q(·)∥Q⋆(·))≤σ

∫
f(x)Q(dx) = sup

λ∈R

{
−
∫

(λ− f(x))+Q
⋆(dx)− σ

2
(λ− inf

x
f(x))+ + λ

}
.

Proof of Lemma D.4. See [68] for a detailed proof.

Proof of Proposition D.1 with KL-divergence. Firstly, by invoking the first conclusion of Lemma
G.1, we know that the Condition 3.1 holds. In the following, we prove the Condition 3.2. By applying
the dual formulation of the KL-robust set (Lemma D.2), we can derive that

inf
P̃h∈Φ(P⋆

h )
Es′∼P̃h(·|sh,ah)

[V π⋆

h+1,P,Φ(s
′)]− inf

P̃h∈Φ(Ph)
Es′∼P̃h(·|sh,ah)

[V π⋆

h+1,P,Φ(s
′)]

= sup
λ≥0

{
−λ log

(
Es′∼P⋆

h (·|sh,ah)

[
exp

{
−V π⋆

h+1,P,Φ(s
′)/λ

}])
− λρ

}
− sup

λ≥0

{
−λ log

(
Es′∼Ph(·|sh,ah)

[
exp

{
−V π⋆

h+1,P,Φ(s
′)/λ

}])
− λρ

}
. (D.1)
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By Assumption D.3 and Lemma H.7, we know that the optimal value of λ for both two optimization
problems in (D.1) lies in [λ,H/ρ] for some λ > 0. Thus we can further upper bound the right hand
side of (D.1) as

(D.1) = sup
λ≤λ≤H/ρ

{
−λ log

(
Es′∼P⋆

h (·|sh,ah)

[
exp

{
−V π⋆

h+1,P,Φ(s
′)/λ

}])
− λρ

}
− sup

λ≤λ≤H/ρ

{
−λ log

(
Es′∼Ph(·|sh,ah)

[
exp

{
−V π⋆

h+1,P,Φ(s
′)/λ

}])
− λρ

}

≤ sup
λ≤λ≤H/ρ

λ log
Es′∼Ph(·|sh,ah)

[
exp

{
−V π⋆

h+1,P,Φ(s
′)/λ

}]
Es′∼P⋆

h (·|sh,ah)

[
exp

{
−V π⋆

h+1,P,Φ(s
′)/λ

}]
 , (D.2)

where in the second inequality we use the basic fact that supx f(x)−supx g(x) ≤ supx{f(x)−g(x)}.
Now we work on the right hand side of (D.2) and obtain that

(D.2) = sup
λ≤λ≤H/ρ

λ log
1 +

(
Es′∼Ph(·|sh,ah) − Es′∼P⋆

h (·|sh,ah)

) [
exp

{
−V π⋆

h+1,P,Φ(s
′)/λ

}]
Es′∼P⋆

h (·|sh,ah)

[
exp

{
−V π⋆

h+1,P,Φ(s
′)/λ

}]


≤ sup
λ≤λ≤H/ρ

λ ·

(
Es′∼Ph(·|sh,ah) − Es′∼P⋆

h (·|sh,ah)

) [
exp

{
−V π⋆

h+1,P,Φ(s
′)/λ

}]
Es′∼P⋆

h (·|sh,ah)

[
exp

{
−V π⋆

h+1,P,Φ(s
′)/λ

}]
 ,

(D.3)

where we use the fact of log(1 + x) ≤ x in the second inequality. Now we can further bound the
right hand side of (D.3) by

(D.3) ≤ H exp(H/λ)

ρ
·
∣∣∣(Es′∼Ph(·|sh,ah) − Es′∼P⋆

h (·|sh,ah)

) [
exp

{
−V π

h+1,P,Φ(s
′)/λ

}]∣∣∣
≤ H exp(H/λ)

ρ
·
∫
S
|Ph(ds

′|sh, ah)− P ⋆
h (ds

′|sh, ah)|

=
H exp(H/λ)

ρ
· ∥Ph(·|sh, ah)− P ⋆

h (·|sh, ah)∥TV. (D.4)

Thus by combining (D.1), (D.2), (D.3), and (D.4) we obtain that

inf
P̃h∈Φ(P⋆

h )
Es′∼P̃h(·|sh,ah)

[V π⋆

h+1,P,Φ(s
′)]− inf

P̃h∈Φ(Ph)
Es′∼P̃h(·|sh,ah)

[V π⋆

h+1,P,Φ(s
′)]

≤ H exp(H/λ)

ρ
· ∥Ph(·|sh, ah)− P ⋆

h (·|sh, ah)∥TV. (D.5)

By using a same argument for deriving (D.5), we can also obtain that

inf
P̃h∈Φ(Ph)

Es′∼P̃h(·|sh,ah)
[V π⋆

h+1,P,Φ(s
′)]− inf

P̃h∈Φ(P⋆
h )

Es′∼P̃h(·|sh,ah)
[V π⋆

h+1,P,Φ(s
′)]

≤ H exp(H/λ)

ρ
· ∥Ph(·|sh, ah)− P ⋆

h (·|sh, ah)∥TV. (D.6)

Therefore, due to (D.5) and (D.6), we can finally arrive at the following upper bound,

E
(sh,ah)∼dπb

P⋆,h

( inf
P̃h∈Φ(Ph)

Es′∼P̃h(·|sh,ah)
[V π⋆

h+1,P,Φ(s
′)]− inf

P̃h∈Φ(P⋆
h )

Es′∼P̃h(·|sh,ah)
[V π⋆

h+1,P,Φ(s
′)]

)2


≤ H2 exp(2H/λ)

ρ2
· E

(sh,ah)∼dπb

P⋆,h

[∥Ph(·|sh, ah)− P ⋆
h (·|sh, ah)∥2TV]. (D.7)

By invoking the second conclusion of Lemma G.1, we have that with probability at least 1− δ,

E
(sh,ah)∼dπb

P⋆,h

[∥Ph(·|sh, ah)− P ⋆
h (·|sh, ah)∥2TV] ≤

C ′
1 log(C

′
2HN[](1/n

2,PM, ∥ · ∥1,∞)/δ)

n
,

(D.8)
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for some absolute constant C ′
1, C

′
2 > 0. Now combining (D.7) and (D.8), we have that√

ErrΦh,KL(n) =
H exp(H/λ)

ρ
·
√
C ′

1 log(C
′
2HN[](1/n2,PM, ∥ · ∥1,∞)/δ)

n
.

This finishes the proof of Proposition D.1 under KL-divergence.

Proof of Proposition D.1 with TV-distance. Firstly, by invoking the first conclusion of Lemma G.1,
we know that the Condition 3.1 holds. In the following, we prove the Condition 3.2. By applying the
dual formulation of the TV-robust set (Lemma D.4), we can similarly derive that∣∣∣∣∣ inf
P̃h∈Φ(P⋆

h )
Es′∼P̃h(·|sh,ah)

[V π⋆

h+1,P,Φ(s
′)]− inf

P̃h∈Φ(Ph)
Es′∼P̃h(·|sh,ah)

[V π⋆

h+1,P,Φ(s
′)]

∣∣∣∣∣
=

∣∣∣∣∣ supλ∈R

{
−Es′∼P⋆

h (·|sh,ah)

[(
λ− V π⋆

h+1,P,Φ(s
′)
)
+

]
− ρ

2

(
λ− inf

s′′∈S
V π⋆

h+1,P,Φ(s
′′)

)
+ λ

}

− sup
λ∈R

{
−Es′∼Ph(·|sh,ah)

[(
λ− V π⋆

h+1,P,Φ(s
′)
)
+

]
− ρ

2

(
λ− inf

s′′∈S
V π⋆

h+1,P,Φ(s
′′)

)
+ λ

} ∣∣∣∣∣
(D.9)

≤
∣∣∣∣sup
λ∈R

{(
Es′∼P⋆

h (·|sh,ah) − Es′∼Ph(·|sh,ah)

)[(
λ− V π⋆

h+1,P,Φ(s
′)
)
+

]}∣∣∣∣ (D.10)

As is shown in Lemma H.8, the optimal value of λ for both two optimization problems in (D.9) lies
in [0, H]. Thus we can further upper bound the right hand side of (D.10) as

(D.10) ≤ H · ∥Ph(·|sh, ah)− P ⋆
h (·|sh, ah)∥TV. (D.11)

By applying the second conclusion of Lemma G.1, we conclude that with probability at least 1− δ,

E
(sh,ah)∼dπb

P⋆,h

( inf
P̃h∈Φ(Ph)

Es′∼P̃h(·|sh,ah)
[V π⋆

h+1,P,Φ(s
′)]− inf

P̃h∈Φ(P⋆
h )

Es′∼P̃h(·|sh,ah)
[V π⋆

h+1,P,Φ(s
′)]

)2


≤ H2 · E
(sh,ah)∼dπb

P⋆,h

[∥Ph(·|sh, ah)− P ⋆
h (·|sh, ah)∥2TV]

≤
C ′

1H
2 log(C ′

2HN[](1/n
2,PM, ∥ · ∥1,∞)/δ)

n
. (D.12)

Therefore, it suffices to choose ErrΦh,TV(n) as√
ErrΦh,TV(n) = H ·

√
C ′

1 log(C
′
2HN[](1/n2,PM, ∥ · ∥1,∞)/δ)

n
.

This finishes the proof of Proposition D.1 under TV-distance.

D.2 Proofs for S ×A-rectangular Robust Tabular MDP (Equation (4.4))

The model class PM can be considered as a subspace of F = {f(s, a, s′) : ∥f∥∞ ≤ 1} with finite S
and A. Consider the collection of brackets B containing brackets in the form of [g, g + 1/n2], where
g(s, a, s′) ∈ {0, 1/n2, 2/n2, · · · , (n2 − 1)/n2}. Then we can see that B is actually a 1/n2-bracket
of F . Thus we know that the bracket number of PM is bounded by,

N[](1/n
2,PM, ∥ · ∥1,∞) ≤ N[](1/n

2,FM, ∥ · ∥∞) ≤ |B| ≤ n2|S|2|A|.

This finishes the proof of (4.4).

D.3 S ×A-rectangular Robust MDPs with Kernel Function Approximations

D.3.1 A Basic Review of Reproducing Kernel Hilbert Space

We briefly review the basic knowledge of a reproducing kernel Hilbert space (RKHS). We say H is a
RKHS on a set Y with the reproducing kernel K : Y × Y → R if its inner product ⟨·, ·⟩H satisfies,
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for any f ∈ H and y ∈ Y , we have that f(y) = ⟨f,K(y, ·)⟩H. The mapping K(y, ·) : Y 7→ H is
called the feature mapping of H, denoted by ψ(y) : Y 7→ H.

When the reproducing kernel K is continuous, symmetric, and positive definite, Mercer’s theorem
[50] says that K has the following representation,

K(x, y) =

∞∑
j=1

λjψj(x)ψj(y), ∀x, y ∈ Y,

where ψj : Y 7→ R and {
√
λj · ψj}∞j=1 forms an orthonormal basis of H with λ1 ≥ λ2 ≥ · · · ≥ 0.

Also, the feature mapping ψ(y) can be represented as

ψ(y) =

+∞∑
j=1

λjψj(y)ψj , ∀y ∈ Y.

D.3.2 Bracket Number of Kernel Function Model Class and Suboptimality of Algorithm 1

For kernel function approximations via RKHS, our theoretical results rely on the following regularity
assumptions on the RKHS involved in Example 2.7, which is commonly adopted in kernel function
approximation literature for RL [70, 4, 23]. Specifically, the kernel K can be decomposed as
K(x, y) =

∑+∞
j=1 λjψj(x)ψj(y) for some {λj}+∞

j=1 ⊆ R and {ψj : X 7→ R}+∞
j=1 with X = S×A×S

(See Appendix D.3 for details). Our assumption on K is summarized in the following.
Assumption D.5 (Regularity of RKHS). We assume that the kernel K of the RKHS satisfies that:

1. (Boundedness) It holds that |K(x, y)| ≤ 1, |ψj(x)| ≤ 1, and |λj | ≤ 1 for any j ∈ N+, x, y ∈ X .
2. (Eigenvalue decay) There exists some γ ∈ (0, 1/2), C1, C2 > 0 such that |λj | ≤ C1 exp(−C2j

γ)
for any j ∈ N+.

Under Assumption D.5, we can upper bound the bracket number N[] of the realizable model space
PM defined in (2.7) as (see Appendix D.3.3 for a proof),

log(N[](1/n
2,PM, ∥ · ∥1,∞)) ≤ CK · 1/γ · log2(1/γ) · log1+1/γ(nVol(S)BK), (D.13)

where CK > 0 is an absolute constant, Vol(S) is the measure of the state space S , and BK is defined
in Example 2.7. Combining (D.13) and Corollary 4.1, we can conclude that: i) under TV-distance the
suboptimality of P2MPO for S ×A-rectangular robust MDPs with kernel function approximations is,

SubOpt(π̂; s1) ≤ O
(
H2 log(1/γ)

√
C⋆

P⋆,Φ/γ · log1+1/γ(nHVol(S)/δ)/n
)
, (D.14)

and ii) under KL-divergence the suboptimality of P2MPO for S ×A-rectangular robust MDPs with
kernel function approximations is,

SubOpt(π̂; s1) ≤ O
(
H2 exp(H/λ) log(1/γ)/ρ

√
C⋆

P⋆,Φ/γ · log1+1/γ(nHVol(S)/δ)/n
)
.

(D.15)

D.3.3 Proof of Equation (D.13)

We invoke the following lemma to bound the bracket number of PM in Example 2.7.
Lemma D.6 (Bracket number of kernel function class [25]). Under Assumption D.5, the bracket
number of PM given by

PM =
{
P (s′|s, a) = ⟨ψ(s, a, s′),f⟩H : f ∈ H, ∥f∥H ≤ BK

}
is bounded by, for any ϵ > 0,

log(N[](ϵ,PM, ∥ · ∥1,∞)) ≤ CK · 1/γ · log2(1/γ) · log1+1/γ(Vol(S)BK/ϵ).

Proof of Lemma D.6. We refer to Lemma B.11 in [25] for a detailed proof.

By taking ϵ = 1/n2 in Lemma D.6, we can finish the proof of (D.13).
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D.4 S ×A-rectangular Robust MDPs with Neural Function Approximations

For neural function approximations, we borrow the tool of neural tangent kernel (NTK [14]), which
relates overparameterized neural networks (2.8) to kernel function approximations.

To this end, given the neural network (2.8), we define its NTK KNTK : X × X 7→ R as

KNTK(x, y) := ∇WNN(x,W0,a0)⊤∇WNN(y,W0,a0), ∀x, y ∈ X . (D.16)

Assumption D.7 (Regularity of Neural Tangent Kernel). We assume that the neural tangent kernel
KNTK defined in (D.16) satisfies Assumption D.5 with constant γN ∈ (0, 1/2).

This assumption on the spectral perspective of NTK is justified by [67]. As we prove in Appendix
D.4.1, when the number of hidden units is large enough, i.e., overparameterized, the neural network
is well approximated by its linear expansion at initialization (Lemma D.8), where we can apply the
tool of NTK. Under Assumption D.7, the bracket number N[] of PM defined in (2.9) is bounded by
(see Appendix D.4.2 for a proof), for number of hidden units m ≥ dXn

4B4
N,

log(N[](1/n
2,PM, ∥ · ∥1,∞)) ≤ CN · 1/γN · log2(1/γN) · log1+1/γN(nVol(S)BN), (D.17)

where CN > 0 is an absolute constant, γN ∈ (0, 1/2) is specified in Assumption D.7, and BN

is defined in Example 2.8. Combining (D.17) and Corollary 4.1, we can conclude that, in the
overparameterized paradigm, i.e., m ≥ dXn

4B4
N: i) under TV-distance the suboptimality of P2MPO

for S ×A-rectangular robust MDPs with neural function approximations is,

SubOpt(π̂; s1) ≤ O
(
H2 log(1/γN)

√
C⋆

P⋆,Φ/γN · log1+1/γN(nHVol(S)/δ)/n
)
, (D.18)

and ii) under KL-divergence the suboptimality of P2MPO for S ×A-rectangular robust MDPs with
kernel function approximations is,

SubOpt(π̂; s1) ≤ O
(
H2 exp(H/λ) log(1/γN)/ρ

√
C⋆

P⋆,Φ/γN · log1+1/γN(nHVol(S)/δ)/n
)
.

(D.19)

D.4.1 Neural Tangent Kernel and Implicit Linearization

We consider the overparameterized paradigm of the neural network (2.8) in the sense that the neural
network is very wide, i.e., the number of hidden units m is large. The following lemma shows that in
this paradigm, neural networks in PM are well approximated by a linear expansion at initialization.

Lemma D.8 (Implicit Linearization [4]). Consider the two-layer neural network NN defined in
(2.8). Assuming that the activation function σ(·) is 1-Lipschitz continuous and the input space X is
normalized via ∥x∥2 ≤ 1 for any x ∈ X . Then it holds that

sup
x∈X ,NN(·;W,a0)∈PM

∣∣NN(x;W,a0)−∇WNN(x;W0,a0)⊤(W −W0)
∣∣ ≤ d

1/2
X B2

Nm
−1/2.

Proof of Lemma D.8. See the proof of Lemma 4.5 in [4] for a detailed proof.

In view of Lemma D.8, we can study the linearization of the neural networks in PM as a surrogate.
To this end, we introduce the neural tangent kernel KNTK of NN as

KNTK(x, y) := ∇WNN(x,W0,a0)⊤∇WNN(y,W0,a0), ∀x, y ∈ X .

The idea is to approximate the functions in PM via the RKHS induced by the kernel KNTK. According
to Lemma D.8, when the width of the neural network is large enough, i.e.,m→ ∞, the approximation
error is negligible. See the following Section D.4.2 for detailed proofs.

D.4.2 Proof of Equation (D.17)

Now we use Lemma D.8 to bound the bracket number of PM in Example 2.8.

26



Lemma D.9 (Bracket number of neural function class). Under Assumption D.7, for the number of
hidden units m ≥ dXB

4
N/ϵ

2, the bracket number of PM given by

PM =
{
P (s′|s, a) = NN((s, a, s′);W,a0) : ∥W −W0∥2 ≤ BN

}
,

is bounded by, for any ϵ > 0,

log(N[](ϵ,PM, ∥ · ∥1,∞)) ≤ CN · 1/γN · log2(1/γN) · log1+1/γN(Vol(S)BK/ϵ).

Proof of Lemma D.9. We denote the RKHS induced by the neural tangent kernel KNTK as PNTK

PNTK =
{
P̄ (x) = ∇WNN(x;W0,a0)⊤(W −W0) : ∥W −W0∥2 ≤ BN

}
. (D.20)

For any NN(·;W,a0) ∈ PM, we denote its linear expansion at initialization as NN(·;W, a0) ∈
PNTK. Here we use the fact that for NN(·;W,a0) ∈ PM, ∥W −W0∥2 ≤ BN. Now according to
Lemma D.6 and Assumption D.7, we know that the bracket number of PNTK is bounded by

log(N[](ϵ,PNTK, ∥ · ∥1,∞)) ≤ C · 1/γN · log2(1/γN) · log1+1/γN(Vol(S)BN/ϵ), (D.21)

for some constant C > 0. Therefore, we can find a collect of brackets B0 =
{[glj , guj ]}j∈[N[](ϵ,PNTK,∥·∥1,∞)] such that for any P̄ ∈ PNTK, there exists a bracket [glj , g

u
j ] ∈ B0

such that glj(x) ≤ P̄ (x) ≤ guj (x) and ∥glj − guj ∥1,∞ ≤ ϵ. Now for any P = NN(·;W,a0) ∈ PM,
by Lemma D.8, we have that

NN(x;W,a0)− ϵN ≤ NN(x;W,a0) ≤ NN(x;W,a0) + ϵN,

where ϵN = d
1/2
X B2

Nm
−1/2. By previous arguments, there exists a bracket [glj , g

u
j ] ∈ B0 such that

glj(x)− ϵN ≤ NN(x;W,a0) ≤ guj (x) + ϵN.

Now it suffices to define a new collect of brackets B = {[glj−ϵN, guj +ϵN]}j∈[N[](ϵ,PNTK,∥·∥1,∞)]. For
any P = NN(·;W,a0) ∈ PM, there exists a bracket [g̃lj , g̃

u
j ] ∈ B such that g̃lj(x) ≤ P (x) ≤ g̃uj (x),

and

∥g̃lj(x)− g̃uj (x)∥1,∞ ≤ ∥glj(x)− guj (x)∥∞ + 2ϵN ≤ ϵ+ 2ϵN.

By taking m ≥ dXB
4
N/ϵ

2, we obtain that ∥g̃lj(x)− g̃uj (x)∥1,∞ ≤ 3ϵ. Therefore, we can conclude
that the bracket number of PM is bounded by,

N[](ϵ,PM, ∥ · ∥1,∞) = N[](ϵ/3,PNTK, ∥ · ∥1,∞). (D.22)

Finally, by combining (D.21) and (D.22), we have that, for m ≥ dXB
4
N/ϵ

2,

log(N[](ϵ,PM, ∥ · ∥1,∞)) ≤ CN · 1/γN · log2(1/γN) · log1+1/γN(Vol(S)BN/ϵ),

for some constant CN > 0. This finishes the proof of Lemma D.9.

Now by taking ϵ = 1/n2, i.e., m ≥ dXn
4B4

N, we can derive the desired result in (D.17).

E Proofs for S ×A-rectangular Robust Factored MDPs

Proof of Corollary 4.3. We first introduce the following proposition, which shows that te model
estimation step (4.6) satisfies Condition 3.1 and Condition 3.2.

Proposition E.1 (Guarantees for model estimation). Suppose the RMDP is the S ×A-rectangular
robust factored MDP in Example 2.9 with D(·∥·) being KL-divergence or TV-distance. By choosing
the tuning parameter ξi defined in (4.6) as

ξi =
C1|O|1+|pai||A| log(C2ndH/δ)

n

for constants C1, C2 > 0 and each i ∈ [d], then Condition 3.1 and 3.2 are satisfied respectively by,
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♣ when D(·∥·) is KL-divergence and Assumption E.2 (See Appendix E.1) holds with parameter λ,
then ErrΦh (n, δ) is given by

√
ErrΦh,KL(n, δ) =

H exp(H/λ)

ρmin
·

√
dC ′

1

∑d
i=1 |O|1+|pai||A| log(C ′

2nd/δ)

n
,

where ρmin = mini∈[d] ρi.
♣ when D(·∥·) is TV-distance, then ErrΦh (n, δ) is given by

√
ErrΦh,KL(n, δ) = H

√
dC ′

1

∑d
i=1 |O|1+|pai||A| log(C ′

2nd/δ)

n
.

Here c, C ′
1, C ′

2 > 0 stand for three universal constants.

Proof of Proposition E.1. See Appendix E.1 for a detailed proof.

By Combing Proposition E.1 and Theorem 3.4, we can obtain Corollary 4.3.

E.1 Proof of Proposition E.1

Assumption E.2 (Regularity of KL-divergence duality variable). We assume that the optimal dual
variable λ⋆ for the following optimization problem

sup
λ∈R+

{
−λ log

(
Es′[j]∼Ph,j(·|sh[paj ],ah)

[
exp

{
−υjh,T,Q,Φ(s

′[j])/λ
}])

− λρ
}
,

is lower bounded by λ > 0 for any transition kernel Ph ∈ PM, T = {Th}Hh=1 ⊆ PM, Q =

{Qh}Hh=1 ⊆ PM, step h ∈ [H], and factor j ∈ [d]. Here the function υjh,T,Q,Φ(s
′[j]) is defined as

υjh,T,Q,Φ(s
′[j]) =

∫
Od−1

d∏
i=1
i ̸=j

Th,i(ds
′[i])V π⋆

h+1,Q,Φ(s
′[1], · · · , s′[j − 1], s[j], s′[j + 1], · · · , s′[d]).

Proof of Proposition E.1 with KL-divergence. Firstly, by invoking the first conclusion of Lemma
G.2, we know that the Condition 3.1 holds. In the following, we prove the Condition 3.2. By the
definition of robust set in Example 2.9,

inf
P̃h∈Φ(Ph)

Es′∼P̃h(·|sh,ah)
[V π⋆

h+1,P,Φ(s
′)]− inf

P̃h∈Φ(P⋆
h )

Es′∼P̃h(·|sh,ah)
[V π⋆

h+1,P,Φ(s
′)]

= inf
P̃h,i∈∆(O):DKL(P̃h,i(·)∥Ph,i(·|sh[pai],ah))≤ρi,i∈[d]

∫
Od

d∏
i=1

P̃h,i(ds
′[i])V π⋆

h+1,P,Φ(s
′)

− inf
P̃h,i∈∆(O):DKL(P̃h,i(·)∥P⋆

h,i(·|sh[pai],ah))≤ρi,i∈[d]

∫
Od

d∏
i=1

P̃h,i(ds
′[i])V π⋆

h+1,P,Φ(s
′).

(E.1)

Consider the following decomposition of the right hand side of (E.1),

(E.1) =
d∑

j=1

inf
P̃h,i∈∆(O):DKL(P̃h,i(·)∥Ph,i(·|sh[pai],ah))≤ρi,1≤i≤j

P̃h,i∈∆(O):DKL(P̃h,i(·)∥P⋆
h,i(·|sh[pai],ah))≤ρi,j+1≤i≤d

∫
Od

d∏
i=1

P̃h,i(ds
′[i])V π⋆

h+1,P,Φ(s
′)

− inf
P̃h,i∈∆(O):DKL(P̃h,i(·)∥Ph,i(·|sh[pai],ah))≤ρi,1≤i≤j−1

P̃h,i∈∆(O):DKL(P̃h,i(·)∥P⋆
h,i(·|sh[pai],ah))≤ρi,j≤i≤d

∫
Od

d∏
i=1

P̃h,i(ds
′[i])V π⋆

h+1,P,Φ(s
′).
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For each 1 ≤ j ≤ d, we denote that

(P̃ ∗,j
h,1 , · · · , P̃

∗,j
h,d) = arginf

P̃h,i∈∆(O):DKL(P̃h,i(·)∥Ph,i(·|sh[pai],ah))≤ρi,1≤i≤j−1

P̃h,i∈∆(O):DKL(P̃h,i(·)∥P⋆
h,i(·|sh[pai],ah))≤ρi,j≤i≤d

∫
Od

d∏
i=1

P̃h,i(ds
′[i])V π⋆

h+1,P,Φ(s
′)

By the definition of taking infimum over d variables, we can conclude that

inf
P̃h,i∈∆(O):DKL(P̃h,i(·)∥Ph,i(·|sh[pai],ah))≤ρi,1≤i≤j−1

P̃h,i∈∆(O):DKL(P̃h,i(·)∥P⋆
h,i(·|sh[pai],ah))≤ρi,j≤i≤d

∫
Od

d∏
i=1

P̃h,i(ds
′[i])V π⋆

h+1,P,Φ(s
′)

= inf
P̃h,j∈∆(O):DKL(P̃h,j(·)∥P⋆

h,j(·|sh[paj ],ah))≤ρj

∫
Od

P̃h,j(ds
′[j])

d∏
i=1
i ̸=j

P̃ ∗,j
h,i (ds

′[i])V π⋆

h+1,P,Φ(s
′).

(E.2)

Meanwhile, it naturally holds that for each 1 ≤ j ≤ d,

inf
P̃h,i∈∆(O):DKL(P̃h,i(·)∥Ph,i(·|sh[pai],ah))≤ρi,1≤i≤j

P̃h,i∈∆(O):DKL(P̃h,i(·)∥P⋆
h,i(·|sh[pai],ah))≤ρi,j+1≤i≤d

∫
Od

d∏
i=1

P̃h,i(ds
′[i])V π⋆

h+1,P,Φ(s
′)

≤ inf
P̃h,j∈∆(O):DKL(P̃h,j(·)∥Ph,j(·|sh[paj ],ah))≤ρj

∫
Od

P̃h,j(ds
′[j])

d∏
i=1
i ̸=j

P̃ ∗,j
h,i (ds

′[i])V π⋆

h+1,P,Φ(s
′).

(E.3)

Thus by combining (E.2) and (E.3), we have that

(E.1) ≤
d∑

j=1

inf
P̃h,j∈∆(O):DKL(P̃h,j(·)∥Ph,j(·|sh[paj ],ah))≤ρj

∫
Od

P̃h,j(ds
′[j])

d∏
i=1
i ̸=j

P̃ ∗,j
h,i (ds

′[i])V π⋆

h+1,P,Φ(s
′)

− inf
P̃h,j∈∆(O):DKL(P̃h,j(·)∥P⋆

h,j(·|sh[paj ],ah))≤ρj

∫
Od

P̃h,j(ds
′[j])

d∏
i=1
i̸=j

P̃ ∗,j
h,i (ds

′[i])V π⋆

h+1,P,Φ(s
′).

(E.4)

Now for simplicity, for each 1 ≤ j ≤ d, we denote a function υjh(s
′[j]) : O 7→ R as

υjh(s
′[j]) =

∫
Od−1

d∏
i=1
i ̸=j

P̃ ∗,j
h,i (ds

′[i])V π⋆

h+1,P,Φ(s
′[1], · · · , s′[j − 1], s[j], s′[j + 1], · · · , s′[d]), (E.5)

which satisfies 0 ≤ υjh ≤ H . For each 1 ≤ j ≤ d, we can then upper bound

∆j
h(sh, ah) = inf

P̃h,j∈∆(O):DKL(P̃h,j(·)∥Ph,j(·|sh[paj ],ah))≤ρj

∫
O
P̃h,j(ds

′[j])υjh(s
′[j])

− inf
P̃h,j∈∆(O):DKL(P̃h,j(·)∥P⋆

h,j(·|sh[paj ],ah))≤ρj

∫
O
P̃h,j(ds

′[j])υjh(s
′[j]) (E.6)

using the same argument as in the proof of Proposition D.1 under KL-divergence in Appendix D.1, in
which we apply Assumption E.2 and Lemma H.7. The corresponding result is given by

∆j
h(sh, ah) ≤

H exp(H/λ)

ρj
· ∥Ph,j(·|sh[paj ], ah)− P ⋆

h,j(·|sh[paj ], ah)∥TV. (E.7)
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Thus plugging (E.7) into (E.4) and (E.1), we can arrive at

inf
P̃h∈Φ(Ph)

Es′∼P̃h(·|sh,ah)
[V π⋆

h+1,P,Φ(s
′)]− inf

P̃h∈Φ(P⋆
h )

Es′∼P̃h(·|sh,ah)
[V π⋆

h+1,P,Φ(s
′)]

≤
d∑

j=1

H exp(H/λ)

ρj
· ∥Ph,j(·|sh[paj ], ah)− P ⋆

h,j(·|sh[paj ], ah)∥TV. (E.8)

By using the same argument for deriving (E.8), we can also obtain that

inf
P̃h∈Φ(P⋆

h )
Es′∼P̃h(·|sh,ah)

[V π⋆

h+1,P,Φ(s
′)]− inf

P̃h∈Φ(Ph)
Es′∼P̃h(·|sh,ah)

[V π⋆

h+1,P,Φ(s
′)]

≤
d∑

j=1

H exp(H/λ)

ρj
· ∥Ph,j(·|sh[paj ], ah)− P ⋆

h,j(·|sh[paj ], ah)∥TV. (E.9)

Therefore, due to (E.8) and (E.9), we can finally arrive at the following upper bound,

E
(sh,ah)∼dπb

P⋆,h

( inf
P̃h∈Φ(Ph)

Es′∼P̃h(·|sh,ah)
[V π⋆

h+1,P,Φ(s
′)]− inf

P̃h∈Φ(P⋆
h )

Es′∼P̃h(·|sh,ah)
[V π⋆

h+1,P,Φ(s
′)]

)2


≤ E
(sh,ah)∼dπb

P⋆,h


 d∑

j=1

H exp(H/λ)

ρj
· ∥Ph,j(·|sh[paj ], ah)− P ⋆

h,j(·|sh[paj ], ah)∥TV

2


≤ dH2 exp(2H/λ)

ρmin
·

d∑
j=1

E
(sh[paj ],ah)∼dπb

P⋆,h

[
∥Ph,j(·|sh[paj ], ah)− P ⋆

h,j(·|sh[paj ], ah)∥2TV

]
,

(E.10)

where the last inequality is from Cauchy-Schwartz inequality and ρmin = mini∈[d] ρi. Now invoking
the second conclusion of Lemma G.2, we have that with probability at least 1− δ,

E
(sh[paj ],ah)∼dπb

P⋆,h

[∥Ph,j(·|sh[paj ], ah)− P ⋆
h,j(·|sh[paj ], ah)∥2TV] ≤

C ′
1|O|1+|paj ||A| log(C ′

2ndH/δ)

n
,

(E.11)

for some absolute constant C ′
1, C

′
2 > 0 and each j ∈ [d]. Combining (E.10) and (E.11), we have that√

ErrΦh,KL(n) =
H exp(H/λ)

ρmin
·

√
dC ′

1

∑d
i=1 |O|1+|pai||A| log(C ′

2ndH/δ)

n
.

This finishes the proof of Proposition E.1 under KL-divergence.

Proof of Proposition E.1 with TV-distance. Firstly, by invoking the first conclusion of Lemma G.2,
we know that the Condition 3.1 holds. In the following, we prove the Condition 3.2. Using the same
argument as in the proof of Proposition E.1 under KL-divergence, we can derive that

inf
P̃h∈Φ(Ph)

Es′∼P̃h(·|sh,ah)
[V π⋆

h+1,P,Φ(s
′)]− inf

P̃h∈Φ(P⋆
h )

Es′∼P̃h(·|sh,ah)
[V π⋆

h+1,P,Φ(s
′)] ≤

d∑
j=1

∆j
h(sh, ah),

(E.12)

where ∆j
h(sh, ah) is defined in (E.6). Now applying the same argument as in the proof of Proposition

D.1 under TV-divergence, we can derive that

∆j
h(sh, ah) ≤ H · ∥Ph,j(·|sh[paj ], ah)− P ⋆

h,j(·|sh[paj ], ah)∥TV, (E.13)

where we have applied Lemma H.8. Therefore, by combining (E.12) and (E.13), we can derive that

inf
P̃h∈Φ(Ph)

Es′∼P̃h(·|sh,ah)
[V π⋆

h+1,P,Φ(s
′)]− inf

P̃h∈Φ(P⋆
h )

Es′∼P̃h(·|sh,ah)
[V π⋆

h+1,P,Φ(s
′)]

≤ H ·
d∑

j=1

∥Ph,j(·|sh[paj ], ah)− P ⋆
h,j(·|sh[paj ], ah)∥TV. (E.14)
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By the same argument as in deriving (E.14), we can also obtain that,

inf
P̃h∈Φ(P⋆

h )
Es′∼P̃h(·|sh,ah)

[V π⋆

h+1,P,Φ(s
′)]− inf

P̃h∈Φ(Ph)
Es′∼P̃h(·|sh,ah)

[V π⋆

h+1,P,Φ(s
′)]

≤ H ·
d∑

j=1

∥Ph,j(·|sh[paj ], ah)− P ⋆
h,j(·|sh[paj ], ah)∥TV. (E.15)

Now by combining (E.14) and (E.15), we can derive the following upper bound,

E
(sh,ah)∼dπb

P⋆,h

( inf
P̃h∈Φ(Ph)

Es′∼P̃h(·|sh,ah)
[V π⋆

h+1,P,Φ(s
′)]− inf

P̃h∈Φ(P⋆
h )

Es′∼P̃h(·|sh,ah)
[V π⋆

h+1,P,Φ(s
′)]

)2


≤ E
(sh,ah)∼dπb

P⋆,h


H ·

d∑
j=1

∥Ph,j(·|sh[paj ], ah)− P ⋆
h,j(·|sh[paj ], ah)∥TV

2


≤ dH2 ·
d∑

j=1

E
(sh[paj ],ah)∼dπb

P⋆,h

[
∥Ph,j(·|sh[paj ], ah)− P ⋆

h,j(·|sh[paj ], ah)∥2TV

]
, (E.16)

where the last inequality follows from Cauchy-Schwartz inequality. Now invoking the second
conclusion of Lemma G.2, we have that with probability at least 1− δ,

E
(sh[paj ],ah)∼dπb

P⋆,h

[∥Ph,j(·|sh[paj ], ah)− P ⋆
h,j(·|sh[paj ], ah)∥2TV] ≤

C ′
1|O|1+|paj ||A| log(C ′

2ndH/δ)

n
,

(E.17)

for some absolute constant C ′
1, C

′
2 > 0 and each j ∈ [d]. Combining (E.16) and (E.17), we have that√

ErrΦh,KL(n) = H ·

√
dC ′

1

∑d
i=1 |O|1+|pai||A| log(C ′

2ndH/δ)

n
.

This finishes the proof of Proposition E.1 under TV-distance.

F Proofs for d-rectangular Robust Linear MDP

Assumption F.1 (Regularity of KL-divergence duality variable). We assume that the optimal dual
variable λ⋆ for the following optimization problem

sup
λ∈R+

{
−λ log

(
Es′∼µ(·)

[
exp

{
−V π⋆

h+1,Q,Φ(s
′)/λ

}])
− λρ

}
,

is lower bounded by λ > 0 for any distribution µ ∈ ∆(S), transition kernels Q = {Qh}Hh=1 ⊆ PM,
and step h ∈ [H].

Proof of Theorem A.3 with KL-divergence. Recall that we consider the following definition of V ,

V =

{
v(s) = exp

(
−max

a∈A
ϕ(s, a)⊤w/λ

)
: ∥w∥2 ≤ H

√
d, λ ∈ [λ,H/ρ]

}
. (F.1)

Following the Section 7 of [54] as well as the Section 8 of [1], we introduce the notion P̂h that
satisfies for any v ∈ V and (s, a) ∈ S ×A,∫

S
P̂h(ds

′|s, a)v(s′) = ϕ(s, a)⊤θ̂v, (F.2)

where θ̂v is defined in (A.2). Actually P̂h takes the following closed form,

P̂h(ds
′|s, a) = ϕ(s, a)⊤ 1

n

n∑
τ=1

Λ−1
h,αϕ(s

τ
h, a

τ
h)δsτh+1

(ds′), (F.3)

where δs(·) is the dirac measure centering at s. Regarding the estimator P̂h, we have the following.
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Lemma F.2. Setting α = 1 and choosing the function class V as (F.1), then the estimator P̂h defined
in (F.3) satisfies that, with probability at least 1− δ,

sup
v∈V

∣∣∣∣∫
S

(
P ⋆
h (ds

′|s, a)− P̂h(ds
′|s, a)

)
v(s′)

∣∣∣∣2
≤ C1 · ∥ϕ(s, a)∥2Λ−1

h,α

·
d
(
log(1 + C2nH/δ) + log(1 + C3ndH/(ρλ

2))
)

n
,

for any step h ∈ [H], where C1, C2, C3 > 0 are three constants.

Proof of Lemma F.2. See Appendix F.1 for a detailed proof.

With Lemma F.2, we can further derive that, with probability at least 1− δ, for any h ∈ [H],

sup
v∈V

1

n

n∑
τ=1

∣∣∣∣∫
S

(
P ⋆
h (ds

′|sτh, aτh)− P̂h(ds
′|sτh, aτh)

)
v(s′)

∣∣∣∣2
≤ 1

n

n∑
τ=1

∥ϕ(sτh, aτh)∥2Λ−1
h,α

·
C1d

(
log(1 + C2nH/δ) + log(1 + C3ndH/(ρλ

2))
)

n
.

In the right hand side of the above inequality, it holds that,

1

n

n∑
τ=1

∥ϕ(sτh, aτh)∥2Λ−1
h,α

=
1

n

n∑
i=1

Tr
(
ϕ(sτh, a

τ
h)

⊤Λ−1
h,αϕ(s

τ
h, a

τ
h)
)

= Tr

(
1

n

n∑
i=1

ϕ(sτh, a
τ
h)ϕ(s

τ
h, a

τ
h)

⊤Λ−1
h,α

)
≤ Tr

(
Λh,αΛ

−1
h,α

)
= d. (F.4)

Thus, we have that with probability at least 1− δ, for each step h ∈ [H],

sup
v∈V

1

n

n∑
τ=1

∣∣∣∣∫
S

(
P ⋆
h (ds

′|sτh, aτh)− P̂h(ds
′|sτh, aτh)

)
v(s′)

∣∣∣∣2
≤
C1d

2
(
log(1 + C2nH/δ) + log(1 + C3ndH/(ρλ

2))
)

n
= ξ.

This proves Condition 3.1 in Section 3.2. In the following, we prove Theorem A.3 given Condition
3.1 holds. Using the definition of robust set Φ(·) in Example A.1, we can derive that

inf
P̃h∈Φ(P⋆

h )
Es′∼P̃h(·|sh,ah)

[V π⋆

h+1,P,Φ(s
′)]− inf

P̃h∈Φ(Ph)
Es′∼P̃h(·|sh,ah)

[V π⋆

h+1,P,Φ(s
′)]

= inf
P̃h∈Φ(P⋆

h )

d∑
i=1

ϕi(sh, ah)

∫
S
µ̃i(ds

′)V π⋆

h+1,P,Φ(s
′)− inf

P̃h∈Φ(Ph)

d∑
i=1

ϕi(s, a)

∫
S
µ̃i(ds

′)V π⋆

h+1,P,Φ(s
′)

=

d∑
i=1

ϕi(sh, ah) inf
µ̃h,i∈∆(S):D(µ̃h,i(·)∥µ⋆

h,i(·))≤ρ

∫
S
µ̃h,i(ds

′)V π⋆

h+1,P,Φ(s
′)

−
d∑

i=1

ϕi(sh, ah) inf
µ̃h,i∈∆(S):D(µ̃h,i(·)∥µh,i(·))≤ρ

∫
S
µ̃h,i(ds

′)V π⋆

h+1,P,Φ(s
′), (F.5)

where the last equality follows from ϕ(s, a) ≥ 0 for any i ∈ [d]. Now invoking the dual formulation
of KL-divergence in Lemma D.2, we can derive that

(F.5) =
d∑

i=1

ϕi(sh, ah) ·

[
sup
λi≥0

{
−λi log

(
Es′∼µ⋆

h,i(·)

[
exp

{
−V π⋆

h+1,P,Φ(s
′)/λi

}])
− λiρ

}
− sup

λi≥0

{
−λi log

(
Es′∼µh,i(·)

[
exp

{
−V π⋆

h+1,P,Φ(s
′)/λi

}])
− λiρ

}]
(F.6)
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Following the same argument in the proof of Proposition D.1 (derivation of (D.3)), during which we
invoke Assumption F.1 and Lemma H.7 to bound the optimal dual variable λ, we can derive that

(F.6) ≤
d∑

i=1

ϕi(sh, ah) · sup
λ≤λi≤H/ρ

{
g(λi, µ

⋆
h,i)

∫
S

(
µ⋆
h,i(ds

′)− µh,i(ds
′)
)
exp

{
−V π⋆

h+1,P,Φ(s
′)/λi

}}
,

=

d∑
i=1

sup
λ≤λi≤H/ρ

{
g(λi, µ

⋆
h,i)ϕi(sh, ah)

∫
S

(
µ⋆
h,i(ds

′)− µh,i(ds
′)
)
exp

{
−V π⋆

h+1,P,Φ(s
′)/λi

}}
,

(F.7)

where we have defined g(λi, µh,i) = λi/(
∫
S µh,i(ds

′) exp{−V π⋆

h+1,P,Φ(s
′)/λi}) for simplicity, and

in the equality we have used the fact that ϕi(s, a) ≥ 0. To go ahead, we rewrite the summand in (F.7)
for each i ∈ [d]. To be specific, recall the regularized covariance matrix Λh,α of the feature ϕ,

Λh,α =
1

n

n∑
τ=1

ϕ(sτh, a
τ
h)ϕ(s

τ
h, a

τ
h)

⊤ +
α

n
· Id.

Then, by denoting 1i = (0, · · · , 0, 1, 0, · · · , 0)⊤ where 1 is at the i-th coordinate, we have the
following,

ϕi(sh, ah)

∫
S

(
µ⋆
h,i(ds

′)− µh,i(ds
′)
)
exp

{
−V π⋆

h+1,P,Φ(s
′)/λi

}
= ϕi(sh, ah)1

⊤
i Λ

−1/2
h,α Λ

1/2
h,α

∫
S
(µ⋆

h(ds
′)− µh(ds

′)) exp
{
−V π⋆

h+1,P,Φ(s
′)/λi

}
≤ ∥ϕi(sh, ah)1i∥Λ−1

h,α︸ ︷︷ ︸
Term (i)

·
∥∥∥∥∫

S
(µ⋆

h(ds
′)− µh(ds

′)) exp
{
−V π⋆

h+1,P,Φ(s
′)/λi

}∥∥∥∥
Λh,α︸ ︷︷ ︸

Term (ii)

. (F.8)

For the term (ii) in (F.8), by the definition of Λh,α, we have that,

Term (ii)2 =
1

n

n∑
τ=1

∣∣∣∣ϕ(sτh, aτh)⊤ ∫
S
(µ⋆

h(ds
′)− µh(ds

′)) exp
{
−V π⋆

h+1,P,Φ(s
′)/λi

}∣∣∣∣2
+
α

n
·
∥∥∥∥∫

S
(µ⋆

h(ds
′)− µh(ds

′)) exp
{
−V π⋆

h+1,P,Φ(s
′)/λi

}∥∥∥∥2
2

=
1

n

n∑
τ=1

∣∣∣∣∫
S
(P ⋆

h (ds
′|sτh, aτh)− Ph(ds

′|sτh, aτh)) exp
{
−V π⋆

h+1,P,Φ(s
′)/λi

}∣∣∣∣2
+
α

n
·
∥∥∥∥∫

S
(µ⋆

h(ds
′)− µh(ds

′)) exp
{
−V π⋆

h+1,P,Φ(s
′)/λi

}∥∥∥∥2
2

. (F.9)

In the following, we upper bound the right hand side of (F.9). On the one hand, we have that

1

n

n∑
τ=1

∣∣∣∣∫
S
(P ⋆

h (ds
′|sτh, aτh)− Ph(ds

′|sτh, aτh)) exp
{
−V π⋆

h+1,P,Φ(s
′)/λi

}∣∣∣∣2
≤ sup

v∈V

1

n

n∑
τ=1

∣∣∣∣∫
S

(
P ⋆
h (ds

′|sτh, aτh)− P̂h(ds
′|sτh, aτh)

)
v(s′)

∣∣∣∣2
+ sup

v∈V

1

n

n∑
τ=1

∣∣∣∣∫
S

(
P̂h(ds

′|sτh, aτh)− Ph(ds
′|sτh, aτh)

)
v(s′)

∣∣∣∣2
≤ 2ξ, (F.10)

with probability at least 1− δ, where the first inequality holds since exp{−V π⋆

h+1,P,Φ(s
′)/λi} ∈ V ,

and the last inequality follows from the fact that Condition 3.1 holds and the fact that Ph ∈ P̂h. On
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the other hand, by setting the regularization parameter α = 1 we have that

α

n
·
∥∥∥∥∫

S
(µ⋆

h(ds
′)− µh(ds

′)) exp
{
−V π⋆

h+1,P,Φ(s
′)/λi

}∥∥∥∥2
2

=
1

n
·

d∑
i=1

∣∣∣∣∫
S

(
µ⋆
h,i(ds

′)− µh,i(ds
′)
)
exp

{
−V π⋆

h+1,P,Φ(s
′)/λi

}∣∣∣∣2

≤ 1

n
·

d∑
i=1

∥µ⋆
h,i(·)− µh,i(·)∥2TV ≤ 2d

n
. (F.11)

By combining (F.9), (F.10) and (F.11), we can conclude that with probability at least 1− δ,

Term (ii)2 ≤ 2ξ +
2d

n
≤ 3ξ. (F.12)

Now by combining (F.7), (F.8), (F.12), we can conclude that with probability at least 1− δ,

inf
P̃h∈Φ(P⋆

h )
Es′∼P̃h(·|sh,ah)

[V π⋆

h+1,P,Φ(s
′)]− inf

P̃h∈Φ(Ph)
Es′∼P̃h(·|sh,ah)

[V π⋆

h+1,P,Φ(s
′)]

≤
d∑

i=1

sup
λ≤λi≤H/ρ

{
∥ϕi(sh, ah)1i∥Λ−1

h,α
· g(λi, µ⋆

h,i) ·
√

3ξ
}

≤ 2
√
ξ ·H exp(H/λ)

ρ
·

d∑
i=1

∥ϕi(sh, ah)1i∥Λ−1
h,α

, (F.13)

for any step h ∈ [H], (sh, ah) ∈ S × A, and Ph ∈ P̂h, where we apply the definition of g(λi, µi).
Now using the same argument as in the proof of Theorem 3.4, using Condition 3.1, we can derive that

SubOpt(π̂; s1) ≤ sup
P∈P̂

H∑
h=1

E(sh,ah)∼dπ⋆

Pπ⋆,†,h

[
inf

P̃h∈Φ(P⋆
h )

Es′∼P̃h(·|sh,ah)
[V π⋆

h+1,P,Φ(s
′)]

− inf
P̃h∈Φ(Ph)

Es′∼P̃h(·|sh,ah)
[V π⋆

h+1,P,Φ(s
′)]

]

≤ 2
√
ξ ·H exp(H/λ)

ρ
·

H∑
h=1

d∑
i=1

E(sh,ah)∼dπ⋆

Pπ⋆,†,h

[
∥ϕi(sh, ah)1i∥Λ−1

h,α

]
, (F.14)

where we have used (F.13). Here Pπ⋆,†
h is some transition kernel chosen from Φ(P ⋆

h ). Now we upper
bound the right hand side of (F.14) using Assumption A.2. Consider that

d∑
i=1

E(sh,ah)∼dπ⋆

Pπ⋆,†,h

[
∥ϕi(sh, ah)1i∥Λ−1

h,α

]
=

d∑
i=1

E(sh,ah)∼dπ⋆

Pπ⋆,†,h

[√
Tr
(
(ϕi(sh, ah)1i)(ϕi(sh, ah)1i)⊤Λ

−1
h,α

)]

≤
d∑

i=1

√
Tr

(
E(sh,ah)∼dπ⋆

Pπ⋆,†,h

[(ϕi(sh, ah)1i)(ϕi(sh, ah)1i)⊤]Λ
−1
h,α

)
. (F.15)

For notational simplicity, in the sequel, we denote by

ΣP,h,i = E(sh,ah)∼dπ⋆

P,h

[
(ϕi(sh, ah)1i)(ϕi(sh, ah)1i)

⊤]
Note that the matrix ΣP,h,i has non-zero element only at (ΣP,h,i)(i,i), which equals to ϕi(s, a)2.
Under Assumption A.2 and the fact that Pπ⋆,†

h ∈ Φ(P ⋆
h ), we have that

Λh,α ⪰ α

n
· Id + c† ·ΣPπ⋆,†,h,i.
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Thus, using (F.15) and under α = 1, we have that,

d∑
i=1

E(sh,ah)∼dπ⋆

Pπ⋆,†,h

[
∥ϕi(sh, ah)1i∥Λ−1

h,α

]
≤

d∑
i=1

√
Tr

(
ΣPπ⋆ ,h,i

(α
n
· Id + c† ·ΣPπ⋆ ,h,i

)−1
)

=

d∑
i=1

√
ϕi(s, a)2

n−1 + c† · ϕi(s, a)2
≤ d

c†
. (F.16)

Therefore, by combining (F.14) and (F.16), we have that with probability at least 1− δ,

SubOpt(π̂; s1) ≤
2
√
ξ ·H exp(H/λ)

ρ
·

H∑
h=1

d

c†
=

2d
√
ξ ·H2 exp(H/λ)

c†ρ
.

Using the definition of ξ, we can finally derive that with probability at least 1− δ,

SubOpt(π̂; s1) ≤
d2H2 exp(H/λ)

c†ρ
·

√
C ′

1

(
log(1 + C ′

2nH/δ) + log(1 + C ′
3ndH/(ρλ

2))
)

n
.

This finishes the proof of Theorem A.3 under KL-divergence.

Proof of Theorem A.3 with TV-divergence. We use the same notation of P̂h introduced in the proof
of KL-divergence case, which satisfies (F.2) with V defined as

V =

{
v(s) =

(
λ−max

a∈A
ϕ(s, a)⊤w

)
+

: ∥w∥2 ≤ H
√
d, λ ∈ [0, H]

}
. (F.17)

Regarding the estimator P̂h with V defined in (F.17), we have the following.

Lemma F.3. Setting α = 1 and choosing the function class V as (F.17), then the estimator P̂h

defined in (F.3) satisfies that, with probability at least 1− δ,

sup
v∈V

∣∣∣∣∫
S

(
P ⋆
h (ds

′|s, a)− P̂h(ds
′|s, a)

)
v(s′)

∣∣∣∣2
≤ C1 · ∥ϕ(s, a)∥2Λ−1

h,α

· dH
2 log(C2ndH/δ)

n
,

for any step h ∈ [H], where C1, C2 > 0 are two constants.

Proof of Lemma F.3. See Appendix F.1 for a detailed proof.

With Lemma F.3, we can further derive that, with probability at least 1− δ, for any h ∈ [H],

sup
v∈V

1

n

n∑
τ=1

∣∣∣∣∫
S

(
P ⋆
h (ds

′|sτh, aτh)− P̂h(ds
′|sτh, aτh)

)
v(s′)

∣∣∣∣2 ≤ 1

n

n∑
τ=1

∥ϕ(sτh, aτh)∥2Λ−1
h,α

· C1dH
2 log(C2ndH/δ)

n
.

In the right hand side of the above inequality, it holds that,

1

n

n∑
τ=1

∥ϕ(sτh, aτh)∥2Λ−1
h,α

=
1

n

n∑
i=1

Tr
(
ϕ(sτh, a

τ
h)

⊤Λ−1
h,αϕ(s

τ
h, a

τ
h)
)
≤ Tr

(
Λh,αΛ

−1
h,α

)
= d.

(F.18)

Thus, we have that with probability at least 1− δ, for each step h ∈ [H],

sup
v∈V

1

n

n∑
τ=1

∣∣∣∣∫
S

(
P ⋆
h (ds

′|sτh, aτh)− P̂h(ds
′|sτh, aτh)

)
v(s′)

∣∣∣∣2 ≤ C1d
2H2 log(C2ndH/δ)

n
= ξ.

35



This proves Condition 3.1 in Section 3.2. In the following, we prove Theorem A.3 given Condition
3.1 holds. Using the definition of robust set Φ(·) in Example A.1, following the same argument as
(F.5), we have that,

inf
P̃h∈Φ(P⋆

h )
Es′∼P̃h(·|sh,ah)

[V π⋆

h+1,P,Φ(s
′)]− inf

P̃h∈Φ(Ph)
Es′∼P̃h(·|sh,ah)

[V π⋆

h+1,P,Φ(s
′)]

=

d∑
i=1

ϕi(sh, ah) inf
µ̃h,i∈∆(S):D(µ̃h,i(·)∥µ⋆

h,i(·))≤ρ

∫
S
µ̃h,i(ds

′)V π⋆

h+1,P,Φ(s
′)

−
d∑

i=1

ϕi(sh, ah) inf
µ̃h,i∈∆(S):D(µ̃h,i(·)∥µh,i(·))≤ρ

∫
S
µ̃h,i(ds

′)V π⋆

h+1,P,Φ(s
′). (F.19)

Now invoking the dual formulation of TV-distance in Lemma D.4, we can further derive that

(F.19) =
d∑

i=1

ϕi(sh, ah) ·
[
sup
λ∈R

{
−Es′∼µ⋆

h,i(·)

[(
λ− V π⋆

h+1,P,Φ(s
′)
)
+

]
− ρ

2

(
λ− inf

s′′∈S
V π
h+1,P,Φ(s

′′)

)
+ λ

}
− sup

λ∈R

{
−Es′∼µh,i(·)

[(
λ− V π⋆

h+1,P,Φ(s
′)
)
+

]
− ρ

2

(
λ− inf

s′′∈S
V π
h+1,P,Φ(s

′′)

)
+ λ

}]
≤

d∑
i=1

ϕi(sh, ah) · sup
λ∈[0,H]

{(
Es′∼µ⋆

h,i(·) − Es′∼µh,i(·)

)[(
λ− V π⋆

h+1,P,Φ(s
′)
)
+

]}

=

d∑
i=1

sup
λ∈[0,H]

{
ϕi(sh, ah)

∫
S

(
µ⋆
h,i(ds

′)− µh,i(ds
′)
) (
λ− V π⋆

h+1,P,Φ(s
′)
)
+

}
. (F.20)

where in the first inequality we use Lemma H.8 to bound λ ∈ [0, H]. Now we consider each summand
i ∈ [d] in the right hand side of (F.20). We rewrite it as

ϕi(sh, ah)

∫
S

(
µ⋆
h,i(ds

′)− µh,i(ds
′)
) (
λ− V π⋆

h+1,P,Φ(s
′)
)
+

= ϕi(sh, ah)1
⊤
i Λ

−1/2
h,α Λ

1/2
h,α

∫
S
(µ⋆

h(ds
′)− µh(ds

′))
(
λ− V π⋆

h+1,P,Φ(s
′)
)
+

≤ ∥ϕi(sh, ah)1i∥Λ−1
h,α︸ ︷︷ ︸

Term (i)

·
∥∥∥∥∫

S
(µ⋆

h(ds
′)− µh(ds

′))
(
λ− V π⋆

h+1,P,Φ(s
′)
)
+

∥∥∥∥
Λh,α︸ ︷︷ ︸

Term (ii)

. (F.21)

Following the same argument as (F.9), (F.10), and (F.11), using the fact that (λ−V π⋆

h+1,P,Φ(s
′))+ ∈ V

with V in (F.17), we can derive that with probability at least 1− δ,

Term(ii)
2 ≤ 3ξ (F.22)

Now by combining (F.19), (F.21), (F.22), we can conclude that with probability at least 1− δ,

inf
P̃h∈Φ(P⋆

h )
Es′∼P̃h(·|sh,ah)

[V π⋆

h+1,P,Φ(s
′)]− inf

P̃h∈Φ(Ph)
Es′∼P̃h(·|sh,ah)

[V π⋆

h+1,P,Φ(s
′)]

≤
d∑

i=1

sup
0≤λiH

{
∥ϕi(sh, ah)1i∥Λ−1

h,α
·
√
3ξ
}
≤ 2
√
ξ ·

d∑
i=1

∥ϕi(sh, ah)1i∥Λ−1
h,α

, (F.23)

for any step h ∈ [H], (sh, ah) ∈ S ×A, and Ph ∈ P̂h. Now using the same argument as in the proof
of Theorem 3.4, using Condition 3.1, we can derive that with probability at least 1− δ,

SubOpt(π̂; s1) ≤ sup
P∈P̂

H∑
h=1

E(sh,ah)∼dπ⋆

Pπ⋆,†,h

[
inf

P̃h∈Φ(P⋆
h )

Es′∼P̃h(·|sh,ah)
[V π⋆

h+1,P,Φ(s
′)]

− inf
P̃h∈Φ(Ph)

Es′∼P̃h(·|sh,ah)
[V π⋆

h+1,P,Φ(s
′)]

]

≤ 2
√
ξ ·

H∑
h=1

d∑
i=1

E(sh,ah)∼dπ⋆

Pπ⋆,†,h

[
∥ϕi(sh, ah)1i∥Λ−1

h,α

]
, (F.24)
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where in the last inequality we apply (F.23). Here Pπ⋆,†
h is some transition kernel chosen from

Φ(P ⋆
h ). Now we use the same argument as (F.15) and (F.16) to upper bound the right hand side of

(F.24) using Assumption A.2, which gives that,

d∑
i=1

E(sh,ah)∼dπ⋆

Pπ⋆,†,h

[
∥ϕi(sh, ah)1i∥Λ−1

h,α

]
≤ d

c†
. (F.25)

Therefore, by combining (F.24) and (F.25), we have that with probability at least 1− δ,

SubOpt(π̂; s1) ≤ 2
√
ξ ·

H∑
h=1

d

c†
=

2d
√
ξ ·H
c†

.

Using the definition of ξ, we can finally derive that with probability at least 1− δ,

SubOpt(π̂; s1) ≤
d2H2

c†
·
√
C ′

1 log(C
′
2ndH/δ)

n
.

This finishes the proof of Theorem A.3 under TV-distance.

F.1 Proof of Lemma F.2 and Lemma F.3

Proof of Lemma F.2. The proof of Lemma F.2 follows from the main proofs in Section 8 of [1] and
the covering number of the function class V (Lemma F.4). Denote CV,ϵ as an ϵ-cover of the function
class V under ∥ · ∥∞. Following the exact same argument of Lemma 8.7 in [1], we can derive that
with probability at least 1− δ, for any h and v ∈ CV,ϵ.

∥∥∥∥∥
n∑

τ=1

ϕ(sτh, a
τ
h)

(∫
S
P ⋆
h (ds

′|sτh, aτh)v(s′)− v(sτh+1)

)∥∥∥∥∥
2

Λ−1
h,α

≤ 9n · (log(H/δ) + log(|CV,ϵ|) + d log(1 +N)) , (F.26)

where we have taken α = 1, which we will keep in the following. For any function v ∈ V , take
v̂ ∈ CV,ϵ such that ∥v − v̂∥∞ ≤ ϵ. Then we have that

∥∥∥∥∥
n∑

τ=1

ϕ(sτh, a
τ
h)

(∫
S
P ⋆
h (ds

′|sτh, aτh)v(s′)− v(sτh+1)

)∥∥∥∥∥
2

Λ−1
h,α

≤ 2

∥∥∥∥∥
n∑

τ=1

ϕ(sτh, a
τ
h)

(∫
S
P ⋆
h (ds

′|sτh, aτh)v̂(s′)− v̂(sτh+1)

)∥∥∥∥∥
2

Λ−1
h,α

+ 2

∥∥∥∥∥
n∑

τ=1

ϕ(sτh, a
τ
h)

(∫
S
P ⋆
h (ds

′|sτh, aτh)(v̂ − v)(s′)− (v̂ − v)(sτh+1)

)∥∥∥∥∥
2

Λ−1
h,α

≤ 18n · (log(H/δ) + log(|CV,ϵ|) + d log(1 + n)) + 8ϵ2n2. (F.27)
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Now we apply the definition of P̂h and we can then derive that

∣∣∣∣∫
S

(
P ⋆
h (ds

′|s, a)− P̂h(ds
′|s, a)v(s′)

)∣∣∣∣2
=

∣∣∣∣∣ϕ(s, a)⊤
(∫

S
µ⋆(ds′)v(s′)− 1

n

n∑
τ=1

Λ−1
h,αϕ(s

τ
h, a

τ
h)v(s

τ
h+1)

)∣∣∣∣∣
2

=

∣∣∣∣∣ϕ(s, a)⊤Λ−1
h,α

(
Λh,α

∫
S
µ⋆(ds′)v(s′)− 1

n

n∑
τ=1

ϕ(sτh, a
τ
h)v(s

τ
h+1)

)∣∣∣∣∣
2

=

∣∣∣∣∣ϕ(s, a)⊤Λ−1
h,α

(
1

n

∫
S
µ⋆

h(ds
′)v(s′) +

1

n

n∑
τ=1

ϕ(s, a)

∫
S
P ⋆
h (ds

′|sτh, aτh)v(s′)

− 1

n

n∑
τ=1

ϕ(sτh, a
τ
h)v(s

τ
h+1)

)∣∣∣∣∣
2

≤ 2

n2
· ∥ϕ(s, a)∥2

Λ−1
h,α

·
∥∥∥∥∫

S
µ⋆(ds′)v(s′)

∥∥∥∥2
Λ−1

h,α

+
2

n2
· ∥ϕ(s, a)∥2

Λ−1
h,α

·

∥∥∥∥∥
n∑

τ=1

ϕ(sτh, a
τ
h)

(∫
S
P ⋆
h (ds

′|sτh, aτh)v(s′)− v(sτh+1)

)∥∥∥∥∥
2

Λ−1
h,α

.

(F.28)

On the one hand, the first term in the right hand side of (F.28) is bounded by

2

n2
· ∥ϕ(s, a)∥2

Λ−1
h,α

·
∥∥∥∥∫

S
µ⋆(ds′)v(s′)

∥∥∥∥2
Λ−1

h,α

≤ 2

n
· ∥ϕ(s, a)∥2

Λ−1
h,α

·
∥∥∥∥∫

S
µ⋆(ds′)v(s′)

∥∥∥∥2
2

≤ 2d

n
· ∥ϕ(s, a)∥2

Λ−1
h,α

, (F.29)

where we use the fact that Λh,α ⪰ (1/n) · Id and ∥v(·)∥∞ ≤ 1 for any v ∈ V . On the other hand,
the second term in the right hand side of (F.28) is bounded by

2

n2
· ∥ϕ(s, a)∥2

Λ−1
h,α

·

∥∥∥∥∥
n∑

τ=1

ϕ(sτh, a
τ
h)

(∫
S
P ⋆
h (ds

′|sτh, aτh)v(s′)− v(sτh+1)

)∥∥∥∥∥
2

Λ−1
h,α

≤
(
36

n
· (log(H/δ) + log(|CV,ϵ|) + d log(1 + n)) + 16ϵ2

)
· ∥ϕ(s, a)∥2

Λ−1
h,α

,

where we have applied (F.27). Now taking ϵ = 1/
√
n, applying Lemma F.4 to bound the covering

number of V , we can further derive that,

2

n2
· ∥ϕ(s, a)∥2

Λ−1
h,α

·

∥∥∥∥∥
n∑

τ=1

ϕ(sτh, a
τ
h)

(∫
S
P ⋆
h (ds

′|sτh, aτh)v(s′)− v(sτh+1)

)∥∥∥∥∥
2

Λ−1
h,α

≤ 36

n
·
(
log(H/δ) + d log(1 + 4

√
nHd/(λ)) + log(1 + 4

√
nHd/(λ2ρ)) + d log(1 + n)

)
· ∥ϕ(s, a)∥2

Λ−1
h,α

+
16

n
· ∥ϕ(s, a)∥2

Λ−1
h,α

,

≤
C1d

(
log(1 + C2nH/δ) + log(1 + C3ndH/(ρλ

2))
)

n
· ∥ϕ(s, a)∥2

Λ−1
h,α

, (F.30)
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where C1, C2, C3 > 0 are three constants. Finally, by combining (F.28), (F.29), and (F.30), we can
conclude that with probability at least 1− δ, for each step h ∈ [H],

sup
v∈V

∣∣∣∣∫
S

(
P ⋆
h (ds

′|s, a)− P̂h(ds
′|s, a)

)
v(s′)

∣∣∣∣2
≤ C ′

1 · ∥ϕ(s, a)∥2Λ−1
h,α

·
d
(
log(1 + C2nH/δ) + log(1 + C3ndH/(ρλ

2))
)

n
.

where C ′
1 is another constant. This finishes the proof of Lemma F.2.

Proof of Lemma F.3. The proof of Lemma F.3 follows the same argument as proof of Lemma F.2,
except a different covering number of the function class V which we show in the following. Using
the same argument as the proof of Lemma F.2, with probability at least 1− δ, for any v ∈ V ,∣∣∣∣∫

S

(
P ⋆
h (ds

′|s, a)− P̂h(ds
′|s, a)v(s′)

)∣∣∣∣2
≤ 2H2

n2
· ∥ϕ(s, a)∥2

Λ−1
h,α

·
∥∥∥∥∫

S
µ⋆(ds′)v(s′)

∥∥∥∥2
Λ−1

h,α

+
2H2

n2
· ∥ϕ(s, a)∥2

Λ−1
h,α

·

∥∥∥∥∥
n∑

τ=1

ϕ(sτh, a
τ
h)

(∫
S
P ⋆
h (ds

′|sτh, aτh)v(s′)− v(sτh+1)

)∥∥∥∥∥
2

Λ−1
h,α

≤ H2 ·
(
36

n
· (log(H/δ) + log(|CV,ϵ|) + d log(1 + n)) + 16ϵ2 +

2d

n

)
· ∥ϕ(s, a)∥2

Λ−1
h,α

,

(F.31)

where CV,ϵ is an ϵ-covering of the function class V defined in (F.17). Now taking ϵ = 1/
√
n, applying

Lemma F.5 to bound the covering number of V , we can further derive that,

sup
v∈V

∣∣∣∣∫
S

(
P ⋆
h (ds

′|s, a)− P̂h(ds
′|s, a)v(s′)

)∣∣∣∣2
≤ H2 · ∥ϕ(s, a)∥2

Λ−1
h,α

·
(
36

n
· (log(H/δ)

+d log(1 + 4
√
nHd) + log(1 + 4

√
nH) + d log(1 + n)

)
+

16 + 2d

n

)
≤ C1 · ∥ϕ(s, a)∥2Λ−1

h,α

· dH
2 log(C2ndH/δ)

n
. (F.32)

This finishes the proof of Lemma F.3.

F.2 Other Lemmas

Lemma F.4 (Covering number of V: KL-divergence case). The ϵ-covering number of function class
V defined in (F.1) under ∥ · ∥∞-norm is bounded by

log(N (ϵ,V, ∥ · ∥∞)) ≤ d log(1 + 4Hd/(λϵ)) + log(1 + 4H2d/(λ2ρϵ)).

Proof of Lemma F.4. Consider any two pairs of parameters (w, λ) and (ŵ, λ̂), and denote the func-
tions they induce as v and v̂. Then we have that

|v(s)− v̂(s)| =
∣∣∣∣exp{−max

a∈A
ϕ(s, a)⊤w/λ

}
− exp

{
−max

a∈A
ϕ(s, a)⊤ŵ/λ̂

}∣∣∣∣
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Using the fact that, for any x, y > 0, exp(−x) − exp(−y) = exp(−ζ(x, y)) · (y − x) for some
ζ(x, y) between x and y, we know that

|v(s)− v̂(s)|

≤ exp

{
−ζ
(
max
a∈A

ϕ(s, a)⊤w/λ,max
a∈A

ϕ(s, a)⊤ŵ/λ̂

)}
·
∣∣∣∣max
a∈A

ϕ(s, a)⊤w/λ−max
a∈A

ϕ(s, a)⊤ŵ/λ̂

∣∣∣∣
≤
∣∣∣∣max
a∈A

{
ϕ(s, a)⊤w/λ− ϕ(s, a)⊤ŵ/λ̂

}∣∣∣∣
=

∣∣∣∣max
a∈A

{
ϕ(s, a)⊤w/λ− ϕ(s, a)⊤ŵ/λ+ ϕ(s, a)⊤ŵ/λ− ϕ(s, a)⊤ŵ/λ̂

}∣∣∣∣ .
Notice that ∥ϕ(s, a)∥2 ≤

√
d (because

∑d
i=1 ϕi(s, a) = 1), ∥ŵ∥2 ≤ H

√
d, and λ, λ̂ ≥ λ, we have,∣∣∣ϕ(s, a)⊤w/λ− ϕ(s, a)⊤ŵ/λ+ ϕ(s, a)⊤ŵ/λ− ϕ(s, a)⊤ŵ/λ̂

∣∣∣
≤
∣∣λ−1ϕ(s, a)⊤(w − ŵ)

∣∣+ ∣∣∣λ−1λ̂−1ϕ(s, a)⊤ŵ(λ− λ̂)
∣∣∣

≤ λ−1
√
d · ∥w − ŵ∥2 + λ−2Hd · |λ− λ̂|.

Thus we conclude that to form an ϵ-cover of V under ∥ · ∥∞-norm, it suffices to consider the product
of an λϵ/(2

√
d)-cover of {w : ∥w∥2 ≤ H

√
d} under ∥ · ∥2-norm and an λ2ϵ/(2Hd)-cover of the

interval [λ,H/ρ]. Therefore, we can derive that

log(N (ϵ,V, ∥ · ∥∞)) ≤ d log(1 + 4Hd/(λϵ)) + log(1 + 4H2d/(λ2ρϵ)).

This finishes the proof of Lemma F.4.

Lemma F.5 (Covering number of V: TV-distance case). The ϵ-covering number of function class V
defined in (F.17) under ∥ · ∥∞-norm is bounded by

log(N (ϵ,V, ∥ · ∥∞)) ≤ d log(1 + 4Hd/ϵ) + log(1 + 4H/ϵ).

Proof of Lemma F.5. Consider any two pairs of parameters (w, λ) and (ŵ, λ̂), and denote the func-
tions they induce as v and v̂. Then we have that,

|v(s)− v̂(s)| =

∣∣∣∣∣
(
λ−max

a∈A
ϕ(s, a)⊤w

)
+

−
(
λ̂−max

a∈A
ϕ(s, a)⊤ŵ

)
+

∣∣∣∣∣
≤ |λ− λ̂|+

∣∣∣∣max
a∈A

ϕ(s, a)⊤w −max
a∈A

ϕ(s, a)⊤ŵ

∣∣∣∣
≤ |λ− λ̂|+ sup

(s,a)∈S×A
∥ϕ(s, a)∥2 · ∥w − ŵ∥2

≤ |λ− λ̂|+
√
d · ∥w − ŵ∥2

Thus we conclude that to form an ϵ-cover of V under ∥ · ∥∞-norm, it suffices to consider the product
of an ϵ/(2

√
d)-cover of {w : ∥w∥2 ≤ H

√
d} under ∥ · ∥2-norm and an ϵ/2-cover of the interval

[0, H]. Therefore, we can derive that

log(N (ϵ,V, ∥ · ∥∞)) ≤ d log(1 + 4Hd/ϵ) + log(1 + 4H/ϵ).

This finishes the proof of Lemma F.5.

G Analysis of Maximum Likelihood Estimator

Lemma G.1 (MLE estimator guarantee: infinite model space). The maximum likelihood estimator
procedure given by (4.1) and (4.2) for S ×A-rectangular robust MDP with tuning parameter ξ given
by Proposition D.1 satisfies that w.p. at least 1− δ,

1. P ⋆
h ∈ P̂h for any step h ∈ [H].
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2. for any step h ∈ [H] and Ph ∈ P̂h, it holds that

E(sh,ah)∼db
P⋆,h

[∥Ph(·|sh, ah)− P ⋆
h (·|sh, ah)∥2TV]

≤
C1 log(C2HN[](1/n

2,PM, ∥ · ∥1,∞)/δ)

n
.

for some absolute constant C1, C2 > 0. Here dbP⋆,h is the state-action visitation measure
induced by the behavior policy πb and transition kernel P ⋆.

Proof of Lemma G.1. See Appendix G.1 for a detailed proof.

Lemma G.2 (MLE estimator guarantee: factored model space). The maximum likelihood estimator
procedure given by (4.5) and (4.6) for S×A-rectangular robust factored MDP with tuning parameter
ξi given by Proposition E.1 satisfies that w.p. at least 1− δ,

1. P ⋆
h ∈ P̂h for any step h ∈ [H].

2. for any step h ∈ [H], Ph ∈ P̂h, and any factor i ∈ [d] it holds that

E(sh[pai],ah)∼db
P⋆,h

[∥Ph,i(·|sh[pai], ah)− P ⋆
h,i(·|sh[pai], ah)∥2TV]

≤ C1|O|1+|pai||A| log(C2ndH/δ)

n
.

for some absolute constant C1, C2 > 0. Here dbP⋆,h is the state-action visitation measure
induced by the behavior policy πb and transition kernel P ⋆.

Proof of Lemma G.2. See Appendix G.2 for a detailed proof.

G.1 Proof of Lemma G.1

In this section, we establish the proof of Lemma G.1. We firstly introduce several notations. For any
function f : S ×A 7→ R, we denote

EDh
[f ] =

1

n

n∑
τ=1

f(sτh, a
τ
h).

Proof of Lemma G.1. We follow the proof of similar MLE guarantees in [54] and [25]. We begin
with proving the first conclusion of Lemma G.1, i.e., P ⋆

h ∈ P̂h for each step h ∈ [H]. For notational
simplicity, we define

gh(P )(s, a) = ∥P (·|s, a)− P ⋆
h (·|s, a)∥21, ∀P ∈ PM. (G.1)

To prove the first conclusion, it suffices to show that

EDh
[gh(P̂h)] ≤ ξ, ∀h ∈ [H]. (G.2)

where P̂h is the MLE estimator given in (4.1) and the parameter ξ is given by Proposition D.1. To
this end, we first invoke Lemma H.1, which gives that with probability at least 1− δ,

Edb
P⋆,h

[gh(P̂h)] ≤ c1
(
ζh +

√
log(c2/δ)/n

)2
, (G.3)

for some absolute constants c1, c2 > 0. Here ζh is a solution to the inequality
√
nϵ2 ≥

c0Gh(ϵ) w.r.t ϵ, with some carefully chosen function Gh which is specified in Lemma H.1.
As proved in Lemma H.2, choosing Gh(ϵ) = (ϵ − ϵ2/2)

√
log(N[](ϵ4/2,PM, ∥ · ∥1,∞)) and

ζh = c3
√

log(N[](1/n2,PM, ∥ · ∥1,∞))/n for some absolute constant c3 > 0 can satisfy the in-
equality and the requirements on Gh. Thus we can obtain from (G.3) that, with probability at least
1− δ,

Edb
P⋆,h

[gh(P̂h)] ≤ c1

(
c3

√
log(N[](1/n2,PM, ∥ · ∥1,∞))

n
+

√
log(c2/δ)

n

)2

≤
c′1 log(c

′
2N[](1/n

2,PM, ∥ · ∥1,∞)/δ)

n
, (G.4)
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for some absolute constants c′1, c
′
2 > 0. Now to prove (G.2), it suffices to relate the expectation w.r.t.

dataset Dh and the expectation w.r.t. visitation measure dbP⋆,h. To bridge this gap, we invoke Lemma
H.3, which is a Bernstein style concentration inequality and gives that with probability at least 1− δ,

|EDh
[gh(P̂h)]− Edb

P⋆,h
[gh(P̂h)]| ≤

c4 log(c5N[](1/n
2,PM, ∥ · ∥1,∞)/δ)

n
, (G.5)

for some absolute constant c4 > 0. Now combining (G.4) and (G.5), we can obtain that,

EDh
[gh(P̂h)] = EDh

[gh(P̂h)]− Edb
P⋆,h

[gh(P̂h)] + Edb
P⋆,h

[gh(P̂h)]

≤
c′′1 log(c

′′
2N[](1/n

2,PM, ∥ · ∥1,∞)/δ)

n
,

for some absolute constants c′′1 , c
′′
2 > 0. Finally, taking a union bound over step h ∈ [H] and rescaling

δ, we obtain that, with probability at least 1− δ/2,

EDh
[gh(P̂h)] ≤

C̃1 log(C̃2HN[](1/n
2,PM, ∥ · ∥1,∞)/δ)

n
= ξ, ∀h ∈ [H], (G.6)

for some absolute constants C̃1, C̃2 > 0. This finishes the proof of the first conclusion of Lemma
G.1.

The following of the proof is to prove the second conclusion of Lemma G.1. With the notation of gh,
it suffices to prove that with probability at least 1− δ/2,

sup
h∈[H],Ph∈P̂h

Edb
P⋆,h

[gh(Ph)] ≤
C1 log(C2HN[](1/n

2,PM, ∥ · ∥1,∞)/δ)

n
,

for some absolute constants C1, C2 > 0. To this end, for any step h ∈ [H] and Ph ∈ P̂h, consider
the following decomposition of Edb

P⋆,h
[gh(Ph)],

Edb
P⋆,h

[gh(Ph)] = Edb
P⋆,h

[gh(Ph)]− EDh
[gh(Ph)] + EDh

[gh(Ph)]. (G.7)

Note that the term EDh
[gh(Ph)] in (G.7) satisfies, with probability at least 1− δ/2,

EDh
[gh(Ph)] = EDh

[∥Ph(·|s, a)− P ⋆
h (·|s, a)∥21]

= EDh
[∥Ph(·|s, a)− P̂h(·|s, a) + P̂h(·|s, a)− P ⋆

h (·|s, a)∥21]
≤ 2EDh

[∥Ph(·|s, a)− P̂h(·|s, a)∥21] + 2EDh
[∥P̂h(·|s, a)− P ⋆

h (·|s, a)∥21]
≤ 4ξ, (G.8)

where the last inequality follows from the definition of confidence region P̂h and the first conclusion
of Lemma G.1, i.e., (G.6). Thus by taking (G.8) back into (G.7), we obtain that,

Edb
P⋆,h

[gh(Ph)] ≤ 4ξ + Edb
P⋆,h

[gh(Ph)]− EDh
[gh(Ph)]. (G.9)

Finally, invoking another Bernstein style concentration inequality (Lemma H.4), we have that with
probability at least 1− δ,

sup
Ph∈P̂h

|EDh
[gh(Ph)]− Edb

P⋆,h
[gh(Ph)]| ≤

c6 log(c7N[](1/n
2,PM, ∥ · ∥1,∞)/δ)

n
(G.10)

Thus by combining (G.9) and (G.10), taking a union bound over step h ∈ [H], rescaling δ, and using
the definition of ξ, we can conclude that with probability at least 1− δ/2,

sup
h∈[H],Ph∈P̂h

Edb
P⋆,h

[gh(Ph)] ≤
C1 log(C2HN[](1/n

2,PM, ∥ · ∥1,∞)/δ)

n
,

for some absolute constants C1, C2 > 0. This finishes the proof of Lemma G.1.

G.2 Proof of Lemma G.2

Proof of Lemma G.2. This is a direct corollary of Lemma G.1 in the finite state space case: for each
factor i ∈ [d], consider O as the state finite space and apply the upper bound of bracket number (4.4)
for finite state space proved in Appendix D.2. This proves Lemma G.2.
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H Technical Lemmas

H.1 Lemmas for Maximum Likelihood Estimator

In this section, we give technical lemmas for the maximum likelihood estimator. We firstly introduce
several notations which are also considered by [54] and [25], We define a localized model space
Ph(ϵ) as

Ph(ϵ) =
{
P ∈ PM,h : Edb

P⋆,h
[D2

Hellinger(P (·|s, a)∥P ⋆
h (·|s, a))] ≤ ϵ2

}
,

where DHellinger(·∥·) is the Hellinger distance between two probability measures, and PM,h is called
a modified space PM, defined as PM,h = {(P + P ⋆

h )/2 : P ∈ PM}. Also, we define the entropy
integral of Ph(ϵ) under the ∥ · ∥2,db

P⋆,h
-norm as

JB(ϵ,Ph(ϵ), ∥ · ∥2,db
P⋆,h

) = max

{
ϵ,

∫ ϵ

ϵ2/2

√
log(N[](u,Ph(ϵ), ∥ · ∥2,db

P⋆,h
))du

}
.

Lemma H.1 (MLE Gaurantee, [55]). Take a function Gh(ϵ) : [0, 1] → R s.t. Gh(ϵ) ≥
JB(ϵ,Ph(ϵ), ∥ · ∥2,db

P⋆,h
) and Gh(ϵ)/ϵ

2 non-increasing w.r.t ϵ. Then, letting ζh be a solution to
√
nϵ2 ≥ c0Gh(ϵ) w.r.t ϵ, where c0 is an absolute constant. With probability at least 1− δ, we have

that

Edb
P⋆,h

[∥P̂h(·|s, a)− P ⋆
h (·|s, a)∥21] ≤ c1

(
ζh +

√
log(c2/δ)/n

)2
.

Proof of Lemma H.1. We refer to Theorem 7.4 in [55] for a detailed proof.

Lemma H.2 (Choice of Gh(ϵ) and ζh in Lemma H.1). In Lemma H.1, we can choose Gh(ϵ) as

Gh(ϵ) = (ϵ− ϵ2/2)
√
log(N[](ϵ4/2,PM, ∥ · ∥1,∞)),

In this case, ζh = c0
√

log(N[](1/n2,PM, ∥ · ∥1,∞))/n solves the inequality
√
nϵ2 ≥ c0Gh(ϵ) w.r.t

ϵ.

Proof of Lemma H.2. We first check the conditions that Gh should satisfy. By the choice of Gh,

Gh(ϵ) = (ϵ− ϵ2/2)
√
log(N[](ϵ4/2,PM, ∥ · ∥1,∞))

≥ (ϵ− ϵ2/2)
√
log(N[](ϵ2/2,Ph(ϵ), ∥ · ∥2,db

P⋆,h
))

≥ max

{
ϵ,

∫ ϵ

ϵ2/2

√
log(N[](u,Ph(ϵ), ∥ · ∥2,db

P⋆,h
))du

}
= JB(ϵ,Ph(ϵ), ∥ · ∥2,db

P⋆,h
),

where the first inequality follows from Lemma H.6, the second inequality follows from the fact that
N[](u1,Ph(ϵ), ∥ · ∥2,db

P⋆,h
) ≥ N[](u2,Ph(ϵ), ∥ · ∥2,db

P⋆,h
) for u1 ≤ u2. In the second inequality we

assume without loss of generality that log(N[](ϵ
2/2,Ph(ϵ), ∥ · ∥2,db

P⋆,h
)) ≥ 4. Besides, since

Gh(ϵ)/ϵ
2 = (1/ϵ− 1/2)

√
log(N[](ϵ4/2,PM, ∥ · ∥1,∞))

is non-increasing w.r.t ϵ for ϵ ∈ [0, 1], we can confirm that Gh satisfy the conditions in Lemma H.1.
With this choice of Gh, the inequality

√
nϵ2 ≥ c0Gh(ϵ) reduces to

√
n ≥ c0(1/ϵ− 1/2)

√
log(N[](ϵ4/2,PM, ∥ · ∥1,∞)),

which equivalents to

ϵ ≥
c0
√
log(N[](ϵ4/2,PM, ∥ · ∥1,∞))

√
n+ c0

2

√
log(N[](ϵ4/2,PM, ∥ · ∥1,∞))

. (H.1)
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Taking ζh = c0
√
log(N[](1/n2,PM, ∥ · ∥1,∞))/n, when c0

√
log(N[](1/n2,PM, ∥ · ∥1,∞)) ≥ 21/4,

we can check that ζh satisfies the inequality (H.1) by,

ζh =
c0
√

log(N[](1/n2,PM, ∥ · ∥1,∞))
√
n

≥
c0

√
log(N[](ζ

2
h/2,PM, ∥ · ∥1,∞))

√
n+ c0

2

√
log(N[](ζ

2
h/2,PM, ∥ · ∥1,∞))

.

This finishes the proof of Lemma H.2.

H.2 Lemmas for Concentration Inequalities and Bracket Numbers

Lemma H.3 (Bernstein inequality I). For any step h ∈ [H], with probability at least 1− δ,

|EDh
[gh(P̂h)]− Edb

P⋆,h
[gh(P̂h)]| ≤

c1 log(c2N[](1/n
2,PM, ∥ · ∥1,∞)/δ)

n
.

Proof of Lemma H.3. Motivated by [54] and [25], to obtain a fast rate of convergence, we will utilize
the localization technique in proving concentration. To this end, we first define the following localized
realizable model space,

PLoc
M,h =

{
P ∈ PM : Edb

P⋆,h
[gh(P )] ≤

c′1 log(c
′
2N[](1/n

2,PM, ∥ · ∥1,∞)/δ)

n

}
,

where absolute constants c′1 and c′2 are specified in (G.4). According to the proof of (G.4), we know
that with probability at least 1− δ, the event E1 = {P̂h ∈ PLoc

M,h} holds. In the sequel, we will always
condition on the event E1. Now we define another function class as

Fh =
{
gh(P ) : P ∈ PLoc

M,h

}
.

Then applying Bernstein inequality with union bound (Lemma H.5) on the function class Fh, we can
obtain that with probability at least 1− δ, for any P ∈ PLoc

M,h, (denote M(ϵ) = N (ϵ,Fh, ∥ · ∥∞))

|EDh
[gh(P )]− Edb

P⋆,h
[gh(P )]| (H.2)

≤

√
2Vdb

P⋆,h
[gh(P )] log(M(ϵ)/δ)

n
+ 8

√
ϵ log(M(ϵ)/δ)

n
+

8 log(M(ϵ)/δ)

3n
+ 2ϵ

≤

√
8Edb

P⋆,h
[gh(P )] log(M(ϵ)/δ)

n
+ 8

√
ϵ log(M(ϵ)/δ)

n
+

8 log(M(ϵ)/δ)

3n
+ 2ϵ

≤
√
8c′1 log(c

′
2N[](1/n2,PM, ∥ · ∥1,∞)/δ) · log(M(ϵ)/δ)

n
+ 8

√
ϵ log(M(ϵ)/δ)

n

+
8 log(M(ϵ)/δ)

3n
+ 2ϵ,

where the first inequality follows from Lemma H.5, both the first and the second inequality use the
fact that supP∈PLoc

M,h
|gh(P )| ≤ 4, and the last inequality uses the definition of PLoc

M,h. If we denote

F ′
h = {gh(P ) : P ∈ PM} , (H.3)

we can upper bound the covering number M(ϵ) via the following sequence of inequalities,

M(ϵ) = N (ϵ,Fh, ∥ · ∥∞) ≤ N (ϵ,F ′
h, ∥ · ∥∞) ≤ N (ϵ,PM, ∥ · ∥1,∞) ≤ N[](ϵ,PM, ∥ · ∥1,∞),

(H.4)

where the first inequality follows from Fh ⊆ F ′
h, the second inequality can be easily derived from the

relationship between F ′
h and PM, and the last inequality follows from the fact that covering number

can be bounded by bracket number. Therefore, by combining (H.2) and (H.4), letting ϵ = 1/n2, we
can derive that, conditioning on E1 = {P̂h ∈ PLoc

M,h}, with probability at least 1− δ,

|EDh
[gh(P̂h)]− Edb

P⋆,h
[gh(P̂h)]| ≤

c1 log(c2N[](1/n
2,PM, ∥ · ∥1,∞)/δ)

n
,

for some absolute constant c1, c2 > 0. Finally, since the event E1 holds with probability at least
1− δ, by rescaling δ, we can finish the proof.
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Lemma H.4 (Bernstein inequality II). For any step h ∈ [H], with probability at least 1− δ,

|EDh
[gh(Ph)]− Edb

P⋆,h
[gh(Ph)]| ≤

c1 log(c2N[](1/n
2,PM, ∥ · ∥1,∞)/δ)

n
, ∀Ph ∈ P̂h.

Proof of Lemma H.4. According to the proof of (G.8), we know that the event E2 defined as

E2 =
{
EDh

[gh(Ph)] ≤ 4ξ, ∀Ph ∈ P̂h

}
holds with probability at least 1− δ/2. In the sequel, we always condition on the event E2. Now we
define a function class Gh as following,

Gh =
{
gh(Ph) : Ph ∈ P̂h

}
.

Applying Bernstein inequality with union bound (Lemma H.5) on the function class Gh, we can
obtain that with probability at least 1− δ, for any Ph ∈ P̂h, (denote M′(ϵ) = N (ϵ,Gh, ∥ · ∥∞))

|EDh
[gh(Ph)]− Edb

P⋆,h
[gh(Ph)]|

≤

√
2Vdb

P⋆,h
[gh(Ph)] log(M′(ϵ)/δ)

n
+ 8

√
ϵ log(M′(ϵ)/δ)

n
+

8 log(M′(ϵ)/δ)

3n
+ 2ϵ

≤

√
8Edb

P⋆,h
[gh(Ph)] log(M′(ϵ)/δ)

n
+ 8

√
ϵ log(M′(ϵ)/δ)

n
+

8 log(M′(ϵ)/δ)

3n
+ 2ϵ

≤

√
8(|Edb

P⋆,h
[gh(Ph)]− EDh

[gh(Ph)]|+ 4ξ) log(M′(ϵ)/δ)

n

+ 8

√
ϵ log(M′(ϵ)/δ)

n
+

8 log(M′(ϵ)/δ)

3n
+ 2ϵ, (H.5)

where the first inequality follows from Lemma H.5, both the first and the second inequality use the
fact that supPh∈P̂h

|gh(Ph)| ≤ 4, and the last inequality uses the definition of event E2. By using
the fact that the function class Gh ⊆ F ′

h where F ′
h is defined in (H.3) in the proof of Lemma H.3,

we can apply the same argument as (H.4) to derive that M′(ϵ) ≤ N[](ϵ,PM, ∥ · ∥1,∞). Thus taking
ϵ = 1/n2, denoting ∆h(Ph) = |EDh

[gh(Ph)]− Edb
P⋆,h

[gh(Ph)]|, we can derive from (H.5) that,

∆h(Ph) ≤
√

8(∆h(Ph) + 4ξ) log(N[](ϵ,PM, ∥ · ∥1,∞)/δ)

n

+ 8

√
log(N[](ϵ,PM, ∥ · ∥1,∞)/δ)

n3
+

8 log(N[](ϵ,PM, ∥ · ∥1,∞)/δ)

3n
+

2

n2

≤
√

8(∆h(Ph) + 4ξ) log(N[](ϵ,PM, ∥ · ∥1,∞)/δ)

n
+
c′1 log(N[](ϵ,PM, ∥ · ∥1,∞)/δ)

n

≤
√

8∆h(Ph) log(N[](ϵ,PM, ∥ · ∥1,∞)/δ)

n
+
c′′1 log(c

′′
2N[](ϵ,PM, ∥ · ∥1,∞)/δ)

n
, (H.6)

for some absolute constants c′1, c
′′
1 , c

′′
2 > 0, where in the last inequality we have applied the definition

of ξ. Now solving this quadratic inequality (H.6) w.r.t ∆h(Ph), we can obtain that,

∆h(Ph) ≤
c1 log(c2N[](ϵ,PM, ∥ · ∥1,∞)/δ)

n
,

for some absolute constants c1, c2 > 0. Thus we obtain that when conditioning on the event E2, with
probability at least 1− δ, for any Ph ∈ P̂h, the desired concentration inequality holds. Finally, since
E2 holds with probability at least 1− δ/2, by rescaling δ, we can finish the proof of Lemma H.4.

Lemma H.5 (Bernstein inequality with union bound). Consider a function class F ⊂ {f : X 7→ R},
where X is a probability space. If we assume that the ϵ-covering number of F under infinity-norm is
finite, that is, M = N (ϵ,F , ∥ · ∥∞) <∞, and we also assume that there exists an absolute constant
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R such that |f(X)| ≤ R, then with probability at least 1− δ the following inequality holds for all
f ∈ F ,∣∣∣∣∣ 1n

n∑
τ=1

f (Xτ )− E[f(X)]

∣∣∣∣∣ ≤ 2ϵ+

√
2V[f(X)] log(M/δ)

n
+ 4

√
Rϵ log(M/δ)

n
+

2R log(M/δ)

3n
,

where X,X1, . . . , Xn are i.i.d. samples on the probability space X .

Proof of Lemma H.5. We refer to Lemma F.1 in [25] for a detailed proof.

Lemma H.6 (Bracket number I). It holds for any ϵ ≥ 0 that

N[](ϵ, Ph(ϵ), ∥ · ∥2,db
P⋆,h

) ≤ N[](2ϵ
2,PM, ∥ · ∥1,∞).

Proof of Lemma H.6. We refer to Lemma G.2 in [25] for a detailed proof.

H.3 Lemmas for Dual Variables

Lemma H.7 (Dual variable for KL-divergence). The optimal solution to the following optimization
problem

λ⋆ = argsup
λ∈R+

{
−λ log

(∫
exp {−f(x)/λ}P (dx)

)
− λσ

}
,

with ∥f∥∞ ≤ H and some probability measure P satisfies that λ⋆ ≤ H/σ.

Proof of Lemma H.7. For simplicity, denote by g(λ) = −λ log
(∫

exp {−f(x)/λ}P (dx)
)
− λσ.

Notice that g(0) = 0, and for λ > H/σ, due to ∥f∥∞ ≤ H , we have that

g(λ) < −λ log(exp{−H/(H/σ)})− λσ = λσ − λσ = 0.

Thus we can conclude that λ⋆ ≤ H/σ.

Lemma H.8 (Dual variable for TV-distance). The optimal solution to the following optimization
problem

λ⋆ = argsup
λ∈R

{
−
∫
(λ− f(x))+P (dx)−

σ

2
(λ− inf

x
f(x))+ + λ

}
.

with ∥f∥∞ ≤ H and some probability measure P satisfies that 0 ≤ λ⋆ ≤ H .

Proof of Lemma H.8. For simplicity, denote g(λ) = −
∫
(λ−f(x))+P (dx)− σ

2 (λ−infx f(x))++λ.
We can observe that g(0) = 0, and g(λ) ≤ 0 for λ ≤ 0. Thus we have shown that λ⋆ ≥ 0. Also, for
λ ≥ H , due to ∥f∥∞ ≤ H , we can write g(λ) as

g(λ) = −
∫
λ− f(x)P (dx)− σ

2
(λ− inf

x
f(x)) + λ

=

∫
f(x)P (dx) +

σ

2
inf
x
f(x)− σ

2
λ,

which is a monotonically decreasing function with respect to λ. Thus we prove that λ⋆ ≤ H .
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