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Abstract

Single-call stochastic extragradient methods, like stochastic past extragradient1

(SPEG) and stochastic optimistic gradient (SOG), have gained a lot of interest in2

recent years and are one of the most efficient algorithms for solving large-scale min-3

max optimization and variational inequalities problems (VIP) appearing in various4

machine learning tasks. However, despite their undoubted popularity, current5

convergence analyses of SPEG and SOG require strong assumptions like bounded6

variance or growth conditions. In addition, several important questions regarding7

the convergence properties of these methods are still open, including mini-batching,8

efficient step-size selection, and convergence guarantees under different sampling9

strategies. In this work, we address these questions and provide convergence10

guarantees for two large classes of structured non-monotone VIPs: (i) quasi-11

strongly monotone problems (a generalization of strongly monotone problems) and12

(ii) weak Minty variational inequalities (a generalization of monotone and Minty13

VIPs). We introduce the expected residual condition, explain its benefits, and show14

how it allows us to obtain a strictly weaker bound than previously used growth15

conditions, expected co-coercivity, or bounded variance assumptions. Finally, our16

convergence analysis holds under the arbitrary sampling paradigm, which includes17

importance sampling and various mini-batching strategies as special cases.18

1 Introduction19

Differentiable game formulations where several parameterized models/players compete to minimize20

their respective objective functions have recently gained much attention from the machine learning21

community. Some landmark advances in machine learning that are framed as games (or in their22

simplified form as min-max optimization problems) are Generative Adversarial Networks (GANs) [19,23

2], adversarial training of neural networks [46, 72], reinforcement learning [9, 64], and distributionally24

robust learning [51, 73].25

In this work, we consider a more abstract formulation of the problem and focus on solving the26

following unconstrained stochastic variational inequality problem (VIP):27

Find x∗ ∈ Rd : such that F (x∗) =
1

n

n∑
i=1

Fi(x
∗) = 0 (1)

where each Fi : Rd → Rd is a Lipschitz continuous operator. Problem (1) generalizes the solution of28

several types of stochastic smooth games [16, 44, 20, 7]. The simplest example is the unconstrained29

min-max optimization problem (also called a zero-sum game):30

min
x1∈Rd1

max
x2∈Rd2

1

n

n∑
i=1

gi(x1, x2) , (2)

where each component function gi : Rd1 × Rd2 → R is assumed to be smooth. In this scenario,31

operator Fi of (1) represents the appropriate concatenation of the block-gradients of gi: Fi(x) :=32
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(∇x1gi(x1, x2);−∇x2gi(x1, x2)), where x := (x1;x2). Solving (1) then amounts to finding a33

stationary point x∗ = (x∗
1;x

∗
2) for (2), which under a convex-concavity assumption for gi, implies34

that it is a global solution for the min-max problem.35

However, in modern machine learning applications, game-theoretical formulations that are special36

cases of problem (1) are rarely monotone. That is, the min-max optimization problem (2) does not37

satisfy the popular and well-studied convex-concave setting. For this reason, the ML community38

started focusing on non-monotone problems with extra structural properties.1 In this work, we39

focus on such settings (structured non-monotone operators) for which we are able to provide tight40

convergence guarantees and avoid the standard issues (like cycling and divergence of the methods)41

appearing in the more general non-monotone regime. In particular, we focus on understanding42

and efficiently analyze the performance of single-call extragradient methods for solving (i) µ-quasi-43

strongly monotone VIPs [44, 6] and (ii) weak Minty variational inequalities [14, 33].44

Classes of structured non-monotone VIPs. Throughout this work we assume that operator F in45

(1) is L- Lipschitz i.e. ∀x, y ∈ Rd operator F satisfy ∥F (x)− F (y)∥ ≤ L∥x− y∥.46

As we have already mentioned, in this work, we deal with two classes of structured non-monotone47

problems: the µ-quasi strongly monotone VIPs and the weak Minty variational inequalities.48

Definition 1.1. F is said to be µ-quasi strongly monotone if there is µ > 0 such that:

∀x ∈ Rd ⟨F (x), x− x∗⟩ ≥ µ∥x− x∗∥2. (3)

Condition (3) is a relaxation of µ-strong monotonicity, and it includes several non-monotone games49

as special cases [44]. Inequality (3) can be seen as an extension of the popular quasi-strong convexity50

assumption from optimization literature [53, 25] to the VIPs [44]. In the literature of variational51

inequality problems, quasi strongly monotone problems are also known as strong coherent VIPs [66]52

or VIPs satisfying the strong stability condition [47], or strong Minty variational inequality [14].53

One of the weakest possible assumptions on the structure of non-monotone VIPs is the weak Minty54

variational inequality [14].55

Definition 1.2. We say weak Minty Variational Inequality (MVI) holds for F if for some ρ > 0 :

∀x ∈ Rd ⟨F (x), x− x∗⟩ ≥ −ρ∥F (x)∥2. (4)

To the best of our knowledge, the weak Minty variational inequality (4) as an assumption was first56

introduced in [14]. The more popular and extensively studied Minty variational inequality [12, 37,57

38, 48] is a particular case of (4) with ρ = 0. In addition, the weak MVI condition is implied by the58

negative comonotonicity [4] or, equivalently, the positive cohypomonotonicity [11]. Finally, when we59

focus on min-max optimization problems (2), weak MVI condition (with ρ = 0) is satisfied for several60

non-convex non-concave families of min-max objectives, including quasi-convex quasi-concave or61

star convex- star concave [20]. Extragradient-type methods for solving VIPs satisfying the weak MVI62

have been proposed in [14, 54] and [8].63

1.1 Main Contributions64

Our main contributions are summarized below.65

• Expected Residual. We propose the expected residual (ER) condition for stochastic variational66

inequality problems (1). We explain the benefits of ER and show how it can be used to derive an67

upper bound on E∥g(x)∥2 (see Lemma 3.2) that it is strictly weaker than the bounded variance68

assumption and “growth conditions” previously used for the analysis of stochastic algorithms for69

solving (1). We prove that ER holds for a large class of operators, i.e., whenever Fi of (1) are70

Lipschitz continuous.71

• Novel Convergence Guarantees. We prove the first convergence guarantees for SPEG (7) in72

the quasi-strongly monotone (3) and weak MVI (4) cases without using the bounded variance73

assumption. We achieve that by using the proposed (ER) condition. In particular, for the class of74

quasi-strongly monotone VIPs, we show a linear convergence rate to a neighborhood of x∗ when75

constant step-sizes are used. We also provide theoretically motivated step-size switching rules that76

1The computation of approximate first-order locally optimal solutions for general non-monotone problems
(without extra structure) is intractable. See [13] and [14] for more details.
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Table 1: Summary of known and new convergence results for versions of SEG and SPEG with constant step-sizes applied to solve
quasi-strongly monotone variational inequalities and variational inequalities with operators satisfying Weak Minty condition. Columns: “Setup”
= quasi-strongly monotone or Weak MVI; “No UBV?” = is the result derived without bounded variance assumption?; “Single-call” = does the
method require one oracle call per iteration?; “Convergence rate” = rate of convergence neglecting numerical factors. Notation: K = number
of iterations; Lmax = maxi∈[n] Li, where Li is a Lipschitz constant of Fi; µ = 1

n

∑n
i=1 µi, where µi is quasi-strong monotonicity

constant of Fi (see details in [20]); σ2
US∗ = 1

n

∑n
i=1 ∥Fi(x

∗)∥2; L = 1
n

∑n
i=1 Li; σ2

IS∗ = 1
n

∑n
i=1

L
Li

∥Fi(x
∗)∥2; L = Lipschitz

constant of F ; µ = quasi-strong monotonicity constant of F ; δ, σ2
∗ = parameters from (8); ρ = parameter from Weak Minty condition; τ =

batchsize.

Setup Method No UBV? Single-call? Convergence rate

Quasi-strong mon.

S-SEG-US
[20] ✓(1) ✗ Lmax

µ exp
(
− µ

Lmax
K
)
+

σ2
US∗

µ2K

S-SEG-IS
[20] ✓(1) ✗ L

µ exp
(
− µ

L
K
)
+

σ2
IS∗

µ2K

SPEG
[28] ✗(2) ✓ L

µ exp
(
− µ

LK
)
+

σ2
∗

µ2K

(3)

SPEG
(This work) ✓ ✓ max

{
L
µ , δ

µ2

}
exp

(
−min

{
µ
L , µ2

δ

}
K
)
+

σ2
∗

µ2K

Weak MVI(4)

SEG+
[14] ✗(2) ✗

L2∥x0−x∗∥2

K(1−8
√

2Lρ)
+

σ2
∗

τ(1−8
√

2Lρ)

(5)

OGDA+
[8] ✗(2) ✓

∥x0−x∗∥2
Kac(a−ρ)

+
σ2
∗

τL2ac(a−ρ)

(6)

SPEG
(This work) ✓ ✓

(
1+

48ωγδ

τ(1−Lγ)2

)K
∥x0−x∗∥2

Kωγ(1−L(γ+4ω))
+

(
1+

1−Lγ
K

(
1+

48ωγδ

τ(1−Lγ)2

)K)
σ2
∗

τ(1−Lγ)(1−L(γ+4ω))
(7)

(1) Quasi-strong monotonicity of all Fi is assumed.
(2) It is assumed that (8) holds with δ = 0.
(3) [28] do not derive this result but it can be obtained from their proof using standard choice of step-sizes.
(4) All mentioned results in this case require large batchsizes τ = O(K) to get O(1/K) rate.
(5) The result is derived for ρ < 1/8

√
2L.

(6) The result is derived for ρ < 3/8L. Here a and c are assumed to satisfy aL ≤ 7−
√

1+48c2

8(1+c)
, c > 0 and a > ρ.

(7) The result is derived for ρ < 1/2L. Here we assume that max{2ρ, 1/(2L)} < γ < 1/L and 0 < ω < min{γ − 2ρ, (4−γL)/4L}.

guarantee exact convergence of SPEG to x∗. In the weak MVI case, we prove the convergence77

of SPEG for ρ < 1/2L, improving the existing restrictions on ρ. We compare our results with the78

existing literature in Table 1.79

• Arbitrary Sampling. Via a stochastic reformulation of the variational inequality problem (1) we80

explain how our convergence guarantees of SPEG hold under the arbitrary sampling paradigm.81

This allows us to cover a wide range of samplings for SPEG that were never considered in the82

literature before, including mini-batching, uniform sampling, and importance sampling as special83

cases. In this sense, our analysis of SPEG is unified for different sampling strategies. Finally, to84

highlight the tightness of our analysis, we show that the best-known convergence guarantees of85

deterministic PEG for strongly monotone and weak MVI can be obtained as special cases of our86

main theorems.87

2 Stochastic Reformulation of VIPs & Single-Call Extragradient Methods88

In this work, we provide a theoretical analysis of single-call stochastic extragradient methods that89

allows us to obtain convergence guarantees of any minibatch and reasonable sampling selection. We90

achieve that by using the recently proposed “stochastic reformulation” of the variational inequality91

problem (1) from [44]. That is, to allow for any form of minibatching, we use the arbitrary sampling92

notation93
g(x) = Fv(x) :=

1

n

n∑
i=1

viFi(x), (5)

where v ∈ Rn
+ is a random sampling vector drawn from a user-defined distribution D such that94

ED[vi] = 1, for i = 1, . . . , n. In this setting, the original problem (1) can be equivalently written as,95

Find x∗ ∈ Rd : ED

[
Fv(x

∗) :=
1

n

n∑
i=1

viFi(x
∗)

]
= 0, (6)

where the equivalence trivially holds since ED[Fv(x)] =
1
n

∑n
i=1 ED[vi]Fi(x) = F (x).96

In this work, we consider Stochastic Past Extragradient Method (SPEG) applied to (6):97

x̂k = xk − γkFvk−1
(x̂k−1)

xk+1 = xk − ωkFvk(x̂k)
(7)

where x̂−1 = x0 and vk ∼ D is sampled i.i.d at each iteration and γk > 0 and ωk > 0 are the98

extrapolation step-size and update step-size respectively. We note that in our convergence analysis,99
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we allow selecting any distribution D that satisfies ED[vi] = 1 ∀i. This means that for a different100

selection of D, (7) yields different interpretations of SPEG for solving the original problem (1).101

One example of distribution D is τ–minibatch sampling, which is defined as follows.102

Definition 2.1 (τ -Minibatch sampling). Let τ ∈ [n]. We say that v ∈ Rn is a τ–minibatch sampling
if for every subset S ∈ [n] with |S| = τ , we have that P

[
v = n

τ

∑
i∈S ei

]
:= 1

(nτ)
= τ !(n−τ)!

n! .

By using a double counting argument, one can show that if v is a τ–minibatch sampling, it is also103

a valid sampling vector (ED[vi] = 1) [25]. We highlight that our analysis holds for every form of104

minibatching and for several choices of sampling vectors v. Later in Section 5, we provide more105

details related to non-uniform sampling. In addition, by Definition 2.1, it is clear that if τ = n, then106

vi = 1 for all i ∈ [n]. Later in Section 4, we prove how our analysis captures the deterministic Past107

Extragradient Method as a special case.108

In [44], an analysis of stochastic gradient descent-ascent (xk+1 = xk − ωkFvk(xk)) under the109

arbitrary sampling paradigm was proposed for solving star-co-coercive VIPs. Later [20], extended110

this approach and provided general convergence guarantees for stochastic extragradient method111

(SEG) (a stochastic variant of the popular extragradient method [32, 30]) for solving quasi-strongly112

monotone and monotone VIPs. Despite its popularity, SEG requires two oracle calls per iteration113

which makes it prohibitively expensive in many large-scale applications and not easily applicable to114

the online learning problems [18]. This motivates us to explore in detail the convergence guarantees115

of single-call variants of extragradient methods (extragradient methods that require only a single116

oracle call per iteration).117

On Single-Call Extragradient Methods. The seminal work of [56] is the first paper that proposes118

the deterministic Past Extagradient method. In the stochastic setting, [28] provides an analysis of119

several stochastic single-call extragradient methods for solving strongly monotone VIPs. In [28], it120

was also shown that in the unconstrained setting, the update rules of Past Extragradient and Optimistic121

Gradient are exactly equivalent (see also Proposition B.6 in appendix). Through this connection, and122

via our stochastic reformulation (6) our theoretical results hold also for the Stochastic Optimistic123

Gradient Method (SOG): xk+1 = xk − ωkFvk(xk) − γk(Fvk(xk) − Fvk−1
(xk−1)). [8] provides124

the convergence guarantees of SOG for weak MVI. To the best of our knowledge, our work is the125

first that provides convergence guarantees for SOG under the arbitrary sampling paradigm (captures126

sampling beyond uniform sampling) and also without using the bounded variance assumption.127

3 Expected Residual128

In our theoretical results, we rely on Expected Residual (ER) condition. In this section, we define ER129

and explain how it is connected with similar conditions used in optimization literature. We further130

provide sufficient conditions for ER to hold and prove how it can be used to obtain a strictly weaker131

upper bound of E∥g(x)∥2 than previously used growth conditions, expected co-coercivity, or bounded132

variance assumptions.133

Assumption 3.1. We say the Expected Residual (ER) condition holds if there is a parameter δ > 0
such that for an unbiased estimator g(x) of the operator F , we have

E
[
∥(g(x)− g(x∗))− (F (x)− F (x∗))∥2

]
≤ δ

2
∥x− x∗∥2. (ER)

The ER condition bounds how far the stochastic estimator g(x) = Fv(x) (5) used in SPEG is from134

the true operator F (x). ER depends on both the properties of the operator F (x) and of the selection135

of sampling (via g(x)). Conditions similar to ER appeared before in optimization literature but they136

have never been used in operator theory and the analysis of SPEG. In particular, [24] used a similar137

condition for analyzing SGD in stochastic optimization problems but with the right-hand side of138

ER to be the function suboptimality f(x)− f(x∗) (such concept is not available in VIPs). In [68]139

and [21], similar conditions appear under the name “Hessian variance” assumption for distributed140

minimization problems. In the context of distributed VIPs, a similar but stronger condition to ER is141

used by [5].142

Bound on Operator Noise. A common approach for proving the convergence of stochastic algo-143

rithms for solving the VIPs is assuming uniform boundedness of the stochastic operator or uniform144

boundedness of the variance. However, as we explain below, these assumptions either do not hold or145
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are true only for a restrictive set of problems. In our work, we do not assume such bounds. Instead,146

we use the following direct consequence of ER.147

Lemma 3.2. Let σ2
∗ := E∥g(x∗)∥2 < ∞ (operator noise at the optimum is finite). If ER holds,

then

E∥g(x)∥2 ≤ δ∥x− x∗∥2 + ∥F (x)∥2 + 2σ2
∗. (8)

Sufficient Conditions for ER. Let us now provide sufficient conditions which guarantee that the148

ER condition holds and give a closed-form expression for the expected residual parameter δ and149

σ2
∗ = E∥g(x∗)∥2 for the case of τ -minibatch sampling (Def. 2.1).150

Proposition 3.3. Let Fi of problem (1) be Li-Lipschitz operators, then ER holds. If, in addition,
vector v ∈ Rn is a τ–minibatch sampling (Def. 2.1) then: δ = 2

nτ
n−τ
n−1

∑n
i=1 L

2
i , and σ2

∗ =
1
nτ

n−τ
n−1

∑n
i=1 ∥Fi(x

∗)∥2.

Similar results to Prop. 3.3 but under different sufficient conditions have been obtained for τ–151

minibatch sampling under expected smoothness and a variant of expected residual for solving152

minimization problems in [25] and [24] respectively. In [44], a similar proposition was derived but153

for the much more restrictive class of co-coercive operators.154

Connection to Other Assumptions. In the proofs of our convergence results, we use the bound155

(8), which, as we explained above, is a direct consequence of ER. In this paragraph, we place156

this bound in a hierarchy of common assumptions used for the analysis of stochastic algorithms157

for solving VIPs. In the literature on stochastic algorithms for solving the VIPs and min-max158

optimization problems, previous works assume either bounded operator (E∥g(x)∥2 ≤ c) [1, 52],159

bounded variance (E∥g(x)−F (x)∥2 ≤ c) [35, 69, 30] (we provide an example in Appendix C where160

bounded variance assumption does not hold) or growth condition (E∥g(x)∥2 ≤ c1∥F (x)∥2 + c2)161

[36]. In all of these conditions, the parameters c, c1, and c2 are usually constants that do not have162

a closed-form expression. The closer works to our results are [44, 6] which assumes existence of163

lF > 0 such that the expected co-coercivity condition (E∥g(x) − g(x∗)∥2 ≤ lF ⟨F (x), x− x∗⟩)164

holds. Their convergence guarantees provide an efficient analysis for several variants of SGDA for165

solving co-coercive VIPs. In the proposition below, we prove how these conditions are related to the166

bound (8) obtained using ER.167

Proposition 3.4. Suppose F is a L-Lipschitz operator. Then we have the following hierarchy of
assumptions:

Bounded Operator Bounded Variance Growth Condition (8)

Fi are Li-Lipschitz (ER)

Expected Cocoercivity

Let us also mention that [29] provided convergence guarantee of double-oracle stochastic extragra-168

dient (SEG) method under the variance control condition E∥g(x)− F (x)∥2 ≤ (a∥x− x∗∥+ b)2169

where a, b ≥ 0. In their work, they focus on solving VIPs satisfying the error-bound condition, and170

they did not provide closed-form expressions of parameters a and b. Although the analysis of [29]171

can be conducted with a > 0, the authors only provide rates for the case a = 0. The main difference172

between their results (for SEG) and our results (for SPEG) is that our bound (8) is not really an173

assumption, but it holds for free when Fi are Li-Lipschitz. In addition, the values of parameters δ174

and σ2
∗ in (8) could have different values based on the sampling used in the update rule of SPEG.175

4 Convergence Analysis176

In this section, we present and discuss the main convergence results of this work. In the first part,177

we focus on the ones derived for µ-quasi strongly monotone problems (3) (both for constant and178

decreasing step-sizes), and in the second part on the Weak Minty VIP (4).179

4.1 Quasi-Strongly Monotone Problems180

Constant Step-size: We start with the case of µ-quasi strongly monotone problems and consider181

the convergence of SPEG with constant step-size.182
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Theorem 4.1. Let F be L-Lipschitz, µ-quasi strongly monotone, and let ER hold. Choose step-
sizes γk = ωk = ω such that

0 < ω ≤ min

{
µ

18δ
,
1

4L

}
(9)

for all k. Then the iterates produced by SPEG, given by (7) satisfy

R2
k ≤

(
1− ωµ

2

)k
R2

0 +
24ωσ2

∗
µ

, (10)

where R2
k := E

[
∥xk − x∗∥2 + ∥xk − x̂k−1∥2

]
. Hence, given any ε > 0, and choos-

ing ω = min
{

µ
18δ ,

1
4L ,

εµ
48σ2

∗

}
, SPEG achieves E∥xK − x∗∥2 ≤ ε after K ≥

max

{
8L
µ , 36δ

µ2 ,
96σ2

∗
εµ2

}
log

(
2R2

0

ε

)
iterations.

To the best of our knowledge, the above theorem is the first result on the convergence of SPEG that183

does not rely on the bounded variance assumption. Theorem 4.1 recovers the same rate of convergence184

with the Independent-Samples SEG (I-SEG) under assumption (8) [20], although [20] simply assume185

(8), while we show that it follows from Assumption 3.1 holding whenever all summands Fi are186

Lipschitz. However, in the case when all Fi are µ-quasi strongly monotone and Li-Lipschitz (on187

average), one can use Same-Sample SEG (S-SEG). The existing results for S-SEG have better188

exponentially decaying term [49, 20] then Theorem 4.1, e.g., in the case when Li = L for all i ∈ [n],189

we have δ = O(L2) meaning that the exponentially decaying term in (10) is O(R2
0 exp(−µ2k/L2))),190

while S-SEG has much better exponentially decaying term O(R2
0 exp(−µk/L))).191

Such a discrepancy can be partially explained by the following fact: S-SEG can be seen as one192

step of deterministic Extragradient for stochastic operator Fvk allowing to use one-iteration analysis193

of Extragradient without controlling the variance. In contrast, there is no version of SPEG that194

uses the same sample for extrapolation and update steps. This forces to use different samples for195

these steps and this is a key reason why SPEG cannot be seen as one iteration of deterministic196

Past-Extragradient for some operator. Due to this, we need to rely on some bound on the variance to197

handle the stochasticity in the updates; see also [20, Appendix F.1]. Therefore, in our analysis, we198

use Assumption 3.1, implying (8). Nevertheless, it is still an open question whether it is possible to199

improve the rate of SPEG in the case of µ-quasi strongly monotone and Lipschitz operators Fi.200

To highlight the generality of Theorem 4.1, we note that for the deterministic PEG, δ = 0 and σ2
∗ = 0201

(by selecting τ = n in the definition 2.1 of minibatch sampling). In this case, Theorem 4.1 recovers202

the well-known result (up to 1/2 factor in the rate) for deterministic PEG proposed in [17] as shown203

in the following corollary.204

Corollary 4.2. Let the assumptions of Theorem 4.1 hold and a deterministic version of SPEG is
considered, i.e., δ = 0, σ2

∗ = 0. Then, Theorem 4.1 implies that for all k ≥ 0 the iterates produced
by SPEG with step-sizes γk = ωk = ω such that 0 < ω ≤ 1

4L satisfy R2
k ≤

(
1− ωµ

2

)k
R2

0, where
R2

k := ∥xk − x∗∥2 + ∥xk − x̂k−1∥2.

Decreasing Step-size: In this section, we consider two different decreasing step-sizes policies for205

SPEG applied to solve quasi-strongly monotone problems.206

Theorem 4.3. Let F be L-Lipschitz, µ-quasi strongly monotone, and Assumption 3.1 hold. Let

γk = ωk :=

{
ω̄, if k ≤ k∗,
2k+1
(k+1)2

2
µ , if k > k∗,

(11)

where ω̄ := min {1/(4L), µ/(18δ)} and k∗ = ⌈4/(µω̄)⌉. Then for all K ≥ k∗ the iterates produced by
SPEG with step-sizes (11) satisfy

R2
K ≤

(
k∗

K

)2
R2

0

exp(2)
+

192σ2
∗

µ2K
, (12)

where R2
K := E

[
∥xK − x∗∥2 + ∥xK − x̂K−1∥2

]
.
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SPEG with step-size policy2 (11) has two stages of convergence: during first k∗ iterations it uses207

constant step-size to reach some neighborhood of the solution and then the method switches to the208

decreasing O(1/k) step-size allowing to reduce the size of the neighborhood.209

For the case of strongly monotone problems (a special case of our quasi-strongly monotone setting)210

[28] also analyze SPEG with decreasing O(1/k) step-size3 under bounded variance assumption, i.e.,211

when (8) holds with δ = 0 and some σ2
∗ ≥ 0, which is equivalent to the uniformly bounded variance212

assumption. In particular, Theorem 5 [28] states E
[
∥xK − x∗∥2

]
≤ Cσ2

∗
µ2K + o

(
1
K

)
where C is some213

numerical constant. If the problem is strongly monotone, the result of [28] is closely related to what214

is obtained in Theorem 4.3: the main difference in the upper-bound is that we provide an explicit215

form of o (1/K) term. Moreover, in contrast to the result from [28], Theorem 4.3 holds even when216

δ > 0 in (8), which covers a larger class of problems.217

Following [67, 20, 6], we also consider another decreasing step-size policy.218

Theorem 4.4. Let F be L-Lipschitz, µ-quasi strongly monotone, and Assumption 3.1 hold. Let
ω̄ := min {1/(4L), µ/(18δ)}. If for K ≥ 0 step-sizes {γk}k≥0, {ωk}k≥0 satisfy γk = ωk and

ωk :=


ω̄, if K ≤ 2

µω̄ ,

ω̄, if K > 2
µω̄ and k ≤ k0,

2
2
ω̄+µ

2 (k−k0)
, if K > 2

µω̄ and k > k0

(13)

where k0 = ⌈K/2⌉, then the iterates produced by SPEG with the step-sizes defined above satisfy

R2
K ≤ 64R2

0

ω̄µ
exp

{
−min

{
µ

16L
,
µ2

72δ

}
K

}
+

1728σ2
∗

µ2K
, (14)

where R2
K := E

[
∥xK − x∗∥2 + ∥xK − x̂K−1∥2

]
.

In contrast to (12), the rate from (14) has much better (exponentially decaying) o (1/K) term. When219

σ2
∗ is large and one needs to achieve very good accuracy of the solution, this difference is negligible,220

since the dominating O(1/K) term is the same for both bounds (up to numerical factors). However,221

when σ2
∗ is small enough, e.g., the model is close to over-parameterized, or it is sufficient to achieve222

low accuracy of the solution, the dominating term in (14) is typically much smaller than the one223

from (12). Finally, it is worth mentioning, that the improvement of o (1/K) is not achieved for free:224

unlike the policy from (11), step-size rule (13) relies on the knowledge of the total number of steps225

K, which can be inconvenient for the practical use in some cases.226

4.2 Weak Minty Variational Inequality Problems227

In this subsection we will discuss convergence of Stochastic Past Extragradient method for Minty228

Variational Inequality problem. To solve the Minty variational inequality problem we use different229

step-sizes for SPEG iterates (7).230

Theorem 4.5. Let F be L-Lipschitz and satisfy Weak Minty condition with parameter ρ < 1/(2L).
Let Assumption 3.1 hold. Assume that γk = γ, ωk = ω such that max

{
2ρ, 1

2L

}
< γ < 1

L and
0 < ω < min

{
γ − 2ρ, 1

4L − γ
4

}
. Then, for all K ≥ 2 the iterates produced by mini-batched

SPEG with batch-size

τ ≥ max

{
1,

32δ

(1− Lγ)L3ω
,
48ωγδ(K − 1)

(1− Lγ)2
,

2ωγσ2
∗(K − 1)

(1− Lγ)∥x0 − x∗∥2

}
(15)

satisfy min
0≤k≤K−1

E
[
∥F (x̂k)∥2

]
≤ C∥x0−x∗∥2

K−1 , where C = 48
ωγ(1−L(γ+4ω)) .

The above result establishes O(1/K) convergence with O(K) batchsizes for SPEG applied to231

problems satisfying Weak Minty condition. The closest result is obtained by [8], for the same method232

2Similar step-size policy is used for SGD [25] and SGDA [44].
3We point out the proof by [28] can be generalized to the case of constant step-size, though the authors do

not consider this step-size schedule explicitly.
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under bounded variance assumption, i.e., when δ = 0. In particular, the result of [8] also gives O(1/K)233

rate and requires O(K) batchsizes at each step. We extend this result to the case of non-zeroth δ234

and we also improve the assumption on ρ: [8] assumes that ρ < 3/8L, while Theorem 4.5 holds for235

ρ < 1/2L. The bound on ρ cannot be improved even in the deterministic case [23]. Moreover, it is236

worth mentioning that the proof of Theorem 4.5 noticeably differs from the one obtained by [8].237

In the case of a deterministic oracle, we recover the best-known result for Optimistic Gradient in the238

Weak Minty setup [8, 23].239

Corollary 4.6. Let the assumptions of Theorem 4.5 hold and deterministic version of SPEG is
considered, i.e., δ = 0, σ2

∗ = 0. Then, Theorem 4.5 implies that for all k ≥ 0 the iterates produced
by SPEG with step-sizes max

{
2ρ, 1

2L

}
< γ < 1

L and 0 < ω < min
{
γ − 2ρ, 1

4L − γ
4

}
satisfy

min
0≤k≤K−1

∥F (x̂k)∥2 ≤ C∥x0−x∗∥2

K−1 , where C = 48
ωγ(1−L(γ+4ω)) .

5 Beyond Uniform Sampling240

In this section, we illustrate the generality of our analysis by focusing on the non-uniform sam-241

pling. In particular, we focus on single-element sampling in which only the singleton sets {i} for242

i = {1, . . . , n} have a non-zero probability of being sampled; that is, P [|S| = 1] = 1. We have243

P [v = ei/pi] = pi. [25] proved that if v is a single-element sampling, it is also a valid sampling244

vector (ED[vi] = 1). With the following proposition, we provide closed-form expressions for the ER245

parameter δ and σ2
∗ = E∥g(x∗)∥2 for the case of (non-uniform) single-element sampling.246

Proposition 5.1. Let Fi of problem (1) be Li-Lipschitz operators. If, vector v ∈ Rn is a single
element sampling then δ = 2

n2

∑n
i=1

L2
i

pi
and σ2

∗ = 1
n2

∑n
i=1

1
pi
∥Fi(x

∗)∥2.

Importance Sampling. In importance sampling we aim to choose the probabilities pi that optimize247

the iteration complexity. [25] and [20] analyze importance sampling for SGD and SEG respectively.248

In this work, we provide the first convergence guarantees of SPEG with importance sampling. In249

particular, we optimize the expected residual parameter δ with respect to pi, which in turn affects250

the iteration complexity. Note that, by using Cauchy-Schwarz inequality (20), we have
∑n

i=1
L2

i

pi
≥251

(
∑n

i=1 Li)
2, and this lower bound can be achieved for pδi = Li/

∑n
j=1 Lj . In case of importance252

sampling, we will use these probabilities pδi which optimizes δ and define the corresponding δ253

as δIS := 2
n2 (
∑n

i=1 Li)
2. For uniform sampling

(
i.e. pi = 1

n

)
, the value of the parameter is254

δUS = 2
n

∑n
i=1 L

2
i . Note that, δIS equals δUS when all Li are equal, however δIS can be much smaller255

than δUS when Li are very different from each other, e.g., when all Li are relatively small (close to256

zero) and one Li is large, δIS is almost n times smaller than δUS. In this latter scenario (when δIS257

is much smaller than δUS), importance sampling could be useful and can significantly improve the258

performance of SPEG. For example, note that the exponentially decaying term in (14) decreases with259

δ. Hence, this term will decrease much faster with importance sampling than with uniform sampling.260

6 Numerical Experiments261

The purpose of this experimental section is to corroborate our theoretical results, which form the262

main contributions of this paper. To verify our theoretical results, we run several experiments on two263

classes of problems, i.e., strongly monotone problems (a special case of the quasi-strongly monotone264

VIPs) and weak MVI problems.265

6.1 Strongly Monotone Problems266

Our experiments consider the quadratic strongly-convex strongly-concave min-max prob-267

lem from [20]. That is, we implement SPEG on quadratic games of the form268

minx∈Rd maxy∈Rd
1
n

∑n
i=1 fi(x, y) where269

fi(x, y) :=
1

2
x⊺Aix+ x⊺Biy −

1

2
y⊺Ciy + a⊺i x− c⊺i y. (16)

Here Ai, Bi, Ci are generated such that the quadratic game is strongly monotone and smooth. In all270

our experiments, we take n = 100 and d = 30. In Figures 1a, 1b, and 1c, we plot the relative error271

on the y-axis i.e. ∥xk−x∗∥2

∥x0−x∗∥2 .272
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Figure 1: Experiments on strongly monotone quadratic games illustrating the theoretical results of the paper. (a)
Comparison of the proposed constant step-size and the switching-stepsize rule. (b) Comparison of the proposed
switching step-size rule and the step-size proposed in [28], (c) Comparison of importance sampling and uniform
sampling.

Constant vs Switching Step-size Rule. In Fig. 1a, we illustrate the step-size switching rule of273

Theorem 4.3. We place the dotted line to mark when we switch from constant step-size to decreasing274

step-size. In Fig. 1a, the trajectory of switching step-size rule (11) matches that of constant step-size275

(9) in the first phase
(
where SPEG runs with constant step-size following (11)

)
. However, it becomes276

stagnant when the constant step-size SPEG reaches a neighbourhood of optimality. In contrast, the277

step-size of Theorem 4.3 helps the method to converge to better accuracy.278

Comparison with [28]. In this experiment, we compare SPEG step-sizes proposed in Theorems279

4.1 and 4.3 with step-sizes from [28]. To implement SPEG with the step-sizes from [28], we choose280

γ and b such that 1
µ < γ ≤ b

4L and set ωk = γk = γ
k+b . In Fig. 1b, we compare switching step-size281

rule with the step-size from [28]. In this plot, we manually switch the step-size from constant to282

decreasing after 305 steps. We observe that such a semi-empirical rule has comparable performance283

to the step-size selection of [28]. We also compare the constant step-size (9) with the decreasing284

step-size rule of [28] on a non-interpolated model, where our constant step-size rule outperforms [28]285

(Appendix G.1).286

Uniform vs Importance Sampling. In this experiment, we highlight the advantage of using287

importance sampling over uniform sampling. The eigenvalues of A1, C1 are uniformly generated288

from the interval [0.1,Λ]. We implement SPEG with both uniform and importance sampling for289

various choices of Λ. For importance sampling, we use the probabilities pi = Li/
∑n

j=1 Lj . For Λ = 20290

in Fig. 1c, SPEG with importance sampling has faster rate of convergence compared to uniform291

sampling. In Appendix G.1, we describe how the trajectories under uniform sampling get worse292

while the trajectory under importance sampling remains almost identical when we increase Λ.293

6.2 Weak Minty Variational Inequality Problems294

This experiment verifies the convergence guarantees of SPEG in Theorem 4.5. Following the295

min-max problem mentioned in [8], we consider the objective function296

min
x∈R

max
y∈R

1

n

n∑
i=1

ξixy +
ζi
2
(x2 − y2). (17)
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Figure 2: Trajectory of SPEG for
solving weak MVI.

In this experiment, we generate ξi, ζi such that L = 8 and ρ =297
1/32 for the above min-max problem [8]. We implement SPEG298

with extrapolation step γk = 0.08 and update step ωk = 0.01299

which satisfies the conditions on step-size in Theorem 4.5. In300

Fig. 2, we use a batchsize of 6. This plot illustrates that for301

some weak MVI problems the requirement on the step-size from302

Theorem 4.5 can be too pessimistic and SPEG with relatively303

small batchsize achieves reasonable accuracy of the solution. The304

choice of batchsize ensures that bound (15) holds and δ is small305

enough to guarantee convergence of SPEG. We also tried to306

compare SPEG with SEG+ from [54], however, the authors307

do not mention their choice of update step-size. We examined308

several decreasing update step-size for which SEG+ failed to309

converge. Further details on experiments can be found in Appendix G.1.310
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Supplementary Material480

We organize the Supplementary Material as follows: Section A discusses the existing literature related481

to our work. In Section B, we present some technical lemmas required for our analysis. Then in482

Section D, we provide the proofs of propositions related to Expected Residual. Next, Section E483

presents the proofs of the main theorems, while a proposition related to arbitrary sampling is proved484

in Section F. Finally, additional numerical experiments are presented in Section G.485
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A Further Related Work518

The references necessary to motivate our work and connect it to the most relevant literature are519

included in the appropriate sections of the main body of the paper. In this section, we present a520

broader view of the literature, including more details on closely related work and more references to521

papers that are not directly related to our main results.522

• Classes of Structured Non-monotone Operators. With an increasing interest in improved523

computational speed, first-order methods are the primary choice for solving VIPs. However,524

computation of an approximate first-order locally optimal solution of a general non-monotone525

VIP is intractable [13, 33]. It motivates us to exploit the additional structures prevalent in large526

classes of non-monotone VIPs. Recently [20, 28] provide convergence guarantees of stochastic527

methods for solving quasi-strongly monotone VIPs, while [29] for problems satisfying error-bound528

conditions. [14] defined the notion of a weak MVI (4) covering classes of non-monotone VIPs.529

• Assumptions on Operator Noise. The standard analysis of stochastic methods for solving VIPs530

relies on bounded variance assumption. [8, 14, 28, 17] use bounded variance assumption (i.e.531

E∥Fi(x) − F (x)∥2 ≤ σ2 for all x) while [52, 1] assume bounded operators for their analysis.532

However, there are examples of simple quadratic games that do not satisfy these conditions. It has533

motivated researchers to look for alternative/relaxed assumptions on distributions. [44] provides534

convergence of Stochastic Gradient Descent Ascent Method under Expected Cocoercivity. [29, 49]535

considered alternative assumptions for analyzing Stochastic Extragradient Methods that do not536

imply boundedness of the variance. However, there is no analysis of single-call extragradient537

methods without bounded variance assumption.538

• Weak Minty Variational Inequalities. Numerous contemporary studies look to identify first-order539

methods for efficiently solving min-max optimization problems. It varies from simple convex-540

concave to nontrivial nonconvex nonconcave objectives. Though there has been a significant541

development in the convex-concave setting, [13] demonstrates that even finding local solutions are542

intractable for general nonconvex nonconcave objectives. Therefore, researchers seek to identify543

the structure of objective functions for which it is possible to resolve the intractability issues. [14]544

proposes the notion of non-monotonicity, which generalizes the existence of a Minty solution545

(i.e., ρ = 0 in (4)). This problem is known as weak Minty variational inequality in the literature.546

[14, 54] provides convergence guarantees of the Extragradient Method for weak Minty variational547

inequality. They establish a convergence rate of O(1/k) for the squared operator norm. [33]548

shows that it is possible to have an accelerated extragradient method even for non-monotone549

problems. Furthermore, [8] provides a convergence guarantee for the SOG with a complexity550

bound of O(ε−2). However, all papers exploring stochastic extragradient methods for solving551

weak Minty variational inequality consider bounded variance assumption [8, 14]. Moreover, all552

algorithms solving Weak Minty variational inequality require increasing batchsize. Recently,553

[55] introduced BCSEG+ which can solve weak minty variational inequality without increasing554

batchsize. BCSEG+ involves three oracle calls per iteration and addition of a bias-corrected term555

in the extrapolation step.556

• Arbitrary Sampling Paradigm. As we mentioned in the main paper, the stochastic reformulation557

(6) of the original problem (1) allows us to analyze single-call extragradient methods under the558

arbitrary sampling paradigm. That is, provide a unified analysis for SPEG that captures multiple559

sampling strategies, including τ -minibatch and importance samplings. An arbitrary sampling560

analysis of a stochastic optinmization method was first proposed in the context of the randomized561

coordinate descent method for solving strongly convex functions in [59]. Since then, several562

other stochastic methods were studied in this regime, including accelerated coordinate descent563

algorithms [58, 26], randomized iterative methods for solving consistent linear systems [60, 41, 40],564

randomized gossip algorithms [39, 42], stochastic gradient descent (SGD) [25, 24], and variance565

reduced methods [57, 27, 31]. The first analysis of stochastic algorithms under the arbitrary566

sampling paradigm for solving variational inequality problems was proposed in [43, 44]. In567

[43, 44], the authors focus on algorithms like the stochastic Hamiltonian method, the stochastic568

gradient descent ascent, and the stochastic consensus optimization. These ideas were later extended569

to the case of Stochastic Extragradient by [20]. To the best of our knowledge, our work is the570

first that provides an analysis of single-call extragradient methods under the arbitrary sampling571

paradigm.572
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• Overparameterized Models and Interpolation. For a function f(x) := 1
n

∑n
i=1 fi(x) we say573

that interpolation condition holds if there exists x∗ such that minx fi(x) = fi(x
∗) for all i ∈ [n]574

(or equivalently ∇fi(x
∗) = 0 for smooth convex functions) [24]. The interpolation condition575

is satisfied when the underlying models are sufficiently overparameterized [70]. Some known576

examples include deep matrix factorization and classification using neural networks [3, 61, 70].577

The interpolated model structure enables SGD and other optimization algorithms to have faster578

convergence [24, 45, 15]. Inspired by this, one can extend the notion of the interpolation condition579

to operators. In this scenario, we say that the VIP (1) is interpolated if there exists solution x∗ of (1)580

such that Fi(x
∗) = 0 for all i ∈ [n]. This concept has been explored for analyzing the stochastic581

extragradient method in [71, 34]. We highlight that our proposed theorems show fast convergence582

of SPEG in this interpolated regime (when σ2
∗ = 0). To the best of our knowledge, our work is583

the first that proves such convergence for SPEG. In Fig. 3b, we experimentally verify the fast584

convergence for solving a strongly monotone interpolated problem.585

• Deterministic Extragradient Methods. The Extragradient method (EG) [32] and its single-call586

variant, Optimistic Gradient (OG) [56], were proposed to overcome the convergence issues of587

gradient descent-ascent method for solving monotone problems. Since their introduction, these588

methods have been revisited and explored in various ways. [50] analyzed EG and OG as an589

approximation of the Proximal Point method to solve bilinear and strongly convex-strongly concave590

min-max problems. [65] and [62] provide the best-iterate convergence guarantees of EG and591

OG with a rate of O(1/K) for solving monotone problems. However, providing a last-iterate592

convergence rate of EG and OG for monotone VIPs has been a long-lasting open problem that593

was only recently resolved. The works of [18, 22, 10] prove a last-iterate O(1/K) convergence rate594

for these methods. Finally, in the deterministic setting, some recent works provide convergence595

analysis of EG and OG for solving weak MVI (4) [14, 54, 8, 23].596
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B Technical Preliminaries597

Throughout our work, we assume598

Assumption B.1. Operator F in (1) is L Lipschitz, i.e., ∀x, y ∈ Rd operator F satisfies

∥F (x)− F (y)∥ ≤ L∥x− y∥. (18)

Operators Fi : Rd → Rd of problem (1) are Li- Lipschitz, i.e., ∀x, y ∈ Rd operator Fi satisfies

∥Fi(x)− Fi(y)∥ ≤ Li∥x− y∥. (19)

In our proofs, we often use the following simple inequalities.599

Lemma B.2. For all a, b, a1, a2, · · · an ∈ Rd, n ≥ 1, α > 0, we have the following inequalities:

⟨a, b⟩ ≤ ∥a∥∥b∥, (20)

⟨a, b⟩ ≤ 1

2α
∥a∥2 + α

2
∥b∥2, (21)

∥a+ b∥2 ≤ 2∥a∥2 + 2∥b∥2, (22)

∥a∥2 ≥ 1

2
∥a+ b∥2 − ∥b∥2, (23)∥∥∥∥ n∑

i=1

ai

∥∥∥∥2 ≤ n

n∑
i=1

∥ai∥2. (24)

Inequality (22) is well known as Young’s Inequality. Now, we present a simple property of unbiased600

estimators.601

Lemma B.3. For an unbiased estimator g of operator F i.e. E[g(x)] = F (x) we have

E∥g(x)− F (x)∥2 = E∥g(x)∥2 − ∥F (x)∥2. (25)

Next, we present the following lemma from [67], which plays a vital role in proving the convergence602

guarantee of Theorem 4.4.603

Lemma B.4. (Simplified Verison of Lemma 3 from [67]) Let the non-negative sequence {rk}k≥0

satisfy the relation rk+1 ≤ (1 − aγk)rk + cγ2
k for all k ≥ 0, parameters a, c ≥ 0 and any non-

negative sequence {γk}k≥0 such that γk ≤ 1
h for some h ≥ a, h > 0. Then for any K ≥ 0 one

can choose {γk}k≥0 as follows:

if K ≤ h

a
, γk =

1

h
,

if K >
h

a
and k < k0, γk =

1

h
,

if K >
h

a
and k ≥ k0, γk =

2

a(κ+ k − k0)
,

where κ = 2h
a and k0 =

⌈
K
2

⌉
. For this choice of γk the following inequality holds:

rK ≤ 32hr0
a

exp

(
− aK

2h

)
+

36c

a2K
.

We use the next lemma to bound the trace of matrix products.604

Lemma B.5. For positive semidefinite matrices A,B ∈ Rd×d we have605
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tr(AB) ≤ λmax(B)tr(A), (26)

where λmax(B) denotes the maximum eigenvalue of B.606

Next lemma proves equivalence of SPEG and SOG:607

Proposition B.6 (Equivalence of SPEG and SOG). Consider the iterates of SPEG {xk, x̂k}∞k=1
with constant step-sizes ωk = ω, γk = γ in (7). Then x̂k follows the iteration rule of SOG i.e.

x̂k+1 = x̂k − ωkFvk(x̂k)− γk[Fvk(x̂k)− Fvk−1
(xk−1)] (27)

Proof. From the update rule of SPEG (7) we get608

x̂k+1 = xk+1 − γFvk(x̂k)

= xk − ωFvk(x̂k)− γFvk(x̂k)

= xk − (ω + γ)Fvk(x̂k)

= x̂k + γFvk−1
(x̂k−1)− (ω + γ)Fvk(x̂k)

= x̂k − ωFvk(x̂k)− γ
(
Fvk(x̂k)− Fvk−1

(x̂k−1)
)
.

This shows that SPEG iterations are equivalent to SOG, with x̂k being the k-th iterate of SOG.609

C Bounded Variance Counter Example:610

Here we provide a simple counterexample for bounded variance assumption. Consider the linear611

regression problem612

min
x∈R

f(x) :=
1

2
(a1x− b1)

2 +
1

2
(a2x− b2)

2

where x ∈ R. Here f1(x) = (a1x− b1)
2 and f2(x) = (a2x− b2)

2. Now consider the estimator g(x)613

of ∇f(x) under uniform sampling i.e. g(x) takes the value ∇f1(x) with probability 1
2 and ∇f2(x)614

with probability 1
2 . Then we have615

E∥g(x)−∇f(x)∥2 =
1

2
∥∇f1(x)−∇f(x)∥2 + 1

2
∥∇f2(x)−∇f(x)∥2

=
1

2
· 1
4
∥∇f1(x)−∇f2(x)∥2 +

1

2
· 1
4
∥∇f2(x)−∇f1(x)∥2

=
1

4
∥∇f1(x)−∇f2(x)∥2

=
1

4
(2(a1x− b1)a1 − 2(a2x− b2)a2)

2

=
(
(a21 − a22)x− (a1b1 − a2b2)

)2
Therefore E∥g(x) − ∇f(x)∥2 is a quadratic function of x where the coefficient of x is positive.616

Hence, as x → ∞, we have E∥g(x) −∇f(x)∥2 → ∞, and the variance can not be bounded by a617

constant.618
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D Proofs of Results on Expected Residual619

D.1 Proof of Lemma 3.2620

Proof. Using Young’s Inequality (22), we get621

E∥g(x)− F (x)∥2
(22)
≤ 2E∥g(x)− F (x)− g(x∗)∥2 + 2E∥g(x∗)∥2

(ER)
≤ δ∥x− x∗∥2 + 2E∥g(x∗)∥2.

Then breaking down the RHS, we obtain622

E∥g(x)∥2 − ∥F (x)∥2
(25)
≤ δ∥x− x∗∥2 + 2E∥g(x∗)∥2.

Now we rearrange the terms and set σ2
∗ = E∥g(x∗)∥2 to complete the proof of this Lemma.623

Proposition D.1. If Fi are Li-lipschitz then Expected Residual condition (ER) holds. In that case

δ =
2

n

n∑
i=1

L2
iE(v2i ).

In addition, if F is µ-quasi strongly monotone (3) then we have

δ =
2

n

n∑
i=1

L2
iE(v2i )− 2µ2.

Proof. Note that624

E∥(Fv(x)− Fv(x
∗))− (F (x)− F (x∗))∥2 = E∥Fv(x)− Fv(x

∗)∥2 + ∥F (x)− F (x∗)∥2

−2E ⟨Fv(x)− Fv(x
∗), F (x)− F (x∗)⟩

= E∥Fv(x)− Fv(x
∗)∥2 − ∥F (x)− F (x∗)∥2

= E∥Fv(x)− Fv(x
∗)∥2 − ∥F (x)∥2

= E
∥∥∥∥ 1n

n∑
i=1

vi(Fi(x)− Fi(x
∗))

∥∥∥∥2 − ∥F (x)∥2

=
1

n2
E
∥∥∥∥ n∑

i=1

vi(Fi(x)− Fi(x
∗))

∥∥∥∥2 − ∥F (x)∥2

(24)
≤ 1

n

n∑
i=1

E(v2i )∥Fi(x)− Fi(x
∗)∥2 − ∥F (x)∥2

(19)
≤ ∥x− x∗∥2

n

n∑
i=1

E(v2i )L2
i − ∥F (x)∥2. (28)

The first part of the lemma follows by ignoring the positive term ∥F (x)∥2. For the second part we
assume F is µ-quasi strongly monotone. Then we have

µ∥x− x∗∥2
(3)
≤ ⟨F (x), x− x∗⟩

(20)
≤ ∥F (x)∥∥x− x∗∥.

Cancelling ∥x− x∗∥ from both sides we get625

µ∥x− x∗∥ ≤ ∥F (x)∥. (29)

Therefore we have the following bound for µ-quasi strongly monotone operator F :626

E∥(Fv(x)− Fv(x
∗))− (F (x)− F (x∗))∥2

(28),(29)
≤

(
1

n

n∑
i=1

E(v2i )L2
i − µ2

)
∥x− x∗∥2.

This proves the second part of the lemma. This lemma ensures that the Lipschitz property is sufficient627

to guarantee Expected Residual (ER) condition.628

20



D.2 Proof of Proposition 3.3629

Proof. Proposition D.1 implies that Lipschitzness of all operators Fi is enough to ensure that ER holds.630

For τ - minibatch sampling, denote the matrix R =
(
F1(x)−F1(x

∗), · · · , Fn(x)−Fn(x
∗)
)
∈ Rd×n.631

Then we obtain the following bound:632

E∥Fv(x)− Fv(x
∗)− (F (x)− F (x∗))∥2 = E

∥∥∥∥ 1n
n∑

i=1

(
vi(Fi(x)− Fi(x

∗))− (Fi(x)− Fi(x
∗))
)∥∥∥∥2

=
1

n2
E
∥∥∥∥ n∑

i=1

(vi − 1)(Fi(x)− Fi(x
∗))

∥∥∥∥2
=

1

n2
E
∥∥R(v − 1)

∥∥2
=

1

n2
E(v − 1)⊺R⊺R(v − 1)

=
1

n2
E
(

tr
(

R⊺R(v − 1)(v − 1)⊺
))

=
1

n2
tr
(

R⊺RE
(
(v − 1)(v − 1)⊺

))
=

1

n2
tr
(

R⊺RVar[v]
))

(26)
≤

λmax

(
Var[v]

)
n2

tr(R⊺R)

=
λmax

(
Var[v]

)
n2

n∑
i=1

∥Fi(x)− Fi(x
∗)∥2

(19)
≤ λmax(Var[v])∥x− x∗∥2

n2

n∑
i=1

L2
i .

From the proof details of Lemma F.3 in [63] we have λmax(Var[v]) = n(n−τ)
τ(n−1) for τ -minibatch633

sampling. Thus we obtain634

E
∥∥Fv(x)− Fv(x

∗)− (F (x)− F (x∗))
∥∥2 ≤ 2(n− τ)

nτ(n− 1)

n∑
i=1

L2
i ∥x− x∗∥2.

Now we focus on the derivation of σ2
∗ = E∥Fv(x

∗)∥2 for τ -minibatch sampling. We expand635

E∥Fv(x
∗)∥2 as follows:636

E∥Fv(x
∗)∥2 =

1

n2
E
∥∥∥∥ n∑

i=1

viFi(x
∗)

∥∥∥∥2
=

1

n2
E
∥∥∥∥∑

i∈S

1

pi
Fi(x

∗)

∥∥∥∥2
=

1

n2
E
∥∥∥∥ n∑

i=1

1i∈S
1

pi
Fi(x

∗)

∥∥∥∥2
=

1

n2
E
〈 n∑

i=1

1i∈S
1

pi
Fi(x

∗),

n∑
j=1

1j∈S
1

pj
Fj(x

∗)

〉

=
1

n2

n∑
i,j=1

Pij

pipj
⟨Fi(x

∗), Fj(x
∗)⟩, (30)

where Pij = P (i, j ∈ S) and pi = P (i ∈ S). For τ -minibatch sampling, we obtain Pij = τ(τ−1)
n(n−1)637

and pi =
τ
n . Plugging in these values of Pij and pi in (30) we get the closed-form expression of σ2

∗.638

This completes the proof of Proposition 3.3.639
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D.3 Proof of Proposition 3.4640

Here we enlist the assumptions made on operators. Suppose g is an estimator of operator F .641

1. Bounded Operator: E∥g(x)∥2 ≤ σ2

2. Bounded Variance: E∥g(x)− F (x)∥2 ≤ σ2

3. Growth Condition: E∥g(x)∥2 ≤ α∥F (x)∥2 + β

4. Expected Co-coercivity: E∥g(x)− g(x∗)∥2 ≤ lF ⟨F (x), x− x∗⟩

5. Expected Residual: E∥(g(x)− g(x∗))− (F (x)− F (x∗))∥2 ≤ δ

2
∥x− x∗∥2

6. Bound from Lemma 3.2: E∥g(x)∥2 ≤ δ∥x− x∗∥2 + ∥F (x)∥2 + 2σ2
∗

7. Fi are Lipschitz: ∥Fi(x)− Fi(y)∥ ≤ Li∥x− y∥ ∀ i = 1, . . . , n

Proof. Here we will prove Proposition 3.4642

• 1 =⇒ 2. Note that E∥g(x)∥2 ≤ σ2 ≤ ∥F (x)∥2 + σ2 =⇒ E∥g(x)− F (x)∥ ≤ σ2.643

• 2 =⇒ 3. Here E∥g(x) − F (x)∥2 ≤ σ2 =⇒ E∥g(x)∥2 ≤ ∥F (x)∥2 + σ2 as g is an644

unbiased for estimator of F . Then take α = 1 and β = σ2.645

• 3 =⇒ 6. Note that E∥g(x)∥2 ≤ α∥F (x)∥2 +β ≤ αL2∥x−x∗∥2 +β. The last inequality646

follows from lipschitz property of F and F (x∗) = 0. Then choose δ = αL2 and σ2
∗ = β/2647

to get the result.648

• 4 =⇒ 5. Note that expected cocoercivity and L-Lipschitzness of F imply E∥(g(x) −649

g(x∗)) − (F (x) − F (x∗))∥2 = E∥g(x) − g(x∗)∥2 − ∥F (x) − F (x∗)∥2 ≤ E∥g(x) −650

g(x∗)∥2 ≤ lF ⟨F (x), x− x∗⟩
(B.2)
≤ lF

2L∥F (x)∥2 + lFL
2 ∥x− x∗∥2 ≤ lFL∥x− x∗∥2.651

• 7 =⇒ 5. This follows from Proposition D.1.652

• 5 =⇒ 6. This follows from Lemma 3.2653

654
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E Main Convergence Analysis Results655

First, we present some results followed by iterates of SPEG. These will play a key role in proving656

the Theorems later in this section. Recall that iterates of SPEG are657

x̂k = xk − γkFvk−1
(x̂k−1),

xk+1 = xk − ωkFvk(x̂k).

Lemma E.1. For SPEG iterates with step-size ωk = γk = ω, we have

∥xk+1 − x∗∥2 = ∥xk+1 − x̂k∥2 + ∥xk − x∗∥2 − ∥x̂k − xk∥2 − 2ω ⟨Fvk(x̂k), x̂k − x∗⟩ . (31)

Proof. We have658

∥xk+1 − x∗∥2 = ∥xk+1 − x̂k + x̂k − xk + xk − x∗∥2

= ∥xk+1 − x̂k∥2 + ∥x̂k − xk∥2 + ∥xk − x∗∥2 + 2 ⟨x̂k − xk, xk − x∗⟩
+2 ⟨xk+1 − x̂k, x̂k − xk⟩+ 2 ⟨xk+1 − x̂k, xk − x∗⟩

= ∥xk+1 − x̂k∥2 + ∥x̂k − xk∥2 + ∥xk − x∗∥2 + 2 ⟨xk+1 − x̂k, x̂k − x∗⟩
+2 ⟨x̂k − xk, xk − x∗⟩

= ∥xk+1 − x̂k∥2 + ∥x̂k − xk∥2 + ∥xk − x∗∥2 + 2 ⟨xk+1 − x̂k, x̂k − x∗⟩
+2 ⟨x̂k − xk, xk − x̂k + x̂k − x∗⟩

= ∥xk+1 − x̂k∥2 + ∥x̂k − xk∥2 + ∥xk − x∗∥2 + 2 ⟨xk+1 − x̂k, x̂k − x∗⟩
+2 ⟨x̂k − xk, x̂k − x∗⟩ − 2∥x̂k − xk∥2

= ∥xk+1 − x̂k∥2 − ∥x̂k − xk∥2 + ∥xk − x∗∥2 + 2 ⟨xk+1 − x̂k, x̂k − x∗⟩
+2 ⟨x̂k − xk, x̂k − x∗⟩

= ∥xk+1 − x̂k∥2 − ∥x̂k − xk∥2 + ∥xk − x∗∥2 + 2 ⟨xk+1 − xk, x̂k − x∗⟩
= ∥xk+1 − x̂k∥2 − ∥x̂k − xk∥2 + ∥xk − x∗∥2 − 2ω ⟨Fvk(x̂k), x̂k − x∗⟩ .
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Lemma E.2. Let F be L-Lipschitz, and let ER hold. Then SPEG iterates satisfy

ED∥Fvk(x̂k)− Fvk−1
(x̂k−1)∥2 ≤ δ∥x̂k − x∗∥2 + 2δ∥x̂k−1 − x∗∥2 + 2L2∥x̂k − x̂k−1∥2 + 6σ2

∗.
(32)

Proof.

ED∥Fvk(x̂k)− Fvk−1
(x̂k−1)∥2 = ED∥Fvk(x̂k)− F (x̂k)∥2 + ED∥F (x̂k)− Fvk−1

(x̂k−1)∥2

+2ED
〈
Fvk(x̂k)− F (x̂k), F (x̂k)− Fvk−1

(x̂k−1)
〉

= Evk∥Fvk(x̂k)− F (x̂k)∥2 + ED∥F (x̂k)− Fvk−1
(x̂k−1)∥2

(22)
≤ ED∥Fvk(x̂k)− F (x̂k)∥2 + 2ED∥F (x̂k)− F (x̂k−1)∥2

+2ED∥F (x̂k−1)− Fvk−1
(x̂k−1)∥2

= ED∥Fvk(x̂k)∥2 − ∥F (x̂k)∥2 + 2∥F (x̂k)− F (x̂k−1)∥2

+2ED∥Fvk−1
(x̂k−1)∥2 − 2∥F (x̂k−1)∥2

(8)
≤ δ∥x̂k − x∗∥2 + 2δ∥x̂k−1 − x∗∥2 + 6σ2

∗ + 2∥F (x̂k)− F (x̂k−1)∥2
(18)
≤ δ∥x̂k − x∗∥2 + 2δ∥x̂k−1 − x∗∥2 + 6σ2

∗ + 2L2∥x̂k − x̂k−1∥2.
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Lemma E.3. For ω ∈
[
0, 1

4L

]
the following two conditions hold:

2ω(µ− ωδ) + 8ω2L2 − 1 ≤ 0, (33)

and 8ω2(δ + L2) ≤ 1− ωµ+ 9ω2δ. (34)

Proof. Note that for ω ∈
[
0, 1

4L

]
, we have

2ω(µ− ωδ) + 8ω2L2 − 1
ω2δ≥0

≤ 2ωµ+ 8ω2L2 − 1
ω≤ 1

4L

≤ µ

2L
+

1

2
− 1

µ≤L

≤ 0.

This proves the first condition. The second condition is equivalent to ω(µ− ωδ) + 8ω2L2 − 1 ≤ 0,661

which is again true using similar arguments.662

E.1 Proof of Theorem 4.1663

Proof. For ω ∈
[
0, µ

18δ

]
we have ω(µ− 9ωδ) ≥ 0 and 1− ω(µ− 9ωδ) ≤ 1− ωµ

2 . Then we derive664

ED[∥xk+1 − x∗∥2 + ∥xk+1 − x̂k∥2]
(31)
= ∥xk − x∗∥2 + 2ED∥xk+1 − x̂k∥2 − ∥x̂k − xk∥2

−2ωED ⟨Fvk(x̂k), x̂k − x∗⟩
= ∥xk − x∗∥2 + 2ED∥xk+1 − x̂k∥2 − ∥x̂k − xk∥2

−2ω ⟨F (x̂k), x̂k − x∗⟩
(3)
≤ ∥xk − x∗∥2 + 2ED∥xk+1 − x̂k∥2 − ∥x̂k − xk∥2

−2ωµ∥x̂k − x∗∥2

= ∥xk − x∗∥2 + 2ω2ED∥Fvk(x̂k)− Fvk−1
(x̂k−1)∥2 − ∥x̂k − xk∥2

−2ωµ∥x̂k − x∗∥2
(32)
≤ ∥xk − x∗∥2 + 2ω2

(
δ∥x̂k − x∗∥2 + 2δ∥x̂k−1 − x∗∥2

+2L2∥x̂k − x̂k−1∥2 + 6σ2
∗

)
− ∥x̂k − xk∥2 − 2ωµ∥x̂k − x∗∥2

= ∥xk − x∗∥2 − 2ω(µ− ωδ)∥x̂k − x∗∥2 + 4ω2δ∥x̂k−1 − x∗∥2

+4ω2L2∥x̂k − x̂k−1∥2 − ∥x̂k − xk∥2 + 12ω2σ2
∗

(22)
≤ ∥xk − x∗∥2 − ω(µ− ωδ)∥xk − x∗∥2 + 2ω(µ− ωδ)∥xk − x̂k∥2

+4ω2δ∥x̂k−1 − x∗∥2 + 4ω2L2∥x̂k − x̂k−1∥2 − ∥x̂k − xk∥2

+12ω2σ2
∗

(22)
≤ ∥xk − x∗∥2 − ω(µ− ωδ)∥xk − x∗∥2 + 2ω(µ− ωδ)∥xk − x̂k∥2

+8ω2δ∥x̂k−1 − xk∥2 + 8ω2δ∥xk − x∗∥2 + 8ω2L2∥x̂k − xk∥2

+8ω2L2∥xk − x̂k−1∥2 − ∥x̂k − xk∥2 + 12ω2σ2
∗

= (1− ωµ+ 9ω2δ)∥xk − x∗∥2 + (8ω2δ + 8ω2L2)∥xk − x̂k−1∥2

+(2ω(µ− ωδ) + 8ω2L2 − 1)∥xk − x̂k∥2 + 12ω2σ2
∗

(33),(34)
≤ (1− ωµ+ 9ω2δ)

(
∥xk − x∗∥2 + ∥xk − x̂k−1∥2

)
+ 12ω2σ2

∗.

Then we take total expectation with respect to the algorithm to obtain the following recurrence:665

R2
k+1 ≤ (1− ωµ+ 9ω2δ)R2

k + 12ω2σ2
∗. (35)

24



Using the inequality 1− ω(µ− 9ωδ) ≤ 1− ωµ
2 , we have666

E
[
∥xk+1 − x∗∥2 + ∥xk+1 − x̂k∥2

]
≤
(
1− ωµ

2

)
E
[
∥xk − x∗∥2 + ∥xk − x̂k−1∥2

]
+ 12ω2σ2

∗.

(36)

The theorem follows by unrolling the above recurrence. In order to compute the iteration complexity667

of SPEG, we consider any arbitrary ε > 0. Then we choose the step-size ω such that 24ωσ2
∗

µ ≤ ε
2668

i.e. ω ≤ εµ
48σ2

∗
. Next we will choose the number of iterations k such that (1 − ωµ

2 )kR2
0 ≤ ε

2 . It is669

equivalent to choosing k such that670

log

(
2R2

0

ε

)
≤ k log

(
1

1− ωµ
2

)
.

Now using the fact log
(
1
ρ

)
≥ 1 − ρ for 0 < ρ ≤ 1, we get log

(
2R2

0

ε

)
≤ kωµ

2 , or equivalently671

k ≥ 2
ωµ log

(
2R2

0

ε

)
. Therefore, with step-size ω = min

{
µ

18δ ,
1
4L ,

εµ
48σ2

∗

}
we get the following lower672

bound on the number of iterations673

k ≥ max

{
8L

µ
,
36δ

µ2
,
96σ2

∗
εµ2

}
log

(
2R2

0

ε

)
.

674

E.2 Proof of Theorem 4.3675

Proof. For ω ≤ min
{

1
4L ,

µ
18δ

}
, from Theorem 4.1 we obtain

R2
k+1 ≤

(
1− ωµ

2

)k+1

R2
0 +

24ωσ2
∗

µ
.

Let the step-size ωk = 2k+1
(k+1)2

2
µ and k∗ be an integer that satisfies ωk∗ ≤ ω̄. In particular this holds

when k∗ ≥
⌈

4
µω̄ − 1

⌉
. Note that ωk is decreasing in k and consequently ωk ≤ ω̄ for all k ≥ k∗.

Therefore, from (36) we derive

R2
k+1 ≤

(
1− ωk

µ

2

)
R2

k + 12ω2
kσ

2
∗

for all k ≥ k∗. Then we replace ωk with 2k+1
(k+1)2

2
µ to obtain676

R2
k+1 ≤

(
1− 2k + 1

(k + 1)2

)
R2

k + 48σ2
∗
(2k + 1)2

µ2(k + 1)4
(37)

=
k2

(k + 1)2
R2

k + 48σ2
∗
(2k + 1)2

µ2(k + 1)4
. (38)

Multiplying both sides by (k + 1)2 we get677

(k + 1)2R2
k+1 ≤ k2R2

k +
48σ2

∗
µ2

(
2k + 1

k + 1

)2

(39)

≤ k2R2
k +

192σ2
∗

µ2
, (40)

where in the last line follows from 2k+1
k+1 < 2. Rearranging and summing the last expression for678

t = k∗, · · · , k we obtain679

k∑
t=k∗

(t+ 1)2R2
t+1 − t2R2

t ≤ 192σ2
∗

µ2
(k − k∗).

25



Using telescopic sum and dividing both sides by (k + 1)2 we obtain680

R2
k+1 ≤

(
k∗

k + 1

)2

R2
k∗ +

192σ2
∗(k − k∗)

µ2(k + 1)2
. (41)

Suppose for k ≤ k∗, we have ωk = ω̄ = min
{

1
4L ,

µ
18δ

}
i.e. constant step-size. Then from (10), we681

obtain R2
k∗ ≤

(
1− µω̄

2

)k∗

R2
0 +

24ω̄σ2
∗

µ . This bound on R2
k∗ , combined with (41) yields682

R2
k+1 ≤

(
k∗

k + 1

)2(
1− µω̄

2

)k∗

R2
0 +

(
k∗

k + 1

)2
24ω̄σ2

∗
µ

+
192σ2

∗(k − k∗)

µ2(k + 1)2
.

Now we want to choose k∗ which minimizes the expression
(

k∗

k+1

)2 24ω̄σ2
∗

µ +
192σ2

∗(k−k∗)
µ2(k+1)2 . Note that,683

it is minimized at 4
µω̄ , hence we choose k∗ =

⌈
4
µω̄

⌉
. Therefore, using this value of k∗, we obtain684

R2
k+1 ≤

(
k∗

k + 1

)2(
1− 2

k∗

)k∗

R2
0 +

24σ2
∗

µ2(k + 1)2
(8k − 4k∗)

≤
(

k∗

k + 1

)2(
1− 2

k∗

)k∗

R2
0 +

192kσ2
∗

µ2(k + 1)2

≤
(

k∗

k + 1

)2
R2

0

e2
+

192σ2
∗

µ2(k + 1)
.

The last line follows from
(
1− 1

x

)x
≤ e−1 for all x ≥ 1. This completes the proof.685

E.3 Proof of Theorem 4.4686

Proof. For 0 < ωk ≤
{

1
4L ,

µ
18δ

}
we obtain the following bound from Theorem 4.1:

R2
k ≤

(
1− µωk

2

)
R2

k−1 + 12ω2
kσ

2
∗.

Then using Lemma B.4 with a = µ
2 , h = 1

ω̄ and c = 12σ2
∗ we complete the proof of this Theorem.687

E.4 Proof of Theorem E.4688

Theorem E.4. Let F be L-Lipschitz and satisfy Weak Minty condition with parameter ρ < 1/(2L).
Assume that inequality (8) holds (e.g., it holds whenever Assumption 3.1 holds, see Lemma 3.2).
Assume that γk = γ, ωk = ω and

max

{
2ρ,

1

2L

}
< γ <

1

L
, 0 < ω < min

{
γ − 2ρ,

1

4L
− γ

4

}
, δ ≤ (1− Lγ)L3ω

32
.

Then, for all K ≥ 2 the iterates produced by SPEG satisfy

min
0≤k≤K−1

E
[
∥F (x̂k)∥2

]
≤

(1 + 8ωγ(δ + L2)− Lγ)
(
1 + 48ωγδ

(1−Lγ)2

)K−1

∥x0 − x∗∥2

ωγ(1− L(γ + 4ω))(K − 1)

+

8

(
8 + (1−Lγ)2

K−1

(
1 + 48ωγδ

(1−Lγ)2

)K−1
)
σ2
∗

(1− Lγ)2(1− L(γ + 4ω))
. (42)

Proof. The proof closely follows the proof of Lemma C.3 and Theorem C.4 from [23]. The update689

rule of SPEG implies for k ≥ 1690

∥xk+1 − x∗∥2 = ∥xk − x∗∥2 − 2ω⟨xk − x∗, Fvk(x̂k)⟩+ ω2∥Fvk(x̂k)∥2

= ∥xk − x∗∥2 − 2ω⟨x̂k − x∗, Fvk(x̂k)⟩ − 2ωγ⟨Fvk−1
(x̂k−1), Fvk(x̂k)⟩+ ω2∥Fvk(x̂k)∥2

= ∥xk − x∗∥2 − 2ω⟨x̂k − x∗, Fvk(x̂k)⟩ − ωγ∥Fvk−1
(x̂k−1)∥2 − ω(γ − ω)∥Fvk(x̂k)∥2

+ωγ∥Fvk(x̂k)− Fvk−1
(x̂k−1)∥2,

26



where in the last step we apply 2⟨a, b⟩ = ∥a∥2 + ∥b∥2 − ∥a − b∥2, which holds for all a, b ∈ Rd.691

Taking the full expectation and using E[Evk [·]] = E[·] and Weak Minty condition, we derive692

E
[
∥xk+1 − x∗∥2

]
≤ E

[
∥xk − x∗∥2

]
− 2ωE [⟨x̂k − x∗, F (x̂k)⟩]− ωγE

[
∥Fvk−1

(x̂k−1)∥2
]

−ω(γ − ω)E
[
∥Fvk(x̂k)∥2

]
+ ωγE

[
∥Fvk(x̂k)− Fvk−1

(x̂k−1)∥2
]

(4)
≤ E

[
∥xk − x∗∥2

]
+ 2ωρE

[
∥F (x̂k)∥2

]
− ωγE

[
∥Fvk−1

(x̂k−1)∥2
]

−ω(γ − ω)E
[
∥Fvk(x̂k)∥2

]
+ ωγE

[
∥Fvk(x̂k)− Fvk−1

(x̂k−1)∥2
]

≤ E
[
∥xk − x∗∥2

]
− ωγE

[
∥Fvk−1

(x̂k−1)∥2
]
− ω(γ − 2ρ− ω)E

[
∥Fvk(x̂k)∥2

]
+ωγE

[
∥Fvk

(x̂k)− Fvk−1
(x̂k−1)∥2

]
≤ E

[
∥xk − x∗∥2

]
− ωγE

[
∥Fvk−1

(x̂k−1)∥2
]
+ ωγE

[
∥Fvk(x̂k)− Fvk−1

(x̂k−1)∥2
]
,(43)

where we apply Jensen’s inequality ∥F (x̂k)∥2 = ∥Evk
[Fvk(x̂k)]∥2 ≤ Evk [∥Fvk(x̂k)∥2] and γ >693

2ρ+ ω. For k = 0 we have x1 = x0 − ωFv0(x̂0) = x0 − ωFv0(x0) and694

E
[
∥x1 − x∗∥2

]
= ∥x0 − x∗∥2 − 2ωE [⟨x0 − x∗, Fv0(x0)⟩] + ω2E

[
∥Fv0(x0)∥2

]
= ∥x0 − x∗∥2 − 2ω⟨x0 − x∗, F (x0)⟩+ ω2E

[
∥Fv0(x0)∥2

]
.

Applying Weak Minty condition, we get695

E
[
∥x1 − x∗∥2

]
= ∥x0 − x∗∥2 + 2ωρ∥F (x0)∥2 + ω2E

[
∥Fv0(x0)∥2

]
≤ ∥x0 − x∗∥2 + ω(ω + 2ρ)E

[
∥Fv0(x0)∥2

]
. (44)

The next step of our proof is in estimating the last term from (43). Using Young’s inequality696

∥a + b∥2 ≤ (1 + α)∥a∥2 + (1 + α−1)∥b∥2, which holds for any a, b ∈ Rd, α > 0, we get for all697

k ≥ 2698

E
[
∥Fvk(x̂k)− Fvk−1

(x̂k−1)∥2
]

≤ (1 + α)E
[
∥F (x̂k)− F (x̂k−1)∥2

]
+(1 + α−1)E

[
∥Fvk(x̂k)− F (x̂k)− (Fvk−1

(x̂k−1)− F (x̂k−1))∥2
]

≤ (1 + α)L2E
[
∥x̂k − x̂k−1∥2

]
+2(1 + α−1)E

[
∥Fvk(x̂k)− F (x̂k)∥2 + ∥Fvk−1

(x̂k−1)− F (x̂k−1)∥2
]

(8)
≤ (1 + α)L2E

[
∥x̂k − xk + xk − xk−1 + xk−1 − x̂k−1∥2

]
+2(1 + α−1)δE

[
∥x̂k − x∗∥2 + ∥x̂k−1 − x∗∥2

]
+ 8(1 + α−1)σ2

∗

≤ (1 + α)L2E
[
∥(γ + ω)Fvk−1

(x̂k−1)− γFvk−2
(x̂k−2)∥2

]
+4(1 + α−1)δE

[
∥xk − x∗∥2 + ∥xk−1 − x∗∥2

]
+4(1 + α−1)δγ2E

[
∥Fvk−1

(x̂k−1)∥2 + ∥Fvk−2
(x̂k−2)∥2

]
+ 8(1 + α−1)σ2

∗

= (1 + α)L2(γ + ω)2E
[
∥Fvk−1

(x̂k−1)∥2
]
+ (1 + α)L2γ2E

[
∥Fvk−2

(x̂k−2)∥2
]

−2(1 + α)L2γ(γ + ω)E
[
⟨Fvk−1

(x̂k−1), Fvk−2
(x̂k−2)⟩

]
+4(1 + α−1)δE

[
∥xk − x∗∥2 + ∥xk−1 − x∗∥2

]
+4(1 + α−1)δγ2E

[
∥Fvk−1

(x̂k−1)∥2 + ∥Fvk−2
(x̂k−2)∥2

]
+ 8(1 + α−1)σ2

∗

= (1 + α)L2(γ + ω)2E
[
∥Fvk−1

(x̂k−1)∥2
]
+ (1 + α)L2γ2E

[
∥Fvk−2

(x̂k−2)∥2
]

−(1 + α)L2γ(γ + ω)E
[
∥Fvk−1

(x̂k−1)∥2 + ∥Fvk−2
(x̂k−2)∥2

]
+(1 + α)L2γ(γ + ω)E

[
∥Fvk−1

(x̂k−1)− Fvk−2
(x̂k−2)∥2

]
+4(1 + α−1)δE

[
∥xk − x∗∥2 + ∥xk−1 − x∗∥2

]
+4(1 + α−1)δγ2E

[
∥Fvk−1

(x̂k−1)∥2 + ∥Fvk−2
(x̂k−2)∥2

]
+ 8(1 + α−1)σ2

∗

= (1 + α)L2ω(γ + ω)E
[
∥Fvk−1

(x̂k−1)∥2
]
− (1 + α)L2γωE

[
∥Fvk−2

(x̂k−2)∥2
]

+(1 + α)L2γ(γ + ω)E
[
∥Fvk−1

(x̂k−1)− Fvk−2
(x̂k−2)∥2

]
+4(1 + α−1)δE

[
∥xk − x∗∥2 + ∥xk−1 − x∗∥2

]
+4(1 + α−1)δγ2E

[
∥Fvk−1

(x̂k−1)∥2 + ∥Fvk−2
(x̂k−2)∥2

]
+ 8(1 + α−1)σ2

∗.
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Since x̂0 = x0 and x̂1 = x1 − γFv0(x0) = x0 − (γ + ω)Fv0(x0), for k = 1 we have699

E
[
∥Fv1(x̂1)− Fv0(x̂0)∥2

]
= E

[
∥Fv1(x̂1)− Fv0(x0)∥2

]
≤ (1 + α)E

[
∥F (x̂1)− F (x0)∥2

]
+(1 + α−1)E

[
∥Fv1(x̂1)− F (x̂1)− (Fv0(x0)− F (x0))∥2

]
≤ (1 + α)L2E

[
∥x̂1 − x0∥2

]
+2(1 + α−1)E

[
∥Fv1(x̂1)− F (x̂1)∥2 + ∥Fv0(x0)− F (x0)∥2

]
(8)
≤ (1 + α)L2(γ + ω)2E

[
∥Fv0(x0)∥2

]
+2(1 + α−1)δE

[
∥x̂1 − x∗∥2 + ∥x0 − x∗∥2

]
+ 8(1 + α)σ2

∗

≤
(
(1 + α)L2 + 4(1 + α−1)δ

)
(γ + ω)2E

[
∥Fv0(x0)∥2

]
+6(1 + α−1)δ∥x0 − x∗∥2 + 8(1 + α)σ2

∗.

Let {wk}K−1
k=0 be a non-increasing sequence of positive numbers that will be specified later and700

WK =
∑K−1

k=0 wk. Summing up the above two inequalities with weights {wk}K−1
k=1 , we derive701

K−1∑
k=1

wkE
[
∥Fvk(x̂k)− Fvk−1

(x̂k−1)∥2
]

≤ (1 + α)L2
K−3∑
k=1

(ω(γ + ω)wk+1 − γωwk+2)E
[
∥Fvk(x̂k)∥2

]
+(1 + α)L2ω(γ + ω)wK−1E

[
∥FvK−2

(x̂K−2)∥2
]

−(1 + α)L2γωw2E
[
∥Fv0(x0)∥2

]
+(1 + α)L2γ(γ + ω)

K−2∑
k=1

wk+1E
[
∥Fvk(x̂k)− Fvk−1

(x̂k−1)∥2
]

+4(1 + α−1)δ

K−1∑
k=2

wkE
[
∥xk − x∗∥2 + ∥xk−1 − x∗∥2

]
+4(1 + α−1)δγ2

K−2∑
k=1

wk+1E
[
∥Fvk(x̂k)∥2 + ∥Fvk−1

(x̂k−1)∥2
]

+8(1 + α−1)(WK − w0 − w1)σ
2
∗

+
(
(1 + α)L2 + 4(1 + α−1)δ

)
(γ + ω)2w1E

[
∥Fv0(x0)∥2

]
+6(1 + α−1)δw1∥x0 − x∗∥2 + 8(1 + α)w1σ

2
∗.

Next, we rearrange the terms using wk ≥ wk+1 and new notation ∆k =702

E
[
∥Fvk(x̂k)− Fvk−1

(x̂k−1)∥2
]
:703 (

1− (1 + α)L2γ(γ + ω)
)K−1∑

k=1

wk∆k ≤
K−2∑
k=1

(
(1 + α)L2ω(γ + ω) + 8(1 + α−1)δγ2

)
wkE

[
∥Fvk(x̂k)∥2

]
+
(
(1 + α)L2 + 8(1 + α−1)δ

)
(γ + ω)2w0E

[
∥Fv0(x0)∥2

]
+12(1 + α−1)δ

K−1∑
k=1

wkE
[
∥xk − x∗∥2

]
+ 8(1 + α−1)(WK − w0)σ

2
∗.

To simplify the above inequality we choose α = 1
2L2γ(γ+ω) −

1
2 , which is positive due to γ < 1/L704

and γ + ω < 1/L. In this case, we have705

(1 + α)L2γ(γ + ω) =
1

2
L2γ(γ + ω) +

1

2
,

(1 + α)L2(γ + ω)2 =
1

2
L2(γ + ω)2 +

γ + ω

2γ
≤ 3

2
,

(1 + α)L2ω(γ + ω) =
1

2
L2ω(γ + ω) +

ω

2γ
=

Lω

2

(
L(γ + ω) +

1

γL

)
≤ 3Lω

2
,

1 + α−1 = 1 +
2L2γ(γ + ω)

1− L2γ(γ + ω)
=

1 + L2γ(γ + ω)

1− L2γ(γ + ω)
≤ 2

1− L2γ(γ + ω)
,

28



where we also use 1/2L < γ < 1/L and γ + ω < 1/L. Using these relations, we can continue our706

derivation as follows:707

1

2

(
1− L2γ(γ + ω)

)K−1∑
k=1

wk∆k ≤
K−2∑
k=1

(
3Lω

2
+

16

1− L2γ(γ + ω)
δγ2

)
wkE

[
∥Fvk(x̂k)∥2

]
+

(
3

2
+

16

1− L2γ(γ + ω)
δ(γ + ω)2

)
w0E

[
∥Fv0(x0)∥2

]
+

24

1− L2γ(γ + ω)
δ

K−1∑
k=1

wkE
[
∥xk − x∗∥2

]
+

16

1− L2γ(γ + ω)
(WK − w0)σ

2
∗.

Dividing both sides by 1
2

(
1− L2γ(γ + ω)

)
, we derive708

K−1∑
k=1

wk∆k ≤
K−2∑
k=1

(
3Lω

1− L2γ(γ + ω)
+

32

(1− L2γ(γ + ω))2
δγ2

)
wkE

[
∥Fvk(x̂k)∥2

]
+

(
3

1− L2γ(γ + ω)
+

32

(1− L2γ(γ + ω))2
δ(γ + ω)2

)
w0E

[
∥Fv0(x0)∥2

]
+

48

(1− L2γ(γ + ω))2
δ

K−1∑
k=1

wkE
[
∥xk − x∗∥2

]
+

32

(1− L2γ(γ + ω))2
(WK − w0)σ

2
∗

=

K−2∑
k=1

C1wkE
[
∥Fvk(x̂k)∥2

]
+ C2w0E

[
∥Fv0(x0)∥2

]
+3C3δ

K−1∑
k=1

wkE
[
∥xk − x∗∥2

]
+ 2C3WKσ2

∗, (45)

where C1 = 3Lω
1−L2γ(γ+ω) + 32

(1−L2γ(γ+ω))2 δγ
2, C2 = 3

1−L2γ(γ+ω) + 32
(1−L2γ(γ+ω))2 δ(γ + ω)2,709

and C3 = 16
(1−L2γ(γ+ω))2 . Summing up inequalities (43) for k = 1, . . . ,K − 1 with weights710

w1, . . . , wK−1 and (44) with weight w0, we get711

K−1∑
k=0

wkE
[
∥xk+1 − x∗∥2

]
≤

K−1∑
k=0

wkE
[
∥xk − x∗∥2

]
− ωγ

K−1∑
k=1

wkE
[
∥Fvk−1

(x̂k−1)∥2
]

+ωγ

K−1∑
k=1

wk∆k + ω(ω + 2ρ)w0E
[
∥Fv0(x0)∥2

]
.

Since wk ≥ wk+1, we can continue the derivation as follows:712

K−1∑
k=0

wkE
[
∥xk+1 − x∗∥2

]
≤

K−1∑
k=0

wkE
[
∥xk − x∗∥2

]
− ωγ

K−2∑
k=0

wkE
[
∥Fvk(x̂k)∥2

]
+ωγ

K−1∑
k=1

wk∆k + ω(ω + 2ρ)w0E
[
∥Fv0(x0)∥2

]
(45)
≤

K−1∑
k=0

(1 + 3C3ωγδ)wkE
[
∥xk − x∗∥2

]
− ωγ(1− C1)

K−2∑
k=0

wkE
[
∥Fvk(x̂k)∥2

]
+2ωγC2w0E

[
∥Fv0(x̂0)∥2

]
+ 2ωγC3WKσ2

∗.
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Now we need to specify the weights w−1, w0, w1, . . . , wK−1. Let wK−2 = 1 and wk−1 = (1 +713

3C3ωγδ)wk. Then, rearranging the terms, dividing both sides by ωγ(1− C1)WK−1, we get714

min
0≤k≤K−1

E
[
∥F (x̂k)∥2

]
≤ min

0≤k≤K−1
E
[
∥Fvk(x̂k)∥2

]
≤

K−2∑
k=0

wk

WK−1
E
[
∥Fvk(x̂k)∥2

]
≤ 1

ωγ(1− C1)WK−1

K−1∑
k=0

(
wk−1E

[
∥xk − x∗∥2

]
− wkE

[
∥xk+1 − x∗∥2

])
+
2C2w0E

[
∥Fv0(x̂0)∥2

]
(1− C1)WK−1

+
2C3WKσ2

∗
(1− C1)WK−1

≤ w−1∥x0 − x∗∥2

ωγ(1− C1)WK−1
+

2C2w0E
[
∥Fv0(x̂0)∥2

]
(1− C1)WK−1

+
2C3WKσ2

∗
(1− C1)WK−1

.

It remains to simplify the right-hand side of the above inequality. First, we notice that WK−1 =715 ∑K−2
k=0 wk ≥ (K − 1)wK−2 = K − 1 since wk ≥ wk+1. Moreover, w−1 = (1 + 3C3ωγδ)

K−1.716

Next,717

C1 =
3Lω

1− L2γ(γ + ω)
+

32

(1− L2γ(γ + ω))2
δγ2

≤ 3Lω

1− Lγ
+

32

(1− Lγ)2
· (1− Lγ)L3ω

32
· γ2 ≤ 4Lω

1− Lγ
,

C2 =
3

1− L2γ(γ + ω)
+

32

(1− L2γ(γ + ω))2
δ(γ + ω)2

≤ 3

1− Lγ
+

32

(1− Lγ)2
· (1− Lγ)L3ω

32
· (γ + ω)2 ≤ 4

1− Lγ
,

C3 =
16

(1− L2γ(γ + ω))2
≤ 16

(1− Lγ)2
,

where we use δ ≤ (1−Lγ)L3ω/16 and γ + ω < 1/L. Using these inequalities, we simplify the bound as718

follows:719

min
0≤k≤K−1

E
[
∥F (x̂k)∥2

]
≤ (1− Lγ)(1 + 3C3ωγδ)

K−1∥x0 − x∗∥2

ωγ(1− L(γ + 4ω))(K − 1)
+

8(1 + 3C3ωγδ)
K−2E

[
∥Fv0(x̂0)∥2

]
(1− L(γ + 4ω))(K − 1)

+
32σ2

∗
(1− Lγ)(1− L(γ + 4ω))

≤
(1− Lγ)

(
1 + 48ωγδ

(1−Lγ)2

)K−1

∥x0 − x∗∥2

ωγ(1− L(γ + 4ω))(K − 1)
+

8
(
1 + 48ωγδ

(1−Lγ)2

)K−2

E
[
∥Fv0(x̂0)∥2

]
(1− L(γ + 4ω))(K − 1)

+
32σ2

∗
(1− Lγ)(1− L(γ + 4ω))

(46)

where we use WK = WK−1 + wK−1 ≤ WK−1 + wK−2 ≤ 2WK−1. Finally, we use (8) to720

upper-bound E
[
∥Fv0(x̂0)∥2

]
:721

E
[
∥Fv0(x̂0)∥2

]
= E

[
∥Fv0(x0)∥2

] (8)
≤ δ∥x0 − x∗∥2 + ∥F (x0)∥2 + 2σ2

∗

≤ (δ + L2)∥x0 − x∗∥2 + 2σ2
∗.

Plugging this inequality in (46), we derive722

min
0≤k≤K−1

E
[
∥F (x̂k)∥2

]
≤

(1 + 8ωγ(δ + L2)− Lγ)
(
1 + 48ωγδ

(1−Lγ)2

)K−1

∥x0 − x∗∥2

ωγ(1− L(γ + 4ω))(K − 1)

+

4

(
8 + 1−Lγ

K−1

(
1 + 48ωγδ

(1−Lγ)2

)K−1
)
σ2
∗

(1− Lγ)(1− L(γ + 4ω))
,

which concludes the proof.723
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E.5 Proof of Theorem 4.5724

Theorem E.5. Let F be L-Lipschitz and satisfy Weak Minty condition with parameter ρ < 1/(2L).
Assume that inequality (8) holds (e.g., it holds whenever Assumption 3.1 holds, see Lemma 3.2).
Assume that γk = γ, ωk = ω and

max

{
2ρ,

1

2L

}
< γ <

1

L
, 0 < ω < min

{
γ − 2ρ,

1

4L
− γ

4

}
.

Then, for all K ≥ 2 the iterates produced by mini-batched SPEG with batch-size

τ ≥ max

{
1,

32δ

(1− Lγ)L3ω
,
48ωγδ(K − 1)

(1− Lγ)2
,

2ωγσ2
∗(K − 1)

(1− Lγ)∥x0 − x∗∥2

}
(47)

satisfy

min
0≤k≤K−1

E
[
∥F (x̂k)∥2

]
≤ 48∥x0 − x∗∥2

ωγ(1− L(γ + 4ω))(K − 1)
. (48)

Proof. Mini-batched SPEG uses estimator725

Fvk(x̂k) =
1

τ

τ∑
i=1

Fvk,i
(x̂k),

where Fvk,1
(x̂k), . . . , Fvk,τ

(x̂k) are independent samples satisfying (8) with parameters δ and σ2
∗.726

Using variance decomposition and independence of Fvk,1
(x̂k), . . . , Fvk,τ

(x̂k), we get727

Evk

[
∥Fvk(x̂k)∥2

]
= Evk

[
∥Fvk(x̂k)− F (x̂k)∥2

]
+ ∥F (x̂k)∥2

= Evk

∥∥∥∥∥1τ
b∑

i=1

(Fvk,i
(x̂k)− F (x̂k))

∥∥∥∥∥
2
+ ∥F (x̂k)∥2

=
1

τ2

τ∑
i=1

Evk

[
∥Fvk,i

(x̂k)− F (x̂k)∥2
]
+ ∥F (x̂k)∥2

(8)
≤ δ

τ
∥x̂k − x∗∥2 + ∥F (x̂k)∥2 +

2σ2
∗

τ
.

That is, mini-batched estimator Fvk(x̂k) satisfies (8) with parameters δ/τ and σ2
∗/τ . Therefore,728

Theorem E.4 implies729

min
0≤k≤K−1

E
[
∥F (x̂k)∥2

]
≤

(1 + 4ωγ
(
δ
τ + L2

)
− Lγ)

(
1 + 48ωγδ

(1−Lγ)2τ

)K−1

∥x0 − x∗∥2

ωγ(1− L(γ + 4ω))(K − 1)

+

8

(
8 + 1−Lγ

K−1

(
1 + 48ωγδ

(1−Lγ)2τ

)K−1
)
σ2
∗

(1− Lγ)(1− L(γ + 4ω))τ
. (49)

Since τ satisfies (47) and γ ≤ 1/L, ω ≤ 1/4L, we have730

4ωγ

(
δ

τ
+ L2

)
≤ 1

4L2

(
δ · (1− Lγ)L3ω

16δ
+ L2

)
≤ 1,(

1 +
48ωγδ

(1− Lγ)2τ

)K−1

≤
(
1 +

48ωγδ

(1− Lγ)2
· (1− Lγ)2

48ωγδ(K − 1)

)K−1

=

(
1 +

1

K − 1

)K−1

≤ exp(1) < 3.
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Using this, we can simplify (49) as follows:731

min
0≤k≤K−1

E
[
∥F (x̂k)∥2

]
≤ 6∥x0 − x∗∥2

ωγ(1− L(γ + 4ω))(K − 1)
+

88σ2
∗

(1− Lγ)(1− L(γ + 4ω))τ

(47)
≤ 6∥x0 − x∗∥2

ωγ(1− L(γ + 4ω))(K − 1)
+

88σ2
∗

(1− Lγ)(1− L(γ + 4ω))
· (1− Lγ)∥x0 − x∗∥2

2ωγσ2
∗

=
48∥x0 − x∗∥2

ωγ(1− L(γ + 4ω))(K − 1)
.

This concludes the proof.732

F Further Results on Arbitrary Sampling733

F.1 Proof of Proposition 5.1734

Expanding the left hand side of Expected Residual (ER) condition we have735

E∥(Fv(x)− Fv(x
∗))− (F (x)− F (x∗))∥2 (25)

= E∥(Fv(x)− Fv(x
∗))∥2 − ∥F (x)− F (x∗)∥2

≤ E∥Fv(x)− Fv(x
∗)∥2. (50)

For any x and y with vi =
1
pi

we obtain736

∥Fv(x)− Fv(y)∥2 =
1

n2

∥∥∥∥∑
i∈S

1

pi
(Fi(x)− Fi(y))

∥∥∥∥2
=

∑
i,j∈S

〈
1

npi
(Fi(x)− Fi(y)),

1

npj
(Fj(x)− Fj(y))

〉
.

Then taking expectation on both sides we get737

E∥Fv(x)− Fv(y)∥2 =
∑
C

pC
∑
i,j∈C

〈
1

npi
(Fi(x)− Fi(y)),

1

npj
(Fj(x)− Fj(y))

〉

=

n∑
i,j=1

∑
C:i,j∈C

pC

〈
1

npi
(Fi(x)− Fi(y)),

1

npj
(Fj(x)− Fj(y))

〉

=

n∑
i,j=1

Pij

pipj

〈
1

n
(Fi(x)− Fi(y)),

1

n
(Fj(x)− Fj(y))

〉
.

Now we consider the case, where the ratio Pij

pipj
= c2 i.e. constant for i ̸= j and Pii = pi. Then from738

the above computations we derive739

E∥Fv(x)− Fv(y)∥2 =

n∑
i ̸=j

c2

〈
1

n
(Fi(x)− Fi(y)),

1

n
(Fi(x)− Fi(y))

〉
+

n∑
i=1

1

n2pi
∥Fi(x)− Fi(y)∥2

=

n∑
i,j=1

c2

〈
1

n
(Fi(x)− Fi(y)),

1

n
(Fi(x)− Fi(y))

〉
+

n∑
i=1

1− pic2
n2pi

∥Fi(x)− Fi(y)∥2

(19)
≤ c2∥F (x)− F (y)∥2 +

n∑
i=1

1− pic2
n2pi

L2
i ∥x− y∥2

(18)
≤

(
c2L

2 +
1

n2

n∑
i=1

1− pic2
pi

L2
i

)
∥x− y∥2.

Thus replacing y = x∗ and combining with (50) we get the following bound on the Expected740

Residual:741

E∥(Fv(x)− Fv(x
∗))− (F (x)− F (x∗))∥2 ≤

(
c2L

2 +
1

n2

n∑
i=1

1− pic2
pi

L2
i

)
∥x− x∗∥2. (51)
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For single-element sampling c2 = 0 (as probability of two points appearing in same sample is zero
for single element sampling i.e. Pij = 0). Then we obtain

δ ≤ 2

n2

n∑
i=1

L2
i

pi

from (51). This completes the derivation of δ for single element sampling. To compute σ2
∗ for single742

element sampling, we replace743

Pij =

{
pi if i = j

0 otherwise

in (30) to get744

σ2
∗ =

1

n2

n∑
i=1

1

pi
∥Fi(x

∗)∥2.
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G Numerical Experiments745

In Appendix G.1, we add more details on the experiments discussed in the main paper. Furthermore,746

in Appendix G.2, we run more experiments to evaluate the performance of SPEG on quasi-strongly747

monotone and weak MVI problems.748

G.1 More Details on the Numerical Experiments of Section 6749

On the Data Generation Process of Section 6.1. In our experiments, we run SPEG on quadratic750

games of the form minx∈Rd maxy∈Rd
1
n

∑n
i=1 fi(x, y) where751

fi(x, y) :=
1

2
x⊺Aix+ x⊺Biy −

1

2
y⊺Ciy + a⊺i x− c⊺i y

where Ai, Bi, Ci are generated such that the quadratic game is strongly monotone and smooth. In752

all our experiments, we take n = 100 and d = 30. We generate positive semi-definite matrices753

Ai, Bi, Ci such that their eigenvalues lie in the interval [µA, LA], [µB , LB ] and [µC , LC ] respectively.754

In all our experiments, we consider LA = LB = LC = 1 and µA = µC = 0.1, µB = 0 unless755

otherwise mentioned. The vectors ai and ci are generated from Nd(0, Id). Here the ith operator is756

given by757

Fi

(
x
y

)
=

(
∇xfi(x, y)
−∇yfi(x, y)

)
=

(
Aix+Biy + ai
Ciy −B⊺

i x+ ci

)
(52)

On Constant vs Switching Stepsize Rule. We run the experiments on two synthetic datasets. In758

Fig. 1a of the main paper, we take µA = µC = 0.6. Here we include one more plot with a similar759

flavor but in a different setting. For Fig. 3a, we generate the data such that eigenvalues of A1, B1, C1760

are generated uniformly from the interval [0.1, 10]. In the new plot, similar to the main paper, we can761

see the benefit of switching the step-size rule of Theorem 4.3.762
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Figure 3: Experiments on strongly monotone quadratic games. In Fig. 3a we compare the constant step-size
rule (9) with the switching step-sizes (11) while in Fig. 3b, we compare constant step-size rule with step-size
from [28].

On Comparison with Hsieh et al. [28]: To implement SPEG with the stepsizes from Hsieh et al.763

[28], we choose γ and b such that 1
µ < γ ≤ b

4L and set ωk = γk = γ
k+b . For Fig. 3b, we generate764

Ai, Bi, Ci as described above. Then we sample optimal points x∗, y∗ first from Nd(0, Id) and then765

generate ai, ci such that F (x∗, y∗) = 0.766 (
ai
ci

)
=

(
Ai Bi

−B⊺
i Ci

)−1(
x∗

y∗

)
In Fig. 3b, we run the algorithms on interpolated model

(
Fi(x

∗) = 0 for all i ∈ [n]
)
. Since the767

model is interpolated, we have σ2
∗ = 0 in Theorem 4.1 and linear convergence to the exact optimum768

asymptotically.769
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On Uniform vs Importance Sampling. Following the corresponing experiment in the main paper770

on the comparison of uniform vs importance sampling, in Fig 4 we illustrate how the trajectories771

under uniform sampling get worse while the trajectory under importance sampling remains almost772

identical when we increase Λ. Recall that in this setting, the eigenvalues of A1, C1 are uniformly773

generated from the interval [0.1,Λ].774
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Figure 4: Comparison of SPEG with Uniform and Importance Sampling for different Λ ∈ {2, 5, 10, 20}, where
the eigenvalues of matrices A1, C1 are uniformly generated from the interval [0.1,Λ].

On Weak Minty VIPs. In this experiment, we generate ξi, ζi such that 1
n

∑n
i=1 ξi =

√
63 and775

1
n

∑n
i=1 ζi = −1. This choice of ξi, ζi ensures that L = 8 and ρ = 1/32 for the min-max problem776

we considered in Section 6.2. In Fig. 5, we again implement the SPEG on (17) with batchsize =777

0.15× n (different batchsize compare to the plot of the main paper).
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Figure 5: Trajectory of SPEG for solving weak MVI using a batchsize = 0.15× n.

778

G.2 Additional Experiments779

In this subsection, we include more experiments to evaluate the performance of SPEG on quasi-780

strongly monotone and weak MVI problems. First, we run the experiment comparing constant and781

switching step-size rules on a different setup than the one we included in the main paper to analyze782

the performance of SPEG under different condition numbers. Then, we implement SPEG on the783

weak MVI of (17). To evaluate the performance in this experiment, we plot ∥F (x̂k)∥2
/∥F (x0)∥2 on the784

y-axis.785
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G.2.1 Strongly Monotone Quadratic Game:786

In this experiment, we compare the proposed constant step-size (9) and the switching step-size787

rule (11). We implement our algorithm on operator F : R4 → R4 given by788

F (x) :=
1

3
(M1(x− x∗

1) +M2(x− x∗
2) +M3(x− x∗

3)) ,

where M1, M2 and M3 are the diagonal matrices,789

M1 =

∆
1

1
1

 , M2 =

1
∆

1
1

 , M3 =

1
1

∆
1


and790

x∗
1 =

∆
0
0
∆

 , x∗
2 =

 0
∆
0
0

 , x∗
3 =

 0
0
∆
0

 .

This choice of Mi and x∗
i ensures that the Lipschitz constant of operator F is ∆+2

3 while quasi-strong791

monotonicity parameter (3) is µ = 1. Hence the condition number of F is given by ∆+2
3 . This allows792

us to vary the condition number of operator F by changing the value of ∆. For Fig. 6a we take ∆ = 3793

(condition number = 1.67) while for Fig. 6b we choose ∆ = 10 (condition number = 10.67). The794

vertical dotted line in plots of Fig. 6 marks the transition point from constant to switching step-size795

rule as predicted by our theoretical result in Theorem 4.3.796
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Figure 6: Illustration of switching rule (11) in Theorem 4.3. The dotted line marks the transition from phase 1
(where we use constant step-size) to phase 2 (where we use decreasing step-size).

G.2.2 Weak Minty VIPs Continued797

In this experiment, we reevaluate the performance of SPEG on weak MVI example of (17). That798

is, we generate the data in exactly the same way as the ones in section 6.2 with n = 100. In Fig. 7a799

and 7b, we implement SPEG with batchsize 10 and 15, respectively (we note that in this setting the800

full-gradient evaluation requires a batchsize of 100). For these plots, we use the relative operator801

norm on the y-axis, i.e. ∥F (x̂k)∥2
/∥F (x0)∥2, where x0 denotes the starting point of SPEG. As expected,802

the plots illustrate that SPEG performs better as we increase the batchsize. From Fig. 7 it is clear803

that with batchsize 15 SPEG reaches an accuracy close to 10−10 while when we use a batchsize of804

10 for the same number of iterations we are only able to converge to an accuracy of 10−4.805
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(a) Batchsize = 0.1× n.
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(b) Batchsize = 0.15× n.

Figure 7: Performance of SPEG for solving weak MVI with different batchsizes. In plot (a) we use a batchsize
of 10 while in plot (b) we use 15.
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