
A Compound Compression for Edge Deployment583

Deploying large language models in edge environments requires running inference on low-power584

devices such as CPUs. Therefore, we follow the compound compression approach from [23] which585

bundles together structured, unstructured pruning, and quantization for efficient inference on CPUs.586

We start with ZipLM structurally pruned models, and apply on top the state-of-the-art oBERT587

unstructured pruning method [23] to 80% sparsity. After structured and unstructured pruning, we588

apply quantization-aware-training (QAT) [19] to quantize FP32 weights into INT8 representations.589

We benchmark these compound compressed models by running inference in the DeepSparse [36]590

engine, on a single-core of Intel Cascade Lake CPU. In this setting, we compare our results against the591

compound compression pipeline of [23] which applies layer dropping as a form of structured pruning.592

As can be seen from Figure 5, when we substitute layer dropping with a principled structured pruning593

via ZipLM, the resulting compound compressed models achieve very competitive latency-vs-accuracy594

performance in the edge-inference regime. At full accuracy recovery, ZipLM improves the speedup595

from 3x to 13x, while at the largest compression ratio ZipLM improves the speedup from 30x to 50x.596

Figure 5: Improvements in CPU-inference speedups for compound compressed BERTbase models on
the SQuADv1.1 task when ZipLM is used for structured pruning. End-to-end latency indicated by
the dashed line.

B Ablation Studies597

In Table 3, we present ablation results for ZipLM and CoFi, with and without their respective layer-598

wise distillation techniques. ZipLM outperforms CoFi in all tasks when both methods use distillation,599

and in three out of four when distillation is not used. For example, ZipLM outperforms CoFi with600

a significant 3 point increase in F1 score on the SQuAD task in both setups. Furthermore, when601

comparing ZipLM results with and without layer-wise distillation, it can be observed that benefits are602

pronounced for low data tasks, where accuracy improvements reach up to 2 points.603

C Additional Validation604

Evaluating and comparing compressed models on the development set (dev-set) is standard practice,605

as it enables comparisons with off-the-shelf results from the literature. However, an implicit606

assumption behind such comparisons is that all methods tune their hyper-parameters only on a subset607

of the dev-set before evaluating and reporting results on all samples, which is not always the case.608

14



Table 3: Comparison of ZipLM and CoFi dev-set results, with and without layer-wise distillation.
SST-2
acc.

QNLI
acc.

MNLI
m-acc.

SQuAD
F1

CoFi 90.4 86.1 80.6 82.6
ZipBERTbase 91.7 88.6 81.7 85.7
CoFi w/o Llayer 91.1 85.1 79.7 82.5
ZipBERTbase w/o Ltoken 89.2 86.5 81.2 85.7

Table 4: Dev- and test-set comparison of ZipBERTbase and CoFi models with comparable speedups.
dev-set test-set

CoFi ZipBERTbase CoFi ZipBERTbase

QNLI, acc. 86.1 88.6 85.8 88.4
SST-2, acc. 90.4 91.7 88.2 91.8
MNLI, m-acc. 80.6 81.7 80.7 81.9
MNLI, mm-acc. 80.7 82.0 79.9 80.6
SQuAD, F1 82.6 85.7 N/A N/A

Moreover, specifically-tuned hyper-parameters can lead to large performance differences, especially609

when compressing LLMs [22]. To ensure that there is no such “overfitting” on the dev-set, in Table 4610

we compare ZipLM against the prior state-of-the-art CoFi approach on unseen test-set, obtained611

by submitting predictions to the official GLUE evaluation server. The results show consistent612

improvements over CoFi, on both dev- and test-sets.613

D Speedup Evaluations614

As shown in Figure 1, ZipLM is based on measuring runtimes of higher-level modules, such as615

attention heads and fully connected matrices, rather than low-level operators. This makes our616

approach independent of underlying optimizations in different inference engines and frameworks,617

which usually perform further optimizations such as operator-fusion. Our runtime lookup table618

contains information about the runtime of a Transformer layer with different numbers of attention619

heads, and various dimensions of the fully connected matrices. This implies that we measure runtimes620

of a layer with 12 heads, 11 heads, 10 heads, and so on, as well as the runtimes of fully connected621

matrices with hidden sizes ranging from 3072 to 0. We utilize this information to guide pruning622

decisions.623

To fully validate the ability of ZipLM to compress the model while satisfying desired speedup624

constraints via the described approach, we provide the timing results in Table 5, comparing the625

desired (target) speedup and the achieved (measured) speedup for different models.626

As can be seen from the Table 5, the deviation between the desired (target) and the achieved627

(measured) speedup is at most 5.28%. This confirms that our approach indeed provides reliable628

runtime information to guide the pruning decisions.629

Table 5: Comparison of target (desired) inference speedups with achieved (on-device measured)
speedups obtained with our ZipLM pruning approach.

BERTbase on SQuADv1.1 BERTlarge on SQuADv1.1
Target speedup Achieved speedup Deviation Target speedup Achieved speedup Deviation

2 1.98 -1.00% 2 2.01 +0.50%
4 4.05 +1.25% 4 4.05 +1.25%
6 6.16 +2.67% 6 6.09 +1.50%
8 8.25 +3.12% 8 8.27 +3.37%
10 10.36 +3.60% 10 10.33 +3.30%
12 12.31 +2.58% 12 12.46 +3.83%
14 14.33 +2.35% 14 14.74 +5.28%

15



E Structure of Pruned Models630

Through a comprehensive examination of ZipLM pruned BERT models across all datasets considered631

in Section 4, we aim to identify trends in the pruning of key components of the Transformer layer,632

namely attention heads and intermediate size, needed to achieve a specific speedup target. As633

illustrated in Figure 6, we observe that the intermediate size is pruned at a higher rate relative to634

attention heads, which aligns with the fact that the intermediate size dictates the dimensions of the635

two large linear layers in the feed-forward part of the Transformer block. For instance, to attain a 2x636

speedup, roughly 60% of the intermediate size and 40% of the attention heads need to be removed.637

Additionally, in Figure 7, we visualize the entire encoder size needed to reach a specific speedup638

target. Interestingly, we find that 15x faster models retain on average only 2% of intermediate size639

and 6% of attention heads which amounts to only 2.9M parameters overall, while at the same time640

recovering more than 95% of the uncompressed model’s accuracy (see Figure 3).641

Figure 6: Percentage of pruned attention heads and intermediate size to reach a specific speedup
target with ZipLM.

Figure 7: Encoder size vs. speedup factor of ZipLM pruned BERTbase models, averaged over all
considered datasets in Section 4.

Additionally, in Figures 8, 9, 10, 11 we visualize the number of remaining heads and intermediate642

size across all Transformer layers and various speedup targets on a subset of GLUE datasets.643

16



Figure 8: Remaining number of attention heads and intermediate size across all layers of the ZipLM
compressed BERTbase model at various speedups and MNLI dataset.

Figure 9: Remaining number of attention heads and intermediate size across all layers of the ZipLM
compressed BERTbase model at various speedups and QNLI dataset.

Figure 10: Remaining number of attention heads and intermediate size across all layers of the ZipLM
compressed BERTbase model at various speedups and QQP dataset.

Figure 11: Remaining number of attention heads and intermediate size across all layers of the ZipLM
compressed BERTbase model at various speedups and SST-2 dataset.

F Experiments - Additional Results644

In Table 6 we report accuracy and model size of ZipLM pruned models visualized in Section 4, in645

Figures 2 and 3.646

G Hyper-parameters for Reproducibility647

To facilitate reproducibility, we conduct experiments in the open-source Transformers library [54],648

and use publicly available datasets [27]. We plan to open-source our entire framework which supports649

17



Table 6: Accuracy and model size for ZipLM pruned models in Section 4.

BERTbase BERTlarge

QNLI MNLI SST2 QQP SQuADv1 SQuADv1

Speedup Acc. Encoder
size (M) Acc. Encoder

size (M) Acc. Encoder
size (M) Acc. Encoder

size (M) F1 Encoder
size (M) F1 Encoder

size (M)

2x 91.4 38.0 84.8 38.5 93.4 38.7 91.3 37.8 89.1 37.3 91.6 141.1
3x 91.1 23.8 84.8 23.5 93.4 24.1 91.3 23.8 88.6 23.4 91.4 88.3
4x 90.9 16.9 84.0 17.1 93.0 17.2 91.3 16.8 88.0 16.8 91.1 63.1
5x 90.8 12.5 84.0 13.5 93.0 13.5 91.1 13.0 87.5 13.0 90.8 48.5
6x 90.4 9.5 83.5 10.5 93.0 11.0 91.1 10.2 86.7 10.4 90.2 39.1
7x 89.8 8.0 83.2 8.8 93.0 9.0 90.9 8.1 86.1 8.7 89.9 32.7
8x 89.2 6.4 83.1 7.5 93.0 7.6 90.9 6.8 85.7 7.5 89.7 27.5
9x 89.1 5.7 82.8 6.3 93.0 6.7 90.8 5.8 85.3 6.2 89.3 23.8

10x 88.6 4.9 82.7 5.4 93.0 5.7 90.8 4.9 84.2 5.3 89.1 20.9
11x 88.6 4.0 82.5 4.7 92.7 4.9 90.7 4.3 83.8 4.7 88.8 18.4
12x 87.8 3.6 81.7 4.1 91.7 4.2 90.6 4.1 83.2 4.0 88.4 16.4
13x 87.6 3.2 81.3 3.5 91.7 3.8 90.6 3.7 82.5 3.4 87.9 14.9
14x 87.4 2.8 81.2 3.3 91.7 3.6 90.3 3.3 81.7 3.2 87.7 13.7
15x 87.2 2.6 80.8 2.9 90.7 3.2 90.3 2.9 81.4 2.9 87.6 12.5

Table 7: Hyper-parameters used for gradual ZipLM runs in Section 4.

BERTbase BERTlarge GPT2

batch-size 16 SQuADv1
32 GLUE 128

max-seq-length 384 SQuADv1
128 GLUE 1024

finetune before pruning 3 epochs 50k steps

finetune in-between pruning steps 8 epochs 10 epochs 2 epochs

LR schedule in-between pruning steps linear decay linear decay

initial LR 8e-5 5e-5 1e-3

#calibration samples 2048 512

speedup-targets {2, 3, 4, 5, ..., 15}x {1.5, 2, 2.5, 3}x

knowledge distillation �1 0 1.0

knowledge distillation �2
1.0 SQuADv1

0.5 GLUE 0

knowledge distillation �3
0.0 SQuADv1

0.5 GLUE 0

weight-decay 0.03 0.05 0

one-shot and gradual structured pruning via SparseML [24], making it very easy to experiment with650

other models and datasets. In addition to our code, we plan to open-source all of our compressed651

models via the popular HuggingFace Hub. In Table 7 we report hyper-parameters used to produce652

our ZipLM pruned models in Section 4. Because of the excessive memory overhead, we don’t make653

use of any kind of knowledge distillation when pruning the GPT2 model. Following insights from654

DistilGTP2, we hypothesize that this can further improve our results. We follow [21] and disable655

dropout regularization while pre-training ZipGPT2 models at OpenWebTextCorpus dataset.656

H Broader Impact and Limitations657

Our results contribute to the line of work on efficient language models. Thus, it should help reduce658

the energy and monetary cost of inference over such models, and allow them to be used without659

18



access to powerful hardware. While this is a mainly positive outcome, it also reduces the cost of660

employing these models for detrimental purposes, such as spam generation. Thus, this significant661

cost reduction for inference should also be seen as further motivation for methods to ensure safe662

usage of these models, such as watermarking or alignment.663

As any academic study, our work is not without its limitations. All of our benchmarks are focused on664

English-language datasets and therefore our results do not provide insights into compression effects665

for low-data languages. Unfortunately, this limitation is inherent to all of the existing works on666

compression due to the lack of standardized benchmarks. Given that our structured pruning approach667

relies on a small sample of calibration data to perform pruning decisions, we hypothesize that our668

approach should be able to provide satisfying results in the low-data setup as well. At the moment we669

do not have data to support these claims, but we see it as an opportunity for future work.670

19


