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Abstract

Artificial intelligence for scientific discovery has recently generated significant
interest within the machine learning and scientific communities, particularly in the
domains of chemistry, biology, and material discovery. For these scientific prob-
lems, molecules serve as the fundamental building blocks, and machine learning
has emerged as a highly effective and powerful tool for modeling their geometric
structures. Nevertheless, due to the rapidly evolving process of the field and the
knowledge gap between science (e.g., physics, chemistry, & biology) and machine
learning communities, a benchmarking study on geometrical representation for
such data has not been conducted. To address such an issue, in this paper, we
first provide a unified view of the current symmetry-informed geometric methods,
classifying them into three main categories: invariance, equivariance with spherical
frame basis, and equivariance with vector frame basis. Then we propose a platform,
coined Geom3D, which enables benchmarking the effectiveness of geometric strate-
gies. Geom3D contains 16 advanced symmetry-informed geometric representation
models and 14 geometric pretraining methods over 52 diverse tasks, including
small molecules, proteins, and crystalline materials. We hope that Geom3D can,
on the one hand, eliminate barriers for machine learning researchers interested
in exploring scientific problems; and, on the other hand, provide valuable guid-
ance for researchers in computational chemistry, structural biology, and materials
science, aiding in the informed selection of representation techniques for specific
applications. The source code is available on the GitHub repository.

1 Introduction
Artificial intelligence (AI) for molecule discovery has recently seen many developments, including
small molecular property prediction [13, 17, 23, 38, 66, 78, 101, 103, 104, 119, 130, 132, 135], small
molecule design and optimization [6, 54, 57, 85, 137], small molecule reaction and retrosynthesis [40,
111, 116], protein property prediction [27, 141], protein folding and inverse folding [48, 64, 92],
protein design [15, 41, 46, 88, 91], and crystalline material design [33, 125, 128]. One of the most
fundamental building blocks for these tasks is the geometric structure of molecules. Exploring
effective methods for robust representation learning to leverage such geometric information fully
remains an open challenge that interests both machine learning (ML) and science researchers.

To this end, symmetry-informed geometric representation [1] has emerged as a promising approach.
By leveraging physical principles (i.e., group theory for depicting symmetric particles) into spatial
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Figure 1: Pipeline for Geom3D, including dataset preprocessing, feature extraction, geometric preetraining
and representation, and target tasks. We additionally demonstrate the SE(3)-equivariant force prediction task.

representation, they facilitate a more robust representation of small molecules, proteins, and crystalline
materials. Nevertheless, pursuing geometric learning research is still challenging due to its evolving
nature and the knowledge gap between science (e.g., physics) and machine learning communities.
These factors contribute to a substantial barrier for machine learning researchers to investigate
scientific problems and hinder efforts to reproduce results consistently. To overcome this, we introduce
Geom3D, a benchmarking of the geometric representation with four advantages, as follows. 1

Figure 2: Three categories of geometric modules. (a)
Invariant models only consider type-0 features. Equivari-
ant models use either (b) spherical harmonics frames or
(c) vector frames by projecting the coordinate vectors.

(1) A unified and novel aspect in understand-
ing symmetry-informed geometric models.
The molecule geometry needs to satisfy certain
physical constraints regarding the 3D Euclidean
space. For instance, the molecules’ force needs
to be equivariant to translation and rotation (see
SE(3)-equivariance in Fig. 1). In this work,
we classify the geometric methods into three
categories: invariant model, SE(3)-equivariant
model with spherical frame basis and vector
frame basis. The invariant models only consider
features that are constant w.r.t. the SE(3) group,
while the two families of equivariant models can
be further unified using the frame basis to cap-
ture equivariant symmetry. An illustration of
three categories is in Fig. 2. Building equivari-
ant models on the frame basis provides a novel
and unified view of understanding geometric
models and paves the way for intriguing more
ML researchers to explore scientific problems.

(2) A unified platform for various scientific domains. There exist multiple platforms and tools for
molecule discovery, but they are (1) mainly focusing on molecule’s 2D graph representation [77, 102,
145]; (2) using 3D geometry with customized data structures or APIs [3, 105]; or (3) covering only a
few geometric models [76]. Thus, it is necessary to have a platform benchmarking the geometric
models, especially for researchers interested in solving scientific problems. In this work, we propose
Geom3D, a geometric modeling framework based on PyTorch Geometric (PyG) [31], one of the most
widely-used platforms for graph representation learning. Geom3D benchmarks 16 geometric models
on solving 52 scientific tasks, and these tasks include the three most fundamental molecule types:
small molecules, proteins, and crystalline materials. Each of them requires distinct domain-specific
preprocessing steps, e.g., crystalline materials molecules possess periodic structures and thus need
a particular periodic data augmentation. By leveraging such a unified framework, Geom3D serves
as a comprehensive benchmarking tool, facilitating effective and consistent analysis components to
interpret the existing geometric representation functions in a fair and convenient comparison setting.

(3) A framework for a wider range of ML tasks. The geometric models in Geom3D can serve as a
building block for exploring extensive ML tasks, including but not limited to studying the molecule dy-
namic simulation and scrutinizing the transfer learning effect on molecule geometry. For example, pre-

1In what follows, we may use “molecule” to refer to “small molecule” for brevity.
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(a) An example of small molecule structure. (b) An illustration of the potential energy surface.

(c) An example of protein sequence and structure. (d) An example of crystalline material.

Figure 3: Fig. 3(a) illustrates 2D topology and 3D conformation for molecule Glycine. Fig. 3(c) displays
the 3D structure of protein. Fig. 3(d) shows a simple cubic crystal of the element Po. Fig. 3(b) is a demo of PES.

training is an important strategy to quickly transfer knowledge to target tasks, and recent works explore
geometric pretraining on 3D conformations (including supervised and self-supervised) [59, 80, 136]
and multi-modality pretraining on 2D topology and 3D geometry [30, 79, 86]. Other transfer learning
venues include multi-task learning [82, 84] and out-of-distribution or domain adaptation [58, 133,
134], yet no geometry information has been utilized. All of these directions are promising for future ex-
ploration, and Geom3D serves as an auxiliary tool to accomplish them. For example, as will be shown
in Sec. 4, we leverage Geom3D to effectively evaluate 14 pretraining methods with benchmarks.

(4) A framework for exploring data preprocessing and optimization tricks. When comparing
different symmetry-informed geometric models, we find that in addition to the model architecture,
there are two important factors affecting the performance: the data preprocessing (e.g., energy
and force rescaling and shift) and optimization methods (e.g., learning rate, learning rate schedule,
number of epochs, random seeds). In this work, we explore the effect of four preprocessing tricks
and around 2-10 optimization hyperparameters for each model and task. In general, we observe that
each model may benefit differently in different tasks regarding the preprocessing and optimization
tricks. However, data normalization is found to help improve performance hugely in most cases. We
believe that Geom3D is an effective tool for exploring and understanding various engineering tricks.

2 Data Structures for Geometric Data

Small molecule 3D conformation. Molecules are sets of points in the 3D Euclidean space, and they
move in a dynamic motion, as known as the potential energy surface (PES). The region with the
lowest energy corresponds to the most stable state for molecules, and molecules at these positions are
called conformations, as illustrated in Fig. 3(b). For notation, we mark each 3D molecular graph as
g = (X,R), where X and R are for the atom types and positions, respectively.

Crystalline material with periodic structure. The crystalline materials or extended chemical
structures possess a characteristic known as periodicity: their atomic or molecular arrangement
repeats in a predictable and consistent pattern across all three spatial dimensions. This is the key
aspect that differentiates them from small molecules. In Fig. 3(d), we show an original unit cell
(marked in green) that can repeatedly compose the crystal structure along the lattice. To model
such a periodic structure, we adopt the data augmentation from CGCNN [129]: for each original
unit cell, we shift it along the lattice in three dimensions and connect edges within a cutoff value
(hyperparameter). For more details on the two augmentation variants, please check Appendix A.

Protein with backbone structure. Protein structures can be classified into four primary levels, and
the primary structure represents the linear arrangement of amino acids, and each amino acid is a
molecule consisting of atoms. Geometric methods mainly focus on the tertiary structure, i.e., the
3D geometry of each atom, encompassing the complete organization of a single protein. However,
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Figure 4: Pipelines for seven single-modal geometric pretraining methods. (a-c) conduct self-prediction. (d)
maximizes the MI between nodes and graphs. (e-g) are GeoSSL, maximizing the MI between views g1 and g2.

atom-level modeling for proteins is consuming due to the large volume of atoms and the GPU memory
limit. One solution is modeling each amino acid’s backbone structure. The backbone structure of
each amino acid is N − Cα − C, and the Cα is bonded to the side chain. 20 common types of side
chains corresponding to 20 amino acids, as illustrated in Fig. 3(c). Thus, modeling the backbone
structure can balance the computational efficiency and the key geometric information.

3 Symmetry-Informed Geometric Representation

3.1 Group Symmetry and Equivariance

Symmetry means the object remains invariant after certain transformations [127], and it is everywhere
on Earth, such as in animals, plants, and molecules. Formally, the set of all symmetric transformations
satisfies the axioms of a group. Therefore, the group theory and its representation theory are common
tools to depict such physical symmetry. Group is a set G equipped with a group product × satisfying:

(1) ∃e ∈ G, a×e = e×a,∀a ∈ G; (2) a×a−1 = a−1 ×a = e; (3) a× (b× c) = a× b× c. (1)

Group representation is a mapping from the group G to the group of linear transformations of a
vector space X with dimension d (see [138] for more rigorous definition):

ρX(·) : G → Rd×d s.t. ρ(e) = 1 ∧ ρX(a)ρX(b) = ρX(a× b), ∀a, b ∈ G. (2)

During modeling, the X space can be the input 3D Euclidean space, the equivariant vector space in
the intermediate layers, or the output force space. This enables the definition of equivariance as below.

Equivariance is the property for the geometric modeling function f : X → Y as:

f(ρX(a)x) = ρY (a)f(x), ∀a ∈ G,x ∈ X. (3)

As displayed in Fig. 1, for molecule geometric modeling, the property should be rotation-equivariant
and translation-equivariant (i.e., SE(3)-equivariant). More concretely, ρX(a) and ρY (a) are the
SE(3) group representations on the input (e.g., atom coordinates) and output space (e.g., force space),
respectively. SE(3)-equivariant modeling in Eq. (3) is essentially saying that the designed deep
learning model f is modeling the whole transformation trajectory on the molecule conformations,
and the output is the transformed ŷ accordingly. Further, we want to highlight that, in addition to
the network architecture or representation function, the input features can also be represented as an
equivariant feature mapping from the 3D mesh to Rd̃ [11], where d̃ depends on input data, e.g., d̃ = 1
(for atom type dimension) + 3 (for atom coordinate dimension) on small molecules. Such features
are called steerable features in [5, 11] when only considering the subgroup SO(3)-equivariance.

Invariance is a special type of equivariance, defined as:

f(ρX(a)x) = f(x), ∀a ∈ G,x ∈ X, (4)

with ρY (a) as the identity ∀a ∈ G. The group representation helps define the equivariance condition
for f to follow. Then, the question boils down to how to design such an equivariant f . In the
following, we will discuss geometric modelings from a novel and unified perspective using the
frame. In the next sections, we will provide a novel and unified aspect of understanding the advanced
geometric representation and pretraining methods using the frame basis (details in Appendix H).
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3.2 Invariant Geometric Representation Learning

One simple way of achieving SE(3) group symmetry is invariant modeling. It means the geometric
model only considers the type-0 features [112], i.e., features that are invariant with respect to rotation
and translation. Existing works have been adopting the invariant features for modeling, including
pairwise distance (SchNet [109]), bond angles (DimeNet [68]), and torsion angles (SphereNet [89] and
GemNet [67]). Note that the torsion angles are angles between two planes defined by pairwise bonds.

3.3 Equivariant Geometric Representation Learning

Invariant modeling only captures the type-0 features. However, equivariant modeling of higher-order
particles may bring in extra expressiveness. For example, the elementary particles in high energy
physics [98] inherit higher order symmetries in the sense of SO(3) representation theory, which
makes the equivariant modeling necessary. Such higher-order particles include type-1 features like
coordinates and forces in molecular conformation. There are many approaches to design such
SE(3)-equivariant model satisfying Eq. (3). There are two main venues, as will be discussed below.

Spherical Frame Basis. This research line utilizes the irreducible representations [37] for building
SO(3)-equivariant representations, and the first work is TFN [112]. Its main idea is to project the 3D
Euclidean coordinates into the spherical harmonics space, which transforms equivariantly according
to the irreducible representations of SO(3), and the translation-equivariant can be trivially guaranteed
using the relative coordinates. Following this, there have been variants combining it with the attention
module (Equiformer [73]) or with more expressive network architectures (SEGNN [4], Allegro [95]).

Vector Frame Basis. An alternative philosophy of equivariant modeling utilizes the vector (in
physics) frame basis. It constructs three vectors bases, serving as a reference frame to help locate
the vectors in each corresponding local environment. Works along this line for molecule discovery
include DeePMD [140] for dynamics simulation, 3D-EMGP [59] and MoleculeSDE [79] for geomet-
ric pretraining, and ClofNet [20] for conformation generation. For macromolecules like protein, the
equivariant vector frame has been used for protein design (StructTrans [53]) and protein folding (Al-
phaFold2 [64]). We also want to highlight that, from a mathematical perspective, equivariance and in-
variance can be transformed to each other by the scalarization technique. Please check [49] for details.

The spherical frame basis can be easily extended to higher-order particles, yet it may suffer from the
high computational cost. On the other hand, the vector frame basis is specifically designed for the 3D
point clouds; thus, it is more efficient but cannot generalize to higher-order particles. Meanwhile, we
would like to acknowledge other equivariant modeling paradigms, including using orbital features [99]
and elevating 3D Euclidean space to SE(3) group [32, 52]. Please check Appendix F for details.

3.4 Geometric Pretraining

Recent studies have started to explore single-modal of geometric pretraining on molecules. The
GeoSSL paper [80] covers a wide range of geometric pretraining algorithms. The type prediction,
distance prediction, and angle prediction predict the masked atom type, pairwise distance, and bond
angle, respectively. The 3D InfoGraph predicts whether the node- and graph-level 3D representation
are for the same molecule. GeoSSL is a novel geometric pretraining paradigm that maximizes the
mutual information (MI) between the original conformation g1 and augmented conformation g2,
where g2 is obtained by adding small perturbations to g1. RR, InfoNCE, and EBM-NCE optimize the
objective in the latent representation space, either generative or contrastive. GeoSSL-DDM [80, 136]
optimizes the same objective function using denoising score matching. 3D-EMGP [60] has the same
strategy and utilizes an equivariant module to denoise the 3D noise directly. Another research line
is the multi-modal of topological and geometric pretraining. GraphMVP [86] first proposes one
contrastive objective (EBM-NCE) and one generative objective (VRR) to optimize the MI between the
2D topologies and 3D geometries in the representation space. 3D InfoMax [114] is a special case of
GraphMVP, with the contrastive part only. MoleculeSDE [79] extends GraphMVP by introducing two
SDE models for solving the 2D and 3D reconstruction. We illustrate these algorithms in Figs. 4 and 8.

3.5 Discussion: Reflection-antisymmetric in Geometric Learning

Till now, we have discussed the SE(3)-equivariance, i.e., the translation and rotation equivariance. As
highlighted in the recent work [61, 79], the molecules needlessly satisfy the reflection-equivariant,
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Table 1: Results of 26 models on 12 quantum mechanics prediction tasks in QM9, with 110K for training, 10K
for validation, and 11K for testing. The task unit is specified, and the evaluation is the mean absolute error (MAE).

Featurization Model α ↓ ∇E ↓ EHOMO ↓ ELUMO ↓ µ ↓ Cv ↓ G ↓ H ↓ R2 ↓ U ↓ U0 ↓ ZPVE ↓
α3
0 meV meV meV D cal

mol·K meV meV α2
0 meV meV meV

1D FPs
MLP 2.231 196.72 131.27 164.94 0.526 0.919 2158.64 2358.23 68.621 2340.61 2314.77 155.921
RF 3.801 207.02 165.72 183.04 0.534 1.485 3391.79 3729.94 94.512 3705.75 3678.25 253.132
XGB 2.748 199.71 139.88 165.43 0.516 1.062 2563.93 2804.27 82.959 2786.28 2769.29 180.989

1D SMILES CNN 0.364 165.22 124.65 114.81 0.566 0.173 156.66 170.59 20.403 166.18 169.89 10.070
BERT 0.313 117.50 84.93 98.88 0.446 0.176 170.01 183.43 18.002 183.84 188.60 13.410

1D SELFIES CNN 0.345 157.04 115.51 113.00 0.499 0.168 136.42 146.56 20.080 143.00 140.01 10.149
BERT 0.348 123.11 91.15 90.80 0.461 0.203 168.20 187.50 19.125 204.93 195.98 17.328

2D Graph

GCN 1.338 145.82 96.21 106.66 0.434 0.526 1198.12 1291.57 37.585 1281.03 1303.39 85.103
ENN-S2S 1.401 270.59 129.18 132.84 0.577 0.760 1487.21 955.24 34.609 1800.79 1521.32 51.226
GraphSAGE 1.601 131.45 88.78 93.21 0.402 0.544 1473.42 1617.73 38.112 1553.01 1565.65 95.344
GAT 1.132 135.90 94.70 98.52 0.406 0.291 911.82 991.31 26.583 1161.29 592.67 55.061
GIN 1.165 175.82 90.66 110.74 0.539 0.691 848.24 1090.36 35.110 1498.23 1364.18 108.331
D-MPNN 0.568 118.42 85.01 86.20 0.441 0.241 423.14 458.39 24.816 470.01 445.91 29.291
PNA 0.681 148.88 88.72 97.31 0.361 0.409 664.98 692.74 23.855 616.70 694.92 57.217
Graphormer 2.836 79.27 54.24 52.42 0.330 0.080 2066.28 2546.01 131.158 2229.88 2525.51 144.595
AWARE 0.297 144.91 133.89 98.86 0.602 0.129 86.62 94.47 22.180 93.59 95.73 5.275
GraphGPS 0.209 75.98 54.75 54.53 0.288 0.089 528.50 693.19 12.488 296.00 411.16 49.888

3D Graph

SchNet 0.060 44.13 27.64 22.55 0.028 0.031 14.19 14.05 0.133 13.93 13.27 1.749
DimeNet++ 0.044 36.22 20.01 16.66 0.028 0.022 7.45 6.14 0.323 6.33 7.18 1.118
SE(3)-Trans 0.137 56.52 34.65 34.41 0.050 0.063 65.28 70.70 1.747 68.92 68.88 5.428
EGNN 0.062 49.56 30.08 24.98 0.029 0.030 10.01 9.14 0.089 9.28 9.08 1.519
PaiNN 0.049 42.73 24.46 20.16 0.016 0.025 8.43 7.88 0.169 8.18 7.63 1.419
GemNet-T 0.041 35.46 17.85 15.86 0.021 0.023 7.61 7.08 0.271 6.42 5.88 1.232
SphereNet 0.047 38.93 21.45 18.25 0.027 0.025 8.16 13.68 0.288 6.77 7.43 1.295
SEGNN 0.048 33.61 17.66 17.01 0.021 0.026 11.60 12.45 0.404 11.29 12.20 1.590
Allegro 0.097 102.44 61.86 63.17 0.176 0.032 42.08 44.96 1.977 44.64 44.43 2.949
NequIP 0.066 61.94 42.00 31.64 0.036 0.028 22.08 23.36 0.415 23.23 23.02 1.899
Equiformer 0.051 33.46 17.93 16.85 0.015 0.023 14.49 14.60 0.433 14.88 13.78 2.342

but instead, they should be reflection-antisymmetric [79]. One classic example is that the energy
of small molecules is reflection-antisymmetric in a binding system. Each of the two equivariant
categories discussed in Sec. 3.3 can solve this problem easily. The spherical frame basis can achieve
this by adding the reflection into the Wigner-D matrix [4], and the vector frame basis can accomplish
this using the cross-product during frame construction [79].

4 Geometric Datasets and Benchmarks

In Sec. 3, we introduce a novel aspect for understanding symmetry-informed geometric models. In
this section, we discuss utilizing Geom3D framework for benchmarking 16 geometric models over 52
tasks. For the detailed dataset acquisitions and task specifications (e.g., dataset size, splitting, and task
unit), please check Appendix B. Geom3D also covers 7 1D models and 10 2D graph neural networks
(GNNs) and benchmarks the 14 pretraining algorithms to learn a robust geometric representation.
Additionally, we want to highlight Geom3D enables exploration of important data preprocessing and
optimization tricks for performance improvement, as will be introduced next.

4.1 Small Molecules: QM9

QM9 [100] is a dataset consisting of 134K molecules, each with up to 9 heavy atoms. It includes 12
tasks that are related to the quantum properties. For example, U0 and U298 are the internal energies at
temperatures of 0K and 298.15K, respectively. On the QM9 dataset, we can easily get the 1D descrip-
tors (Fingerprints/FPs [106], SMILES [126], SELFIES [70]), 2D topology, and 3D conformation.
This enables us to build models on each of them respectively: (1) We benchmark 7 models on 1D de-
scriptors, including multi-layer perception (MLP), random forest (RF), XGBoost (SGB), convolution
neural networks (CNN), and BERT [18]. (2) We benchmark 10 2D GNN models on the molecu-
lar topology, including GCN [23, 66], ENN-S2S [38], GraphSAGE [43], GAT [119], GIN [130],
D-MPNN [132], PNA [13], Graphormer [135], AWARE [17], GraphGPS [101]. (3) We benchmark
11 3D geometric models on the molecular conformation, including SchNet [109], DimeNet++ [68],
SE(3)-Trans [35], EGNN [108], PaiNN [110], GemNet-T [67], SphereNet [89], SEGNN [4], Alle-
gro [95], NequIP [3], Equiformer [73]. The evaluation metric is the mean absolute error.

The results of these 28 models are in Table 1, and two important insights are observed: (1) There is
no one universally best geometric model, yet DimeNet++, PaiNN, GemNet, and Equiformer perform
well in most tasks. However, PaiNN takes less than 20 GPU hours, and the other three models take up
to 5 GPU days per task. (2) The geometric conformation is important for quantum property prediction.
The performance of 3D models is better than all the 1D and 2D models by orders of magnitudes.
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Table 2: Results on 6 energy ( kcal
mol

) and force ( kcal
mol·Å ) prediction tasks in MD17 and rMD17 (w/o normalization),

and the metric is the mean absolute error (MAE). The data split and complete results are in Appendices B and I.
Model Energy

/Force
MD17 rMD17

Aspirin ↓ Ethanol ↓ Malonaldehyde ↓ Naphthalene ↓ Salicylic ↓ Toluene ↓ Aspirin ↓ Ethanol ↓ Malonaldehyde ↓ Naphthalene ↓ Salicylic ↓ Toluene ↓

SchNet Energy 0.475 0.109 0.300 0.167 0.212 0.149 0.534 1.757 0.260 0.124 2.618 0.119
Force 1.203 0.386 0.794 0.587 0.826 0.568 1.243 0.449 0.862 0.587 0.878 0.574

DimeNet++ Energy 4.168 1.238 1.385 1.846 2.445 1.484 2.438 1.456 2.317 1.648 1.555 1.210
Force 7.212 0.753 1.842 8.515 1.752 1.037 2.009 1.213 7.029 0.629 0.934 0.921

EGNN Energy 17.892 0.436 0.896 12.177 6.964 4.051 17.35 0.402 0.534 12.164 7.794 15.021
Force 3.042 0.924 1.566 1.136 1.177 1.202 3.825 0.989 1.334 1.183 1.571 1.165

PaiNN Energy 27.626 0.063 0.102 0.622 0.371 0.165 30.156 1.17 0.070 5.297 5.219 0.045
Force 0.572 0.230 0.338 0.132 0.288 0.141 0.573 0.316 0.377 0.161 0.321 0.231

GemNet-T Energy 0.684 4.598 4.966 0.482 0.128 0.098 5.389 1.615 9.496 0.031 21.411 959.745
Force 0.558 0.219 0.433 0.212 0.326 0.174 0.555 0.233 0.337 0.154 0.371 0.400

SphereNet Energy 0.244 1.603 1.559 0.167 0.188 0.113 0.304 0.072 0.138 0.093 0.771 20.479
Force 0.546 0.168 0.667 0.315 0.479 0.194 0.622 0.217 0.500 0.279 2.088 0.254

SEGNN Energy 17.774 0.151 0.247 0.655 2.173 0.624 15.721 0.13 0.182 1.11 1.494 0.814
Force 9.003 0.893 1.249 0.895 2.220 1.138 8.549 0.846 1.185 0.926 2.056 1.241

NequIP Energy 8.333 0.971 2.293 1.032 2.952 1.303 9.618 0.936 2.313 2.089 3.302 1.306
Force 23.769 5.832 12.099 5.247 14.048 6.8 22.904 6.027 12.372 5.529 15.693 7.094

Allegro Energy 1.138 0.258 1.33 0.824 1.114 0.441 1.366 1.002 0.417 1.756 1.035 0.437
Force 3.405 1.412 4.191 3.743 4.934 1.968 3.186 2.799 2.125 3.815 4.781 2.048

Equiformer Energy 0.308 0.096 0.183 0.097 0.189 0.209 0.375 0.064 0.085 0.069 0.143 0.104
Force 0.286 0.142 0.230 0.068 0.200 0.080 0.305 0.162 0.240 0.070 0.218 0.077

SchNet EGNN PaiNN GemNet-T SphereNet SEGNN Allegro Equiformer

Task  Aspirin Task  Ethanol Task  Malonaldehyde Task  Naphthalene Task  Salicylic Task  Toluene

M
D

17
rM

D
17

Figure 5: Ablation study on the effect of data normalization. Here are visualizations on performance differences
on 6 tasks and 2 datasets, with MAE(force pred w/o normalization) - MAE(force pred w/ normalization).

4.2 Small Molecules: MD17 and rMD17

MD17 [8] is a dataset of molecular dynamics simulation. It has 8 tasks corresponding to eight organic
molecules, and each task includes the molecule positions along the PES (see Fig. 3(b)). The goal is
to predict each atom’s energy and interatomic forces for each molecule’s position. We follow the
literature [68, 89, 109, 110] of using 8 subtasks, 1K for training and 1K for validation, while the test
set (from 48K to 991K) is much larger. However, the MD17 dataset contains non-negligible numerical
noises [9], and it is corrected by the revised MD17 (rMD17) dataset [10]. 100K structures were
randomly chosen for each task/molecule in MD17, and the single-point force and energy calculations
were performed for each structure using the PBE/def2-SVP level of theory. The calculations were
conducted with tight SCF convergence and a dense DFT integration grid, significantly minimizing
the computational noises.

The results on MD17 and rMD17 are in Table 2. We select 12 tasks for illustration, and more
comprehensive results can be found in Appendix I. We can observe that, in general, PaiNN, GemNet
and Equiformer perform well on MD17 and rMD17 tasks. We also report ablation study on
data normalization. NequIP [3] and Allegro [95] introduce a normalization trick: multiplying the
predicted energy with the mean of ground-truth force (reproduced results in Appendix J). We plot the
performance gap, MAE(w/o normalization) - MAE(w/ normalization), in Fig. 5, and observe most of
the gaps are positive, meaning that adding data normalization can lead to generally better performance.

4.3 Small Molecules: COLL

Table 3: Results on energy and force prediction in
COLL. 120k for training, 10k for val, 9.48k for test.
The metric is the mean absolute error (MAE).

Model Energy (eV ) ↓ Force (eV/Å) ↓

SchNet 0.178 0.130
DimeNet++ 0.036 0.049
EGNN 1.808 0.234
PaiNN 0.030 0.052
GemNet-T 0.017 0.028
SphereNet 0.032 0.047
SEGNN 7.085 0.642
NequIP 0.120 0.113
Allegro 0.161 0.130
Equiformer 0.036 0.030

The COLL dataset [36] comprises energy and force
data for 140K random snapshots obtained from
molecular dynamics simulations of molecular colli-
sions. These simulations were conducted using the
semiempirical GFN2-xTB method. To obtain the
data, DFT calculations were performed utilizing the
revPBE functional and def2-TZVP basis set, which
also incorporated D3 dispersion corrections. The
task is to predict the energy and force for each atom
in the molecule, and we consider 10 advanced ge-
ometric models for benchmarking. The results are
in Table 3, and GemNet, SphereNet, and Equiformer
reach more optimal performance.
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Table 4: Results on 2 binding affinity prediction tasks. We select three evaluation metrics for LBA: the
root mean squared error (RMSD), the Pearson correlation (Rp) and the Spearman correlation (RS). LEP is a
binary classification task, and we use the area under the curve for receiver operating characteristics (ROC) and
precision-recall (PR) for evaluation. We run cross-validation with 5 seeds, and the mean and std are reported.

Model LBA LEP

RMSD ↓ RP ↑ RC ↑ ROC ↑ PR ↑
SchNet 1.521 ± 0.02 0.474 ± 0.01 0.452 ± 0.01 0.450 ± 0.03 0.379 ± 0.03
DimeNet++ 1.672 ± 0.09 0.550 ± 0.01 0.556 ± 0.01 0.590 ± 0.06 0.496 ± 0.05
EGNN 1.494 ± 0.04 0.503 ± 0.04 0.483 ± 0.05 0.657 ± 0.05 0.559 ± 0.05
PaiNN 1.434 ± 0.02 0.583 ± 0.02 0.580 ± 0.02 0.585 ± 0.02 0.432 ± 0.03
GemNet-T – – – 0.659 ± 0.05 0.506 ± 0.05
SphereNet 1.581 ± 0.02 0.538 ± 0.01 0.529 ± 0.01 0.523 ± 0.04 0.432 ± 0.05
SEGNN 1.416 ± 0.03 0.566 ± 0.02 0.550 ± 0.02 0.574 ± 0.03 0.485 ± 0.03
NequIP 1.606 ± 0.02 0.537 ± 0.01 0.520 ± 0.01 0.538 ± 0.12 0.481 ± 0.07
Allegro 1.567 ± 0.02 0.547 ± 0.00 0.534 ± 0.00 0.627 ± 0.04 0.525 ± 0.03
Equiformer 1.392 ± 0.03 0.598 ± 0.02 0.578 ± 0.02 0.618 ± 0.06 0.510 ± 0.05

Table 5: Results on 10 protein tasks from six datasets: ECSingle, ECMultiple, Fold (Fold, Sup., Fam.), GO
(MF, BP, CC), MSP, and PSR. The evaluation metrics are Accuracy (ACC, %), Fmax (definition in Appendix B),
ACC, Fmax, receiver operating characteristics (ROC), and Spearman’s ρ, respectively.

ECSingle ECMultiple Fold GO MSP PSR
Fold Sup. Fam. MF BP CC

ACC ↑ Fmax ↑ ACC ↑ ACC ↑ ACC ↑ Fmax ↑ Fmax ↑ Fmax ↑ ROC ↑ Global ρ ↑ Mean ρ ↑
IEConv – – 45.0 69.7 98.9 – – – – – –
GVP-GNN 65.5 0.712 34.8 52.7 95.0 0.476 0.312 0.389 0.574 0.744 0.302
GearNet 78.8 0.799 29.1 43.1 95.9 0.477 0.283 0.373 – – –
ProNet 86.4 0.823 52.7 70.3 99.3 0.559 0.367 0.414 0.634 0.818 0.462
CDConv 86.9 0.862 60.0 79.9 99.5 0.649 0.435 0.450 0.717 0.817 0.500

4.4 Small Molecules & Proteins Binding: LBA & LEP

The binding affinity measures the strength of the binding interaction between a small molecule
(ligand) to the target protein. In Geom3D, we consider modeling both the ligands and proteins with
their 3D structures. During binding, a cavity in a protein can potentially possess suitable properties
for binding a small molecule, and it is called a pocket [113]. Due to the large volume of protein,
Geom3D follows existing works [118] by only taking the binding pocket instead of the whole protein
structure. Specifically, Geom3D models up to 600 atoms for each ligand and protein pair. For the
benchmarking, we consider two binding affinity tasks. (1) The first task is ligand binding affinity
(LBA) [123]. It is gathered from [124], and the task is to predict the binding affinity strength between
a ligand and a protein pocket. (2) The second task is ligand efficacy prediction (LEP) [34]. The input
is a ligand and both the active and inactive conformers of a protein, and the goal is to classify whether
or not the ligand can activate the protein’s function. The results on two binding tasks are in Table 4,
and we can observe that PaiNN, SEGNN, and Equiformer are generally outstanding on the two tasks.

4.5 Proteins: ECSingle, ECMultiple, Fold, GO, MSP, and PSR

ECSingle is a classification task [45] that classifies 37K proteins into 384 four-level Enzyme Com-
mission (EC) types. This task aims to recognize the fundamental role of proteins as bio-catalysts
or enzymes, which are essential in facilitating biological reactions. The EC numbering system [63]
serves as a comprehensive numerical classification scheme, systematically organizing the varied
functionalities of enzymes and providing a structured approach to understanding their biological roles.

ECMultiple is a multi-label classification task proposed by Gligorijevic et al. [39], where 19K
proteins are associated with 538 distinct EC categories, including both three-level and four-level types
and a single protein can be concurrently labeled with several three-level or four-level EC numbers.

Fold is a task classifying 16K proteins into 1,195 fold patterns [47, 74]. It is an important biological
task in predicting the 3D structures from 1D amino acid sequences. We further consider three testsets
(Fold, Superfamily, and Family) based on the sequence and structure similarity [94].

GO (Gene Ontology) is a dataset [39] with 36K proteins for GO term classification, where the GO
term provides a consistent description of gene product attributes across species and databases [12].
Concretely, each protein contains up to three types of GO terms, corresponding to three types of clas-
sification tasks: (1) Molecular Function (MF) has 489 classes; (2) Biological Process (BP) has 1,943
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Table 6: Results on the 8 tasks from MatBench and 1 task from QMOF (with optimal DA). The data split and
task unit are in Appendix B, and the metric is the mean absolute error (MAE).

Model
MatBench QMOF

Per. Eform ↓ Dielectric ↓ log10G ↓ log10K ↓ Eexfo ↓ Phonons ↓ Band Gap ↓ Eform ↓ Band Gap ↓
18,928 4,764 10,987 10,987 636 1,265 106,113 132,752 20,425

SchNet 0.040 0.334 0.081 0.060 65.201 42.586 0.327 0.026 0.236
DimeNet++ 0.037 0.357 0.081 0.058 68.685 38.339 0.208 0.025 0.234
EGNN 0.038 0.331 0.087 0.064 78.015 74.846 0.211 0.026 0.256
PaiNN 0.038 0.317 0.080 0.053 67.752 44.602 0.022 0.190 0.207
GemNet-T 0.042 0.325 0.088 0.061 68.425 48.986 0.186 0.026 0.207
SphereNet 0.043 0.388 0.087 0.061 72.987 36.300 0.217 0.029 0.251
SEGNN 0.046 0.360 0.087 0.059 65.052 43.638 0.330 0.047 0.330
Equiformer 0.046 0.280 0.087 0.057 62.977 37.381 0.202 0.027 0.234

classes; and (3) Cellular Component (CC) has 320 classes. Notice that each protein can be associated
with multiple GO terms in each GO term type, thus all three tasks are multi-label classifications.

MSP & PSR are two protein tasks from a collection of benchmark datasets for machine learning in
structural biology [118]. MSP (Mutation Stability Prediction) aims to predict whether the stability
of a protein increases after mutation. The dataset is a mutation dataset containing 4K proteins. It is
constructed by incorporating single-point mutations given in the SKEMPI database [56]. PSR (Protein
Structure Ranking) is a regression task based on the Critical Assessment of Structure Prediction
(CASP) [71]. In CASP, a protein structure is predicted and a quality score, the global distance test
(GDT_TS), is calculated between the predicted structure and experimentally determined structure.
This task aims to predict this score for 44K proteins.

The results of 5 models are in Table 5. CDConv [29] outperforms other models by a large margin on
almost all 10 tasks, while ProNet [122] performs second well in general, and reaches the best result
on the PSR task with global ρ metric. Notice that certain entries in the table are temporarily left blank
due to memory constraints encountered. More detailed dataset specifications are in Appendix B.

4.6 Crystalline Materials: MatBench and QMOF

MatBench [21] is explicitly created to evaluate the performance of machine learning models in
predicting properties of inorganic bulk materials covering mechanical, electronic, and thermodynamic
material properties [21]. Here we consider 8 regression tasks with crystal structures, including
predicting the formation energy (Perovskites, Eform), exfoliation energies (Eexfo), band gap, shear
and bulk modulus (log10G and log10K), etc. Please check Appendix B for more details.

Quantum MOF (QMOF) [107] is a dataset of over 20K metal-organic frameworks (MOFs) and
coordination polymers derived from DFT. The task is to predict the band gap, the energy gap between
the valence band and the conduction band. The results of 8 geometric models on 8 MatBench tasks
and 1 QMOF task are in Table 6, and we can observe that the performance of all the models is very
close, while DimeNet++, PaiNN, GemNet-T, and Equiformer are slightly better.
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Figure 6: Ablation study on the performance gap with data augmentation
(DA): MAE(expanded DA) - MAE(gathered DA).

We also conduct ablation
study on periodic data aug-
mentation on crystal materi-
als. We note that there are
two data augmentation (DA)
methods: gathered and ex-
panded. Gathered DA means
that we shift the original unit
cell along three dimensions,
and the translated unit cells
will have the same node in-
dices as the original unit cell,
i.e., a multi-edge graph. How-
ever, expanded DA will assume the translated unit cells have different node indices from the original
unit cell. (A visual demonstration is in Appendix A). We conduct an ablation study on the effect
of these two DAs, and we plot MAE(expanded DA) - MAE(gathered DA) on six tasks in Fig. 6. It
reveals that for most of the models (except EGNN), using gathered DA can lead to consistently better
performance, and thus it is preferred. For more qualitative analysis, please check Appendix J.
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Table 7: QM9 downstream results after pretraining, and the backbone model is SchNet. We take 110K for
training, 10K for validation, and 11K for testing. The evaluation metric is the mean absolute error (MAE).

Pretraining α ↓ ∇E ↓ EHOMO ↓ ELUMO ↓ µ ↓ Cv ↓ G ↓ H ↓ R2 ↓ U ↓ U0 ↓ ZPVE ↓
– (random init) 0.060 44.13 27.64 22.55 0.028 0.031 14.19 14.05 0.133 13.93 13.27 1.749

Supervised 0.062 40.31 25.57 21.69 0.030 0.030 14.36 14.68 0.308 15.21 16.13 1.638

Type Prediction 0.073 45.38 28.76 24.83 0.036 0.032 16.66 16.28 0.275 15.56 14.66 2.094
Distance Prediction 0.065 45.87 27.61 23.34 0.031 0.033 14.83 15.81 0.248 15.07 15.01 1.837
Angle Prediction 0.066 48.45 29.02 24.40 0.034 0.031 14.13 13.77 0.214 13.50 13.47 1.861
3D InfoGraph 0.062 45.96 29.29 24.60 0.028 0.030 13.93 13.97 0.133 13.55 13.47 1.644
GeoSSL-RR 0.060 43.71 27.71 22.84 0.028 0.031 14.54 13.70 0.122 13.81 13.75 1.694
GeoSSL-InfoNCE 0.061 44.38 27.67 22.85 0.027 0.030 13.38 13.36 0.116 13.05 13.00 1.643
GeoSSL-EBM-NCE 0.057 43.75 27.05 22.75 0.028 0.030 12.87 12.65 0.123 13.44 12.64 1.652
3D InfoMax 0.057 42.09 25.90 21.60 0.028 0.030 13.73 13.62 0.141 13.81 13.30 1.670
GraphMVP 0.056 41.99 25.75 21.58 0.027 0.029 13.43 13.31 0.136 13.03 13.07 1.609
GeoSSL-DDM-1L 0.058 42.64 26.32 21.87 0.028 0.030 12.61 12.81 0.173 12.45 12.12 1.696
GeoSSL-DDM 0.056 42.29 25.61 21.88 0.027 0.029 11.54 11.14 0.168 11.06 10.96 1.660
MoleculeSDE (VE) 0.056 41.84 25.79 21.63 0.027 0.029 11.47 10.71 0.233 11.04 10.95 1.474
MoleculeSDE (VP) 0.054 41.77 25.74 21.41 0.026 0.028 13.07 12.05 0.151 12.54 12.04 1.587

4.7 Geometric Pretraining on Small Molecules

We run 14 pretraining algorithms, including one supervised pretraining: the pretraining dataset
(e.g., PCQM4Mv2 [51]) possess the energy or energy gap label for each conformation, which can
be naturally adopted for pretraining. The benchmark results of using SchNet as the backbone
model pretrained on PCQM4Mv2 and fine-tuning on QM9 tasks are in Table 7. We observe that
MoleculeSDE and GeoSSL-DDM utilizing the geometric denoising diffusion models outperform other
pretraining methods in most cases. On the other hand, supervised pretraining (pretrained on energy
gap ∇E) reaches outstanding performance on ∇E downstream task, yet the generalization to other
tasks is modest. Please check Appendix I for more pretraining results with different backbone models.

5 Conclusion and Future Directions

Geom3D provides a unified view on the SE(3)-equivariant models, together with the implementations.
Indeed these can serve as the building blocks to various tasks, such as geometric pretraining (as
displayed in Sec. 4.7) and the conformation generation (ClofNet [20], MoleculeSDE [79]), paving
the way for building more foundational models and solving more challenging tasks.

Limitations on models and tasks. Geom3D includes 10 topological models, 16 geometric models,
14 geometric pretraining methods, and 52 diverse tasks. We would also like to acknowledge there exist
many more tasks (e.g., Atom3D [118], Molecule3D [131], OC20 [7]) and more geometric models
(e.g., OrbNet [99], MACE [2], Uni-Mol [144], and LieTransformer [52]). The continual updating may
necessitate the collective efforts of our entire community, exemplifying our collaborative endeavors.

Foundation model as future exploration. Recently, there have been certain explorations on building
the foundation models for molecule discovery, especially by incorporating textual data on the
molecule’s functionalities [25, 26, 83, 87, 88, 115, 139, 143]. However, existing works mainly focus
on the 1D sequence or 2D topology, while the 3D geometric structure of molecules is rarely considered.
We believe that Geom3D can offer essential support for future explorations along this direction.

Reproducibility and Tutorials

The codes of Geom3D have been released on this GitHub repository. Both the raw and preprocessed
datasets have been released on this HuggingFace link. The checkpoints of all models have been
released on this HuggingFace link. We further added four tutorials on using Geom3D on customized
data, energy prediction, force prediction, and geometric pretraining. These tutorials can sufficiently
demonstrate how users can inject new methods into Geom3D platform, showcasing its potential as a
fundamental building block for tackling a wide range of machine learning tasks.
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approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount spent on
participant compensation? [N/A]
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A Data Structure and Data Preprocessing

Recall that as illustrated in Fig. 2, we split existing geometric models into three big venues: invariant modeling,
equivariant modeling with spherical frame, and equivariant modeling with vector frame. All these modelings are
application-agnostic, i.e., they can be naturally adapted to small molecules, proteins, and crystal materials.

In this section, we would like to scrutinize the key data structure of such three data types. They are critical
factors when we design geometric modeling. For instance:

• Small molecules often have <100 atoms in the 3D Euclidean space, and thus they can be easily fed
into GPU memory.

• Proteins are macromolecules with tens of thousands of atoms. Thus, geometric models on small
molecules cannot be easily adapted. Existing research works are working on modeling the backbone-
level and residue-level, i.e., only modeling the most important atoms (e.g., Cα, C,N ) in proteins.

• Crystal materials are molecules with periodic structures, and typical solutions consider periodic data
augmentation before feeding them into geometric models.

In the next, we will explain in more detail of these three data structures.

A.1 Small Molecules

In the machine learning and computational chemistry domain, existing works are mainly focusing on the molecule
1D description [70, 106, 126] and 2D topology graph [13, 17, 23, 38, 43, 66, 78, 101, 119, 130, 132, 132, 135].
Especially as the 2D graph, where the atoms and bonds are treated as nodes and edges, respectively. To model
this graph structure, a message-passing graph neural network model family has been proposed.

Simultaneously, molecules can be naturally treated as 3D point clouds in Euclidean space, where atoms are the
3D points. In geometric modeling, as illustrated in Sec. 2, the inputs are atom types and atom positions, i.e.,
g = (X,R).

In Table 1, we provide a comparison of models on 1D descriptions, 2D topological graphs, and 3D geometric con-
formations. The observation verifies the necessity of using conformation for quantum property prediction tasks.

A.2 Proteins

Protein structures can be classified into four primary levels. The primary structure represents the linear
arrangement of amino acids within a polypeptide chain. Secondary structure arises from local interactions
between adjacent amino acids, resulting in the formation of recognizable patterns like alpha helices and beta
sheets. The tertiary structure encompasses the complete three-dimensional organization of a single protein,
involving additional folding and structural modifications beyond the secondary structure. Quaternary structure
emerges when multiple polypeptide chains or subunits interact to form a protein complex.

Specifically for geometric modeling, we are now focusing on the protein tertiary structure, which can be
constructed based on different structural levels, namely the all-atom level, backbone level, and residue level. We
explain the details below, and you can find an illustration in Fig. 3(c).

• At the all-atom level, the graph nodes represent individual atoms, capturing the fine-grained details of
the protein structure.

• At the backbone level, the graph nodes correspond to the backbone atoms (N − Cα − C), omitting
the side chain information. This level of abstraction focuses on the essential backbone structure of the
protein.

• At the residue level, the graph nodes represent amino acid residues. The position of each residue can
be represented by the position of its Cα atom or calculated as the average position of the backbone
atoms within the residue. This level provides a higher-level representation of the protein structure,
grouping atoms into residue units.

A.3 Crystalline Materials

Periodic structure. The crystalline materials or extended chemical structures possess a characteristic known
as periodicity: their atomic or molecular arrangement repeats in a predictable and consistent pattern across all
three spatial dimensions. This is the key aspect that differentiates them from small molecules. In Fig. 3(d), we
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show an original unit cell (marked in green) that can repeatedly compose the crystal structure along the lattice.
To model such a periodic structure, we adopt the data augmentation (DA) from CGCNN [129], yet with two
variants as explained below.
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Figure 7: An illustration for crystalline material data augmentation (DA). Notice that in Fig. 7(a), the shifted
unit cells and the original unit cells share the same corresponding node indices; for the demonstration clarity, we
mark them with ′, e.g., ) 0 and 0′ are the indices for the same nodes.

Data augmentation 1: Gathered. Gathered DA means that we will shift the original unit cell along three
dimensions, and the translated unit cells will have the same node indices as the original unit cell. An example is
in Fig. 7(a).

Data augmentation 2: Expanded. Expanded DA refers that we shift the original unit cell in the same
way as Gathered, but the translated unit cells have different node indices from the original unit cell. An example
is in Fig. 7(b).

Once we have these two augmentations, we have the augmented nodes and corresponding periodic coordinates.
The edge connection needs to satisfy three conditions simultaneously:

• The pairwise distance should be larger than 0 and no larger than the threshold τ , i.e., the distance is
within (0, τ).

• At least one of the linked nodes (bonded atoms) belongs to the anchor unit cell.
• No self-loop.

In specific, we give an example of the two DAs below. We take the same simple cubic crystal in Fig. 7 for
illustration, and we assume that the edge length in the unit cell is l. The threshold for building the edge is τ = l.

• Gathered DA. (0, 1) satisfies the conditions; (0, 3′) violets the condition; (0, 4′) violets the conditions;
(0′, 1′) violets the conditions.

• Expanded DA. (0, 1) satisfies the conditions; (0, 11) violets the conditions; (0, 12) violets the condi-
tion; (8, 9) violets the conditions.

In terms of implementation, this can be easily achieved by calling the pymatgen [97] package. Such data
augmentation is merely one way of handling the periodic data structure in crystalline materials. There could be
more potential ways, and we would like to leave them for future exploration.

Thus, after the data augmentation, we can feed the augmented 3D point clouds into the geometric models. This
modeling process is the same as that of the small molecules.
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B Dataset Acquisition and Preparation & Benchmark Hyperparameters

For the dataset download, please check this GitHub repository for detailed instructions.

B.1 Small Molecules: QM9

Task specification. QM9 [100] is a dataset of 134K molecules, consisting of 9 heavy atoms. It includes 12
tasks that are related to the quantum properties. For example, U0 and U298 are the internal energies at 0K
and 298.15K, respectively, and H298 and G298 are the other two energies that can be transferred from U298,
respectively. The other 8 tasks are quantum mechanics related to the DFT process.

Task unit. We list the units for 12 QM9 tasks below.

Table 8: Units for 12 tasks in QM9.

α ∇E EHOMO ELUMO µ Cv G H R2 U U0 ZPVE

α3
0 meV meV meV D cal

mol·K meV meV α2
0 meV meV meV

Dataset size and split. There are 133,885 molecules in QM9, where 3,054 are marked as “uncharacterized”
and have been filtered out because they are rearranged during geometry optimization. This leads to 130,831
molecules. For data splitting, we use 110K for training, 10K for validation, and 11K for testing.

Others. Current work is using different optimization strategies and different data splits (in terms of the splitting
size). During the benchmark, we find that: (1) The performance on QM9 is very robust to either using (i) 110K
for training, 10K for validation, 10,831 for test or using (ii) 100K for training, 13,083 for validation and 17,748
for test. (2) The optimization, especially the learning rate scheduler, is very critical. During the benchmarking,
we find that using cosine annealing learning rate schedule [90] is generally the most robust.

B.2 Small Molecules: MD17

Task specification. MD17 [8] is a dataset on molecular dynamics simulation. It includes eight tasks, correspond-
ing to eight organic molecules, and each task includes the molecule positions along the potential energy surface
(PES), as shown in Fig. 3(b). The goal is to predict the energy-conserving interatomic forces for each atom in
each molecule position.

Task unit. The MD17 aims for energy and force prediction. The unit is kcal
mol

for energy and kcal
mol·Å for force.

Dataset size and split. We follow the literature [68, 89, 109, 110] of using 1K for training and 1K for validation,
while the test set (from 48K to 991K) is much larger, and we list them below.

Table 9: Dataset size and splits on MD17.
Pretraining Aspirin Benzene Ethanol Malonaldehyde Naphthalene Salicylic Toluene Uracil

Train 1K 1K 1K 1K 1K 1K 1K 1K
Validation 1K 1K 1K 1K 1K 1K 1K 1K
Test 209,762 47,863 553,092 991,237 324,250 318,231 440,790 131,770

Others. There are multiple ways to predict the energy, e.g., using the SE(3)-equivariant to predict the forces
directly. In Geom3D, we first predict the energy for each position; then, we take the gradient w.r.t. the input
position. The Python codes are attached below:

1 from torch.autograd import grad
2

3 positions = batch.positions # input positions
4 energy = model_3D(batch) # energy prediction
5 force = -grad(outputs=energy , inputs=positions) # force prediction

Notice that this holds for all the force prediction tasks, like rMD17 and COLL, which will be introduced below.

Additionally, in Appendix J.2, we will discuss the data normalization for MD prediction.

B.3 Small Molecules: rMD17

Task specification. The revised MD17 (rMD17) dataset [10] is constructed based on the original MD17 dataset.
100K structures were randomly chosen for each type of molecule present in the MD17 dataset. Subsequently, the
single-point force and energy calculations were performed for each of these structures using the PBE/def2-SVP
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level of theory. The calculations were conducted with tight SCF convergence and a dense DFT integration grid,
significantly minimizing noise.

Task unit. The rMD17 aims for energy and force prediction. The unit is kcal
mol

for energy and kcal
mol·Å for force.

Dataset size and split. We use 950 for training, 50 for validation, and 1000 for test.

B.4 Small Molecules: COLL

Task specification. COLL dataset [36] is a collection of configurations obtained from molecular dynamics
simulations on molecular collisions. Around 140,000 snapshots were randomly taken from the trajectories of the
collision, for each of which the energy and force were calculated using density functional theory (DFT).

Task unit. The rMD17 aims for energy and force prediction. The unit is eV for energy and eV/Å for force.

Dataset size and split. The published COLL dataset has split the whole data into 120,000 training samples,
10,000 validation samples, and 9,480 testing samples.

B.5 Small Molecules & Proteins Binding: LBA & LEP

Task specification. Ligand-protein binding is formed between a small molecule (ligand) and a target protein.
During the binding process, there is a cavity in a protein that can potentially possess suitable properties for
binding a small molecule, called pocket [113]. Due to the large volume of protein, Geom3D follows existing
works [118] by only taking the binding pocket, where there are no more than 600 atoms for each molecule and
protein pair. For the benchmarking, we consider two binding affinity tasks. (1) The first task is ligand binding
affinity (LBA) [123]. It is gathered from [124], and the task is to predict the binding affinity strength between a
small molecule and a protein pocket. (2) The second task is ligand efficacy prediction (LEP) [34]. We have a
molecule bounded to pockets, and the goal is to detect if the same molecule has a higher binding affinity with
one pocket compared to the other one.

Task unit. LBA is to predict pK = − log(K), where K is the binding affinity in Molar units. LEP has no unit
since it is a classification task.

Dataset size and split. The dataset size and splitting are listed below.

Table 10: Dataset size and splits on LBA & LEP. For LBA, we use split-by-sequence-identity-30: we split
protein-ligand complexes such that no protein in the test dataset has more than 30% sequence identity with any
protein in the training dataset. For LEP, we split the complex pairs by protein target.

Pretraining LBA LEP

Train 3,507 304
Validation 466 110
Test 490 104
Split split-by-identity-30 split-by-target

B.6 Proteins: ECSingle

Task specification. The Enzyme Commission(EC) Number is a numerical classification of enzymes according
to the catalyzed chemical reactions [50]. Therefore, the functions of enzymes and the chemical reaction type they
catalyze can be represented by different EC numbers. An example of EC number is EC3.1.1.4: 3 represents
Hydrolases (the first number represents enzyme class); 3.1 represents Ester Hydrolases (the second number
represents enzyme subclass); 3.1.1 represents Carboxylic-ester Hydrolases (the third number represents enzyme
sub-subclass); 3.1.1.4 represents Phospholipases (the fourth number represents the specific enzyme). The EC
dataset was constructed by Hermosilla et al. [45] for the protein function prediction task. The enzyme reaction
data with Enzyme Committee annotations were originally collected from the SIFTS database [14]. Then, all the
protein chains were clustered using a 50% similarity threshold. EC numbers that were annotated for at least
five clusters were selected and five proteins with less than 100% similarities were selected from each cluster,
annotated by the EC number.

Task unit. No unit is available since it is a classification task.

Dataset size and split. ECSingle contains 37,428 protein chains, which were split into 29,215 for training,
2,562 for validation, and 5,651 for testing.
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B.7 Proteins: ECMultiple

Task specification. In a manner analogous to the ECSingle task, the ECMultiple task classifies proteins into
various three-level and four-level EC numbers. Given a protein’s potential for multifunctionality, it can be
associated with multiple three- or four-level EC numbers. As illustrated in the ECSingle task, a three-level EC
number is represented as 3.1.1.-, while a four-level number takes the form 3.1.1.4. As [39], the testing set is
divided into subsets based on sequence identity relative to proteins in the training set. Specifically, the testing set
is segmented for proteins exhibiting less than 30%, 40%, 50%, 70%, and 95% sequence similarity to those in the
training set. Fmax is used as the evaluation metric since it is a multi-label classification task.

Fmax, or the protein-centric maximum F Score [39], is proposed to evaluate the multi-label classification task,
where each label can be considered as a binary classification task. Denote λ ∈ [0, 1] as the threshold for the
binary classification, pji as the probability for the i-th protein to be classified as true for class j, and bji ∈ 0, 1 as
the label for the i-th protein in the j-th class. Then, for each threshold value λ, we first calculate the precision
and recall for the i-th protein:

precisioni(λ) =

∑J
j ((p

j
i ≥ λ) ∩ bji )∑J

j (p
j
i ≥ λ)

recalli(λ) =

∑J
j (p

j
i ≥ λ)∑J

j (b
j
i )

.

(5)

Then, we calculate the average precision and recall for each λ over all the proteins. The denominator of the
average precision represents the number of proteins with at least one prediction over the threshold:

precision(λ) =
∑N

i precisioni(λ)∑N
i ((

∑J
j (p

j
i ≥ λ)) ≥ 1)

recall(λ) =
∑N

i recalli(λ)

N
.

(6)

Finally, Fmax is the maximum F score for λ ∈ [0, 1]:

Fmax = max
λ∈[0,1]

2 · precision(λ) · recall(λ)
precision(λ) + recall(λ)

. (7)

Task unit. No unit is available since it is a classification task.

Dataset size and split. ECMultiple contains 19,198 protein chains, which are split into 15,550 for training,
1,729 for validation, and 1,919 for testing. The testing set is further split into: 720 for Tesing_<30%, 902 for
Tesing_<40%, 1,117 for Tesing_<50%, 1,476 for Tesing_<70%, and 1,919 for Tesing_<95%. Notice that these
sub-testing sets can have overlaps.

B.8 Proteins: Fold

Task specification. Proteins can be hierarchically divided into different levels: Family, Superfamily, and Fold
based on their sequence similarity, structure similarity, and evolutionary relations [94]. Proteins with (1) ≥30%
residue identities or (2) lower residue identities but have similar functions are grouped into the same Family. A
Superfamily is for families whose proteins have low residue identities but their structural and functional features
suggest a possible same evolutionary origin. A Fold is for proteins sharing the same major secondary structures
with the same arrangement and topological connections.

Based on the SCOP 1.75 database, all the fold categories can be grouped into seven structural classes with in
total of 1195 fold types [75]: (a) all α proteins (primarily formed by α−helices, 284 folds), (b) all β proteins
(primarily formed by β−sheets, 174 folds), (c) α/β proteins (α-helices and β-strands interspersed, 147 folds),
(d) α + β proteins (α-helices and β-strands segregated, 376 folds), (e) multi-domain proteins (66 folds), (f)
membrane and cell surface proteins and peptides (58 folds), and (g) small proteins (90 folds). DeepSF [47]
proposed a three-level redundancy removal at fold superfamily/family levels, resulting in three subsets for
testing.

• Fold testing set Firstly, the proteins are split into Fold-level training set and testing set, where the
training set and testing set don’t share the same superfamily.

• Superfamily testing set Then, the Fold-level training set is split into Superfamily-level training set
and testing set, where they don’t share the same family.

• Family testing set Finally, the Superfamily-level training set is split into Family-level training set and
testing set, where for proteins in the same family, 80% of them are used for training and 20% of them
are used for testing.
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Task unit. No unit is available since they are classification tasks.

Dataset size and split. FOLD contains 16,292 proteins, and we follow [47]: 12,312 training samples, 736
validation samples, 3,244 testing samples. The testing samples contain 3 sub testsets: 718 for folding testset,
1,254 for superfamily testset, and 1,272 for family testset.

B.9 Proteins: GO

Task specification. Gene Ontology (GO) categorizes terms into three distinct classifications:

• Molecular Function (MF) This describes activities at the molecular level. It captures the broad
concept of a function without delving into specifics such as its location, the time it occurs, or the
molecular or complex entity executing this function. An exemplar term under this category is
"oxidoreductase activity."

• Biological Process (BP) This pertains to broader biological objectives achieved through one or more
molecular functions. For instance, "cell division" falls under this category.

• Cellular Component (CC) This denotes the specific locations within or outside a cell where a gene
product is active. It encompasses both subcellular structures and macromolecular complexes, with
terms like "cytosolic large ribosomal subunit" being illustrative of this category [12].

For each of these categories, proteins can be affiliated with several GO terms. In the context of the testing set, it
is divided based on sequence similarity with the training set proteins, specifically for those with less than 30%,
40%, 50%, 70%, and 95% similarity. Given that this is a multi-label classification task, the evaluation metric
employed is Fmax described before.

Task unit. No unit is available since it is a classification task.

Dataset size and split. GO contains 36,632 protein chains, which were split into 29,894 for training, 3,322
for validation, and 3,416 for testing. The testing set is further split into: 1,717 for Tesing_<30%, 1,937 for
Tesing_<40%, 2,199 for Tesing_<50%, 2,733 for Tesing_<70%, and 3,416 for Tesing_<95%. The sub-testing
sets can overlap with each other.

B.10 Proteins: MSP

Task specification. The Mutation Stability Prediction (MSP) task, as proposed in [118], aims to predict whether
a protein’s stability increases following a mutation, categorizing it as a binary classification task. The SKEMPI
database, documented in [56], catalogs mutations present in protein–protein interactions along with their effects
on binding affinity and various other attributes. To construct the MSP dataset, single-point mutations are modeled
on the wild-type protein sequence, thereby producing the mutated protein variant. A single-point mutation refers
to instances where a lone base pair is added, removed, or modified, which may subsequently alter the protein
sequence. During the training process, the model independently generates representations for both the wild-type
protein and its mutated counterpart. The proteins in the testing set have a <30% sequence similarity with proteins
in the training set.

Task unit. No unit is available since it is a classification task.

Dataset size and split. MSP contains 4,184 protein chains, which were split into 2,864 for training, 937 for
validation, and 347 for testing.

B.11 Proteins: PSR

Task specification. The Critical Assessment of Structure Prediction (CASP) is a prestigious international
competition that focuses on 3D protein structure prediction [71]. The Protein Structure Ranking (PSR) dataset
has been curated from protein structures submitted to CASP, with the primary objective being the prediction
of the Global Distance Test (GDT_TS) score between the predicted and experimentally determined structures.
As such, this constitutes a regression task. As outlined on the official CASP website, the computation of the
GDT_TS score includes the following steps:

(1) Superimposition of the predicted structure onto the true structure. (2) Calculation of pairwise dis-
tances between residues in the predicted structure and their respective counterparts in the true structure
post-superimposition. (3) Determination of the percentage of residues that align within four distinct dis-
tance thresholds. (4) The GDT_TS score is derived by averaging the percentages obtained in the previous
step.

In the CASP competition, participants are typically given an experimentally determined protein structure, along
with a set of decoy structures. These decoys are generated using various computational modeling techniques and
closely resemble the true protein in terms of structure. In other words, a true protein is associated with a set of
decoys. The evaluation process in CASP not only assesses the proximity of predicted protein structures to the true

26

https://predictioncenter.org/casp14/doc/help.html#GDT_TS


structure but also involves ranking the predicted structures relative to the decoys, for a more robust assessment.
Correspondingly, we include both Global Spearman’s ρ and Mean Spearman’s ρ in the evaluation metrics. Global
Spearman’s ρ is simply the correlation between the predicted GDT_TS score and the ground truth by calculating
the Spearman’s ρ for all samples. In comparison, for Mean Spearman’s ρ, we first separately calculate the
Spearman’s ρ for decoys corresponding to the same protein and then take the average of these Spearman’s ρ.

Task unit. GDT_TS has no units.

Dataset size and split. PSR contains 44,214 protein chains, which were split into 25,400 for training, 2,800 for
validation, and 16,014 for testing.

B.12 Crystalline Materials: MatBench

Task specification. MatBench [21] is a test suite for benchmarking 13 machine learning model performances for
predicting different material properties. The dataset size for these tasks varies from 312 to 132k. The MatBench
dataset has been pre-processed to clean up the task-irrelevant and unphysical-computed data. For benchmarking,
we take 8 regression tasks with crystal structure data. These tasks are [16, 22, 55] Formation energy per
Perovskite cell (Per. Eform), Refractive index (Dielectric), Shear modulus (log10G), Bulk modulus(log10K),
exfoliation energy (Eexfo), frequency at last phonon PhDOS peak (Phonons), band gap (Band Gap), and formation
energy (Eform). Detailed explanations are as below:

• Perovskites: predicting formation energy from the crystal structure.
• Dielectric: predicting refractive index from the crystal structure.
• log10G: predicting DFT log10 VRH-average shear modulus from crystal structure.
• log10K: predicting DFT log10 VRH-average bulk modulus from crystal structure.
• Eexfo: predicting exfoliation energies from the crystal structure.
• Phonons: predicting vibration properties from the crystal structure.
• Band Gap: predicting DFT PBE band gap from the crystal structure.
• Eform: predicting DFT formation energy from the crystal structure.

Task unit. The unit for each task is listed below.

Dataset size and split. The dataset size for each task is listed above. For benchmarking, we take 60%-20%-20%
as training-validation-testing for all tasks.

Table 11: Unit, dataset size, and naming specifications for MatBench.
Column in MatBench Perovskites Dielectric log gvrh log kvrh jdft2d Phonons Band Gap E Form

Task Name in Table 6 Per. Eform Dielectric log10G log10K Eexfo Phonons Band Gap Eform
Size 18,928 4,764 10,987 10,987 636 1,265 106,113 132,752
Unit eV – log10 GPa log10 GPa meV cm−1 eV eV /atom

B.13 Crystalline Materials: QMOF

Task specification. QMOF [107] is a database containing 20,425 metal–organic frameworks (MOFs) with
quantum-chemical properties generated using density functional theory (DFT) calculations. The task is to predict
the band gap, the energy gap between the valence band and the conduction band.

Task unit. The unit for the band gap task is eV .

Dataset size and split. As mentioned above, there are 20,425 MOFs, and we take 80%-10%-10% for training-
validation-testing.
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C Group Representation and Equivariance

Symmetry is everywhere on Earth, such as in animals, plants, and molecules. The group theory is the most
expressive tool to depict such physical symmetry. In this section, we would like to go through certain key
concepts in group theory.

Symmetry is the collection of all transformations under which an object is invariant. The readers can easily
check that these transformations are automatically invertible and form a group, where the group multiplication
is identified with the composition operation of two transformations. From a dynamical system point of view,
symmetries are essential for reducing the degree of freedom of a system. For example, Noether’s first theorem
states that every differentiable symmetry of a physical system with conservative forces has a corresponding
conservation law [96]. Therefore, symmetries form an important source of inductive bias that can shed light on
the design of neural networks for modeling physical systems.

Type-0, type-1 and higher-order particles are critical concepts in describing physical word. In general,
different orders of spherical harmonics exhibit varying degrees of angular variation across the sphere’s surface.
This variation refers to how quickly the function changes as you move around in different directions on the sphere.
Lower-order spherical harmonics have smoother angular patterns with slower rates of change, while higher-order
harmonics have more rapid changes in angular directions. In concrete, type-0 features include pairwise distance,
and (dihedral) angle information, and type-1 features cover 3D coordinates, velocities, and forces.

C.1 Group

A group is a set G equipped with an operator (group product) ×, and they need to follow three rules:

1. It contains an identity element e ∈ G, s.t. ae = ea = a, ∀a ∈ G.
2. Associativity rule (ab)c = a(bc).
3. Each element has an inverse aa−1 = a−1a = e.

Below we list several well-known groups:

• O(n) is an n-dimensional orthogonal group that consists of rotation and reflections.
• SO(n) is a special orthogonal group that only consists of rotations.
• E(n) is an n-dimensional Euclidean group that consists of rotations, translations, and reflections.
• SE(n) is an n-dimensional special Euclidean group, which comprises arbitrary combinations of

rotations and translations (no reflections).
• Lie Group is a group whose elements form a differentiable manifold. All the groups above are specific

examples of the Lie Group.

C.2 Group Representation and Irreducible Group Representation

Group representation is a mapping from the group G to the group of linear transformations of a vector space
X with dimension d (see [138] for more rigorous definition):

ρX(·) : G → Rd×d s.t. ρ(e) = 1 ∧ ρX(a)ρX(b) = ρX(a× b), ∀a, b ∈ G. (8)
During modeling, the X space can be the input 3D Euclidean space, the equivariant vector space in the
intermediate layers, or the output force space. This enables the definition of equivariance as in Appendix C.3.

Group representation of SO(3) can be applied to any n-dimensional vector space. If we map SO(3) to the 3D
Euclidean space (i.e., n = 3), the group representation has the same formula as the rotation matrix.

Irreducible representations of rotations The irreducible representations (irreps) of SO(3) are indexed by the
integers 0, 1, 2, ..., and we call this index l. The l-irrep is of dimension 2l + 1. l = 0 (dimension 1) corresponds
to scalars and l = 1 (dimension 3) corresponds to vectors.

C.3 Equivariance and Invariance

Equivariance is the property for the geometric modeling function f : X → Y , and we want to design a function
f that is equivariant as:

f(ρX(a)x) = ρY (a)f(x), ∀a ∈ G,x ∈ X. (9)
How to understand this in the molecule discovery scenarios? ρX(g) is the group representation on the input
space, like atom coordinates; and ρY (g) is the group representation on the output space Y = f(X), e.g., the
force field space. Equivariance modeling in Eq. (9) is essentially saying that the designed deep learning model f
is modeling the whole transformation trajectory (e.g., rotation for SO(3)-group) on the molecule conformations,
and the output is the transformed ŷ accordingly.

Note that in deep learning, a function with learned parameters can be abstracted as f : W ×X → Y , where
w ∈ W is a choice of learned parameters (or weights). The parameters are scalars, i.e., they don’t transform
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under a transformation of E(3)/SE(3). This implies that weights are scalars and are invariant under any choice of
coordinate system.

Invariance is a special type of equivariance where

f(ρX(a)x) = f(x), ∀a ∈ G,x ∈ X, (10)

with ρY (g) as the identity ∀g ∈ G.

Thus, group and group representation help define the equivariance condition for f to follow. Then, the question
turns to how to design such invariant or equivariant f .

• In Sec. 3.2, we introduced the invariant geometric models.
• In Sec. 3.3, we briefly discussed two main categories of equivariant geometric models: the spherical

frame basis model and the vector frame basis model. In the following, we will introduce both in more
detail in Appendices D and E, respectively.

Through lifting from the original geometric space to its frame bundle (see [49] for the precise definition),
equivariant operations like covariant derivatives are realized in an invariant way. From a practical perspective,
the lifting operation can be alternatively replaced by scalarization by equivariant frames. See [19, 20] for
an illustration. Therefore, invariance and equivariance are just two equivariant descriptions of characterizing
symmetry that can be transformed into each other through frames.

One thing we want to highlight is that convolutional neural networks (CNNs) on images are translation-
equivariant on R2, which demonstrates the power of encoding symmetry into the deep neural network
architectures.
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D Equivariance with Spherical Frame Basis

First, we would like to give a high-level idea of this basis:

• It introduces the spherical harmonics as the basis and maps all the points into such a space.
• The mapping from 3D Euclidean space to the spherical harmonics space satisfies the E(3)/SE(3)-

equivariance property as defined Eq. (9).
• Based on such basis, we can design a message-passing framework to learn the desired properties.

Then, we would like to refer to Figure 2 in SEGNN ArXiv version v3. It nicely illustrates how the equivariance
works in the spherical harmonics space.

Spherical Harmonics The spherical harmonics are functions from points on the sphere to vectors, or more
rigoriously:

Definition 1. The spherical harmonics are a family o functions Y l from the unit sphere to the irrep Dl.
For each l = 0, 1, 2..., the spherical harmonics can be seen as a vector of 2l + 1 functions Y l(x⃗) =(
Y l
−l(x⃗), Y

l
−l+1(x⃗), ..., Y

l
l (x⃗)

)
. Each Y l is equivariant to SO(3) with respect to the irrep of the same or-

der, i.e.,

Y l
m(Rx⃗) =

l∑
n=−1

Dl(R)mnY
l
n(x⃗), (11)

where R is any rotation matrix and Dl are the irreducible representation of SO(3). They are normalized
∥Y l(x⃗)∥ = 1 when evaluated on the sphere ∥x⃗∥ = 1.

According to Eq. (9), Eq. (11) satisfies the equivariance property: the input space X is the 3D Euclidean space,
and the output space Y is the Spherical Harmonics space.

Some key points we would like to highlight:

• Sphere S2 is not a group, but it is a homogeneous space of SO(3).
• The decomposition into the irreducible group representations makes it steerable.
• The parameter l is named the rotation order.

Model Design With the spherical basis, we can design our own geometric models. Notice that during the
modeling process, all the variables are tensors.

For instance, we can take the vector rj − ri as the vector in Y l
m(

rj−ri

∥rj−ri∥
). As shown in Eq. (11), this is

rotation-equivariant. And we can easily see rj − ri is translation-equivariant.

This term can be naturally adopted for the edge embedding under the message passing framework [38], and we
can parameterize it with a radial term [112] as2:

hi,j = Radial(∥rj − ri∥)Y l
m(

rj − ri

∥rj − ri∥
), (12)

where the radial function is invariant with the pairwise distance as the input. This is for the message function.
Then generally, for the update and aggregate function of node-level tensor vi, we have two options:

vi =

{
vi +

∑
j∈N (i) hi,j + vj

vi +
∑

j∈N (i) hi,j ⊗ vj ,
(13)

where the update can be done either with plus or multiplication. Note that ⊗ is the tensor product, which can be
calculated using the Clebsch-Gordan coefficients. Please refer to [37] for more details.

2Notice that the index of angular momentum in the spherical frame is very important, yet we ignore them
here for brevity. Please refer to the papers for more rigorous definitions.
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E Equivariance with Vector Frame Basis

In physics, the vector frame is equivalent to the coordinate system. For example, we may assign a frame to all
observers, although different observers may collect different data under different frames, the underlying physics
law should be the same. In other words, denote the physics law by f , then f should be an equivariant function.

Since there are three orthogonal directions in R3, a vector frame in R3 consists of three orthogonal vectors:

F = (e1, e2, e3).

Once equipped with a vector frame (coordinate system), we can project all geometric quantities to this vector
frame. For example, an abstract vector r ∈ R3 can be written as r = (r1, r2, r3) under vector frame F ,
if: r = r1e1 + r2e2 + r3e3. An equivariant vector frame further requires the three orthonormal vectors in
(e1, e2, e3) to be equivariant. Intuitively, an equivariant vector frame will transform according to the global
rotation or translation of the whole system. Once equipped with an equivariant vector frame, we can project
equivariant vectors into this vector frame:

r = r̃1e1 + r̃2e2 + r̃3e3. (14)

We call the process of r → r̃ := (r̃1, r̃2, r̃3) the projection operation. Since r̃i = ei · ri is expressed as an
inner product between equivariant vectors, we know that r̃ consists of scalars.

We assign an equivariant vector frame to each node/edge to incorporate equivariant frames with graph message
passing. Therefore, we call them the local frames. For example, consider node i and one of its neighbors j with
positions xi and xj , respectively. One way to construct the equivariant frame is the orthonormal frame using the
Gram-Schmidt, like Clofnet [20] and MoleculeSDE [79]. The vector frame Fij := (eij

1 , eij
2 , eij

3 ) is defined
with respect to xi and xj as follows:

(
xi − xj

∥xi − xj∥
,

xi × xj

∥xi × xj∥
,

xi − xj

∥xi − xj∥
× xi × xj

∥xi × xj∥
). (15)

The Gram-Schmidt orthogonalization makes sure that the Local-Frame(ri, rj) is orthonormal. However,
there also exist other ways to construct the vector frames, like using the protein backbone structures [29, 53].
Finally, it’s worth mentioning that global frames can be built by pooling local frames. For example, a graph-level
equivariant frame is obtained by aggregating node frames and implementing the Gram-Schmidt orthogonalization.
However, the Newton dynamics experiments in [20] demonstrated that the global frame’s performance is worse
than edge local frames. Therefore, although edge-, node-, and global- frames are equal in terms of equivariance,
the optimization properties of different equivariant frames depend varies according to different scientific datasets.
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F Other Geometric Modeling (Featurization and Lie Group)

We also want to acknowledge other equivariant modeling methods.

Featurization. OrbNet [99] models the atomic orbital, the description of the location and wave-like behavior of
electrons in atoms. This possesses a finer-grained featurization level than other methods. Voxel means that we
discretize the 3D Euclidean space into bins, and recent work [33] empirically shows that this also applies to
geometry learning tasks.

Equivariance modeling with Lie group. In previous sections, equivariant algorithms are viewed as mappings
from a 3D point cloud (which discretizes the 3D Euclidean space) to another 3D point cloud, or as mappings
to invariant quantities. From this point of view, the symmetry group E(3)/SE(3) manifests itself as a group
action transforming the Euclidean space. However, it is worth noting that this action is transitive in the sense
that any two points in 3D Euclidean space can be transformed from one to the other through a combination of
translation and rotation. In mathematical terms, the 3D Euclidean space is a homogeneous space of the group
E(3). Exploiting this observation, LieConv [32] and LieTransformer [52] elevate the 3D point cloud to the E(3)
group and perform parameterized group convolution (and attention) operations, ensuring equivariance, to obtain
an equivariant embedding on the group E(3). Finally, by projecting the result back to R3 (taking the quotient),
an equivariant map from R3 to the output space is obtained. The main limitation of Lie group modeling lies
in the convolution operation, which often involves high-dimensional integration and requires approximation
for most groups. For more in-depth insights into the properties of convolution on groups, we refer readers to
[5]. Another lifting of R3 is to lift it to the SO(3) frame bundle, such that the SO(3) group transforms one
orthonormal frame to another orthonormal frame transitively. This lifting also inspires the design of [19, 20].
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G Expressive Power: from Invariance to Equivariance

Equivariant neural networks are constructed for equivariant tasks. That is, to approximate an equivariant
function. Compared with ordinary neural networks, a natural question arises: Does an equivariant neural
network have the universal approximation property whiten the equivariant function class? By the novel D-
spanning concept [24], this question is partially answered. The author further proposed two types of equivariant
architectures that can enjoy the D-spanning property: 1. the G-equivariant polynomials enhanced TFN; 2.
the minimal universal architecture constructed by tensor products. Therefore, at least in terms of universal
approximation, an equivariant neural network doesn’t necessarily require irreducible representations and Clebsch-
Gordan decomposition. The reader can check [20] for how to realize the minimal universal architecture in an
invariant way through equivariant frames and tensorized graph neural networks (e.g., [65]). Informally, we
conclude that an invariant graph neural network equipped with a powerful message-passing mechanism can
achieve the universal approximation property. Another proof strategy of the universality of invariant scalars that
doesn’t rely on theories of tensorized graph neural networks can be found in [120].

However, the mainstream GNN is usually based on a 1-hop message passing mechanism (although tensorized
graph neural networks have empirically shown competitive performances in molecular tasks) for computational
efficiency. For 1-hop message passing mechanisms (including node-based transformers), our previous conclusion
no longer holds, and vector (or higher order tensors) updates are necessary for enhancing the expressiveness
power. The reader can consult the concrete example from PaiNN [110] to illustrate this point.

More precisely, We denote the nodes in Figure 1 of [110] as {a : white, b : blue, c : red, d : white}, and we
consider whether the message of b and c received from their 1-hop neighbors can discriminate the two different
geometric structures. For node b, the invariant geometric information we can get from 1-hop neighbors are the
relative distance dab and dbc and their intersection angle α1. Since the relative distances of the two structures
remain equal, only the angle information is useful. Similarly, for node c, we have the intersection angle α2.
Unfortunately, the intersection angles α1 and α2 of the two structures are still the same, and we conclude that
invariant features are insufficient for discriminating the two different structures. On the other hand, [110] showed
that by introducing directional vector features (type-1 equivariant steerable features), we are able to solve the
problem in this special case, which proves the superiority of ’equivariance’ over ’invariance’ within 1-hop
message passing mechanisms. Another invariant way of filling in this type of expressiveness gaps systematically
is to introduce the information of frame transitions FTE, as was demonstrated in [19].

Vector update is just a special case of the more general higher-order tensor updates. To merge general equivariant
tensors into our GNN, we can either utilize tensor products of vector frames [19], or introduce the concepts of
spherical harmonics, which form a complete basis in the sense of irreducible representations of group SO(3)
and O(3). However, to express the output of the tensor product between spherical harmonics as a combination
of spherical harmonics is nontrivial. Fortunately, this procedure has been studied by quantum physicists, which
is named after the Clebsch-Gordan decomposition (coefficients) [93]. Combining these blocks, we can build
convolution or attention-based equivariant graph neural networks, see [37, 73] for detailed constructions.
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H Architecture for Geometric Representation

In this section, we are going to give a brief review of certain advanced geometric models, and a summary of
more methods can be found in Table 12. Meanwhile, we will keep updating more advanced models.

We include all the hyperparameters in this GitHub repository. We are sure that we won’t be able to tune all
the hyperparameters, yet we want to claim that our reported results are reproducible using the hyperparameters
listed above. In the future, we appreciate any contribution to do more searching on this.

Table 12: Categorization on geometric methods. For pretraining methods, the categorization is based on the
pretraining algorithms and backbone models are not considered.

Model Invariance Equivariance

Spherical Frame Vector Frame

Representation

SchNet [109] ✓
DimeNet [68] ✓
SphereNet [89] ✓
GemNet [67] ✓
IEConv [45] ✓
GearNet [142] ✓
ProNet [122] ✓

TFN [35] ✓
SEGNN [4] ✓
SE(3)-Trans [35] ✓
NequIP [3] ✓
Allegro [95] ✓
Equiformer [73] ✓

PaiNN [110] ✓
GVP-GNN [62] ✓
CDConv [29] ✓

EGNN [108] ✓ ✓

Pretraining

GraphMVP [86] ✓
3D InfoMax [114] ✓
GeoSSL-RR [81] ✓
GeoSSL-EBM-NCE [81] ✓
GeoSSL-InfoNCE [81] ✓
GeoSSL-DDM [81] ✓
GeoSSL-DDM-1L [136] ✓
3D-EMGP [59] ✓
MoleculeSDE [79] ✓

Generally, all the algorithms can be classified into two categories: SE(3)-invariant and SE(3)-equivariant. Note
that, rigorously, SE(3)-invariant is also SE(3)-equivariant. Here we follow the definition in [37]3:

• SE(3)-invariant models only operate on scalars (l = 0) which interact thought simple scalar multi-
plication. These scalars include pairwise distance, triplet-wise angle, etc, that will not change under
rotation. In other words, the SE(3)-invariant pre-compute the invariant features and throw away the
coordinate system.

• SE(3)-equivariant models keep the coordinate system and if the coordinate system changes, the outputs
change accordingly. These models have been believed to empower larger model capacity [3, 37] with
l > 0 quantities.

There are other variants, like the activation functions, the number of layers, normalization layers, etc. In this
section, we will stick to the key module, i.e., the SE(3)-invariant and SE(3)-equivariant modules for each
backbone model.

The aggregation function is the same as:
h′
i = aggregatej∈N (i)(mij). (16)

In the following, we will be mainly discussing the message-passing function as below.
3Also a video by Tess et al, link is here.

34

https://github.com/chao1224/Geom3D
https://www.youtube.com/watch?v=q9EwZsHY1sk


H.1 Invariant Models

SchNet SchNet [109] simply handles a molecule by feeding in the pairwise distance and throws them into the
message-passing style GNN.

mij = MLP(hj ,RBF(dij)). (17)
where RBF(·) is the RBF kernel.

DimeNet The directional message passing neural network (DimeNet and DimeNet++) [69]. The message
passing function in DimeNet is two-hop instead of one-hop. Such message-passing step is similar to directed
message-passing neural network (D-MPNN) [132], and it can reduce the redundancy during the message passing
process.

ml+1
ji =

∑
k∈Nj\{i}

MLP(ml
ji,RBF(dji), SBF(dkj , α∠kij)), (18)

where SBFln(dkj , α∠kij) =
√

2
c3j2

l+1
(zln)

jl(
zln
c
dkj)Y

0
l (α) is the spherical Fourier-Bessel (spherical harmon-

ics) basis, a joint 2D basis for distance dkj and angle α∠kij .

SphereNet SphereNet [89] is an extension of DimeNet by further modeling the dihedral angle. It first adopts
the spherical Fourier-Bessel (spherical harmonics) basis for dihedral angle modeling, namely

SBF(d, θ, ϕ) = jl(
βln

c
d)Y m

l (θ, ϕ). (19)

In addition, the basic operation of SphereNet is based on the quadruplets: r, s, q1, and these three nodes formulate
a reference plan to provide the polar angle to the point q2. However, SphereNet provides an acceleration module,
by projecting all the neighborhoods of s, in an anticlockwise direction, and the reference plan for each node
qi is determined by r, s and qi−1. Thus, the computational complexity is reduced by one order of magnitude.
SphereNet further considers the following for distance and angle modeling:

CBFln(dkj , α∠kij) =

√
2

c3j2l+1(zln)
jl(

zln
c

dkj)Y
0
l (α), RBFln(dkj) =

√
2

c

sin(nπ
c
d)

d
. (20)

GemNet GemNet [67] further extends DimeNet and SphereNet. It explicitly models the dihedral angle.
Notice that both GemNet and SphereNet are using the SBF for dihedral angle modeling, yet the difference is that
GemNet is using edge-based 2-hop information, i.e., the torsion angle, while SphereNet is using the edge-based
1-hop information. Thus, GemNet is expected to possess richer information, while the trade-off is the larger
computational efficiency (by one order of magnitude): GemNet has the complexity of O(nk3) while SphereNet
is O(nk2).

GearNet and ProNet for Macromolecules The invariant modeling for macromolecules follows the
same strategy as the previous geometric models. The only difference, as illustrated in Appendix A, is that the
modeling particles are the protein backbones (N − Cα − C) or residues (Cα). GearNet [142] and ProNet [122]
are modeling the pairwise distance and dihedral angles at different scales.

H.2 Equivariant Models with Spherical Frame Basis

TFN Tensor field network (TFN) [112] first introduces using the SE(3)-equivariance group symmetry for
modeling the geometric molecule data. As will be introduced later, the translation-equivariance can be easily
achieved by considering the relative coordinates, i.e., r⃗ = ri − rj . Then the problem is simplified to design
an SO(3)-equivariant model. To handle this, TFN first proposes a general framework by using the spherical
harmonics as the basis satisfying the following for all a ∈ SO(3) and r̂:

Y l
m(R(a)r̂) =

l∑
m′=−l

D
(l)

mm′(a)Y
(l)

m′ (r̂), (21)

where r̂ = r⃗/∥r⃗∥, and Dl is the irreducible representations of SO(3) to (2l + 1)× (2l + 1)-dim matrices (i.e.,
the Wigner-D matrices). This is one design criterion for SE(3)-equivariant neural networks with the spherical
harmonics frame. In specific, to design an SE(3)-equivariant network, we take the following form:

F (r⃗) = W (r)Y (r̂), (22)

where r = ∥r⃗∥, W (·) is the learnable function. Thus we are separating the spherical harmonics basis and the
radial signal. For modeling, we only need to learn the W (·) on the radial. Then we use the Clebsch-Gordan
tensor product for message passing on node i, which is:

vi = vi +
∑

j∈N (i)

F (r⃗ij)⊗ vj , (23)
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where ⊗ is the Clebsch-Gordan tensor product. Note that for brevity and to give the audience a high-level idea
of the spherical frame basis modeling, we omit the rotation order and the channel index in Eqs. (22) and (23).
First, we want to acknowledge that the rotation order is the key to conducting the message passing along tensors,
and please refer to the original paper for details. Then for the channel or depth of the message passing layers
(notation c in the TFN paper), they are important to expand the model capacity.

To sum up, by far, we can observe that TFN only considers the pairwise information (i.e., 1-hop neighborhood)
for SE(3)-equivariance.

SE(3)-Transformer SE(3)-Transformer [35] extends the TFN by introducing an attention score, i.e.,

vi = vi +
∑

j∈N (i)

αijF (r⃗ij)⊗ vj , (24)

where αij is the attention score.

To calculate the attention score, first, we need to define the following:

qi =
⊕
l≥0

∑
k≥0

W lk
Q vk

i , kij =
⊕
l≥0

∑
k≥0

F lk
K (rj − ri)⊗ vk

j , (25)

where k and l correspond to the rotation order of the input and output tensor, WQ is a learnable linear matrix, FK

follows the same formation as Eq. (22), and
⊕

is the direct sum. Then we can obtain the attention coefficients
with dot product as:

αij =
exp(qT

i kij)∑
j′∈Ni\i exp(q

T
i kij′)

(26)

Equiformer SE(3)-Trans adopts the dot product attention, and Equiformer [73] extends this with an MLP
attention and with higher efficiency. We also want to mention that during modeling, Equiformer has an option of
adding extra atom and bond information, and we set this hyperparameter as False for a fair comparison when
comparing with other geometric models.

NequIP Neural Equivariant Interatomic Potentials (NequIP) [3] is a follow-up of TFN, which mainly focuses
on improving the force prediction. Originally, TFN was directly predicting the l = 1 tensor for the force
prediction. In NequIP, the output only includes the l = 1 tensor, while the force is obtained by taking the
gradient with respect to the energy.

There are also other minor architecture design updates, such as adding the skip-connection [44]. Please refer [3]
for more details.

Allegro Allegro [95] is a follow-up of NequIP by further modeling a local frame around each atom. In
specific, the standard message-passing framework is based on the nodes (or atoms here), while Allegro focuses
on the edge-level information.

Difference with Spherical Harmonics in Invariant Modeling As you may notice, the invariant
models also adopt the spherical harmonics (or spherical Fourier-Bessel), e.g., Eq. (18) in DimeNet and Eq. (19)
in SphereNet and GemNet. However, their usage of the spherical harmonics is different from the spherical frame
models discussed in this section.

• In invariant models, the spherical harmonics are used for embedding the angle information, either
bond angles or dihedral angles. Such angles are type-0 features, and they are invariant w.r.t. the SO(3)
group. Note that this embedding is related to quantum mechanics since the spherical harmonics appear
as general solutions of the Schrödinger equations.

• In the spherical frame models, the spherical harmonics are used to serve as the basis for transforming
the relative coordinates into tensors, utilizing the fact that spherical harmonics are equivariant functions
with respect to the SO(3) group.

Thus, they may follow the same numerical calculation, but their physical meanings are different.

H.3 Equivariant Models with Vector Frame Basis

From a very high-level view, we can view this as first constructing the tensor and then conducting the message-
passing between the type-0 tensor and type-1 tensor.

EGNN E(n)-equivariant graph neural network (EGNN) [108] has a very neat design to achieve the E(n)-
equivariance property. It constructs the message update function for both the atom positions and atom attributes
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simultaneously. Concretely, for edge embedding e, input node embedding h and coordinate v = r, the l-th
layer updates are:

mij = We

(
hl

i,h
l
j , ∥vl

i − vl
j∥, eij

)
vl+1
i = vl

i +
∑
j ̸=i

(vl
i − vl

j),Wv(mij)

mi =
∑
j ̸=i

mij

hl+1
i = Wh(h

l
i,mi),

(27)

where We,Wv,Wh are learnable parameters. The equivariance can be proved easily and with good efficiency.
However, one inherent limitation of EGNN is that it is essentially a global vector frame model and utilizes
only one projection (scalarization) dimension, and it does not satisfy the reflection-antisymmetric condition for
certain tasks like binding.

PaiNN Polarizable atom interaction neural network (PaiNN) [110] utilizes a multi-channel vector aggregation
method, which contains more expressive equivariant vector information than Eq. (27). More precisely, each node
of PaiNN maintains a multi-channel vector: vi ∈ RF×3, where F denotes the channel number. Comparing with
Eq. (27), the vi ∈ R1×3 of EGNN restricted the expressiveness power. [19] provides a geometric explanation
of the updating method of PaiNN ((9) of [110]) by the frame transition functions between local vector frames.

CDConv for Macromolecules CDConv [29] models the residue-level information of proteins. In specific,
it utilizes the 3D coordinates of Cα as the surrogates to the residue coordinates. Then it builds an orthogonal
frame based on the 1D residue sequence. The experimental results show that it can reach promising results on
protein structure tasks.
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I Complete Results

In the main body, due to space limitations, we cannot provide the results on certain tasks. Here we would like to
provide more comprehensive results.

For the results not listed either in the main body or in this section, there are two possible reasons for us to exclude
them: (1) We cannot reproduce them using the reported hyperparameters in the original paper, and we may need
to do more hyperparameter tuning as the next steps. (2) Some models are too large to fit in the GPU memory,
even with batch-size=1.

I.1 Small Molecules: MD17 and rMD17

In Table 2, we select 6 subtasks in MD17 and 6 subtasks in rMD17. Next we will show the complete results of
MD17 and rMD17 are in Tables 13 and 14.

Table 13: Results on 8 energy ( kcal
mol

) and force ( kcal
mol·Å ) prediction tasks in MD17. The evaluation is the mean

absolute error. No data normalization is used.
Model Energy/Force Aspirin ↓ Benzene ↓ Ethanol ↓ Malonaldehyde ↓ Naphthalene ↓ Salicylic ↓ Toluene ↓ Uracil ↓

SchNet Energy 0.475 0.117 0.109 0.300 0.167 0.212 0.149 0.170
Force 1.203 0.380 0.386 0.794 0.587 0.826 0.568 0.773

DimeNet++ Energy 4.168 0.893 1.238 1.385 1.846 2.445 1.484 1.522
Force 7.212 0.603 0.753 1.842 8.515 1.752 1.037 1.632

EGNN Energy 17.892 1.142 0.436 0.896 12.177 6.964 4.051 0.854
Force 3.042 0.736 0.924 1.566 1.136 1.177 1.202 1.367

PaiNN Energy 27.626 0.095 0.063 0.102 0.622 0.371 0.165 0.111
Force 0.572 0.053 0.230 0.338 0.132 0.288 0.141 0.201

GemNet-T Energy 0.684 0.097 4.598 4.966 0.482 0.128 0.098 1.349
Force 0.558 0.089 0.219 0.433 0.212 0.326 0.174 486.612

SphereNet Energy 0.244 0.107 1.603 1.559 0.167 0.188 0.113 7.115
Force 0.546 0.135 0.168 0.667 0.315 0.479 0.194 0.442

SEGNN Energy 17.774 0.086 0.151 0.247 0.655 2.173 0.624 0.259
Force 9.003 0.265 0.893 1.249 0.895 2.220 1.138 0.948

NequIP Energy 8.333 0.355 0.971 2.293 1.032 2.952 1.303 1.266
Force 23.769 2.383 5.832 12.099 5.247 14.048 6.800 8.060

Allegro Energy 1.138 0.154 0.258 1.330 0.824 1.114 0.441 0.613
Force 3.405 0.823 1.412 4.191 3.743 4.934 1.968 3.544

Equiformer Energy 0.308 0.075 0.096 0.183 0.097 0.189 0.209 0.106
Force 0.286 0.045 0.142 0.230 0.068 0.200 0.080 0.141

Table 14: Results on 10 energy ( kcal
mol

) and force ( kcal
mol·Å ) prediction tasks in rMD17. The evaluation is the mean

absolute error. Data normalization is used.
Model Energy/Force Aspirin ↓ Azobenzene ↓ Benzene ↓ Ethanol ↓ Malonaldehyde ↓ Naphthalene ↓ Paracetamol ↓ Salicylic ↓ Toluene ↓ Uracil ↓

SchNet Energy 0.534 1.818 0.111 1.757 0.260 0.124 8.138 2.618 0.119 7.029
Force 1.243 3.596 0.233 0.449 0.862 0.587 2.320 0.878 0.574 0.762

DimeNet++ Energy 2.438 3.955 0.741 1.456 2.317 1.648 2.261 1.555 1.210 2.320
Force 2.009 1.243 0.340 1.213 7.029 0.629 1.047 0.934 0.921 3.181

EGNN Energy 17.350 21.333 0.315 0.402 0.534 12.164 26.902 7.794 15.021 1.669
Force 3.825 2.330 0.529 0.989 1.334 1.183 2.313 1.571 1.165 1.323

PaiNN Energy 30.156 0.107 0.010 1.170 0.070 5.297 0.117 5.219 0.045 2.478
Force 0.573 0.326 0.032 0.316 0.377 0.161 0.440 0.321 0.231 0.235

GemNet-T Energy 5.389 7.770 0.007 1.615 9.496 0.031 2.173 21.411 959.745 994.036
Force 0.555 0.347 0.033 0.233 0.337 0.154 0.388 0.371 0.400 1.165

SphereNet Energy 0.304 0.257 0.052 0.072 0.138 0.093 0.183 0.771 20.479 12.211
Force 0.622 0.532 0.076 0.217 0.500 0.279 0.482 2.088 0.254 0.959

SEGNN Energy 15.721 3.474 0.270 0.130 0.182 1.110 4.197 1.494 0.814 1.115
Force 8.549 2.579 0.174 0.846 1.185 0.926 3.191 2.056 1.241 0.966

NequIP Energy 9.618 1.993 3.048 0.936 2.313 2.089 5.136 3.302 1.306 1.738
Force 22.904 6.406 1.523 6.027 12.372 5.529 17.574 15.693 7.094 10.220

Allegro Energy 1.366 0.872 0.029 1.002 0.417 1.756 0.944 1.035 0.437 0.387
Force 3.186 2.763 0.237 2.799 2.125 3.815 3.081 4.781 2.048 1.939

Equiformer Energy 0.375 0.127 0.027 0.064 0.085 0.069 0.215 0.143 0.104 0.200
Force 0.305 0.132 0.020 0.162 0.240 0.070 0.258 0.218 0.077 0.149
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I.2 Geometric Pretraining

Single-modal Pretraining. Recent studies have started to explore single-modal geometric pretraining on
molecules. The GeoSSL paper [80] covers a wide range of geometric pretraining algorithms. The type prediction,
distance prediction, and angle prediction predict the masked atom type, pairwise distance, and bond angle,
respectively. The 3D InfoGraph predicts whether the node- and graph-level 3D representation are for the same
molecule. GeoSSL is a novel geometric pretraining paradigm that maximizes the mutual information (MI)
between the original conformation g1 and augmented conformation g2, where g2 is obtained by adding small
perturbations to g1. RR, InfoNCE, and EBM-NCE optimize the objective in the latent representation space,
either generative or contrastive. GeoSSL-DDM [80] optimizes the same objective function using denoising
score matching. GeoSSL-DDM-1L [136] is a special case of GeoSSL-DDM with one layer of denoising.
3D-EMGP [60] geometric pretraining is specifically built on equivariant models, and the goal is to denoise the
3D coordinates directly using a diffusion model. We illustrate these seven algorithms in Fig. 4.

2D-3D Multi-modal Pretraining. Another promising direction is the multi-modal pretraining on topology
and geometry. GraphMVP [86] first proposes one contrastive objective (EBM-NCE) and one generative
objective (variational representation reconstruction, VRR) to optimize the mutual information between the 2D
and 3D modalities. Specifically, VRR does the 2D and 3D reconstruction in the latent space. 3D InfoMax [114]
is a special case of GraphMVP, with the contrastive part only. MoleculeSDE [79] extends GraphMVP by
introducing two SDE models for solving the 2D and 3D reconstruction. An illustration of them is in Fig. 8.

(h) 2D-3D Representation Reconstruction (i) 2D-3D Reconstruction (j) 2D-3D Contrastive SSL

3D Graph

2D Graph

3D Graph 2D & 3D Graph

2D & 3D Graph2D Graph

PositiveInvariant or Equivariant Representation Negative Reconstruct Representation

h(  )t

h(  )t

h(  )t

h(   )g h(   )g

h(   )gh(  )t

h(   )g

Figure 8: Pipelines for three multi-modal geometric pretraining methods.
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In Table 7, we show the pretraining results of using SchNet as the backbone and fine-tuning on QM9. The
pretraining results of using SchNet as the backbone and fine-tuning on MD17 are in Table 15. The pretraining
results of using PaiNN as the backbone and fine-tuning on QM9 and MD17 are in Tables 16 and 17. For MD17,
as will be discussed in Appendix J, we do not consider the data normalization trick. Notice that some pretraining
results are skipped due to the collapsed performance.

Table 15: Pretraining results on eight force prediction tasks from MD17, and the backbone model is SchNet.
We take 1K for training, 1K for validation, and 48K to 991K molecules for the test concerning different tasks.
The evaluation is mean absolute error, and the best results are marked in bold and bold, respectively.

Pretraining Aspirin ↓ Benzene ↓ Ethanol ↓ Malonaldehyde ↓ Naphthalene ↓ Salicylic ↓ Toluene ↓ Uracil ↓
– (random init) 1.203 0.380 0.386 0.794 0.587 0.826 0.568 0.773
Supervised 1.867 0.434 0.566 1.106 0.637 13.037 0.607 0.759
Type Prediction 1.383 0.402 0.450 0.879 0.622 1.028 0.662 0.840
Distance Prediction 1.427 0.396 0.434 0.818 0.793 0.952 0.509 1.567
Angle Prediction 1.542 0.447 0.669 1.022 0.680 1.032 0.623 0.768
3D InfoGraph 1.610 0.415 0.560 0.900 0.788 1.278 0.768 1.110
GeoSSL-RR 1.215 0.393 0.514 1.092 0.596 0.847 0.570 0.711
GeoSSL-InfoNCE 1.132 0.395 0.466 0.888 0.542 0.831 0.554 0.664
GeoSSL-EBM-NCE 1.251 0.373 0.457 0.829 0.512 0.990 0.560 0.742
3D InfoMax 1.142 0.388 0.469 0.731 0.785 0.798 0.516 0.640
GraphMVP 1.126 0.377 0.430 0.726 0.498 0.740 0.508 0.620
GeoSSL-DDM-1L 1.364 0.391 0.432 0.830 0.599 0.817 0.628 0.607
GeoSSL-DDM 1.107 0.360 0.357 0.737 0.568 0.902 0.484 0.502
MoleculeSDE (VE) 1.112 0.304 0.282 0.520 0.455 0.725 0.515 0.447
MoleculeSDE (VP) 1.244 0.315 0.338 0.488 0.432 0.712 0.478 0.468

Table 16: Pretraining results on 12 quantum mechanics prediction tasks from QM9, and the backbone model is
PaiNN. We take 110K for training, 10K for validation, and 11K for testing. The evaluation is mean absolute
error, and the best and the second best results are marked in bold and bold, respectively.

Pretraining α ↓ ∇E ↓ EHOMO ↓ ELUMO ↓ µ ↓ Cv ↓ G ↓ H ↓ R2 ↓ U ↓ U0 ↓ ZPVE ↓
– 0.049 42.73 24.46 20.16 0.016 0.025 8.43 7.88 0.169 8.18 7.63 1.419
Supervised 0.161 64.30 23.41 19.31 0.015 0.024 9.01 9.53 0.152 16.17 9.43 1.470
Distance Prediction 0.049 37.23 22.75 18.26 0.014 0.030 9.31 9.35 0.143 9.85 9.07 1.566
3D InfoGraph 0.047 44.25 24.06 18.54 0.015 0.052 8.81 7.97 0.143 8.68 8.08 1.416
GeoSSL-RR 0.046 41.20 23.93 19.36 0.016 0.025 8.32 8.17 0.174 7.99 8.20 1.438
GeoSSL-InfoNCE 0.045 39.29 23.23 18.40 0.015 0.024 8.34 8.37 0.127 7.45 8.34 1.356
GeoSSL-EBM-NCE 0.045 38.87 22.71 17.89 0.014 0.082 8.28 7.35 0.130 7.85 7.68 1.338
3D InfoMax 0.046 36.97 21.31 17.69 0.014 0.024 8.38 7.36 0.135 8.60 7.99 1.453
GraphMVP 0.044 36.03 20.71 17.02 0.014 0.024 8.31 7.36 0.132 7.57 7.34 1.337
GeoSSL-DDM-1L 0.045 36.13 20.59 17.26 0.014 0.024 9.45 8.43 0.128 8.88 8.16 1.380
GeoSSL-DDM 0.043 35.55 20.57 16.95 0.014 0.024 8.25 7.42 0.127 7.36 7.34 1.334
3D-EMGP (Gaussian) 0.277 40.56 21.25 23.99 0.014 0.039 9.16 9.14 0.340 9.31 8.59 1.433
MoleculeSDE (VE) 0.044 34.67 20.14 17.05 0.013 0.023 7.64 7.05 0.139 6.88 6.79 1.273
MoleculeSDE (VP) 0.042 35.09 20.14 16.78 0.013 0.023 8.17 7.01 0.133 7.30 7.05 1.315

Table 17: Results on eight force prediction tasks from MD17, and the backbone model is PaiNN. We take 1K
for training, 1K for validation, and 48K to 991K molecules for the test concerning different tasks. The evaluation
is mean absolute error, and the best results are marked in bold and bold, respectively.

Pretraining Aspirin ↓ Benzene ↓ Ethanol ↓ Malonaldehyde ↓ Naphthalene ↓ Salicylic ↓ Toluene ↓ Uracil ↓
– 0.572 0.053 0.230 0.338 0.132 0.288 0.141 0.201
Supervised 0.509 0.056 0.181 0.330 – 0.284 0.163 –
Distance Prediction 0.480 0.053 0.200 0.296 0.131 0.265 0.171 0.168
3D InfoGraph 0.554 0.067 0.249 0.353 0.177 0.331 0.179 0.213
GeoSSL-RR 0.559 0.051 0.262 0.368 0.146 0.303 0.154 0.202
GeoSSL-InfoNCE 0.428 0.051 0.197 0.337 0.127 0.247 0.136 0.169
GeoSSL-EBM-NCE 0.435 0.048 0.198 0.295 0.143 0.245 0.132 0.172
3D InfoMax 0.479 0.052 0.220 0.344 0.138 0.267 0.155 0.174
GraphMVP 0.465 0.050 0.205 0.316 0.119 0.242 0.136 0.168
GeoSSL-DDM-1L 0.436 0.048 0.209 0.320 0.119 0.249 0.132 0.177
GeoSSL-DDM 0.427 0.047 0.188 0.313 0.120 0.240 0.129 0.167
3D-EMGP (Gaussian) 0.487 0.048 0.217 0.329 0.151 0.299 0.141 0.182
MoleculeSDE (VE) 0.421 0.043 0.195 0.284 0.105 0.236 0.123 0.158
MoleculeSDE (VP) 0.443 0.045 0.191 0.301 0.131 0.261 0.140 0.159
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J Ablation Studies

We have the following challenges in the literature: (1) Different data preprocessors, including data augmentations
and normalization strategies. (2) Different data splits, i.e., with different seeds or different train-valid-test sizes.
(3) Different running epochs. (4) Different optimizers (SGD, Adam, or EMA) and learning rate schedulers
(cosine annealing or cyclic). These factors can significantly affect performance, and Geom3D is a useful tool for
careful scrutinization. In this section, we are mainly focusing on the first point, i.e., the tricks that are mainly
related to the specific applications. For the following factors, we adopt a fixed setting, i.e., the same seeds for
tasks if using random splits, fixed epochs for most of the geometric modelings, Adam as the optimizer, and
cosine annealing learning rate scheduler. We would like to acknowledge that the EMA optimizer and cyclic
learning rate scheduler can be beneficial for certain geometric models, yet this is more related to the optimization
process and is beyond the scope of this work. We will explore this in future work.

41



J.1 Ablation Studies on the Effect of Latent Dimension d

Recent works [117, 121] have found that the latent dimensions play an important role in molecule pretraining,
and here we list the comparison between latent dimension d = 128 and latent dimension d = 300.

• The performance comparison for QM9 is in Table 18, and we visually plot the performance gap
MAE(d = 128) - MAE(d = 300) in Fig. 9. The results with d = 300 are reported in Table 1.

• The performance (w/ normalization) comparison for MD17 and rMD17 is in Tables 19 to 22. The
results with d = 300 are reported in Tables 2, 13 and 14 except NequIP and Allegro. Their results
in Appendix J.3 (w/ normalization) are reported Table 2.

• The performance comparison for COLL is in Table 23, and results with d = 300 are reported
in Table 3.

• The performance comparison for LBA & LEP is in Tables 24 and 25, and results with d = 300 are
reported in Table 4.

Table 18: Ablation studies of latent dimension d on QM9. 110K for training, 10K for validation, and 11K for
testing. The evaluation metric is the mean absolute error (MAE).

Model d α ↓ ∇E ↓ EHOMO ↓ ELUMO ↓ µ ↓ Cv ↓ G ↓ H ↓ R2 ↓ U ↓ U0 ↓ ZPVE ↓

SchNet 128 0.068 49.66 31.91 26.09 0.030 0.032 14.17 14.16 0.126 14.11 14.27 1.684
300 0.060 44.13 27.64 22.55 0.028 0.031 14.19 14.05 0.133 13.93 13.27 1.749

DimeNet++ 128 0.046 37.93 20.99 17.50 0.028 0.022 7.33 6.72 0.299 6.38 7.26 1.260
300 0.044 36.22 20.01 16.66 0.028 0.022 7.45 6.14 0.323 6.33 7.18 1.118

SE(3)-Trans 128 0.144 55.36 34.59 34.05 0.051 0.064 64.85 76.32 1.763 69.73 68.22 5.448
300 0.137 56.52 34.65 34.41 0.050 0.063 65.28 70.70 1.747 68.92 68.88 5.428

EGNN 128 0.065 49.07 29.19 25.00 0.028 0.031 11.61 10.52 0.074 10.51 10.61 1.544
300 0.062 49.56 30.08 24.98 0.029 0.030 10.01 9.14 0.089 9.28 9.08 1.519

PaiNN 128 0.049 44.02 25.92 20.87 0.016 0.025 10.32 7.30 0.126 7.60 7.51 1.295
300 0.049 42.73 24.46 20.16 0.016 0.025 8.43 7.88 0.169 8.18 7.63 1.419

GemNet-T 128 0.042 34.49 17.82 14.80 0.020 0.021 8.48 7.05 0.246 6.94 6.97 1.201
300 0.041 35.46 17.85 15.86 0.021 0.023 7.61 7.08 0.271 6.42 5.88 1.232

SphereNet 128 0.050 40.36 22.49 19.29 0.026 0.026 9.06 7.49 0.248 7.53 7.79 1.560
300 0.047 38.93 21.45 18.25 0.027 0.025 8.16 13.68 0.288 6.77 7.43 1.295

SEGNN 128 0.056 41.40 22.40 20.77 0.024 0.029 13.11 12.99 0.481 13.82 13.71 1.596
300 0.048 33.61 17.66 17.01 0.021 0.026 11.60 12.45 0.404 11.29 12.20 1.590

Equiformer 128 0.051 33.52 17.58 16.83 0.015 0.023 17.13 13.14 0.408 15.23 13.63 2.182
300 0.051 33.46 17.93 16.85 0.015 0.023 14.49 14.60 0.433 14.88 13.78 2.342

(a) Task α (b) Task ∇E (c) Task EHOMO (d) Task ELUMO

(e) Task µ (f) Task Cv (g) Task G (h) Task H

(i) Task R2 (j) Task U (k) Task U0 (l) Task ZPVE
Figure 9: Performance gap of MAE(d = 128) - MAE(d = 300) in QM9.
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Table 19: Ablation studies of latent dimension (d = 128) on MD17. The evaluation is the mean absolute error.
No data normalization is used.

Model Energy / Force Aspirin ↓ Benzene ↓ Ethanol ↓ Malonaldehyde ↓ Naphthalene ↓ Salicylic ↓ Toluene ↓ Uracil ↓

SchNet Energy 0.695 0.118 0.182 0.338 0.210 0.232 0.157 0.192
Force 1.500 0.399 0.663 1.157 0.759 0.896 0.594 0.906

DimeNet++ Energy 2.104 1.053 0.971 1.180 1.472 1.901 1.988 1.754
Force 2.209 0.476 0.636 1.420 1.293 1.071 0.924 1.070

EGNN Energy 91.490 0.663 1.439 1.385 17.064 31.006 7.190 1.409
Force 19.211 1.049 1.983 2.380 2.185 3.957 2.453 2.172

PaiNN Energy 0.209 0.097 0.070 0.093 0.235 0.127 0.133 0.107
Force 0.549 0.053 0.198 0.328 0.134 0.284 0.146 0.180

GemNet-T Energy 1.299 0.096 8.418 0.101 0.116 0.141 0.095 11.270
Force 0.518 0.050 0.226 0.380 0.107 0.259 0.118 542.330

SphereNet Energy 0.235 0.104 0.327 0.136 0.183 0.771 0.116 0.147
Force 0.500 0.114 0.199 0.377 0.416 2.033 0.198 0.303

SEGNN Energy 10.030 0.081 0.088 0.191 0.678 1.699 0.541 0.260
Force 6.793 0.193 0.456 0.832 0.734 1.828 0.957 0.654

Allegro Energy 2.380 0.278 0.386 0.583 0.732 1.131 0.615 1.357
Force 6.537 1.777 1.916 2.572 3.359 5.063 3.022 6.974

Equiformer Energy 0.708 0.076 0.056 0.102 0.097 0.191 0.094 0.103
Force 0.282 0.044 0.142 0.229 0.068 0.202 0.080 0.140

Table 20: Ablation studies of latent dimension (d = 300) on MD17. The evaluation is the mean absolute error.
No data normalization is used.

Model Energy/Force Aspirin ↓ Benzene ↓ Ethanol ↓ Malonaldehyde ↓ Naphthalene ↓ Salicylic ↓ Toluene ↓ Uracil ↓

SchNet Energy 0.475 0.117 0.109 0.300 0.167 0.212 0.149 0.170
Force 1.203 0.380 0.386 0.794 0.587 0.826 0.568 0.773

DimeNet++ Energy 4.168 0.893 1.238 1.385 1.846 2.445 1.484 1.522
Force 7.212 0.603 0.753 1.842 8.515 1.752 1.037 1.632

EGNN Energy 17.892 1.142 0.436 0.896 12.177 6.964 4.051 0.854
Force 3.042 0.736 0.924 1.566 1.136 1.177 1.202 1.367

PaiNN Energy 27.626 0.095 0.063 0.102 0.622 0.371 0.165 0.111
Force 0.572 0.053 0.230 0.338 0.132 0.288 0.141 0.201

GemNet-T Energy 0.684 0.097 4.598 4.966 0.482 0.128 0.098 1.349
Force 0.558 0.089 0.219 0.433 0.212 0.326 0.174 486.612

SphereNet Energy 0.244 0.107 1.603 1.559 0.167 0.188 0.113 7.115
Force 0.546 0.135 0.168 0.667 0.315 0.479 0.194 0.442

SEGNN Energy 17.774 0.086 0.151 0.247 0.655 2.173 0.624 0.259
Force 9.003 0.265 0.893 1.249 0.895 2.220 1.138 0.948

Allegro Energy 1.577 0.117 0.308 0.481 0.899 1.088 0.406 0.490
Force 4.328 0.358 1.613 2.185 3.841 4.731 1.866 2.627

Equiformer Energy 0.308 0.075 0.096 0.183 0.097 0.189 0.209 0.106
Force 0.286 0.045 0.142 0.230 0.068 0.200 0.080 0.141

(a) Task Aspirin (b) Task Benzene (c) Task Ethanol (d) Task Malonaldehyde

(e) Task Naphthalene (f) Task Salicylic (g) Task Toluene (h) Task Uracil

Figure 10: Performance gap of MAE(d = 128) - MAE(d = 300) in MD17.
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Table 21: Ablation studies of latent dimension (dim=128) on rMD17. The evaluation is the mean absolute
error. No data normalization is used.

model Energy / Force Aspirin ↓ Azobenzene ↓ Benzene ↓ Ethanol ↓ Malonaldehyde ↓ Naphthalene ↓ Paracetamol ↓ Salicylic ↓ Toluene ↓ Uracil ↓

SchNet Energy 0.764 1.332 0.388 0.226 0.380 0.205 1.298 1.759 0.166 0.173
Force 1.662 3.071 0.318 0.782 1.109 0.805 2.344 0.950 0.693 0.943

DimeNet++ Energy 1.719 4.806 0.506 10.867 0.845 1.209 10.876 2.020 1.519 4227.668
Force 1.253 1.033 0.307 20.860 0.632 0.602 1.123 1.022 0.991 33549.676

EGNN Energy 89.661 51.554 4.893 1.065 9.339 32.901 77.996 27.114 12.766 4.519
Force 20.531 4.436 0.912 2.305 3.056 2.287 9.484 13.117 2.567 2.482

PaiNN Energy 1.949 5.733 0.036 0.606 1.626 2.610 0.541 0.831 0.158 0.181
Force 3.189 0.940 0.143 0.727 1.158 0.851 1.636 1.450 0.682 0.875

GemNet-T Energy 1.546 0.073 0.006 1.060 6.610 0.025 1.972 14.837 0.023 36.966
Force 0.555 0.265 0.026 0.211 0.425 0.112 0.368 0.308 0.120 0.233

SphereNet Energy 21.142 0.542 0.678 1.226 0.423 0.176 0.255 6.218 0.119 0.143
Force 0.666 0.781 0.102 0.313 0.419 0.500 0.659 2.244 0.334 0.425

SEGNN Energy 11.828 2.729 0.018 0.081 0.161 1.333 3.982 1.476 1.443 0.221
Force 7.543 2.014 0.139 0.509 0.934 0.845 3.338 1.934 1.028 0.723

Allegro Energy 6.142 2.221 0.094 0.465 0.592 1.320 2.196 1.239 0.584 1.739
Force 4.891 5.727 0.960 2.166 2.630 3.546 4.571 5.949 2.885 6.610

Equiformer Energy 0.480 0.119 0.031 0.085 0.098 0.065 0.848 0.261 0.082 0.214
Force 0.303 0.132 0.020 0.163 0.242 0.069 0.260 0.217 0.077 0.150

Table 22: Ablation studies of latent dimension (d = 300) on rMD17. The evaluation is the mean
absolute error. No data normalization is used.

Model Energy/Force Aspirin ↓ Azobenzene ↓ Benzene ↓ Ethanol ↓ Malonaldehyde ↓ Naphthalene ↓ Paracetamol ↓ Salicylic ↓ Toluene ↓ Uracil ↓

SchNet Energy 0.534 1.818 0.111 1.757 0.260 0.124 8.138 2.618 0.119 7.029
Force 1.243 3.596 0.233 0.449 0.862 0.587 2.320 0.878 0.574 0.762

DimeNet++ Energy 2.438 3.955 0.741 1.456 2.317 1.648 2.261 1.555 1.210 2.320
Force 2.009 1.243 0.340 1.213 7.029 0.629 1.047 0.934 0.921 3.181

EGNN Energy 17.350 21.333 0.315 0.402 0.534 12.164 26.902 7.794 15.021 1.669
Force 3.825 2.330 0.529 0.989 1.334 1.183 2.313 1.571 1.165 1.323

PaiNN Energy 30.156 0.107 0.010 1.170 0.070 5.297 0.117 5.219 0.045 2.478
Force 0.573 0.326 0.032 0.316 0.377 0.161 0.440 0.321 0.231 0.235

GemNet-T Energy 5.389 7.770 0.007 1.615 9.496 0.031 2.173 21.411 959.745 994.036
Force 0.555 0.347 0.033 0.233 0.337 0.154 0.388 0.371 0.400 1.165

SphereNet Energy 0.304 0.257 0.052 0.072 0.138 0.093 0.183 0.771 20.479 12.211
Force 0.622 0.532 0.076 0.217 0.500 0.279 0.482 2.088 0.254 0.959

SEGNN Energy 15.721 3.474 0.270 0.130 0.182 1.110 4.197 1.494 0.814 1.115
Force 8.549 2.579 0.174 0.846 1.185 0.926 3.191 2.056 1.241 0.966

Allegro Energy 1.339 2.441 0.049 0.339 0.651 3.781 0.978 1.356 0.451 2.497
Force 3.861 4.609 0.467 1.579 1.816 3.428 3.693 5.086 2.241 5.183

Equiformer Energy 0.375 0.127 0.027 0.064 0.085 0.069 0.215 0.143 0.104 0.200
Force 0.305 0.132 0.020 0.162 0.240 0.070 0.258 0.218 0.077 0.149

(a) Task Aspirin (b) Task Azobenzene (c) Task Benzene (d) Task Ethanol

(e) Task Malonaldehyde (f) Task Naphthalene (g) Task Paracetamol (h) Task Salicylic

(i) Task Toluene (j) Task Uracil
Figure 11: Performance gap of MAE(d = 128) - MAE(d = 300) in rMD17.
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Table 23: Ablation studies of latent dimension on COLL. 120k for training, 10k for val, 9.48k for
test. The evaluation metric is the mean absolute error (MAE).

Model d energy ↓ force ↓

SchNet 128 0.171 0.135
300 0.178 0.130

DimeNet++ 128 0.049 0.058
300 0.036 0.049

EGNN 128 0.786 0.151
300 1.808 0.234

PaiNN 128 0.047 0.066
300 0.030 0.052

GemNet-T 128 0.022 0.035
300 0.017 0.028

SphereNet 128 0.039 0.049
300 0.032 0.047

SEGNN 128 7.054 0.511
300 7.085 0.642

Equiformer 128 0.034 0.030
300 0.036 0.030

Table 24: Ablation studies of latent dimension (d = 128) on 2 binding affinity prediction tasks. We
select three evaluation metrics for LBA: the root mean squared error (RMSD), the Pearson correlation
(Rp) and the Spearman correlation (RS). LEP is a binary classification task, and we use the area
under the curve for receiver operating characteristics (ROC) and precision-recall (PR) for evaluation.
We run cross validation with 5 seeds and report the mean and std.

Model LBA LEP

RMSD ↓ RP ↑ RC ↑ ROC ↑ PR ↑
SchNet 1.509 ± 0.05 0.510 ± 0.02 0.487 ± 0.01 0.444 ± 0.03 0.391 ± 0.02
DimeNet++ 1.808 ± 0.46 0.557 ± 0.01 0.566 ± 0.01 0.582 ± 0.06 0.494 ± 0.03
EGNN 1.531 ± 0.02 0.452 ± 0.01 0.419 ± 0.01 0.702 ± 0.05 0.603 ± 0.07
PaiNN 1.460 ± 0.03 0.569 ± 0.01 0.564 ± 0.01 0.627 ± 0.07 0.499 ± 0.09
GemNet 130.621 ± 13.90 -0.114 ± 0.54 -0.116 ± 0.55 0.623 ± 0.05 0.552 ± 0.05
SphereNet 1.605 ± 0.02 0.533 ± 0.00 0.527 ± 0.00 0.556 ± 0.05 0.471 ± 0.05
SEGNN 1.422 ± 0.04 0.560 ± 0.02 0.537 ± 0.03 0.582 ± 0.08 0.517 ± 0.09
Equiformer 1.490 ± 0.03 0.552 ± 0.01 0.543 ± 0.01 0.626 ± 0.08 0.530 ± 0.05

Table 25: Ablation studies of latent dimension (d = 300) on 2 binding affinity prediction tasks. We
select three evaluation metrics for LBA: the root mean squared error (RMSD), the Pearson correlation
(Rp) and the Spearman correlation (RS). LEP is a binary classification task, and we use the area
under the curve for receiver operating characteristics (ROC) and precision-recall (PR) for evaluation.
We run cross validation with 5 seeds and report the mean and std.

Model LBA LEP

RMSD ↓ RP ↑ RC ↑ ROC ↑ PR ↑
SchNet 1.521 ± 0.02 0.474 ± 0.01 0.452 ± 0.01 0.450 ± 0.03 0.379 ± 0.03
DimeNet++ 1.672 ± 0.09 0.550 ± 0.01 0.556 ± 0.01 0.590 ± 0.06 0.496 ± 0.05
EGNN 1.494 ± 0.04 0.503 ± 0.04 0.483 ± 0.05 0.657 ± 0.05 0.559 ± 0.05
PaiNN 1.434 ± 0.02 0.583 ± 0.02 0.580 ± 0.02 0.585 ± 0.02 0.432 ± 0.03
GemNet 269.427 ± 148.62 0.029 ± 0.50 0.036 ± 0.51 0.674 ± 0.04 0.565 ± 0.05
SphereNet 1.581 ± 0.02 0.538 ± 0.01 0.529 ± 0.01 0.523 ± 0.04 0.432 ± 0.05
SEGNN 1.416 ± 0.03 0.566 ± 0.02 0.550 ± 0.02 0.574 ± 0.03 0.485 ± 0.03
Equiformer 1.392 ± 0.03 0.598 ± 0.02 0.578 ± 0.02 0.618 ± 0.06 0.510 ± 0.05

J.2 Ablation Study on Data Normalization for Molecular Dynamics Prediction

Allegro [95] and NequIP [3] introduce a normalization strategy for molecular dynamics (energy and force)
prediction on MD17 and rMD17 datasets:

ŷE = yE ∗ Force Mean + Energy Mean ∗ # Atom, (28)

where yE is the original predicted energy, and ŷE is the normalized prediction. We find this trick important
and would like to systematically test it here. Notice that as shown in Appendix J.1, the latent dimension is
an important factor, and here we would like to conduct the ablation studies on both factors.
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• MD17 w/o normalization and d = 128 in Table 19, d = 300 in Table 20. rMD17 w/o normalization
and d = 128 in Table 21, d = 300 in Table 22.

• In the following tables, we test: MD17 w/ normalization and d = 128 in Table 26, d = 300 in Table 27.
rMD17 w/ normalization and d = 128 in Table 28, d = 300 in Table 29.

Table 26: Ablation studies of latent dimension (d = 128) on MD17. The evaluation is the mean absolute error.
Data normalization is used.

Model Energy / Force Aspirin ↓ Benzene ↓ Ethanol ↓ Malonaldehyde ↓ Naphthalene ↓ Salicylic ↓ Toluene ↓ Uracil ↓

SchNet Energy 0.588 0.099 0.072 0.111 0.125 0.207 0.110 0.118
Force 1.008 0.200 0.297 0.491 0.299 0.547 0.346 0.383

DimeNet++ Energy 0.370 0.154 28.604 57144.066 0.289 15.497 0.206 0.317
Force 0.578 0.110 89.512 2119653.000 0.930 90.846 0.540 0.535

EGNN Energy 0.668 0.144 0.470 0.238 0.481 0.462 0.234 0.429
Force 1.249 0.461 1.042 0.827 0.913 0.927 0.631 1.227

PaiNN Energy 0.146 0.095 0.057 0.083 0.113 0.110 0.095 0.104
Force 0.315 0.034 0.157 0.244 0.074 0.177 0.093 0.120

GemNet-T Energy 0.175 0.097 0.055 0.080 0.130 0.112 0.093 0.105
Force 0.284 0.042 0.141 0.191 0.082 0.167 0.080 0.120

SphereNet Energy 0.168 0.095 0.061 0.110 0.115 0.120 0.095 0.113
Force 0.305 0.042 0.173 0.280 0.083 0.219 0.088 0.189

SEGNN Energy 0.337 0.069 0.060 0.092 0.101 0.151 0.092 0.104
Force 0.879 0.077 0.236 0.365 0.251 0.564 0.307 0.281

Allegro Energy 0.290 0.096 0.064 0.105 0.143 0.151 0.123 0.112
Force 0.646 0.073 0.228 0.346 0.285 0.407 0.265 0.245

Equiformer Energy 0.140 0.072 0.056 0.085 0.090 0.112 0.078 0.101
Force 0.315 0.057 0.159 0.250 0.069 0.204 0.083 0.156

Table 27: Ablation studies of latent dimension (d = 300) on MD17. The evaluation is the mean
absolute error. Data normalization is used.

Model Energy / Force Aspirin ↓ Benzene ↓ Ethanol ↓ Malonaldehyde ↓ Naphthalene ↓ Salicylic ↓ Toluene ↓ Uracil ↓

SchNet Energy 0.321 0.099 0.074 0.125 0.129 0.155 0.130 0.171
Force 1.055 0.191 0.318 0.522 0.328 0.597 0.387 0.401

DimeNet++ Energy 0.628 56451512.000 0.192 0.480 14056.564 0.421 27644.078 7522.200
Force 2.632 688219840.000 1.029 1.703 173932.344 0.621 972773.375 16002.980

EGNN Energy 0.393 0.125 0.072 0.112 0.249 0.257 0.158 0.164
Force 0.695 0.442 0.269 0.415 0.439 0.641 0.447 0.536

PaiNN Energy 0.149 0.102 0.056 0.083 0.118 0.113 0.093 0.104
Force 0.331 0.037 0.163 0.252 0.082 0.187 0.097 0.122

GemNet-T Energy 0.162 0.142 0.068 0.089 0.136 0.115 0.095 0.106
Force 0.329 0.052 0.206 0.262 0.101 0.234 0.091 0.146

SphereNet Energy 0.212 0.096 0.081 0.101 0.116 0.145 0.099 0.120
Force 0.334 0.047 0.177 0.309 0.087 0.238 0.097 0.212

SEGNN Energy 0.345 0.069 0.072 0.097 0.096 0.354 0.093 0.110
Force 1.023 0.080 0.331 0.452 0.227 0.803 0.314 0.327

Allegro Energy 0.256 0.096 0.060 0.088 0.131 0.139 0.114 0.110
Force 0.579 0.064 0.198 0.292 0.233 0.349 0.233 0.216

Equiformer Energy 0.143 0.073 0.061 0.085 0.090 0.107 0.077 0.100
Force 0.315 0.058 0.158 0.251 0.069 0.204 0.083 0.156

(a) Task Aspirin (b) Task Benzene (c) Task Ethanol (d) Task Malonaldehyde

(e) Task Naphthalene (f) Task Salicylic (g) Task Toluene (h) Task Uracil

Figure 12: Performance gap of MAE(force prediction, d = 300 and w/o normalization) - MAE(force
prediction, d = 300 and w/ normalization) in MD17.
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Table 28: Ablation studies of latent dimension (dim=128) on rMD17. The evaluation is the mean absolute
error. Data normalization is used.

Model Energy / Force Aspirin ↓ Azobenzene ↓ Benzene ↓ Ethanol ↓ Malonaldehyde ↓ Naphthalene ↓ Paracetamol ↓ Salicylic ↓ Toluene ↓ Uracil ↓

SchNet Energy 0.702 0.583 0.013 0.055 0.079 0.058 0.179 0.103 0.064 0.054
Force 1.028 0.780 0.137 0.311 0.488 0.314 0.757 0.578 0.371 0.373

DimeNet++ Energy 0.321 0.560 0.050 0.093 0.142 0.157 0.299 0.353 0.143 0.318
Force 0.536 0.424 0.102 0.284 0.420 0.239 0.447 0.639 0.231 0.341

EGNN Energy 0.653 0.684 0.056 0.275 0.238 0.440 0.476 0.514 0.233 0.395
Force 1.102 1.003 0.275 0.939 0.955 0.826 0.971 0.911 0.560 1.031

PaiNN Energy 0.187 0.076 0.006 0.046 0.076 0.048 0.109 0.063 0.033 0.040
Force 0.551 0.260 0.035 0.282 0.396 0.151 0.407 0.328 0.177 0.238

GemNet-T Energy 0.116 0.058 0.002 0.038 0.078 0.018 0.082 0.047 0.017 0.023
Force 0.329 0.198 0.020 0.179 0.328 0.094 0.267 0.226 0.090 0.155

SphereNet Energy 0.124 0.069 0.019 0.039 0.074 0.040 0.096 0.063 0.042 0.061
Force 0.325 0.189 0.028 0.174 0.282 0.091 0.265 0.226 0.095 0.191

SEGNN Energy 0.509 0.171 0.005 0.039 0.056 0.052 0.194 0.150 0.080 0.045
Force 1.129 0.603 0.054 0.279 0.394 0.254 0.792 0.682 0.365 0.327

Allegro Energy 0.348 0.183 0.005 0.046 0.081 0.094 0.190 0.131 0.080 0.046
Force 0.673 0.385 0.039 0.249 0.371 0.289 0.476 0.430 0.270 0.254

Equiformer Energy 0.106 0.044 0.002 0.030 0.038 0.016 0.112 0.050 0.021 0.025
Force 0.321 0.134 0.026 0.183 0.264 0.070 0.284 0.222 0.079 0.164

Table 29: Ablation studies of latent dimension (dim=300) on rMD17. The evaluation is the mean absolute error.
Data normalization is used.

Model Energy / Force Aspirin ↓ Azobenzene ↓ Benzene ↓ Ethanol ↓ Malonaldehyde ↓ Naphthalene ↓ Paracetamol ↓ Salicylic ↓ Toluene ↓ Uracil ↓

SchNet Energy 0.556 0.482 0.013 0.059 0.107 0.067 0.218 0.122 0.119 0.064
Force 1.115 0.824 0.094 0.338 0.536 0.349 0.783 0.636 0.397 0.391

DimeNet++ Energy 0.339 0.257 10.026 0.118 0.201 0.135 0.550 0.213 0.156 1.382
Force 0.588 0.456 378.561 0.313 0.453 0.263 0.493 0.601 0.262 4.510

EGNN Energy 0.455 0.522 0.048 0.070 0.068 0.212 0.313 0.233 0.359 0.150
Force 0.738 0.720 0.234 0.314 0.391 0.515 0.684 0.618 0.682 0.603

PaiNN Energy 0.127 0.056 0.002 0.037 0.056 0.017 0.078 0.044 0.022 0.024
Force 0.443 0.183 0.019 0.237 0.331 0.095 0.331 0.248 0.126 0.171

GemNet-T Energy 0.116 0.058 0.002 0.038 0.078 0.018 0.082 0.047 0.017 0.023
Force 0.329 0.198 0.020 0.179 0.328 0.094 0.267 0.226 0.090 0.155

SphereNet Energy 0.132 0.087 0.010 0.048 0.123 0.027 0.101 0.079 0.027 0.066
Force 0.348 0.203 0.023 0.194 0.315 0.090 0.283 0.248 0.094 0.206

SEGNN Energy 0.570 0.300 0.005 0.037 0.064 0.061 0.283 0.210 0.096 0.062
Force 1.313 0.732 0.055 0.264 0.499 0.285 1.003 0.782 0.346 0.410

Allegro Energy 0.294 0.167 0.004 0.043 0.056 0.070 0.170 0.093 0.063 0.037
Force 0.597 0.347 0.034 0.212 0.312 0.237 0.435 0.367 0.233 0.217

Equiformer Energy 0.101 0.044 0.002 0.030 0.041 0.016 0.090 0.045 0.020 0.024
Force 0.321 0.134 0.026 0.180 0.265 0.070 0.284 0.223 0.079 0.164

(a) Task Aspirin (b) Task Azobenzene (c) Task Benzene (d) Task Ethanol

(e) Task Malonaldehyde (f) Task Naphthalene (g) Task Paracetamol (h) Task Salicylic

(i) Task Toluene (j) Task Uracil
Figure 13: Performance gap of MAE(force prediction, d = 300 and w/o normalization) - MAE(force
prediction, d = 300 and w/ normalization) in rMD17.
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J.3 Ablation Studies on Reproduced Results of NequIP and Allegro

Here we would like to further discuss NequIP and Allegro.

• NequIP has no explicit molecule-level representation, and we directly put its results below.
• Allegro adopts d = 512 by default (by far we are mainly checking d = 128 and d = 300).
• We can reproduce NequIP and Allegro results w/ data normalization, as shown below.

Table 30: Ablation study of data normalization on NequIP and Allegro on MD17. The evaluation is the mean
absolute error. Here Allegro uses d = 512, and both NequIP and Allegro can match the reported results [3, 95]
w/ normalization.

Model Normalization Energy / Force Aspirin ↓ Benzene ↓ Ethanol ↓ Malonaldehyde ↓ Naphthalene ↓ Salicylic ↓ Toluene ↓ Uracil ↓

NequIP
w/o Normalization Energy 8.333 0.355 0.971 2.293 1.032 2.952 1.303 1.266

Force 23.769 2.383 5.832 12.099 5.247 14.048 6.800 8.060

w/ Normalization Energy 0.175 0.095 0.058 0.089 0.114 0.114 0.094 0.105
Force 0.383 0.039 0.195 0.294 0.091 0.212 0.106 0.136

Allegro
w/o Normalization Energy 1.138 0.154 0.258 1.330 0.824 1.114 0.441 0.613

Force 3.405 0.823 1.412 4.191 3.743 4.934 1.968 3.544

w/ Normalization Energy 0.240 0.096 0.058 0.085 0.128 0.130 0.107 0.107
Force 0.553 0.058 0.179 0.259 0.207 0.311 0.203 0.184

Table 31: Ablation study of data normalization on NequIP and Allegro on rMD17. The evaluation is the mean
absolute error. Here Allegro uses d = 512.

Model Normalization Energy / Force Aspirin ↓ Azobenzene ↓ Benzene ↓ Ethanol ↓ Malonaldehyde ↓ Naphthalene ↓ Paracetamol ↓ Salicylic ↓ Toluene ↓ Uracil ↓

NequIP
w/o Normalization Energy 9.618 1.993 3.048 0.936 2.313 2.089 5.136 3.302 1.306 1.738

Force 22.904 6.406 1.523 6.027 12.372 5.529 17.574 15.693 7.094 10.220

w/ Normalization Energy 0.147 0.049 0.003 0.034 0.061 0.018 0.078 0.047 0.020 0.021
Force 0.407 0.176 0.019 0.218 0.310 0.092 0.308 0.230 0.113 0.142

Allegro
w/o Normalization Energy 1.366 0.872 0.029 1.002 0.417 1.756 0.944 1.035 0.437 0.387

Force 3.186 2.763 0.237 2.799 2.125 3.815 3.081 4.781 2.048 1.939

w/ Normalization Energy 0.223 0.146 0.003 0.033 0.053 0.060 0.156 0.079 0.054 0.031
Force 0.558 0.308 0.029 0.198 0.264 0.207 0.409 0.331 0.210 0.187

J.4 Ablation Study on the Data Split of Crystalline Material

In the main paper, we report the results on MatBench with 60%-20%-20% for train-valid-test split. To verify the
reproducibility correctness of Geom3D, we carry on an ablation study with the same setting as MatBench [22].
Notice that MatBench adopts the setting in KGCNN [105]: with seed 18012019 and 80% for training and 20%
for the test. The reproduced results are in Table 32.

The mean evaluation metrics of SchNet and DimeNet++ with cross-validation are reported in MatBench
leaderboard and KGCNN leaderboard, and evaluation metrics of the PaiNN are reported in KGCNN leaderboard.

Table 32: Reproduced results on 8 MatBench tasks.

Model Per. Eform ↓ Dielectric ↓ log10G ↓ log10K ↓ Eexfo ↓ Phonons ↓ Band Gap ↓ Eform ↓
18,928 4,764 10,987 10,987 636 1,265 106,113 132,752

SchNet (MatBench) 0.0342 0.3277 0.0796 0.0590 42.6637 38.9636 0.2352 0.0218
SchNet (KGCNN) 0.0347 0.3241 0.0798 0.0584 48.0629 40.2982 0.9351 0.0215
SchNet (Geom3D, ours) 0.035 0.334 0.080 0.060 49.363 35.172 0.226 0.023

DimeNet++ (MatBench) 0.0376 0.3400 0.0792 0.0572 49.0243 37.4619 0.1993 0.0235
DimeNet++ (KGCNN) 0.0373 0.3337 0.0805 0.0579 49.2113 36.7288 0.2089 0.0233
DimeNet++ (Geom3D, ours) 0.033 0.340 0.080 0.060 47.700 33.564 0.207 0.022

PaiNN (KGCNN) 0.0456 0.3587 0.0851 0.0646 50.5886 47.2212 0.2220 0.0244
PaiNN (Geom3D, ours) 0.033 0.323 0.081 0.053 42.325 38.859 0.192 0.022
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J.5 Ablation Study on the Data Augmentation of Crystalline Material

The default latent dimension d = 300 for most of the models, except for EGNN and SEGNN, which lead to the
out-of-memory exception.

Table 33: Ablation study on data augmentation (DA) on MatBench and QMOF.

Model DA
MatBench QMOF

Per. Eform ↓ Dielectric ↓ log10G ↓ log10K ↓ Eexfo ↓ Phonons ↓ Band Gap ↓ Eform ↓ Band Gap ↓
18,928 4,764 10,987 10,987 636 1,265 106,113 132,752 20,425

SchNet gathered 0.040 0.334 0.081 0.060 65.201 42.586 0.327 0.026 0.236
expanded 0.048 0.338 0.086 0.066 62.991 46.301 0.253 0.042 0.278

DimeNet++ gathered 0.037 0.357 0.081 0.058 68.685 38.339 0.208 0.025 0.234
expanded 0.042 0.334 0.088 0.064 69.579 45.223 0.235 0.041 0.243

EGNN gathered 0.407 0.329 0.128 0.088 76.247 87.201 0.304 0.097 0.483
expanded 0.038 0.331 0.087 0.064 78.015 74.846 0.211 0.026 0.256

PaiNN gathered 0.038 0.317 0.080 0.053 67.752 44.602 0.190 0.022 0.207
expanded 0.038 0.327 0.083 0.056 73.224 59.930 0.203 0.029 0.229

GemNet-T gathered 0.042 0.325 0.088 0.061 68.425 48.986 0.186 0.026 0.207
expanded 0.042 0.364 0.090 0.063 68.376 57.316 0.195 0.036 0.230

SphereNet gathered 0.043 0.388 0.087 0.061 72.987 36.300 0.217 0.029 0.251
expanded 0.047 0.359 0.090 0.062 69.267 49.401 0.233 0.039 0.268

SEGNN gathered 0.073 0.334 0.126 0.089 69.534 95.438 0.508 0.127 0.492
expanded 0.046 0.360 0.087 0.059 65.052 43.638 0.330 0.047 0.330

Equiformer gathered 0.046 0.280 0.087 0.057 62.977 37.381 0.202 0.027 0.234
expanded 0.047 0.314 0.086 0.061 69.845 54.087 0.226 0.036 0.258

(a) MatBench Task Per. Eform (b) MatBench Task Dielectric (c) MatBench Task log10G

(d) MatBench Task log10K (e) MatBench Task Eexfo (f) MatBench Task Phonons

(g) MatBench Task Band Gap (h) MatBench Task Eform (i) QMOF Task Band Gap
Figure 14: Performance gap of DA: MAE(expanded DA) - MAE(gathered DA), in MatBench and QMOF.
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J.6 An Evidence Example On The Importance of Atom Types and Atom Coordinates

First, it has been widely acknowledged [28] that the atom positions or molecule shapes are important factors to
the quantum properties. Here we carry out an evidence example to empirically verify this. The goal here is to
make predictions on 12 quantum properties in QM9.

The molecule geometric data includes two main components as input features: the atom types and atom
coordinates. Other key information can be inferred accordingly, including the pairwise distances and torsion
angles. We consider corruption on each of the component to empirically test their importance accordingly.

• Atom type corruption. There are in total 118 types of atom types, and the standard embedding option
is to apply the one-hot encoding. In the corruption case, we replace all the atom types with a hold-out
index, i.e., index 119.

• Atom coordinate corruption. Originally QM9 includes atom coordinates that are in the stable state,
and now we replace them with the coordinates generated with MMFF [42] from RDKit [72].

Table 34: An evidence example of molecular data. The goal is to predict 12 quantum properties (regression
tasks) of 3D molecules (with 3D coordinates on each atom). The evaluation metric is MAE.

Model Mode α ↓ ∇E ↓ EHOMO ↓ ELUMO ↓ µ ↓ Cv ↓ G ↓ H ↓ R2 ↓ U ↓ U0 ↓ ZPVE ↓

SchNet
Stable Geometry 0.070 50.59 32.53 26.33 0.029 0.032 14.68 14.85 0.122 14.70 14.44 1.698
Type Corruption 0.074 52.07 33.64 26.75 0.032 0.032 21.68 22.93 0.231 23.01 22.99 1.677
Coordinate Corruption 0.265 110.59 79.92 78.59 0.422 0.113 57.07 58.92 18.649 60.71 59.32 5.151

DimeNet++
Stable Geometry 0.046 37.41 20.89 17.54 0.030 0.023 7.89 6.71 0.310 6.74 6.94 1.193
Type Corruption 0.052 40.05 24.42 19.33 0.031 0.024 9.57 8.53 0.322 8.84 8.34 1.299
Coordinate Corruption 0.257 202.34 88.33 167.63 0.514 0.115 77.95 628.73 19.923 72.92 804.56 5.950

SphereNet
Stable Geometry 0.048 39.98 22.69 18.98 0.026 0.027 8.94 6.95 0.234 7.33 7.34 1.620
Type Corruption 0.049 41.09 23.56 20.08 0.028 0.028 13.21 14.63 0.287 16.35 13.74 2.063
Coordinate Corruption 0.228 100.25 69.89 70.12 0.379 0.094 52.04 56.86 17.539 55.61 55.12 4.684

PaiNN
Stable Geometry 0.048 44.50 26.00 21.11 0.016 0.025 8.31 7.67 0.132 7.77 7.89 1.322
Type Corruption 0.057 45.61 27.22 22.16 0.016 0.025 11.48 11.60 0.181 11.15 10.89 1.339
Coordinate Corruption 0.223 108.31 73.43 72.35 0.391 0.095 48.40 51.82 16.828 51.43 48.95 4.395

We take SchNet and PaiNN as the backbone 3D GNN models, and the results are in Table 34. We can observe that
(1) Both corruption examples lead to performance decrease. (2) The atom coordinate corruption may lead to more
severe performance decrease than the atom type corruption. To put this into another way is that, when we corrupt
the atom types with the same hold-out type, it is equivalently to removing the atom type information. Thus, this
can be viewed as using the equilibrium atom coordinates alone, and the property prediction is comparatively
robust. This observation can also be supported from the domain perspective. According to the valence bond
theory, the atom type information can be implicitly and roughly inferred from the atom coordinates.

Therefore, by combining all the above observations and analysis, one can draw the conclusion that, for molecule
geometry data, the atom coordinates reveal more fundamental information for representation learning.

J.7 Ablation on the Effect of Residue Type

As discussed in Sec. 2 and appendix A, proteins have four levels of backbone structures. In Appendix J.6, we
carefully check the effect of atom types and atom coordinates in small molecules, and here we would like to
check the effect of side residue type in protein geometry-related tasks.

For experiments, we take one of the most recent works, CDConv [29], as the backbone geometric model. The
ablation study results are as in Table 35. We observe that the performance drops on all the tasks, and the
performance drops on Sup and Fam are much more significant. This reveals that the effect of residue type may
differ for different tasks, yet it is preferred to have them encoded for geometric modeling.

Table 35: The effect of residue type on the performance of CDConv.

Model Residue Type EC Fold

Fold Sup Fam Avg

CDConv w/ residue type 86.887 60.028 79.904 99.528 79.820
CDConv w/o residue type 86.144 41.783 61.164 95.598 66.182
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K Resources

We use a single GPU (V100 or A100) for each task. Note that we try to run all the models with the same epoch
numbers, yet some models are too large in terms of computational memory and time, so we have to reduce the
computational time. Thus, we list the running time for the main tasks below for readers to check.

As shown in Tables 36 to 38, in total, it takes over 652 GPU days (without any hyperparameter tuning, random
seeds, or ablation studies). It takes at least 1,384 GPU days if we include ablation studies discussed in Appendix J.

We would also like to acknowledge the following nice implementations and tutorials of geometric models:

• e3nn: Euclidean Neural Networks, by Tess [37]
• TFN [112]
• MaterialProject [55] and MatBench [21]
• Keras Graph Convolution Neural Networks (KGCNN) [105]
• DIG [105]
• TorchDrug [145]

Table 36: Running time for each (model, task, epoch) per epoch on small molecules and crystal materials.
There are eight tasks in MatBench with various dataset sizes, and we take 2 times Eform for illustration here.
For NequIP and Allegro, as you can find in the GitHub repository, we do tune their hyperparameters on QM9,
yet not being able to reproduce the results. So we may as well report their numbers here.

Model QM9 MD17 rMD17 COLL LBA LEP MatBench QMOF Total

SchNet [109] epochs 1,000 1,000 1,000 1000 300 300 1000 300 9.3 daystime 36s 9s 8s 46s 7s 5s 77s 53s

DimeNet++ [68] epochs 500 800 800 1000 300 300 300 300 53.3 daystime 185s 200s 200s 288s 58s 52s 470s 45s

SE(3)-Trans [35] epochs 100 – – – – – – – 24.2 daystime 1740s – – – – – – –

EGNN [108] epochs 1000 1000 1000 1000 300 300 800 300 22.5 daystime 85s 12s 12s 100s 18s 14s 319s 300s

PaiNN [110] epochs 1000 1000 1000 1000 300 300 1000 300 13.3 daystime 46s 8s 7s 61s 12s 8s 176s 150s

GemNet-T [67] epochs 1000 1000 1000 1000s 300 300 150 200 56.8 daystime 273s 52s 48s 412s 75s 82s 600s 480s

SphereNet [89] epochs 1000 1000 1000 300 300 300 300 300 78.7 daystime 250s 185s 180s 418s 14s 14s 480s 340s

SEGNN [4] epochs 500 800 800 100 300 300 40 60 81.7 daystime 470s 245s 234s 1450s 370s 324s 3500s 2750s

NequIP [3] epochs 1000 1000 1000 300 300 300 – – 21.2 daystime 106s 29s 27s 147s 25s 15s – –

Allegro [95] epochs 1000 1000 1000 300 300 300 – – 22.6 daystime 133s 17s 17s 131s 25s 22s – –

Equiformer [73] epochs 300 1000 1000 100 300 300 100 150 58.6 daystime 739s 87s 126s 660s 193s 109s 1130s 936s

Table 37: Running time for each (model, task, epoch) per epoch on proteins.
Model ECSingle ECMultiple Fold GO-MF GO-BP GO-CC MSP PSR Total

IEConv [45] epochs – – 200 – – – – – 0.85 daystime – – 368s – – – – –

GVP-GNN [62] epochs 300 200 400 200 200 200 300 300 3.38 daystime 150s 86s 21s 160s 133s 116s 241s 224s

GearNet [142] epochs 300 200 400 200 200 200 – – 2.12 daystime 61s 62s 21s 88s 239s 217s – –

ProNet [122] epochs 400 300 1000 300 300 300 300 300 2.85 daystime 60s 33s 19s 57s 62s 57s 217s 256s

CDConv [29] epochs 150 200 400 200 200 200 300 300 4.86 daystime 175s 138s 104s 249s 253s 251s 259s 325s
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Table 38: Running time for each (pretraining algorithm, dataset, backbone model) per epoch.

Dataset PCQM4Mv2
(w/ SchNet)

PCQM4Mv2
(w/ PaiNN) Total

Supervised epochs 100 100 13.4 daystime 426s 560s

Type Prediction epochs 100 100 13.5 daystime 433s 572s

Distance Prediction epochs 100 100 13.4 daystime 403s 530s

Angle Prediction epochs 100 – 6.4 daystime 479s –

3D InfoGraph [81] epochs 100 100 13.5 daystime 448s 592s

GraphMVP [86] epochs 100 100 14.0 daystime 701s 754s

3D InfoMax [86, 114] epochs 100 100 13.5 daystime 493s 584s

GeoSSL-RR [81] epochs 100 100 14.2 daystime 680s 924s

GeoSSL-EBM-NCE [81] epochs 100 100 14.2 daystime 630s 980s

GeoSSL-InfoNCE [81] epochs 100 100 14.1 daystime 598s 952s

GeoSSL-DDM [81] epochs 100 100 15.0 daystime 1100s 1200s

GeoSSL-DDM-1L [136] epochs 100 100 14.4 daystime 780s 1010s

3D-EMGP [59] epochs – 100 7.6 daystime – 980s

MoleculeSDE-VE [79] epochs 50 50 14.5 daystime 1906s 1933s

MoleculeSDE-VP [79] epochs 50 50 14.5 daystime 1906s 1933s
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