
A Appendix537

A.1 Evaluation Metrics538

We use different metrics to evaluate the performance of models on CO problems. We assess the quality of an539

individual solution σ by the associated value of the energy function Empσq which represents the size of the540

solution sets in MIS and MVC. Here m refers to the problem instance under consideration. Optimal solutions541

σopt are obtained with the Gurobi solver Gurobi Optimization, LLC [2023]. For models that generate solutions542

indeterministically we sample nS different solutions σj per problem instance and calculate the test dataset543

average of the best relative error ϵ˚
rel:544

ϵ˚
rel “

1

M

M
ÿ

m“1

min
j

|Empσoptq ´ Empσjq|

|Empσoptq|
, (9)

where M denotes the number of problem instances in the test dataset. In case of deterministic algorithms only545

one sample is generated, i.e. nS “ 1. In several experiments it is insightful to investigate the average relative546

error ϵ̂rel for which we take the average instead of the minimum in Eq. 9. Analogously, we also define the best547

approximation ratio AR˚ by548

AR˚
“

1

M

M
ÿ

m“1

min
j

|Empσjq|

|Empσoptq|
, (10)

The average approximation ratio yAR is defined by taking the average instead of the minimum operation in549

Eq. 10.550

A.2 Ensuring Feasible Solutions551

Since there is no rigorous guarantee that the model samples only feasible solutions that satisfy the constraints,552

we use a fast post processing procedure to make sure that only feasible solutions are sampled. Here, we make use553

of our choice of the relative weighting of the energy terms A and B (see Tab. 1) in the Ising formulation, which554

ensures that only feasible solutions are minima in the energy landscape. Therefore, we can detect violations555

when EB ą 0 and search for the spin that causes the largest amount of violations. Subsequently, we change the556

spin value of the node with the highest number of violations to satisfy the constraint and repeat the process until557

EB “ 0. We observe in our experiments that this post-processing step is typically unnecessary, since only in558

rare cases violating solutions are sampled.559

A.3 Standardization of the Energy Scale560

Since the energy scale of CO problems can vary significantly, a good choice of hyperparameters like the561

initial temperature T0, learning rate and relative weighting between the policy and value loss can vary between562

different CO problem instances. Therefore, we standardize the energy scale that makes the choice of good563

hyperparameters easier. For this purpose we first express the binary energy function Epqq (see. Tab 1) in terms564

of spins, i.e. as Epσq by substituting qi with σi`1
2

. We then sample states for CO problem instances from the565

training set by using a Random Greedy Algorithm (RGA, see App. A.5.2). Since we use only a few RGA steps566

(see App. A.5.2), this algorithm performs only slightly better than a completely random algorithm. From these567

states the mean energy ÊRGA and the standard deviation stdpERGAq over the training dataset is computed.568

Subsequently, we standardize the energy scale by:569

Êpσq “
Epσq ´ ÊRGA

stdpERGAq
. (11)

A.4 Mean Field Approximation570

We also compare VAG-CO with our own implementation of a Mean Field Approximation (MFA). In MFA the571

probability of a state σ factorizes into a product of independent Bernoulli probabilities. Therefore, the state572

probability is given by:573

pθpσ|Eq “

N
ź

i“1

pθpσi|Eq. (12)

14



A.4.1 Conditional Expectation574

To obtain good samples from the MFA approach in a deterministic way, we adopt the Conditional Expectation575

(CE) method Raghavan [1988] as described in Karalias and Loukas [2020].576

To introduce randomness into the CE-based solution generation procedure we initialize the random node features577

(which are processed by the GNN) of every node with a random vector with six binary entries that are drawn578

from a uniform distribution. Unless stated otherwise, we follow the procedure in Wang and Li [2023] and report579

the best CE result of eight different random node feature initializations.580

A.5 Greedy Algorithms581

A.5.1 Degree Based Greedy Algorithm582

The Degree Based Greedy (DB-Greedy) algorithm Wormald [1995] is a polynomial time algorithm for the MIS583

problem. The DB-Greedy algorithm works in the following way: At first all nodes are sorted according to their584

degrees. Then, starting from the smallest degree the node is chosen to be part of the independent set. In the next585

step this node, its neighbors and their corresponding edges are deleted from the graph. These steps are repeated586

until the graph is empty.587

This algorithm can also be applied to the MVC problem by using the fact that the complement of an independent588

set is a vertex cover. In other words, nodes in the independent set are excluded from the vertex cover and nodes589

that are not part of the independent set are included into the vertex cover.590

A.5.2 Random Greedy Algorithm591

The Random Greedy Algorithm (RGA) is a general approach that can be utilized for solving a broad range of592

CO problems that can be mapped to the Ising model. Initially, the algorithm randomly samples spin values with593

uniform probability. Then, for a fixed number of iterations a spin is randomly selected and its value is changed if594

it decreases the energy value. We set the number of iterations to N ¨ nR, where N is the number of nodes in the595

graph and nR is the number of repetitions per node.596

For the purpose of the standardization the energy scale (see. App. A.3), we employ this algorithm with nR set to597

one.598

A.6 Study on Sampling Methods599

In order to find out, how the best samples can be obtained with VAG-CO we study in Fig. 2 three different600

sampling methods on the RRG-100 MIS and RB-200 MVC dataset. Here we evaluate ϵ˚
rel on the test dataset601

and plot it over the number of samples nS that are used for each graph in the dataset. We also add MFA and602

DB-Greedy results, where we show for MFA how the method improves when more solutions are sampled. Since603

DB-Greedy is a deterministic algorithm, we draw a horizontal line that indicates the solution quality of the604

algorithm. To draw a relation to results that are presented in Fig. 1 (Left, Middle) we also add a vertical dotted605

line at nS “ 8 samples. For VAG-CO we denote the first method as sampling (S), where for each graph nS606

solutions are sampled according to the corresponding probability distribution. In the second VAG-CO sampling607

method called ordered sampling (OS), we use for each graph nO different BFS node orderings and sample608

nS{nO states per graph ordering. Finally, we sample VAG-CO solutions with a method called ordered greedy609

(OG), where we generate solutions greedily for each BFS ordering with nO “ nS . Results in Fig. 2 show610

that the sampling strategy OG always outperforms all other sampling strategies that we proposed for VAG-CO.611

Additionally, we see that as we increase nO in the OS sampling strategy, the performance improves consistently.612

Remarkably, DB-Greedy exhibits the best solution quality when MFA and VAG-CO are allowed only one sample613

(nS “ 1). However, DB-Greedy is outperformed by VAG-CO OG already with a modest amount of nS ą 1614

samples.615

A.7 Experimental Details616

In this section we provide additional details to experiments that are presented in Sec. 6.617

Parameter Checkpointing. With VAG-CO we checkpoint over the course of training the parameters that obtain618

the best ϵ˚
rel and the best ϵ̂rel on the validation set. For testing we always use the checkpoint with the best ϵ̂rel,619

except for the results in Fig. 2 when the sampling strategies (S) and (OS) are used. Here we use the checkpoints620

with the best ϵ˚
rel.621

Hyperparameter Tuning. For MFA-Anneal, the learning rate and initial temperature are tuned on the validation622

dataset of Enzymes MIS via a grid search. We considered learning rates (lr P r5ˆ10´4, 1ˆ10´4, 5ˆ10´5
s) and623

initial temperatures (T0 P r0.5, 0.25, 0.1, 0.05s). With that, the number of GNN layers (L P r6, 8, 12s) are tuned.624

Finally, the annealing duration (Nanneal) is increased until we observe that longer annealing does not lead to625
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Figure 2: Ablation on different sampling strategies for VAG-CO on the RRG-100 MIS dataset (Left)
and on the RB-200 MVC Dataset (Right). The averaged best relative error ϵ˚

rel on the test dataset is
plotted over the number of solutions nS per graph. Error bars indicate the standard error over the test
dataset. TODO add explanation for OG and OS and S

improvements. For MFA, we tested on ENZYMES MIS the learning rates (lr P r5ˆ10´4, 1ˆ10´4, 5ˆ10´5, 1ˆ626

10´5
s) and with that tuned the number of GNN layers (L P r6, 8, 10, 12s) and stop training when no significant627

improvement on the validation set is observed. In MFA and MFA-Anneal, when training on the other datasets628

we started with the optimal ENZYMES MIS parameters and further tested different learning rates (lr), initial629

temperatures (T0) and number of GNN layers (L) individually on each dataset. For experiments on the RRG-100630

MIS and RB-200 MVC we make a more extensive gridsearch. In RRG-100 MIS for MFA-Anneal we first tuned631

the initial temperature in the range of T0 P r0.25, 0.1, 0.05, 0.035, 0.025, 0.015, 0.01s and in RB-200 MVC we632

search for the best initial temperature within the range of T0 P r0.5, 0.25, 0.1, 0.05s. For MFA and MFA-Anneal,633

we then iteratively search for the best learning rate in the range of lr P r5 ˆ 10´4, 1 ˆ 10´4, 5 ˆ 10´5
s and634

then for the best number of GNN layers L P r6, 8, 12s. The best hyperparameters are listed in App. A.11.635

On VAG-CO we iteratively tuned the learning rate (lr P r5 ¨ 10´4, 1 ¨ 10´3
s), initial temperature (T0 P636

r0.05, 0.7, 0.1s), number of GNN layers (L P r3, 4s) and number of annealing steps (Nanneal P r3000, 6000s)637

on the ENZYMES MIS validation dataset. We then initially test these hyperparameters on other datasets and638

adapt the number of annealing steps and the initial temperature. The choice of all hyperparameters in VAG-CO639

is listed in Tab. 5.640

Ablation on Subgraph Tokenization. In the ablation on subgraph tokenization in Fig. 1 we keep hyperparame-641

ters the same except for the time horizon T and the hyperparameter λ in the PPO algorithm (see App. A.8). For642

the subgraph tokenization run we chose T “ 20, λ “ 0.95 and k “ 5. Therefore, the time horizon includes the643

generation of T ¨ k “ 100 spins per graph during the data collection phase (see App. A.8). If we would keep644

T the same, when we chose k “ 1 for the run without subgraph tokenization only T ¨ k “ 20 spins would be645

generated for each graph. Therefore, we use T “ 100 when no subgraph tokenization is used. As we always set646

λ “ 1 ´ 1
T this hyperparameter is adapted accordingly.647

Experiments on Random Regular Graphs. Since GNNs suffer from node ambiguity on Random Regular648

Graphs (RRGs) Wang and Li [2023] using random node features Abboud et al. [2021] can resolve this issue.649

Therefore, for the VAG-CO experiment in Fig. 1 (Left) we sample standard Gaussian random node features with650

the dimension of six and concatenate them to the graph representation of VAG-CO. For MFA and MFA-Anneal651

random node features are already used (see App. A.4.1) and had not to be added for the RRG experiments.652

Averaged results on hard instances. In Fig. 1 (Left, Middle) only show results for specific generation parameters653

p on the RB-200 dataset and for specific values of d on the RRG-100 dataset. Here we report the corresponding654

averaged results on the RRG-100 MIS and RB-200 MVC dataset in Tab. 4. VAG-CO significantly outperforms655

all other methods for nS “ 8.656

A.8 Proximal Policy Optimization657

Proximal Policy Optimization (PPO) Schulman et al. [2017] is a popular RL algorithm that has two main658

components. The policy is represented by the network pθpσi|Giq with parameters θ. The expected future reward659

is estimated by the value network VϕpGiq which is parameterized by ϕ.660

Data Collection. In PPO the policy is rolled out through the environment in order to collect and store the661

states, actions, probabilities and the output of the value function into the rollout buffer. The data collection662

procedure is completed after going through T steps, where T is the so-called time horizon. Then, the advantages663
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RB-200 MVC RRG-100 MIS

Evaluation metric A.1 AR˚ AR˚

DB-Greedy 1.0092 ˘ 0.00022 0.931 ˘ 0.001

MFA: CE 1.0115 ˘ 0.00021 0.947 ˘ 0.001

MFA-Anneal: CE 1.0122 ˘ 0.00022 0.955 ˘ 0.001

VAG-CO (ours) 1.0063 ˘ 0.0002 0.975 ˘ 0.001

Table 4: Average approximation ratio AR˚ on the test dataset of the RB-200 MVC and RRG-100
MIS dataset. Results where the AR˚ is closer to one is better.

Ai :“ Apσi, Giq and value targets V T
i :“ V T

pGiq are calculated by making use of the Generalised Advantage664

Estimation (GAE, Schulman et al. [2016]), where Ai is given by665

Ai “ δi ` pγλqδi`1 ` ... ` pγλq
T ´t`1δT ´1, (13)

with δi “ Ri ` γV pGi`1q ´ V pGiq and V T
i “ Ai ` V pGiq. In our experiments the reward Ri is given by666

Eq. 6. In our experiments we chose γ “ 1.0 and λ “ 1 ´ 1
T . We set T to be approximately equal to the average667

graph size in the dataset. During the data collection phase we always collect data from H “ 30 different CO668

problem instances and for each instance we sample nS “ 30 solutions.669

Rollout Buffer. For the gradient updates in PPO, the loss is estimated with minibatches that are randomly670

sampled from the rollout buffer. As the rollout buffer contains data of size H ˆ nS ˆ T we chose to sample671

data by first sampling Hminib graphs and then for each graph, we chose to sample Nminib solutions and for each672

solution Sminib time steps are sampled. We report the minibatch settings of each experiment in Tab. 5.673

Training. As described before, during training minibatches of data Dminib is randomly sampled from the674

replay buffer. In PPO the overall loss that depends on the Lpθ, ϕ;Dminibq is given by Lpθ, ϕ;Dminibq “675

L1pθ;Dminibq ` cV L2pϕ;Dminibq, where the first term depends on the policy and the second term on the value676

function. To specify a minibatch sample from Dminib, we will use the index n.677

The policy loss for one minibatch sample is then defined as678

L1pθqn “ ´min pInpθqAn, clippInpθq, 1 ´ ϵ, 1 ` ϵqAnq , (14)

where the importance sampling ratio Inpθq “
pθpσn|Gnq

pθ1 pσn|Gnq
is used to compute a weighted Monte Carlo estimate679

of An. Here, θ1 represents the old policy parameters that were used to fill the rollout buffer during the data680

collection phase and θ are the new parameters that are used in gradient descend. In Eq. 14 the clipping function681

is used to prevent that the probability of the current policy pθpσn|Gnq differs by more than a factor 1 ˘ ϵ from682

the old policy pθ1 pσn|Gnq.683

Similarly, the value function loss for one sample is given by L2pϕqn “ pVϕpGnq ´ V T
ϕ1 pGnqq

2.684

The loss Lpθ, ϕ;Dminibq is then updated for each minibatch in the rollout buffer so that each sample is used at685

least once. This procedure is overall repeated nrepeat times, before we increment the epoch step Nepoch and686

new data is collected with the updated set of parameters. In our experiments we always chose ϵ “ 0.1, cV “ 0.5687

and nrepeat “ 2.688

A.9 Model Details and GNN Architectures689

Before processing the graph representation with GNNs, we encode its node features with an encoder MLP. To690

obtain node embeddings N⟩
l

P Rdplq with l P r1, . . . , Ls that depend on the graph structure, the encoded node691

features are processed by L layers of GNNs. Afterwards, we apply a global sum aggregation to compute a global692

graph embedding. The global graph embedding is then concatenated to the node embedding NL
i , where i is the693

index of the spin whose value is to be generated (see Sec. 3). We then use this embedding to calculate the policy694

and value function outputs (see App. A.8) with two separate MLPs.695

In our experiments, we employ two distinct message passing architectures. The first one is a Message-passing696

Neural Network (MPNN) Battaglia et al. [2018] but with linear message functions. The second architecture also697

includes skip connections (MPNN-skip) Battaglia et al. [2018] which we use when more than three GNN layers698

are used.699

Message Passing Neural Network.700
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Our MPNN layer is defined by the following update for node embeddings:701

N l`1
i “ Ψ

¨

˝N l
i ,

ÿ

jPNpiq

pWNN l
j ` WE E0

ijq

˛

‚, (15)

Where N l`1
i P Rdpl`1q is the node embedding of the next layer l ` 1, Npiq is the neighborhood of node i,702

WN P RdΨˆdplq and WE P RdΨˆ1 are weight matrixes and Ψ is the node MLP. E0
ij is the initial edge feature703

between node i and j of the graph representation G (see Sec. 3).704

Message Passing Neural Network with Skip Connections. In case of MPNN-skip we adapt the message705

passing layer to706

NL`1
i “ ln

¨

˝Ψ

¨

˝NL
i ,

ÿ

jPNpiq

pWNNL
j ` WE E0

ijq

˛

‚` Wskip NL
i

˛

‚, (16)

where the skip connection is implemented by adding the term Wskip NL
i after the node update, where Wskip P707

Rdpl`1qˆdplq is a weight matrix. Finally, a layer norm layer lnp¨q Ba et al. [2016] is applied as it is commonly708

done in Neural Network architectures when skip connections are used Liu et al. [2021].709

In VAG-CO we use a policy and value MLP with three layers. Both MLPs have 120 neurons in the first two710

layers. The value MLP has only one neuron in the output layer and the policy MLP has 2k output neurons. For711

the encoder MLP we use a two layer MLP with 40 neurons in each layer. In case of the GNN we use a two712

layer node MLP Ψ with 40 neurons in each layer. For the weight matrixes WN and WE we set dΨ “ 30. Layer713

normalization is applied after every layer within a MLP except in the output layer of the policy and value MLP.714

We use Rectified Linear Unit (ReLU) activation functions Agarap [2018] except in the output of the policy MLP,715

where a softmax activation is used and except of the output of the value MLP where no activation is used.716

In MFA with and without annealing the model uses an encoder MLP with one layer and 64 neurons. Our MFA717

networks always use the MPNN-skip GNN layers, where the weight matrixes WN , WE and Wskip have 64718

neurons. The node MLP Ψ has two layers with 64 neurons each and in the output MLP the first three layers719

have 64 neurons each and the output layer has 2 neurons with a softmax activation. As in VAG-CO we always720

use ReLU activations and layer norm within MLPs.721

A.9.1 Subgraph Tokenization722

For subgraph tokenization we have to make changes to the one-hot encoding as described in Sec. 3 and also to723

the model architecture as described in App. A.9. The one-hot encoding in the graph representation is adapted so724

that spins σi:i`k that are going to be generated receive an enumeration that indicates their position in the sliced725

list of BFS-ordered (see Sec. 3]) indices i : i ` k. Then, the graph Gi is processed by a GNN that provides726

a node embedding GNNθpxiq for each node. Along with a global sum aggregation, the node embeddings727

of the spins that are going to be generated are then concatenated according to their BFS order (Sec. 3) and728

further processed by the policy MLP that calculates the probability for each of the 2k spin configurations using a729

softmax output layer.730

When the number of nodes N in the graph is not dividable by k, the number vertices in the CO problem instance731

description has to be increased without changing the inherent optimization objective. This can be realised by732

adding a sufficient amount of spins into the Ising model (see Sec. 2) with zero spin weight B and no connections733

to other spins.734

A.10 Training Time and Computational Resources735

All runs with VAG-CO were conducted either on A100 Nvidia GPU with 40 GB Memory or an A40 Nvidia736

GPUs with 48 GB Memory. In case of COLLAB MVC an A100 with 80 GB Memory is used.737

The training time of our algorithm depends hyperparameters like the number of annealing steps Nanneal (see738

App. A.12), the number of edges and nodes of graphs in the dataset, on the GPUs that are used during training,739

on the time horizon and on the minibatch size that is used for gradient updates in PPO (see App. A.8). For740

example the TWITTER MVC run with Nanneal “ 4000, T “ 30, Hminib “ Nminib “ Sminib “ 10 takes one741

day, when trained on an A100 40 GB Nvidia GPU. The run on ENZYMES MIS trained on a A40 GPU takes ten742

hours, when trained with Nanneal “ 6000, T “ 20, Hminib “ Nminib “ 15 and Sminib “ 10.743

A.11 Hyperparameters744

VAG-CO Hyperparameters.745
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All hyperparameters that change across datasets are listed in Tab. 5, whereas hyperparameters that stay the same746

are specified in the corresponding section (e.g. App. A.9, A.12).747

Dataset CO Problem Instance learning rate Nanneal T0 L Nminib Hminib Sminib T
TWITTER MVC 1 ˆ 10´3 4000 0.05 3 10 10 10 30
COLLAB MVC 1 ˆ 10´3 12000 0.05 3 10 10 6 35

MIS 1 ˆ 10´3 4000 0.05 3 10 10 10 30
IMDB-BINARY MVC 1 ˆ 10´3 2000 0.05 3 10 10 10 5

MIS 5 ˆ 10´4 2000 0.05 3 10 10 10 5
ENZYMES MIS 5 ˆ 10´4 6000 0.07 4 15 15 15 25
PROTEINS MIS 5 ˆ 10´4 10000 0.1 3 15 15 10 35

MUTAG MIS 1 ˆ 10´3 2000 0.05 3 10 10 10 7
RB-100 MVC 1 ˆ 10´3 2000 5 ¨ 10´2, 5 ¨ 10´3, 0.0 3 10 10 5 20
RB-200 MVC 5 ˆ 10´4 20000 0.05 3 15 10 10 30

RRG-100 MIS 5 ˆ 10´4 20000 0.1 4 10 10 10 20

Table 5: Hyperparemeters that are used in VAG-CO on different datasets.

MFA Hyperparameters.748

All runs with MFA used a batch size H of 32 and we sampled nS “ 30 solutions. Furthermore, we used 8749

GNN layers, and 6 random node features per node. For MFA-Anneal we used a learning rate of 1 ˆ 10´4, 2000750

annealing steps Nanneal and a start temperature T0 of 0.1 except for RRG-100 MIS where a T0 of 0.015 has751

been used. For MFA without annealing we trained for 2000 epochs and used a learning rate of 5 ˆ 10´5 except752

for ENZYMS MIS where a learning rate of 1 ˆ 10´4 has been used.753

A.12 Annealing Schedule754

As described in Sec. 3, we change the temperature in the reward Eq. 6 according to a predefined annealing755

schedule. During the warm-up phase of Nwarmup epochs the temperature is held constant at the initial temperature756

T0. Afterwards the following temperature schedule is applied:757

T pNepochq “ TannealpNepochq ¨

„

cos

ˆ

2πpλ `
1

2
q
Nepoch ´ Nwarmup

Nanneal

˙

` 1

ȷ

. (17)

Here, TannealpNepochq is the gradually decreasing amplitude of the temperature oscillations:758

TannealpNepochq “
T0

1 ` c ¨
Nepoch´Nwarmup

Nanneal

. (18)

Here c is a scaling factor that determines the slope of TannealpNepochq. The parameter λ determines the number759

temperature oscillations in the schedule and Nanneal is the total number of epochs that follow after the warmup760

phase. We use λ “ 3, Nwarmup “ 400 and c “ 6. The course of the annealing schedule is illustrated in Fig. 3.761

One reason for the usage of cosine modulation function is rather practical, namely that T “ 0 is reached multiple762

times during training, which allows an assessment of the training success at an earlier stage for a given set of763

hyperparmeters. In the absence of cosine modulation, we found it harder to assess the final performance before764

the entire annealing was finished. Similar periodic schedules for learning rates have been proposed as variants of765

Stochastic Gradient Descent Loshchilov and Hutter [2017].766

A.13 Derivations767

A.13.1 Free-Energy Decomposition into Rewards768

In the following we show that using the reward defined in Eq. 6 is consistent with the goal of minimizing the769

free-energy defined in Eq. 2.770

The right-hand side of Eq. 2 contains the expectation of the energy Epσq and a term that is proportional to the771

entropy of pθpσq. For the energy we obtain the following decomposition into individual steps i of the solution772

generation process (Sec. 3):773

Epσq “

N
ÿ

i“1

«

ÿ

jăi

Jijσjσi ` Biσi

ff

“

N
ÿ

i“1

σi

«

ÿ

jăi

Jijσj ` Bi

ff

“

N
ÿ

i“1

∆Ei (19)
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Figure 3: Illustration of the cosine modulated annealing schedule. The plot depicts the annealing
schedule with Nwarmup “ 200 and Nanneal “ 1000 steps. The vertical red line marks the end of the
warmup phase.

By using an autoregressive factorization the entropy can also be decomposed in the following way:774

S
`

pθpσ|Eq
˘

“ ´
ÿ

σ

pθpσ|Eq log pθpσ|Eq “ ´
ÿ

σ

pθpσ|Eq

«

N
ÿ

i“1

log pθpσi|σăi, Eq

ff

“ ´ E
σ„pθ

«

N
ÿ

i“1

log pθpσi|σăi, Eq

ff (20)

Therefore, we can use this decomposition by using the reward RipGi, βq “ ´

”

∆Ei ` 1
β
log ppσi|σăi, Eq

ı

.775

By the relation F pθ;β,Eq “ ´Eσ„pθ r
ř

i RipGi, βqs, maximizing this reward will then be equivalent to776

minimizing the free-energy.777

A.13.2 Details on Remark 1778

We first restate Corollary 5 of Dudík et al. [2007] in our notation. In the context of this Corollary our energy779

function E can be regarded as a single feature and, therefore, we use their result for n “ 1. In addition, we780

consider the case in which the samples S are drawn from the target distribution, i.e. π “ ppβ˚
q. Since the terms781

Boltzmann distribution and Gibbs distribution can be used interchangeably we obtain:782

Corollary 1 (Corollary 5 of Dudík et al. [2007]). Assume that E is bounded in r0, 1s. Let β̂ minimize783

Lp̂pβq ` λ|β| with λ “
a

lnp2{δq{p2mq. Then with probability at least 1 ´ δ for every Boltzmann distribution784

ppβq,785

Lppβ˚qpβ̂q ď Lppβ˚qpβq `
|β|

?
m

a

2 lnp2{δq.

Now we consider the result for the case β “ β˚ and subtract Lppβ˚qpβ˚
q. Remark 1 follows by applying the786

definition of the Kullback-Leibler divergence DKL to the left-hand side.787

We note that an equivalent statement, however, with a consideration the Rademacher complexity of E can be788

derived from Theorem 2 in Cortes et al. [2015].789

790
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