
A Proofs315

A.1 Proof of Lemma 2316

Restated Lemma (Lemma 2). For a balanced target distribution, where Pt(y) = 1/K for all317

y 2 [K], we have:318

Pt(y|fft(x), fzs(x)) = softmax(fft(x) + fzs(x)� ⇡s � ⇡p)(y) (13)

Proof. Denote the output e = fft(x) and z = fzs(x). We first use the Bayes Rule to decompose319

Pt(y|e, z) into Pt(e, z|y), Pt(y) and Pt(e, z) in Eq. (14), then rewrite Pt(e, z|y) in Eq. (15) accord-320

ing to Assumption 1. Focusing on label shift problem [33, 19, 28] where P (x|y) does not change,321

we derive Eq. (16)322

Pt(y|e, z) =
Pt(e, z|y)Pt(y)

Pt(e, z)
(14)

= Pt(e|y)Pt(z|y)
Pt(y)

Pt(e, z)
(15)

= Ps(e|y)Pp(z|y)
Pt(y)

Pt(e, z)
(16)

=
Ps(y|e)Ps(e)

Ps(y)

Pp(y|z)Pp(z)

Pp(y)

Pt(y)

Pt(e, z)
(17)

=
Ps(y|e)
Ps(y)

Pp(y|z)
Pp(y)

Ps(e)Pp(z)Pt(y)

Pt(e, z)
(18)

(19)

Since Pt(y) = 1/K is constant and e, z are fixed, we can replace the terms that not rely on y323

with a constant C1 in Eq. (20). Suppose the underlying class-probabilities Ps(y|e) / exp(ey)324

and Pp(y|z) / exp(zy) for y 2 [K]. We replace Ps(y) = exp(logPs(y)) = exp(⇡s(y)) and325

Pp(y) = exp(logPp(y)) = exp(⇡p(y)) Denote the constant C2 for normalizing Ps and Pp into326

probabilities , we get Eq. (21)327

Pt(y|e, z) =
Ps(y|e)
Ps(y)

Pp(y|z)
Pp(y)

C1 (20)

= exp(e+ z� ⇡s � ⇡p)(y)
C1

C2
(21)

Because the summation of Pt(y|e, z) is 1, C1
C2

= 1/
P

i2[K] exp(e+ z� ⇡s � ⇡p)(i). Therefore, we328

have:329

Pt(y|fft(x), fzs(x)) = Pt(y|e, z) (22)

=
exp(e+ z� ⇡s � ⇡p)yP

i2[K] exp(e+ z� ⇡s � ⇡p)i
(23)

= softmax(fft(x) + fzs(x)� ⇡s � ⇡p)y (24)

330

A.2 Proof of Proposition 2331

Restated Proposition (Proposition 2). Suppose that the target distribution Pp is class-balanced.332

Let h : RK ! RK
be an arbitrary function that predicts labels using the outputs of the zero-shot333

model fzs(x). Let the derived classifier be denoted as fh(x) = h(fzs(x)). The classifier fzs � ⇡p is334

better than any fh(x): Rt(fzs � ⇡p)  Rt(fh(x)).335
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Dataset Classes Train size Test size Task

ImageNet 1,000 1.28M 50,000 Object-level
CIFAR100 100 50,000 10,000 Object-level
Caltech101 100 4,128 2,465 Object-level
DTD 47 2,820 1,692 Textures
EuroSAT 10 13,500 8,100 Satellite images
FGVCAircraft 100 3,334 3,333 Fine-grained aircraft
Flowers102 102 4,093 2,463 Fine-grained flowers
Food101 101 50,500 30,300 Fine-grained food
OxfordPets 37 2,944 3,669 Fine-grained pets
StanfordCars 196 6,509 8,041 Fine-grained car
SUN397 397 15,880 19,850 Scene-level
UCF101 101 7,639 3,783 Action

ImageNetV2 1,000 - 10,000 Robustness to collocation
ImageNet-Sketch 1000 - 50,889 Robustness to sketch domain
ImageNet-A 200 - 7,500 Robustness to adversarial attack
ImageNet-R 200 - 30,000 Robustness to multi-domains
Table 7: The detailed statistics of datasets for many-shot and few-shot learning.

Proof. Denote the output z = fzs(x). Similar to Eq. (14)-Eq. (24), we have336

Pt(y|z) =
Pt(z|y)Pt(y)

Pt(z)
(25)

=
Pp(z|y)Pt(y)

Pt(z)
(26)

=
Pp(y|z)
Pp(y)

Pt(y)

Pt(z)
(27)

= exp(z� ⇡p)(y)/
X

i2[K]

exp((z� ⇡p)(i)) (28)

= softmax(z� ⇡p) = softmax(fzs(x)� ⇡p) (29)
Therefore, we have:337

argmax
y2Y

(fzs(x)� ⇡p)y = argmax
y2Y

softmax(fzs(x)� ⇡p)y = argmax
y2Y

Pt(y|fzs(x)) (30)

Again, using Lemma 1, any other classifier fh(x) has higher risk than fzs(x)�⇡p, i.e., Rt(fzs�⇡p) 338

Rt(fh(x)).339

B Experimental Details340

B.1 Dataset details341

Many-shot and few-shot datasets. For many-shot learning, we use ImageNet, CIFAR100, Stanford-342

Cars and SUN397 datasets. For few-shot learning, we evaluate models on 15 datasets. The details of343

each dataset are presented in Table 7.344

Long-tail datasets. We use two standard long-tail benchmarks: Places365-LT and ImageNet-LT [29].345

The skewness of a long-tailed training set is typically represented by imbalanced ratio, which is346

defined as Nmax/Nmin. Nmax (Nmin) denotes the largest (smallest) number of instances per class. A347

larger imbalanced ratio means a more imbalanced training set. The test sets are divided into three348

splits: many-shot subset contains classes with > 100 images, medium-shot subset includes classes349

with � 20 &  100 images, and few-shot subset covers classes with < 20 images. Details are listed350

in Table 8.351

B.2 CLIP zero-shot352

We use prompt ensembling of 80 prompts provided by CLIP [45] for ImageNet, CIFAR100, and Cal-353

tech101 to improve performance, i.e., averaging the text embedding of many captions, e.g.., “a photo354
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Dataset Size of
all classes

Size of
many classes

Size of
medium classes

Size of
few classes

Size of
training samples

Imbalanced
ratio

Places365-LT 365 131 163 71 62.5K 996
ImageNet-LT 1000 385 479 136 186K 256

Table 8: Details of long-tailed datasets.

of a {ck}.” and “an image of a {ck}.”. For OxfordPets, StanfordCars, Flowers102, Food101, FGV-355

CAircraft, EuroSAT, UCF101, DTD and SUN397, we use the pre-defined prompt from CoOp [52].356

B.3 Fine-tuned models357

End-to-end and linear probe fine-tuning. We follow WiSE-FT [45] to implement fine-tuning.358

We initialize the classifier with the zero-shot classifier and the output of the image encoder �v is359

normalized during fine-tuning. We fine-tune for a total of 10 epochs using AdamW [30] optimizer360

with default hyper-parameters �1 = 0.9,�2 = 0.999, ✏ = 10�8 and weight decay 0.1. We choose a361

batch size of 512. We use the same data augmentation and cosine-annealing learning rate schedule362

as [45].363

B.4 Prompt tuning.364

Prompt tuning like CoOp [52] automates prompt engineering by learning the prompt given few365

samples from downstream tasks. CoOp provides two options of prompt design: unified prompt that is366

shared among all classes and class-specific prompt that is different for each class. In this paper, we367

adopt the class-specific prompt design as the fine-tuned model to implement GLA . In specific, given368

the word embedding t0k initialized by zero-shot prompts, we aim to learn a collection of class-specific369

word embedding R = {rk}Kk=1, such that the text input tk = t0k + rk minimizes the empirical risk:370

R⇤ = argminR Ex,y[y 6= argmaxi f(x;R)i].371

We adhere CoOp to use CLIP ResNet-50 as image encoder for few-shot classification. The word372

embedding R is initialized from zeros. For the m few-shot classification setting (where m 2373

{1, 2, 4, 8, 16}), we randomly sample m training and m validation points from the respective full374

datasets. For all few-shot datasets except ImageNet, the training epoch is set to 200 for 16/8 shots,375

100 for 4/2 shots, and 50 for 1 shot. For ImageNet, the epoch is set to 50 for all shots. We fine-tune376

the prompt with SGD optimizer decayed by the cosine annrealing rule. The base initial learning rate377

and batch size are set to 10�4 and 32. When given an m-shot sample setting, we increase the learning378

rate and batch size by m times simultaneously to accelerate the training speed.379

B.5 Estimation of the class prior380

To estimate the log-probability of the pre-training distribution ⇡̂s = logq, we utilize the optimiza-381

tion toolkit Cooper [13] from https://github.com/cooper-org/cooper. q is initialized as a382

uniformed distribution, q(y) = 1
K for all y 2 [K]. We use the standard SGD as the primal and dual383

optimizers for 2000 steps.384

B.6 Long-tail learning baselines and training details385

We compared with 5 long-tailed classification methods:386

1. Standard ERM: We learn the model by standard empirical risk minimization on the long-tailed387

data.388

2. Learnable Weight Scaling (LWS) [22]: We first learn the model by standard ERM, then fix the389

model and learn to re-scale the magnitude of the classifier using class-balanced sampling.390

3. Logit Adjustment (LA) [33]: We first learn the model by standard ERM, then compensates391

the long-tailed distribution by subtracting a class-dependent offset to the model outputs.392

4. Balanced Softmax (BS) [40] modifies the Softmax cross-entropy loss which explicitly accom-393

modate the label distribution shift during optimization.394
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Model Source Target

ViT-B/32 ViT-B/16 ViT-L/14

Original zero-shot model fzs(x) 63.4 68.8 75.6
Debiased zero-shot model fzs(x)� ⇡̂p 65.4 69.3 76.3

Table 9: Estimated ⇡p is transferable across different backbones. ⇡̂p is estimated using CLIP ViT-
B/32.

5. BALLAD [31] first fine-tunes the vision-language models via contrastive loss on long-tailed395

data, then freezes the backbone and finally employs an adapter to enhance the representations396

of tail classes with re-sampling strategies.397

For all combinations of the fine-tuning baselines and long-tailed learning methods, visual backbones398

are initialized from CLIP-ResNet-50 and all classifiers are initialized by feeding prompt with class399

names to the text encoder. We use SGD for all experiments with a momentum of 0.9 for 50 epochs400

with batch size of 512. The initial learning rate is set to 1.6⇥ 10�3 which is decayed by the cosine401

annealing rule. To mitigate explosive gradients, we use the warmup learning rate equals to 10�5402

during the first epoch. For the sake of fairness in comparison, all hyper-parameters of baselines are403

carefully searched using grid search on the validation set.404

C Additional Experiments405

C.1 Estimated label distribution is transferable406

The estimated ⇡̂p should be transferable across different zero-shot models if they are trained on the407

same pre-training dataset. To confirm this, we estimate ⇡p using CLIP ViT-B/32 based zero-shot408

model, and use it to debias zero-shot models based on CLIP ViT-B/16 and ViT-L/14. Results are409

shown in Table 9, where our debiased zero-shot models based on CLIP ViT-B/16 and ViT-L/14 using410

⇡̂p estimated from ViT-B/32 show clear performance gains over original zero-shot models.411

C.2 Few-shot learning accuracy412

We provide mean and standard deviation in Table 10 in for {1, 2, 4, 8, 16} shots on all 11 few-shot413

learning datasets.414

Dataset 1 shot 2 shots 4 shots 8 shots 16 shots

ImageNet 61.65 ± 0.15 62.64 ± 0.01 63.32 ± 0.07 64.51 ± 0.09 65.61 ± 0.03
Caltech101 89.08 ± 0.09 90.25 ± 0.25 90.98 ± 0.43 91.90 ± 0.21 92.58 ± 0.42
OxfordPets 87.79 ± 0.15 87.86 ± 0.21 88.22 ± 0.21 88.09 ± 0.27 89.53 ± 0.16
StanfordCars 60.00 ± 0.14 63.10 ± 0.42 66.25 ± 0.19 69.87 ± 0.09 73.95 ± 0.11
Flowers102 73.45 ± 0.60 81.00 ± 0.46 88.31 ± 0.65 92.89 ± 0.46 95.41 ± 0.32
Food101 78.41 ± 0.07 78.62 ± 0.07 78.68 ± 0.06 78.85 ± 0.19 79.54 ± 0.47
FGVCAircraft 20.22 ± 0.59 22.09 ± 0.37 24.65 ± 0.85 28.23 ± 0.44 31.99 ± 0.50
SUN397 64.29 ± 0.19 66.32 ± 0.16 68.01 ± 0.08 69.99 ± 0.18 71.64 ± 0.21
DTD 47.38 ± 1.23 50.75 ± 1.46 56.90 ± 0.20 62.73 ± 0.80 65.78 ± 0.49
EuroSAT 56.50 ± 1.34 67.26 ± 3.58 72.40 ± 2.43 77.59 ± 1.84 84.93 ± 1.89
UCF101 65.32 ± 0.17 68.42 ± 0.81 70.88 ± 0.50 74.23 ± 0.24 76.07 ± 0.03

Table 10: GLA Accuracy (%) with standard deviation of few-shot learning on 11 datasets.
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