A Proofs of Lemma 24

In Sec. 3] we study the geometric structure of optimal contracts by establishing four lemmas. While
some of them have been stated and proved for linear contracts [32], and the first two lemmas, at least,
are not surprising, we give formal proofs of these properties of the principal’s utility and optimal
contracts in the general case. An important property of the principal’s utility function u” that we state
in Lemma[2is that u? can be a discontinuous function.

Lemma 2. The principal’s utility function uP can be discontinuous on the boundary of linear pieces.

Proof. For a contract f on the boundary of two neighboring linear pieces u! and u? > the agent is
indifferent between action a; and a; given f: ui (f) = p§(f). The principal’s utility

17 (F) = Eonp(-ja [Vo] = Eonp-las) [fo] ©)
= EONP(-\ai)[UO]) — (EONP('lai)[fO] — c(aq)) (10)

c(a;
= Eonp(.Jay) [Vo] — c(ai) — pg () (11)
= Eonp(fai[vo] = clai) — i (f) (12)
= 15 (F) + Eonp(lan) [Vo] — c(ai) = (Bomp(.jay)[vo] — c(ay))- (13)
It is possible that
Eomp(-lai)[Vo] — c(ai) # EONP(.|aj)[UO] — c(ay). (14)
Function «” is discontinuous in this case. O

Another property of the principal’s utility function u? that motivates our discontinuous neural
networks is Lemma 3]

Lemma 3. The global optimal contract is on the boundary of a linear piece.

Proof. Suppose that the global optimal f* is not on a boundary but is an interior point of a linear
piece Q; (contracts in Q; encourage the agent to take action a;.):

freQ,—09;, (15)
where
Qi = Nyl 4 (16)
Fivj - {-f €F | IEo~p(~|ai) [fo] - c(ai) > Eo~p(~|aj) [fo] - C(aj)} ,V] 7é 1. an
It follows that
fre {f € F|]EONP("ai) [fo] — cla;) > E0~p(-\aj) [fo] — c(aj),Vj i Z}) (18)
where the inequality is strict. Let
€5 —]EON])(‘|(11;) [f:] - C(ai) - Eo~p(~|aj) [f:] + C(a’j)‘ (19)

It holds that ¢; ; > 0,V # 1.
Now we consider the contract f' = f* — dp(-|a;) for some small 6 > 0. For any a; # a;, we have
u' (£ ai) —u' (£ a5)
=Eonp(lay) [fo = 0p(0lai)] = ¢ai) = Bonp(jay) [f5 — dp(o]ai)] + c(a;) (20)
=€ij = 0Bonp(fa;) [P(0]ai)] + 0Bonp(jay) [P(0]ai)] -
When

€
0 <0 < min L , 21
J#i IE0~10(~|ai) [p(0|ai)] - EONP('la]‘) [p(0|ai)]

(where note the denominator is > 0), we have

u(f'5a;) —u(f'5a5) > 0,Y) # 1, (22)

14

which means f’ incentivizes the agent to take action a;. Therefore, for § in this range, the principal’s
utility given f” is:

uP(£') = Eonp(fay) [Vo — f5 + Ip(olai)]

=]EONZD('|ai) [vo — fo] +]EONP('lai) [6p(o]a;)] (23)
=uP(f*)+6 Y p*(ola;)
> uP(f).

We thus find a contract f’ that induces greater utility for the principal, contradicting with the fact that
f* is the global optimal contract. This finishes the proof.

Note that here we consider the boundary resulting from changes in the agent’s best responses. We can
extend the proof to cover another type of boundary, which pertains to the requirement that contracts
are non-negative, by defining Q; tobe Q;, = {f|f >0} N N---NT ;1N N---. O

Lemma] claims another property that may influence the design of DeLU networks.

Lemma 4. The principal’s utility function uP can be written as a summation of a concave function
and a piecewise constant function.
Proof. We first prove the agent’s utility function u*(f) is a convex function.

We need to prove that, for any two contracts f(1) € F and f(?) € F, it holds that u? (A\f(1) + (1 —
N FO) <A (FD) + (1 — NuP(£fP), VA € [0,1]. Denote d = £ — £ Tt suffices to prove
that the derivative of u?(f(!) 4 dd) with respect to § is a non-decreasing function for § € [0, 1].

‘We have

o)
5" (FD +0d) = 2 [Eompiian £ +3do] — clas)] (24)

where a; is the agent’s action given the contract f(1) + §d.

Case 1: When a;s does not change,

0
55 Y 46d) = Egop(jag) [do] (25)
is a constant, which is a non-decreasing function.

Case 2: When as changes. Suppose that there exists §; € [0,1] such that f(1) + §,d is on the
boundary of linear piece Q; and Q;. Let

5F =61 +e
57 =61 — e, (26)
where ¢ is a small number and
£ +0;de 9,
FO +6/de Q. 27)
Because the agent is self-interested, it follows that a; is the best response when the contract is
fO + 67 d:
w(fO + 67 d) = u(fO + 67 dsay) > u (O + 67 ds a,). (28)
It follows that

a(£(1) +d) — ue(O d
gua(f(l) +4d) — i L 00— w(F + 0id) (29)
00 s=st 0 €
o figg W 0 dian) —u(FD + 61d) (30)
e—0 €

15

We now look at the two terms in the numerator of Eq.

u(fO + 67 d; a5) = Eomp(an [f5" + 67 do) — c(a) (31)
= Bomp(fap [F5) + (01 + €)do] — c(a:) (32)
= Eomp(-an) [F + 01do] — c(ai) + €Eomp(.[ay) [do] (33)
= u®(fN +81d) + €Epp(.fan o], (34)
and
u(fY + 61d) = Epp(fan) [f$ + 01do] — c(a;) (35)
= Eomp(lan 5 + (07 + €)do] — c(as) (36)
= Eop(an) [f$V + 01 do] = ¢(ai) + €Eorp(.ja,)[do] (37)
= u(fO 4+ 67 d) + Eomp(.fan [do)- (38)
Therefore,
%ua(f(l) + 6d) . > lim ut(FY + 6/ d; ai)e —u(fY +6,d)
iy WY+ 01d) (1 46y d) (39)
e—0 €
= Qua(fm + 6d)
a6 -

This finishes the proof that u® is a convex function. Furthermore, we have that

up(-f) = _ua(f) - C(a’*(f)) + Eowp(-\a*(f))[vo]v (40)
where —u?(f) is a concave function and —c(a*(f)) + Eovp(.|a=(£))[vo] is a piecewise constant
function with the value —c(a;) + Eop(.|a;)[Vo] When f € Q. O

B Why we use another network to generate the last-layer bias?

To model model the dependency of the last-layer bias on the activation pattern, we use a neural
network, rather than a simpler, linear, and learnable function. The reason is that the bias does
not always depend linearly on the activation pattern. Here is an example to illustrate this. There
are two outcomes with values v = [20, 1], four actions with costs ¢ = [1.0,2.1,2.3,4.7], and the
action-outcome transition kernel is

0.211 0.789
p— 0.398 0.602
10430 0.570
0.684 0.316

Suppose we consider linear contracts, where f = av, a > 0. Then the principal’s utility function for
different contracts is:

—5a +5 02<a<03

—8.57a+8.57 03<a<04

—917a+9.17 04<a<0.5’

—1l4a+ 14 a>0.5

Suppose that we have a 2-dimensional activation pattern, and the linear function converting activation
patterns to the bias has parameters [b1, b2]. Then the bias for each of the four pieces would be 0, by, bo,
and b, + bo, respectively. The difference between each piece’s bias needs to model the discontinuity
at contract parameter o« = 0.3, 0.4, 0.5, but this is impossible with this linear model. To see this, we
first assume that the piece 0.2 < o < 0.3 has bias 0. Then the differences of biases of the other 3
pieces would need to be 2.5, 2.86, and 5.28, which cannot be achieved with by, bo, and by + bo. It can
be easily verified that the cases where other pieces have a bias of 0 are similar, demonstrating that
a linear bias function cannot express the discontinuity. By contrast, appealing to a second network
allows for non-linear dependency on activation, and can handle this problem.

uP(a) =

16

—— DelU Concave DelU ——- Linear Programming (Oracle, has access to unobservable information)

== DelU Inference Time Concave DelU Inference Time
Actions = 5 # Actions = 50 # Outcomes = 5 # Outcomes = 50
100 m==oc oo — — e 100
X X X £
> 75 > 75 > 75 > 75
s K T s
£ 50 £ 50 £ 50 £ 50
& 25 &2 g2 & 25
o o o o
0 0 [0
4 6 8 4 6 8 2 4 6 8 2 4 6 8
log,[# Outcomes] log,[# Outcomes] log,[# Actions] log,[# Actions]
Actions = 5 # Actions = 50 # Outcomes = 5 2000 # Outcomes = 50
1 1
—200 - 1500 2= I |= 1
)) AR m
2 - AN 2B /7 |g2000 /121500 H
5150 o= SINS |8 / S /|8 |
S <ol S £ 21000 / g g I
n =7 A @ 4 n 1 a 1
100 A / 1000 }
£ AN £ 500 - £1000 7 £ /
o Vi) o - o ! o /
2 50 \ - N ’ g 1 £ 500 7
= ool===2 T " = ol m==kzZizazoT S = —===z==zZzz=27 . [I AR L
0 ol==o o e

4 6 4 6 4 6 4 6
log,[# Outcomes] log,[# Outcomes] log,[# Actions] log[# Actions]

Figure 8: Optimality (normalized principal utility, divided by the result obtained by the direct
LP solver Oracle LP) and inference time of DeLU, Concave DeLU, and Oracle LP on increasing
problem sizes.

C Introducing Concavity into the DeLLU Network

From Lemma [4, the principal’s utility function u” is a summation of a concave function and a
piecewise constant function. Further, our DeLU network, which is used to approximate the function
uP, can be written as

§(fi;0,0¢) = n(fi;0n) + C(r(F); bc)- (41)

In particular, ¢(r(f;); 0¢) is a piecewise constant function, because given an activation pattern r(f;),
¢ is a constant. However, the first term in Eq. |41, in a general DeLU network, is an arbitrary
function. This raises the question as to whether it is useful to further restrict the network architecture,
constraining the sub-network 7 to be a concave function. In this section, we discuss how to introduce
concavity into 7, and how this restriction affects the performance of DeLU-based contract design.

C.1 Concave DeLU architecture

We can make 7 a concave function by (1) enforcing its weights (for all but the first layer) to be
non-negative, and (2) taking the negation of its output. The first modification will make 1 a convex
function because 7 uses ReLU activation, which is a convex and non-decreasing function. When
the weights after a ReLU activation are non-negative, becomes a composition of several convex,
non-decreasing functions, which is still a convex function. Since the negation of a convex function is
a concave function, the second modification will make 7 concave.

Formally, in Concave DeLU, the sub-network 7 calculates
R (z) = |[WE | RE-D () (. (‘W(2)|R<1>($) (Wu)a3 + b<1>) i b<2>) .) LD,
n(x) = —|WED | RERD) (z), (42)

where R(®) is a diagonal matrix with diagonal elements equal to the layer activation pattern 7(*).
The other components, as well as the training process, of Concave DeLU are the same as a DeL.U
network. In the next sub-section, we evaluate the performance of Concave DeLU.

C.2 Experiments on Concave DeLLU networks

In Fig.[8] we compare Concave DeLU against DeLU and the direct LP solver (Oracle LP). For this,
we fix DeLU and Concave DeLU to have the same size, and both use the LP inference algorithm. We
test different problem sizes. In the first and second column, we set the number of actions n to 5 and 50,
respectively, and increase the number of outcomes m from 2! to 28. In the third and fourth column,
we set the number of outcomes m to 5 and 50, respectively, and increase the number of actions n
from 2! to 28. For each problem size, the same 12 combinations of «, and 3, are tested. The median

17

performance as well as the first and third quartile (shaped area) of these 12 combinations are shown.
The first row compares optimality, while the second row compares inference time efficiency. We
again report normalized principal utilities when it comes to optimality.

A surprising result is that for most problem sizes, DeLLU achieves better optimality than
Concave DeLU. Although the function class represented by Concave DeLU is a better fit with u?, it
seems that the larger function class of DeLLU aids optimization and leads to better performance. At
the same time, it is somewhat surprising that Concave DeLU can reduce inference time substantially.
Unlike DeLU, the inference time of Concave DeLU remains relatively stable when the problem size
increases. We conjecture that this behavior can be attributed to the non-negativity constraint on
network weights, which reduces the number of valid activation patterns and speeds up LP inference.

D Experimental Setups

D.1 Network architecture and training

We use a simple architecture for the DeLU network. In all experiments, the sub-network 7 has one
hidden layer with 32 hidden units and ReLU activations. We deliberately restrict the size of this sub-
network to limit the number of valid activation patterns and speedup LP-based inference. However,
this restriction may reduce the representational capacity of DeLLU networks: it is in contrast to the
common practice of overparameterization, which has contributed to the success of deep learning.
To alleviate this concern, we employ a relatively larger network for the bias network (. In our
experiments, ¢ has a hidden layer with 512 (Tanh-activated) neurons.

The two sub-networks 7 and ¢ are trained in an end-to-end manner by the MSE loss (Eq.[5). The
optimization is conducted using RMSprop with a learning rate of 1 x 10~2, o of 0.99, and with no
momentum or weight decay. For the DeLU and the baseline ReLLU networks, training samples are
randomly shuffled in each of the training epochs.

D.2 Infrastructure

Across all experiments, DeLU, and the baseline ReLU networks are trained on a NVIDIA A100 GPU.
Gradient-based inference is also parallelized on the A100 GPU. The direct LP solver (Oracle LP)
and the LP-based inference algorithm are based on the linear programming toolkit PuLP [47], and we
parallelize five LP solvers on CPUs.

E More Experiments

In this section, we carry out experiments to study (1) using random samples to initialize gradient-
based inference (Appx. [E.I)); and (2) the influence of cost correlation on the optimality of DeLU

learners (Appx.[E.2).

E.1 Gradient-based inference initialized with random samples

In Sec.[4.2.2, we introduce a gradient-based inference algorithm, and Alg.[T gives the matrix-form
expression of its parallel implementation. There is a choice in using Alg. [I, as to whether the input
(“probe points") X (0) € RE*™ is taken from the training set or a different, random sample set. In
this section, we report the results of experiments to empirically compare these two setups.

We start from the same trained DeLLU networks on small (n = 5, m = 16), middle (n = 32, m = 50),
and large (n = 50, m = 128) problem sizes, where n is the number of actions and m is the number
of outcomes. For each problem size, we consider 12 different combinations of (o, 5,) as in other
experiments and report the mean and variance of the performance. We run Alg.[T| with two different
inputs X (9): Training Set uses 50K training samples while Random Set uses 50K randomly
generated contracts. In Table. [T, we present the normalized principal utility (divided by the result
obtained by Oracle LP) of these two setups.

We can observe that the optimality of these two setups are very close, especially when the problem
size is large. We thus recommend running Alg. [T]initialized with the training set to reduce the possible
time and memory overhead of generating a new random sample set.

18

Table 1: Optimality (normalized principal utility %) of two setups of gradient-based inference: using
the training set (Training Set) or a random sample set (Random Set) as input X (*) of Alg. m Mean
and variance over 12 different combinations of («,, 8,,) are shown. In this table, the problem size is
defined by (n, m), where n is the number of actions and m is the number of outcomes.

Problem size (n, m) Training Set Random Set

(5, 16) 9529 £0.20 9533 +0.19
(32, 50) 88.43 +£097 88.46 £0.98
(50, 128) 94.28 £0.02 94.28 £ 0.02

Table 2: Optimality (normalized principal utilities %) of DeLU networks under different combinations
of (v, Bp). Mean and variance over 32 problem sizes are shown.

| a,=05 a, =0.7 a, =0.9
Bp =0.0 88.79£12.77 89.67+12.57 87.20£11.97
Bp =0.3 93.94+11.16 93.28+11.48 87.94+13.45

Bp =0.6 95.2247.93 95.08£8.78 91.97£10.32
Bp =0.9 97.23+6.62 90.69+18.95 96.43+7.45

E.2 Influence of correlated costs

Across our experiments, we test 12 different combinations of ¢, and 3,, where (o, 3,) €
{0.5,0.7,0.9} x {0,0.3,0.6,0.9}. Recall that a greater (3, value means we put more weights
on the independent cost, and a greater v, value indicates that the correlated cost is more close to the
expected value of the action. It is interesting to investigate the influence of these two parameters on
the performance of DeLLU contract designers.

In Table 2, we show the optimality of DeLU learners (using the LP inference algorithm) under
different o, and 3, values. For each (o, 8,) combination, we test 24 different problem sizes:
(m,n) € {25,50,100} x {2,4,8,16,32,64, 128,256}. We give the median and standard deviation
of these 24 instances. We observe that 3, exerts influence on the performance of DeLU networks:
optimality of the learned contracts generally increases for greater values of 3, whatever the value
of o, and we see that DeL.U seems better suited to handle problems in which the costs of actions
are relatively independent of the expected values of actions. This claim is also supported by the
results regarding «;,, where the optimality under «,, = 0.5 is typically better than those under other
o, values for most /3, values. It will be interesting in future work to further study this phenomenon,
and to see whether suitable modifications can be made to the DeLU architecture to further improve
optimality in regimes with higher cost correlation.

19

	Introduction
	Preliminaries
	 Geometry of Optimal Contracts
	DeLU Neural Networks
	Architecture
	Training and inference
	Linear programming based inference
	Gradient-based inference

	Illustrating DeLU-based contract design

	Empirical Evaluation
	Optimality and efficiency.
	Comparing the two DeLU inference methods.
	Boundary alignment degree and its influence on DeLU optimality

	Closing Remarks
	Acknowledgements
	Proofs of Lemma 2-4
	Why we use another network to generate the last-layer bias?
	Introducing Concavity into the DeLU Network
	Concave DeLU architecture
	Experiments on Concave DeLU networks

	Experimental Setups
	Network architecture and training
	Infrastructure

	More Experiments
	Gradient-based inference initialized with random samples
	Influence of correlated costs

