
A Proofs352

Proof of Proposition 1. Let G denote the distribution of the score S = s(X,Y ) for a randomly353

sampled example (X,Y ) ∼ F . For any m ∈ {1, ...,M}, let G(m) denote the distribution of the score354

conditioned on Y being in cluster m. Consider a randomly sampled test example (Xtest, Ytest) with a355

label in cluster m, so its corresponding score stest = s(Xtest, Ytest) follows distribution G(m). Now356

consider {si}i∈I2(m), the scores for examples in the proper calibration dataset with labels in cluster357

m. Since each element of {si}i∈I2(m) follows distribution G(m) and is chosen to be included in the358

proper calibration dataset independently from the other elements and stest, the element of {si}i∈I2(m)359

and stest are independent and identically distributed, which means that they are exchangeable. Thus,360

by the standard proof of coverage for conformal prediction (see, e.g., [1]), the desired result follows.361

Proof of Proposition 2. This is a direct result of exchangeability and Proposition 1.362

Proof of Proposition 3. This proof follows the structure of the proof of Proposition 4 in [2]. Let363

S = s(X,Y ) for (X,Y ) ∼ F be a random variable representing the score of a randomly sampled364

example. Let S denote the set of values that S can take. Let Gy(s) = P(S ≤ s | Y = y) denote the365

cdf of S when the label is y. Define Y(m) = {y ∈ Y : h̃(y) = m} as the set of classes in cluster m366

and let G(m)(s) = P(S ≤ s | Y ∈ Y(m) denote the cdf of S when the label Y is in cluster m. Let367

S(m) be a random variable with cdf G(m) and for an arbitrary y ∈ Y(m), let Sy be a random variable368

with cdf Gy .369

Since we assume that the TV distance between the score distribution for every pair of classes in370

cluster m is bounded by ϵ, and G(m) is a mixture of these distributions, it follows that371

TV(Sy, S(m)) ≤ ϵ.

By definition of TV distance, this is equivalent to372

sup
A∈S

∣∣P(S ∈ A | Y = y)− P(S ∈ A | Y ∈ Y(m))
∣∣ ≤ ϵ,

which we can rewrite as373

sup
f∈F1

∣∣E[f(S) | Y = y]− E[f(S) ∈ A | Y ∈ Y(m)]
∣∣ ≤ ϵ,

where F1 = f : S → [0, 1]. Define g(s) = 1 {s ≥ q̂(m)}. Since g ∈ F1, we have374

E[1 {S ≥ q̂(m)} | Y = y]− E[1 {S ≥ q̂(m)} | Y ∈ Y(m)] ≤ ϵ,

which can be expressed as375

P(S ≥ q̂(m) | Y = y)− P(S ≥ q̂(m) | Y ∈ Y(m)) ≤ ϵ.

Since the CLUSTERED procedure will exclude the true label Y from the prediction set C exactly
when S ≥ q̂(m), the probabilities can be re-expressed in terms of mis-coverage:376

P(Y /∈ C(X) | Y = y)− P(Y /∈ C(X) | Y ∈ Y(m)) ≤ ϵ.

By Proposition 1, we know P(Y /∈ C(X) | Y ∈ Y(m)) ≤ α, so377

P(Y /∈ C(X) | Y = y) ≤ α+ ϵ.

Taking the complement yields378

P(Y ∈ C(X) | Y = y) ≥ 1− α− ϵ.

This is true for all y ∈ Y(m) and for every cluster m = 1, ...,M .379

B Experiment details380

B.1 Score functions381

We perform experiments using three score functions:382
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• softmax: The conformal score of an input x and a label y is one minus the softmax score:383

ssoftmax(x, y) = 1− fy(x)

where fy(x) is entry y of the softmax vector of input x.384

• APS: Adaptive Prediction Sets are designed to achieve approximate X-conditional coverage385

[17]. The conformal score of input x and label y is computed as follows: For y = 1, ..., |Y|,386

let p̂y(x) be an estimate of P(Y = y | X = x). We use the softmax score as our p̂, so387

p̂y(x) = fy(x). Let p̂(i)(x) be the i-th largest p̂(y)(x). Define j to be the index in the sorted388

order that corresponds to class y, i.e., p̂(j)(x) = p̂y(x). Then,389

sAPS(x, y) =

j−1∑
i=1

p̂(i)(x) + Unif([0, p̂(j)(x)])

• RAPS: One problem with APS is that the resulting prediction sets are often very large. Reg-390

ularized Adaptive Prediction Sets [3] modifies APS by introducing an additive regularization391

term designed to reduce the prediction set sizes:392

sRAPS(x, y) = sAPS(x, y) + max(0, λ(ox(y)− kreg))

where ox(y) denotes the ranking of y among the values of p̂k(x) for all classes k (e.g.,393

ox(y) = 1 if p̂y(x) is larger than all other p̂k(x)), and λ and kreg are user-chosen parameters.394

In our experiments, we use λ = 0.01 and kreg = 5, which Angelopoulos et al. found to395

work well for ImageNet [3].396

B.2 Model training397

An important consideration when training our models is that we need to reserve sufficient data for398

evaluating the class-conditional coverage of the conformal prediction methods. In practice, this399

means we should aim to exclude at least 250 examples per class from the model training dataset so400

that we can use those untouched examples for validation (i.e., applying the conformal methods and401

computing coverage and set size metrics).402

For all datasets except ImageNet, we use a ResNet-50 as our predictive model. We initialize to the403

IMAGENET1K_V2 pre-trained weights, then fine-tune all parameters by training on the dataset-specific404

data. We apply the model to the validation data to obtain softmax scores.405

ImageNet. Setting up ImageNet for our setting is a bit tricky because we want sufficient data406

for performing validation, but we also need this data to be separate from the model training data.407

Unfortunately, the ImageNet validation set only contains 50 examples per class, which is not enough408

for validation in our setting. Fortunately, we have access to more labeled data from the ImageNet409

training set, which has roughly 1000 examples per class). However, if we want to use this data for410

validation, we cannot use our ResNet-50 initialized to the IMAGENET1K_V2 pretrained weights, as411

these weights are obtained by training on the ImageNet training set and would violate the assumption412

of independence of the validation and model training datasets. To approximately satisfy this inde-413

pendence assumption, we instead use SimCLR-v2 [5], which is trained on the ImageNet training414

set without labels, to extract feature vectors of length 6144 for all images in the ImageNet training415

set. We then use 10% of these feature vectors for training a linear head (i.e., a single fully connected416

neural network layer). After training for 10 epochs, the model achieves a validation accuracy of 78%.417

We then apply the linear head to the remaining 90% of the feature vectors to obtain softmax scores.418

CIFAR-100. In total, there are 600 images per class (500 from the training set and 100 from the419

validation set). We combine the data and randomly sample 50% for model training, leaving the420

remaining data for testing our procedure. After training for 30 epochs, the validation accuracy is421

60%.422

Places365. This dataset contains more than 10 million images of 365 classes. Each class has 5000423

to 30000 examples. We randomly sample 90% of the data for model training and use the remaining424

data for testing our procedure. After training for one epoch, the validation accuracy is 52%.425
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iNaturalist. This dataset has class labels of varying specificity. At the species level, there are426

6414 classes with 300 examples each (290 training examples and 10 validation examples) and a427

total of 10000 classes with at least 150 examples. We operate at the family level, which groups428

the species into 1103 classes. We randomly sample 50% of the data for model training and use the429

remaining for testing our procedure. After training for one epoch, the validation accuracy is 69%.430

However, due to class imbalance and the randomness of the model training set construction, some431

classes have insufficient validation samples. We filter out classes with fewer than 250 validation432

examples, which leaves us with 633 classes. The entries of the softmax vectors that correspond to433

rare classes are removed and the vector is renormalized to sum to one.434

B.3 Choosing clustering parameters435

In order to perform CLUSTERED, there are two parameters that must be chosen: γ, the probability436

that a calibration example will be assigned to the clustering dataset, and M , the number of clusters437

that will be requested when performing k-means.438

As mentioned in Section 3.1, we make use of two intuitive heuristics to choose these parameters. We439

restate these heuristics in more detail here.440

• First, to distinguish between more clusters (or distributions), we need more samples from441

each distribution. As a rough guess, to distinguish between two distributions, we want at442

least four samples per distribution; to distinguish between five distributions, we want at least443

ten samples per distribution. In other words, we want the number of clustering examples per444

class to be at least twice as large as the number of clusters. This heuristic can be expressed445

as446

γñ ≥ 2M, (3)
where γñ is the expected number of clustering examples for the rarest class not assigned to447

the null cluster.448

• Second, we want enough data for computing the conformal quantiles for each cluster. We449

translate this into asking for at least 150 examples per cluster on average. This heuristic can450

be expressed as451

(1− γ)ñ
K

M
≥ 150, (4)

where K
M is the average number of classes per cluster and (1− γ)ñ is the expected number452

of proper calibration examples for the rarest class not assigned to the null cluster.453

Changing the inequalities of (3) and (4) into equalities and solving for γ and M yields454

M =
γñ

2
and γ =

K

K + 75
.

Varying the clustering parameters. Although our method for choosing parameter values is455

arguably ad-hoc, we find that it does not really matter what parameter values are used, as long as they456

fall into a reasonable range. As the heatmaps in Figure 3 illustrate, the performance of CLUSTERED457

is not very sensitive to γ and M . When navg = 10, the heuristic chooses γ = 0.89 and M = 4.458

When navg = 50, the heuristic chooses γ ∈ [0.88, 0.92] and M ∈ [7, 12] (since the calibration459

dataset is randomly sampled, and γ and M are chosen based on the calibration dataset, there can be460

some randomness in the chosen values). However, there are large areas surrounding these chosen461

values that would yield similar performance. We observe that the heuristics do not always choose the462

parameter values that yield the lowest CovGap. The heatmaps show that the optimal parameter values463

are dependent not only on dataset characteristics, but also on the score function. Future work could464

be done to extract further performance improvements by determining a better method for choosing γ465

and M .466

B.4 Measuring dataset class balance in Table 1467

The class balance metric in Table 1 is defined as the number of examples in the rarest 5% of classes468

divided by the expected number of examples if the class distribution were perfectly uniform. This469

metric is bounded between 0 and 1, with lower values denoting more class imbalance. The metric470

is computed on the validation datasets, which are sampled uniformly at random from the publicly471

available versions of each dataset.472
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Figure 3: The average class coverage gap on ImageNet for navg = 10, 50 using softmax, APS, and
RAPS as we vary the clustering parameters. Each entry is computed across 10 random splits of the
data into calibration and validation sets.

C Additional experimental results473

We present additional experimental results in this section. As in the main text, shaded regions in plots474

denote ±1.96 times the standard errors.475

C.1 RAPS CovGap results476

Figure 4 shows the CovGap on all datasets when we use RAPS as our score function.477
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Figure 4: Average class coverage gap for ImageNet, CIFAR-100, Places365, and iNaturalist using
RAPS scores, as we vary the average number of calibration examples per class.
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C.2 Additional metrics478

Average set size. To supplement Table 2 from the main text, which reports AvgSize for four values479

of navg, Figure 5 plots AvgSize for all values of navg that we use in our experimental setup. Note that480

RAPS sharply reduces AvgSize relative to APS on ImageNet and also induces a slight reduction for481

the other three datasets. This assymetric reduction is likely in large part due to the fact that the RAPS482

hyperparameters, which control the strength of the set-size regularization, were tuned on ImageNet.483

The set sizes of RAPS on other datasets could likely be improved by tuning the hyperparameters for484

each dataset.485
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Figure 5: Average set size for ImageNet, CIFAR-100, Places365, and iNaturalist using softmax, APS,
and RAPS scores, as we vary the average number of calibration examples per class.

Fraction under-covered. In many practical settings, we want to limit the number of classes that486

are severely under-covered, which we define as having a class-conditional coverage that is more than487

10% below the desired coverage level. We define FracUnderCov to be the fraction of classes that are488

serverely under-covered:489

FracUnderCov =
1

|Y|

|Y|∑
y=1

1 {cy ≤ 1− α− 0.1} ,
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recalling that cy is the class-conditional coverage for class y.490

Figure 6 plots FracUnderCov for all experimental settings. Comparing to the CovGap plots in Figure491

2 and Figure 4, we see that the trends in FracUnderCov generally mirror the trends in CovGap.492

However, FracUnderCov is a much noisier metric, as evidenced by the large error bars. Another493

flaw of FracUnderCov as a metric is it is unable to penalize uninformatively large set sizes. This is494

best seen in the performance of CLASSWISE on iNaturalist: for every score function, CLASSWISE495

has very low FracUnderCov, but this is achieved by producing extremely large prediction sets, as496

shown in the bottom row of Figure 5. On the other hand, CovGap is able to impose a slight penalty497

on this kind of behavior since unnecessarily large set sizes often lead to over-coverage, and CovGap498

penalizes over-coverage.499
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Figure 6: Fraction of very under-covered classes for ImageNet, CIFAR-100, Places365, and iNaturalist
using softmax, APS, and RAPS scores, as we vary the average number of calibration examples per
class.
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