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Abstract

The Naïve Mean Field (NMF) approximation is widely employed in modern1

Machine Learning due to the huge computational gains it bestows on the statistician.2

Despite its popularity in practice, theoretical guarantees for high-dimensional3

problems are only available under strong structural assumptions (e.g. sparsity).4

Moreover, existing theory often does not explain empirical observations noted in5

the existing literature.6

In this paper, we take a step towards addressing these problems by deriving sharp7

asymptotic characterizations for the NMF approximation in high-dimensional8

linear regression. Our results apply to a wide class of natural priors, and allow9

for model mismatch (i.e. the underlying statistical model can be different from10

the fitted model). We work under an iid Gaussian design and the proportional11

asymptotic regime, where the number of features and number of observations grow12

at a proportional rate. As a consequence of our asymptotic characterization, we13

establish two concrete corollaries: (a) we establish the inaccuracy of the NMF14

approximation for the log-normalizing constant in this regime, and (b) provide15

theoretical results backing the empirical observation that the NMF approximation16

can be overconfident in terms of uncertainty quantification.17

Our results utilize recent advances in the theory of Gaussian comparison inequal-18

ities. To the best of our knowledge, this is the first application of these ideas to19

the analysis of Bayesian variational inference problems. Our theoretical results20

are corroborated by numerical experiments. Lastly, we believe our results can be21

generalized to non-Gaussian designs and provide empirical evidence to support it.22

1 Introduction23

The Naive Mean Field (NMF) approximation is widely employed in modern Machine Learning as an24

approximation to the actual intractable posterior distribution. The NMF approximation is attractive25

as (a) it bestows huge computational gains, and (b) is naturally interpretable and can provide access26

to easily interpretable summaries of the posterior distribution e.g., credible intervals. However, these27

two advantages may be overshadowed by the following limitations: (a) it is a priori unclear whether28

this strategy of using product distribution as a proxy for the true posterior will result in a “good”29

approximation, and (b) it has been empirically observed that NMF often tends to be significantly30

over-confident, especially when feature dimension p is not negligible compared to the sample size31

n. In the traditional asymptotic regime (p fixed and n → ∞), significant progresses were made in32

understanding these two problems for different statistical models, see for instance [6] and references33

therein. On the other hand, in the complementary high-dimensional regime where both n and p34

are growing, [5] recently established an instability result for topic model under the proportional35

asymptotics, i.e. n = Θ(p). In fact, in this regime, based on non-rigorous physics arguments it is36
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Figure 1: These three figures serve as an visual summary of our main results when the Gaussian Spike
and Slab prior is adopted, i.e., NMF does not provide up to leading order correct approximation to the
log-normalizing constant (left), and the estimated credible regions suggested by the NMF distribution
do not achieve the nominal coverage (middle), even when NMF could achieve close to optimal MSE.
Please see Lemma 5 for definitions of the Gaussian Spike and Slab prior and the hyper-parameters q
and ∆2.

conjectured and partially established that instead of NMF free energy one should optimize the TAP37

free energy. In the context of linear regression, see [11, 17]. On the other hand, positive results of38

NMF for high-dimensional linear regression were recently established in [14] when p = o(n).39

In this paper, we investigate the performance of NMF approximation for linear regression under40

the proportional asymptotics regime. As a consequence of our asymptotic characterization, we41

establish two concrete corollaries: (a) we establish the inaccuracy of the NMF approximation for42

the log-normalizing constant in this regime, and (b) provide theoretical results backing the empirical43

observation that NMF can be overconfident in constructing Bayesian credible regions.44

Before proceeding further, we formalize the setup under investigation. Given data {(yi, xi) : 1 ≤45

i ≤ n}, yi ∈ R, xi ∈ Rp, the scientist fits a linear model46

Y = Xβ⋆ + ϵ, (1)

where ϵi
iid∼ N (0, σ2) and β⋆ ∈ Sp is a p-dimensional latent signal. We consider either S = R or47

S = [−1, 1]. In fact, S = R unless explicitly specified otherwise; most of our results generalize to48

bounded support naturally. To recover the latent signal, the scientist adapts a Bayesian approach.49

She puts an iid prior on βi’s, namely, dπ0(β) =
∏p

i=1 dπ(βi) and then constructs the posterior50

distribution of β,51

dµ

dπ0
(β) =

dµX,y

dπ0
(β) ∝ e−

1
2σ2 ∥Y−Xβ∥2

,

with normalization constant52

Zp = Zp(X,Y ) =

∫
Sp

e−
1

2σ2 ∥Y−Xβ∥2

π0(dβ). (2)

Our results are established assuming that the design matrix X is randomly sampled from an iid53

Gaussian ensemble, i.e. Xij
iid∼ N (0, 1/n), while we provide empirical evidence for more general54

classes of X that has iid entries with mean 0 and variance 1/n. Moreover, we assume n/p→ α ∈55

(0,∞) as n, p→ ∞.56

Definition 1 (Exponential tilting). For any γ := (γ1, γ2) ∈ R̄× R+ and probability distribution π57

on S, we define πγ as58

dπγ

dπ
(x) := exp

(
γ1x− γ2

2
x2 − c(γ)

)
, c(γ) = cπ(γ) := log

∫
S

exp
(
γ1x− γ2

2
x2
)
π(dx).

Note that c(·) depends on the distribution π and is usually referred to as the cumulent generating59

function in statistics literature.60

Using this definition of exponential tilts, the (XTX)iiβ
2
i terms in (2) can be absorbed into the base61

measure62

µ(dβ) ∝ e−
1

2σ2 ∥y−Xβ∥2+
∑p

i=1
di
2 β2

i

p∏
i=1

πi(dβi),
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where πi := π(0,di) and di :=
(XTX)ii

σ2 . By the classical Gibbs variational principle (see for instance63

[25]), the log-normalizing constant can be written as a variational form,64

− logZp = inf
Q

(
EQ

[
1

2σ2
∥y −Xβ∥2

]
+DKL

(
Q
∥∥π0))

= inf
Q

(
EQ

[
1

2σ2
∥y −Xβ∥2 −

p∑
i=1

di
2
β2
i

]
+DKL

(
Q

∥∥∥∥∥
p∏

i=1

πi

))
−

p∑
i=1

c(0, di),

where the inf is taken over all probability distribution on Sp. While the infimum is always attained if65

and only if Q = µ, the Naive Mean Field (NMF) approximation restricts the variational domain to66

product distributions only and renders a natural upper bound,67

inf
Q=

∏p
i=1 Qi

[
EQ

(
1

2σ2
∥y −Xβ∥2 −

∑
i=1p

di
2
β2
i

)
+DKL

(
Q

∥∥∥∥∥
p∏

i=1

πi

)
−

p∑
i=1

c(0, di)

]
. (3)

It can be shown that the product distribution Q̂ that achieves this infimum is exactly the one closest to68

µ, in terms of KL-divergence. Before moving forward, we need some additional definitions and basic69

properties of exponential tilts. The first lemma establishes that instead of using (γ1, γ2) we can also70

use (u, γ2) = (EU∼πγU, γ2) to parameterize the tilted distribution.71

Lemma 1 (Basic properties of the cumulant generating function c(·)). Let c(·) be as in Definition 1.72

Let supp(π) denote the support of π. If m(π) := inf supp(π) < 0 and M(π) := sup supp(π) > 0,73

then the following conclusions hold. (a) ċ (γ1, γ2) :=
∂c(γ1,γ2)

∂γ1
= EX∼πγ (X) is strictly increasing74

in γ1, for every γ2 ∈ R, and (b) For any u ∈ (m(π),M(π)), there exists a unique h (u, γ2) ∈ R75

such that ċ (h (u, γ2) , γ2) = u.76

Definition 2 (Naive mean field variational objective). With di := (XTX)ii/σ
2, we define Mp(u) :77

[−1, 1]p → R as78

Mp(u) :=
1

2σ2
∥y −Xu∥2 +

p∑
i=1

[
G(ui, di)−

diu
2
i

2

]
,

where G is defined as a possibly extended real valued function on [m(π),M(π)]× R,79

G(u, d) := DKL(π
(u,d)∥π(0,d)) = uh(u, d)− c(h(u, d), d) + c(0, d) if u ∈ (m(π),M(π)), d ∈ R,

:= DKL

(
π∞∥π(0,d)

)
if u =M(π) <∞, d ∈ R,

:= DKL

(
π−∞∥π(0,d)

)
if u = m(π) > −∞, d ∈ R,

in which h(·, ·) was defined in Lemma 1 and π∞ and π−∞ are degenerate distributions which assigns80

all measure to M(π) and m(π) respectively.81

Note that under product distributions, the EQ(·) term in (3) is parameterized by the mean vector82

u := EQβ and exponential tilts of πi’s minimize the KL-divergence term. Therefore, the scaled83

log-normalizing function, which is also refereed to as the average free energy in statistical physics84

parlance and (log) evidence in Bayesian statistics, is bounded by the following variational form,85

−1

p
logZp ≤ 1

p
inf

u∈[m(π),M(π)]p
Mp(u)−

1

p

p∑
i=1

c(0, di) = −1

p
logZNMF

p . (4)

The right hand side is equal to (3) and is also refereed to as the evidence lower bound (ELBO) or NMF86

free energy, which can be used as a model selection criterion, see for instance [12]. Asymptotically,87

the second term is nothing but a constant since it concentrates around c(0, 1/σ2) as n, p→ ∞.88

The main theoretical question of interest here is whether this bound in (4) is asymptotically tight89

or not, which serves as the fundamental first step towards answering the question of whether NMF90

distribution is a good approximation of the target posterior. Please see for instance [2, 25] for91

comprehensive surveys on variational inference, including but not limited to NMF approximation.92

To derive sharp asymptotics for the NMF approximation, our key observation is to note that under93

certain priors, the optimization problem is actually convex, and then employ the Convex Gaussian Min-94

max Theorem (CGMT). CGMT is a generalization of the classical Gordon’s Gaussian comparison95
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inequality [7], which allows one to reduce a minimax problem parameterized by a Gaussian process96

to another (tractable) minimax Gaussian optimization problem. This idea was pioneered by [20] and97

then applied to many different statistical problems, including regularized regression, M-estimation98

and so on, see for instance [13, 22]. Unfortunately, concentration results derived from CGMT require99

both Gaussianity and convexity. This is exactly why we need the Gaussian design assumption in our100

analysis. In the meantime, though we do not pursue this front theoretically, we provide empirical101

evidence for more general design matrices in the Supplementary Material. It is worth noting that102

there is a parallel line of research that aims at developing universality results for these comparison103

techniques. We refer the interested reader to [9] and references within.104

Let us emphasise that our main conceptual concern is not investigating whether (4) as a convex105

optimization procedure gives a good point estimator, but rather evaluating whether NMF as a strategy106

or product distributions as a family of distributions can provide “close to correct” approximation for107

the true posterior. Nevertheless, as a by product of our main theorem, asymptotic mean square error108

of this optimizer can also be characterized.109

Regarding accuracy of variational approximations in general, certain contraction rate and asymptotic110

normality results were established in the traditional fixed p large n regime, see for instance [26, 16,111

8]. However, note that under the high-dimensional setting and scaling we consider in the current112

paper, without extra structural assumptions (e.g. sparsity), both the true posterior and its variational113

approximation are not expected to contract towards the true signal, which also explains why one is114

instead interested in whether the log-normalizing constant can be well approximated, as a weaker115

standard of “correctness”. Authors of [18] studied a pre-specified class of mean field approximation in116

sparse high-dimensional logistic regression. Recently, the first known results on mean and covariance117

approximation error of Gaussian Variational Inference (GVI) in terms of dimension and sample size118

were obtained in [10].119

Throughout, we work under a partially well-specified situation, i.e., model (1) is assumed to be120

correct but β⋆
i ’s may not have been a priori sampled iid from π. Instead, we assume the empirical121

distribution of β⋆
i ’s converges in L2 to a probability distribution π⋆ supported on S. In addition, the122

noise level σ2 is fixed and known to the statistician. Last but not least, π⋆ is assumed to have finite123

second moment and let s2 := ES∼π⋆ [S2] <∞.124

2 Main results125

In this section, we start with some necessary notations and definitions. Then we identify a wide class126

of priors that would ensure convexity of the NMF objective. Finally, we present our main theorem127

and one natural corollary.128

Definition 3. Define F : (m(π),M(π)) → R as129

F (u) = Fπ,σ2(u) := G(u,Ed1)−
u2Ed1

2
= G

(
u,

1

σ2

)
− u2

2σ
.

In addition, let û = β̂NMF := argminu∈[−1,1]p Mp(u) be the NMF point estimator, which is also130

the mean vector of the product distribution (Q̂) that best approximates the posterior in terms of131

KL-divergence. We refer to this optimal product distribution as the NMF distribution.132

As alluded, our analysis relies on convexity of the “penalty” term F (·). Therefore we first introduce133

a few sufficient conditions on the prior π that ensure (strong) convexity of F (·). Please note all these134

conditions only depend on the prior that the statistician chose to use, rather than the “true prior” π⋆.135

Lemma 2 (Condition to ensure convexity of F (·): nice prior). Suppose π is absolutely continuous136

with respect to Lebesgue measure and137

dπ

dx
(x) ∝ e−V (x),∀x ∈ support(π),

for some V : support(π) → R. In addition, suppose either of the following two conditions is true,138

1. support(π) = R; V (x) is continuously differentiable almost everywhere; V (x) is un-139

bounded above at infinity.140
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2. support(π) = [−a, a], for some 0 < a < ∞; V (x) is continuously differentiable almost141

everywhere.142

Then if V (x) is even, non-decreasing in |x| and V ′(x) is convex, F (·) is always strongly convex,143

regardless of the value of σ2.144

Lemma 3 (Condition to ensure convexity of F (·): discrete prior). Suppose π is a symmetric discrete145

distribution supported on {−1, 0, 1},146

π(dx) = qδ(x) +
1− q

2
δ(x− 1) +

1− q

2
δ(x+ 1),

for q ∈ (2/3, 1). Then F (·) is always strongly convex, regardless of the value of σ2.147

Proofs of Lemma 2 and 3 crucially utilize the Griffiths-Hurst-Sherman (GHS) inequality [3, 4], which148

arose from the study of correlation structure in spin systems. The next two lemmas give examples of149

some other families of priors for which convexity of F (·) depends on the noise level σ2, while those150

in Lemma 2 and 3 do not.151

Lemma 4 (Condition to ensure convexity of F (·): low signal-to-noise ratio). Suppose support(π) ⊂152

[−a, a] for some a > 0. Then as long as σ2 > a2, F (u) = Fπ(u, σ
2), as a function of u, is always153

strongly convex on S, regardless of the exact choice of π and value of σ2.154

Lemma 5 (Condition to ensure convexity of F (·): Spike and Slab prior). Consider a spike and slab155

prior of the following form,156

π(dx) = qδ(x) +
1− q√
2π∆2

e−
x2

2∆2 dx

which is just a mixture of a point mass at 0 and a Normal distribution of mean 0 and variance ∆2.157

Suppose158

min
h∈R

VarX∼πq̃,∆̃2 (X) < σ2 (5)

where πq̃,∆̃2 is again a Gaussian spike and slab mixture,159

π(dx) = q̃δ(x) +
1− q̃√
2π∆̃2

e−
x2

2∆̃2 dx

with q̃ =
q

q + (1− q)(1 + ∆2/σ2)−1/2
and ∆̃2 =

σ2∆2

σ2 +∆2
.

Then F (u) is strongly convex. In addition, one easier to check sufficient condition for (5) is160 (
1 +

2q

1− q

√
1 +

∆2

σ2

)
∆2

σ2 +∆2
< 1. (6)

Remark 1. It is easy to see that for large enough σ (q and ∆ fixed), or small enough q (∆ and σ161

fixed), or small enough ∆ (q and σ fixed), (6) is always satisfied. In other words, F (·) is strongly162

convex for low signal-to-noise ratio, or high temperature in physics parlance.163

From now on, we always assume F (·) is strongly convex on So := S \ ∂S. Next we introduce a164

scalar denoising function, which is just the proximal operator of F (·).165

Definition 4 (Scalar denoising function). For x ∈ R and t > 0,166

η(x, t) := argmin
w∈S

{
1

2t
(w − x)2 + F (w)

}
∈ So

Since F (·) is strongly convex, this one-dimensional optimization has a unique minimizer. Note that167

when S = [−1, 1], since limw→±1
dF
dw (w) = limw→±1 h(w, 1/σ

2) ∓ 1
σ2 = ±∞, the minimum is168

never achieved on the boundary of S. Similarly, when S = R, limw→±∞
dF
dw (w) = ±∞. Therefore,169

the minimum is always achieved at a stationary point. Lastly, η(0, t) = 0 if π is symmetric. In fact,170

throughout this paper, we only consider symmetric priors.171
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Before stating our main result and its implications, we first introduce a two-dimensional optimization172

problem, which will play a central role in our later discussion,173

max
b≥0

min
τ≥σ

ϕ(b, τ) (7)

ϕ(b, τ) :=
b

2
(
σ2

τ
+ τ)− 1

2
b2 +

1

α
Emin

w∈S

{
b

2τ
w2 − bZw + σ2F (w +B)− σ2F (B)

}
(8)

F (u) = Fπ(u, σ
2) = G(u, 1/σ2)− u2

2σ2
, (9)

where the E is taken over (B,Z) ∼ π⋆ ⊗ N (0, 1). In the next lemma we gather some additional174

characterizations of this min-max problem.175

Lemma 6. The max-min in (7) is achieved at some (b⋆, τ⋆) ∈ (0,∞)× (σ,∞). In fact, b⋆ is unique.176

In addition, (b⋆, τ⋆) is also a solution to the following fixed point equation,177

τ2 = σ2 +
1

α
E

[(
η

(
τZ +B,

τσ2

b

)
−B

)2
]

b = τ − 1

α
E
[
Z · η

(
τZ +B,

τσ2

b

)]
= τ

(
1− 1

α
E
[
η′
(
τZ +B,

τσ2

b

)])
,

(10)

where η′(x, t) := ∂η
∂x (x, t).178

Definition 5. We use ν⋆ = ν⋆π,π⋆ to denote the distribution of
(
η
(
τ⋆Z +B, τ

⋆σ2

b⋆

)
, B
)

, in which179

(B,Z) ∼ π⋆ ⊗N (0, 1). We denote by ν̂ the empirical distribution of {(ûi, β⋆
i )}

p
i=1.180

Now we are ready to state our main result, which provides sharp asymptotic characterization of ν̂.181

Theorem 1. Suppose the max-min problem in (7) has a unique optimizer (b⋆, τ⋆), or the fixed point182

equation in (10) has a unique solution (b⋆, τ⋆). Then for all ε > 0, as n, p→ ∞,183

P
(
W2 (ν

⋆, ν̂)
2 ≥ ε

)
→ 0,

where W2(·, ·) stands for order 2 Wasserstein distance.184

Remark 2. This result indicates the NMF estimator û should be asymptotically roughly iid among185

different coordinates, which is different from the NMF distributions being product distributions.186

Corollary 1. Suppose the hidden true signal β⋆ was a priori sampled iid from a probability187

distribution π⋆ with finite second moment. Note that π⋆ can be different from the prior π that the188

Bayesian statistician chose to use. In addition, suppose the max-min problem in (7) has a unique189

optimizer (b⋆, τ⋆), or the fixed point equation in (10) has a unique solution (b⋆, τ⋆), then for all190

ε > 0,191

P
(
W2

(
ν⋆π,π⋆ , ν̂

)2 ≥ ε
)
→ 0, as n, p→ ∞,

in which ν⋆ was defined in Definition 5 .192

We provide a proof sketch in Section 6 and all the detailed proofs are deferred to the Supplementary193

Material.194

3 Log normalizing constant: sub-optimality of NMF195

As alluded, as implications of Theorem 1, we develop asymptotics of both logZNMF
p and mean square196

error (MSE) of the NMF point estimator û in terms of (b⋆, τ⋆).197

Corollary 2 (MSE). When conditions of Corollary 1 hold, as n, p→ ∞,198

1

p
∥û− β⋆∥2 P−→ E(B,Z)∼π⋆⊗N (0,1)

[(
η

(
τ⋆Z +B,

τ⋆σ2

b⋆

)
−B

)2
]
= α(τ⋆2 − σ2).
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Figure 2: These two figures demonstrate the existence of a gap between limp→∞(Zp)/p and
limp→∞(logZNMF

p )/p when π = π⋆ is a Gaussian Spike and Slab distribution. The left panel
features the observation that the gap gets smaller as q (prior sparsity) increases, while the right panel
shows as α := n/p gets large, the gap seems to converge to 0, which is consistent with the results
established in [14] when p = o(n).

Corollary 3 (Log normalizing constant). When conditions of Corollary 1 hold, as n, p→ ∞,199

−1

p
logZNMF

p =
1

p

[
Mp(û)−

p∑
i=1

c(0, di)

]
P−→ αb⋆2

2σ2
+ EF (η(B + τ⋆Z, τ⋆/b⋆))− c(0, 1/σ2).

Though all our main theorems and corollaries apply to the case when π⋆ ̸= π, from now on, we200

consider the case of the “nicest” setting, i.e, when assumptions of Corollary 1 are satisfied and in201

addition π = π⋆. By doing so, the message we would like to convey is: even if there was no model202

mismatch at all, NMF is still not gonna be “correct”.203

Concentration and limiting values of both the optimal Bayesian mean square error (i.e. E∥β −204

E[β⋆|X, y]∥2/p) and the actual log-normalizing constant were conjectured and rigorously established205

under additional regularity conditions, which provides us the “correct answers” to compare with.206

Please see [1, 19]. We also provide statements of these results in the Supplementary Material for207

completeness.208

Please see Figure 2 for numerical evaluations of Corollary 3 which suggest for Gaussian Spike and209

Slab prior the bound in (4) is not tight. Since in general both F (·) and η(·, ·) lack analytical forms,210

it is hard to provide universal guarantee on whether (7) has a unique optimizer or the fixed point211

equation (10) has a unique solution. In fact, our numerical experiments suggest it is possible for212

(10) to have multiple fixed points. Therefore, how to exactly realize and evaluate the asymptotic213

predictions in these two corollaries (so as Corollary 4 in the next section) is in general challenging214

and can only be done in a case by case basis and usually involves numerically solving (10). In light215

of this observation, we use the Gaussian Spike and Slab prior as defined in Lemma 5 for presentation216

purpose. Since it is both non-trivial and of practical interests, though we do emphasise the same217

framework and workflow also apply to other priors as well. With out loss of generality, we also take218

σ2 = 1. This choice renders Figure 2, as well as Figure 3 in the next section. Details of how to219

generate these plots are deferred to the Supplementary Material.220

4 Uncertainty quantification: average coverage rate221

To study uncertainty quantification properties of NMF approximation, we consider the average cover-222

age rate of symmetric Bayesian credible regions (of level 1− ζ) suggested by the NMF distributions,223

i.e, Rp,ζ := 1
p

∑p
i=1 1{β⋆

i ∈[q̂i,ζ/2,q̂i,1−ζ/2]}, where q̂i,t is the t-th quantile of π(h(ûi,di),di). In order to224

study asymptotic behavior of Rp,ζ , we define an (m(π),M(π))× S → {0, 1} indicator function225

ψζ(u0, β0) = 1{
β0∈

[
q
π(h(u0,1/σ2),1/σ2),ζ/2

,q
π(h(u0,1/σ2),1/σ2),1−ζ/2

]}.
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Figure 3: These two figures show that estimated credible regions given by NMF do not achieve the
nominal coverage, in this case 95%, when π = π⋆ is a Gaussian Spike and Slab distribution. Recall
that α = n/p and please see Lemma 5 for exact definitions of the hyper-parameters q and ∆2.

The following corollary of Theorem 1 establishes the asymptotic convergence of Rp,ζ . Numerically226

evaluating it for the Gaussian Spike and Slab prior renders Figure 3, which shows NMF credible227

regions can not achieve the nominal coverage, in this case 95%, and also provide an exhibition of228

how large the gaps are for different hyper-parameters.229

Corollary 4. Suppose conditions of Corollary 1 hold. In addition, assume support(π) = S,230

equivalently, the quantile function of π is continuous. Then as n, p→ ∞,231

Rp,ζ
P−→ E(B,Z)∼π⋆⊗N (0,1)

[
ψζ

(
η

(
τ⋆Z +B,

τ⋆σ2

b⋆

)
, B

)]
.

On the other hand, based on the asymptotic joint distribution of û and β⋆ as stated in Corollary1, we232

can in fact identify a strategy of constructing asymptotically exact Bayesian credible regions based233

on û. Let qt(x) be the t-th quantile of conditional distribution of B given η(τ⋆Z +B, τ⋆σ2/b⋆) = x.234

This way, the following Corollary ensures [qζ/2(ûi), q1−ζ/2(ûi)] is asymptotically of at least 1− ζ235

coverage.236

Corollary 5. Suppose conditions of Corollary 4 hold, then for any ε > 0,237

lim
p→∞

P

(
1

p

p∑
i=1

1{β⋆
i ∈[qζ/2(ûi),q1−ζ/2(ûi)]} < 1− ζ − ε

)
= 0.

5 Extensions and Limitations238

We want to be clear about the fact that technically we did not “prove” the sub-optimality of NMF.239

Instead, we rigorously derived asymptotic characterizations of NMF approximation through solution240

of an fixed point equation. But this fixed point equation can only be solved numerically on a case-by-241

case basis and it is not guaranteed to have a unique solution. All our plots are based on iteratively242

solving the fixed point equation. As a matter of fact, for instance, when q is close to 1 for the Gaussian243

Spike and Slab prior we considered, the fixed point equation is clearly not converging to the right244

fixed point, as shown in the Supplementary Material. It could also just do not converge for very small245

α. Nevertheless, all the plots we are showing in the main text are backed by a numerical simulation246

of using simple gradient decent to optimize the NMF objective for n = 8000. All in all, it is probably247

more accurate to say we provided a tool for establishing sub-optimality of NMF for a general class of248

priors rather than proving it for good.249

Another obvious limitation is we can only handle priors that guarantee convexity of the the KL-250

divergence term in terms of the mean parameter. Though it is indeed a broad class of distributions251

covering some of most commonly used symmetric priors (e.g. Gaussian, Laplace, and so on), little is252

known about asymptotic behaviour of NMF when the convexity assumption is violated.253

We note that, in theory, in order to carry out the analysis using CGMT, the additive noise ϵ as defined254

in (1) does not have to be Gaussian. Instead, as long as it has log-concave density, the same proof255
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idea applies, though we intentionally chose to stick with Gaussian noise as it renders much cleaner256

results and more comprehensive presentation. In addition, we expect some kind of stronger uniform257

convergence (e.g. uniform in σ2) can also be established, which can be crucial for applications like258

hyper-parameters selection. Please see [13] for an example where results of this flavor were obtained.259

6 Proof strategy260

We give a proof outline of Theorem 1 in this section. More details can be found in the Supplementary261

Material. Replacing all di’s in Mp with Edi = 1/σ2, we define Np as262

Np(u) =
1

2σ2
∥Y −Xu∥22 +

p∑
i=1

[
G(ui, 1/σ

2)− u2i
2σ2

]
=

1

2σ2
∥Y −Xu∥22 +

p∑
i=1

F (ui).

Lemma 7. Let ûN := argminu[Np(u)]. Then for some Cs ∈ R+, as n, p→ ∞,263

P
(
1

p
max(∥û∥2, ∥ûN∥2) > (1 + Cs)s2

)
−→ 0.

Lemma 8. For any ε > 0, as n, p→ ∞, with Cs as defined in Lemma 7,264

P

(
1

p
sup

∥u∥2/p≤(1+Cs)s2

∣∣∣∣∣
p∑

i=1

[
G(ui, 1/σ

2)− u2i
2σ2

]
−
[
G(ui, di)−

diu
2
i

2

]∣∣∣∣∣ > ε

)
−→ 0. (11)

According to Lemma 8 and 7, Np(·) and Mp(·) are with high probability uniformly close. Thus265

from now on, we focus on using Gaussian comparison to analyse ûN and Np(ûN ) in place of û and266

Mp(û). Since F (·) is strongly convex, ŵ := ûN − β⋆ is the unique minimizer of267

L(w) :=
1

2n
∥Xw − ϵ∥2 + σ2

n

p∑
i=1

(F (wi + β⋆
i )− F (β⋆

i )) .

By introducing a dual vector s, we get268

min
w
L(w) = min

w∈Rp
max
s∈Rn

1

n
sT (Xw − ϵ)− 1

2n
∥s∥2 + σ2

n

p∑
i=1

(F (wi + β⋆
i )− F (β⋆

i )) .

By CGMT (see for instance [21, Theorem 3.3.1] or [13, Theorem 5.1]), it suffices now to study269

min
w∈Rp

max
s∈Rn

1

n3/2
∥s∥gTw +

1

n3/2
∥w∥hTu− 1

n
sT ϵ− 1

2n
∥s∥2 + σ2

n

p∑
i=1

(F (wi + β⋆
i )− F (β⋆

i ))

where g ∼ N (0, Ip) and h ∼ N (0, In) and they are independent. Note that the min and max270

can be flipped due to convex-concavity. By optimizing with respect to s/∥s∥ and introducing271 √
∥w∥2

n + σ2 = minτ≥σ

{
∥w∥2

n +σ2

2τ + τ
2

}
, it can be further reduced to272

max
b≥0

min
τ≥σ

b

2
(
σ2

τ
+ τ)− b2

2
+

1

α
min
w∈Rp

p∑
i=1

[
1

p

{
b

2τ
w2

i − bgiwi + σ2F (wi + β⋆
i )− σ2F (β⋆

i )

}]
.

Under minor regularity conditions, as n, p→ ∞, it converges to273

max
b≥0

min
τ≥σ

b

2

(
σ2

τ
+ τ

)
− b2

2
+

1

α
EB,Z min

w∈R

{
b

2τ
w2 − bZw + σ2F (w +B)− σ2F (B)

}
with (B,Z) ∼ π⋆ ⊗N (0, 1), which is how we got ϕ(·, ·) as in (7). Further more, by differentiating274

ϕ(b, τ) with respect to τ and b, we arrive at the fixed point equation in Lemma 6. Last but not least,275

note that argminw
{
w2 − bZw + σ2F (w +B)

}
= η(τZ + B, τσ2/b) − B, which explains why276

the joint empirical distribution of (ŵi, β
⋆
i )’s converges to the law of

(
η(τ⋆Z +B, τ⋆σ2/b⋆)−B,B

)
.277

Finally, we note that similar proof arguments were made in [13, 21].278
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Supplementary Materials344

A Technical lemmas and basic facts345

Lemma 9. Let ċ(h, d) := ∂c
∂h (h, d) and c̈(h, d) := ∂2c

∂h2 (h, d). We have, for u ∈ (m(π),M(π)) and346

d ∈ R,347

∂G

∂u
(u, d) = h(u, d),

∂G

∂d
=

1

2

∫
S

z2 dπ(h(u,d),d)(z)− 1

2

∫
S

z2 dπ(0,d)(z).

∂2G

∂2u
(u, d) =

1

c̈(h(u, d), d)
=

1

VarX∼π(h(u,d)d)(X)
> 0.

Lemma 10 (von Neumann’s minimax theorem, [15]). Let Sw ⊂ Rn and Ss ⊂ Rm be compact348

convex sets. If f : Sw×Ss → R is a continuous function that is convex concave, i.e. f(·, s) : Sw → R349

is convex for fixed s, and f(w, ·) : Ss → R is concave for fixed w. Then we have that350

min
w∈Sw

max
s∈Ss

f(w, s) = max
s∈Ss

min
w∈Sw

f(w, s).

Theorem 2 (CGMT, [23, 21, 13]). Let Sw ⊂ Rp and Ss ⊂ Rn be two compact sets and let351

Q : Sw × Ss → R be a continuous function. Let G = (Gij)1≤i≤n,1≤j≤p
iid∼ N (0, 1), g ∼ N (0, Ip),352

h ∼ N (0, In) be independent standard Gaussian vectors. Denote353

Φ(G) = min
w∈Sw

max
s∈Ss

sTGw +Q(w, s),

Ψ(g, h) = min
w∈Sw

max
s∈Ss

∥s∥gTw + ∥w∥hT s+Q(w, s).

Then we have354

1. For all t ∈ R,355

P (Φ(G) ≤ t) ≤ 2P(Ψ(g, h) ≤ t).

2. If both Sw and Ss are convex and if Q(·, ·) is convex concave, then for all t ∈ R,356

P (Φ(G) ≥ t) ≤ 2P(Ψ(g, h) ≥ t).

The most important message of this theorem is essentially whenever Ψ(g, h) concentrates around357

certain value t, Φ(G) will also concentrate around t, assuming Q(·, ·) is convex concave.358

B Proofs359

Proof of Lemma 1 and 9 can be found in for instance [14].360

B.1 Convexity of F (·)361

Proof of Lemma 2. We only prove part (1) here, as proof of part (2) is almost exactly the same. For362

any h, d ∈ R+, by GHS inequality [4, Equation 1.4],363

∂ [VarB∼π(h,d)(B)]

∂h
= E[B3]− 3EBE[B2] + 2 (EB)

3 GHS
≤ 0,

Together with the assumption that V is even, we have for any h ∈ R and d ≥ 0,364

VarB∼π(h,d)(B) ≤ VarB∼π(0,d)(B).

Consider now a family of parametric distributions {Pθ : θ ≥ 0} as a generalization of π(0,d), with

dPθ

dx
(x) ∝ exp(−θV (x)) exp

(
−dx2/2

)
.
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Note that Pθ=1 = π(0,d). Since V (·) is even and increasing,365

VarB∼π(0,d)(B) = VarS∼Pθ=1
(S) ≤ VarS∼Pθ=0

(S)

=

∫
R z

2e−dz2/2dz∫
R e

−dz2/2dz

=
1

d

∫
R z

2e−z2/2dz∫
R e

−z2/2dz

≤ 1

d
VarS∼N (0,1)(S) =

1

d
,

which ensures VarB∼π(h(u,1/σ2),1/σ2)(B) ≤ σ2 and therefore d2F
du2 (u) ≥ 0 by (12). Note that as366

long as π is a valid probability distribution, F (·) is not only convex, but always strongly convex, as367

VarB∼π(h(u,1/σ2),1/σ2)(B) = σ2 if and only if V (·) is a constant function and the support of π is the368

whole real line.369

The same proof idea also applies to Lemma 3 and therefore we omit its proof to avoid redundancy.370

Proof of Lemma 4. The conclusion follows by noting371

d2F

du2
(u) =

1

VarB∼π(h(u,1/σ2),1/σ2)(B)
− 1

σ2
> 0, (12)

as π(h,d) is a distribution on [−a, a] and thus its variance is at most a2, which is assumed to be372

smaller than σ2.373

For Lemma 5, since VarB∼π(h,d)(B) can be analytically computed for the Gaussian Spike and Slab374

prior, its proof is nothing but elementary calculation and then checking for (12).375

B.2 Replacing di with Edi376

Proof of Lemma 7. We focus on only ∥û∥ since almost exactly the same argument also applies to377

ûN . We first collect a few high probability claims, proofs of which are just direct applications of378

basic standard random matrix results (see for instance [24]).379

1. There exist positive constants C1 and C2 (only depend on α), such that for any ε > 0,380

S1 := {|λmax(X
TX) − C1| < ε} and S2 := {|λmin(X

TX) − C2| < ε} are both of high381

probability.382

2. Recall the additive noise ϵ ∼ N (0, σ2In). For any ε > 0, S3 := {|∥ϵ∥2/n− σ2| < ε} is of383

high probability.384

3. For any ε > 0, S4 = {
∣∣ϵTXβ⋆/p

∣∣ < ε} is of high probability.385

Let S0 = S1 ∩ S2 ∩ S3 ∩ S4, which is again an event of approaching 1 probability. Note that since386

the empirical distribution of β⋆
i ’s converge in L2 to π⋆, one has ∥β⋆∥2 < 1.01ps2 for large enough p.387

When S0 happens, if ∥u∥2/p > (1 + Cs)s2 (with Cs > 0 to be chosen later, but large enough such388

that ∥Xu∥ > ∥Y ∥),389

Np(u) ≥
1

2σ2
∥Y −Xu∥2 ≥ 1

2σ2
(∥Xu∥ − ∥Y ∥)2 ≥ p

2σ2

[√
(C2 − ε)(1 + Cs)s2 − ∥Xβ⋆ + ϵ∥/p

]2
≥ p

2σ2

[√
(C2 − ε)(1 + Cs)s2 −

√
2(C1 + ε) · 2s2 + 2α(σ2 + ϵ)

]2
.

On the other hand,390

Np

(→
0
)
=

1

2σ2
∥Y ∥2 ≤ p

2σ2

[
(C1ε) · 2ps2 + α(σ2 − ε) + 2ε

]
.

Upon Cs being large enough, we have Np(u) > Np

(→
0
)

for any u such that ∥u∥2/p > (1 + Cs)s2.391

Therefore, ∥ûN∥2/p < (1 + C2)s2 on S0.392
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Proof of Lemma 8. If S = [−1, 1], by Lemma 9,
∣∣∣∂G(u,d)

∂d (u, d)
∣∣∣ ≤ 1

2 for any u, d, thus393

LHS of (11) ≤ sup
u

[
p∑

i=1

∣∣G(ui, di)−G(ui, 1/σ
2)
∣∣+ p∑

i=1

∣∣∣∣ u2i2σ2
− diu

2
i

2

∣∣∣∣
]

≤ sup
u

[
p∑

i=1

∣∣∣∣∂G(u, d)∂d
(ui, 1/σ

2)(di − 1/σ2)

∣∣∣∣
]
+

1

2

p∑
i=1

|di − 1/σ2|

≤
p∑

i=1

∣∣∣∣di − 1

σ2

∣∣∣∣ .
Since Xji’s are iid with variance 1/n, we know Edi = 1

σ2E
[∑n

j=1X
2
ji

]
= 1

σ2 , di
n→∞−→ 1

σ2 , and all394

di’s are iid, which guarantee RHS of the previous display goes to 0 in probability as n, p→ ∞. On395

the other hand, if S = R, note that for any δ ∈ (0, 1/(2σ2)), P(max1≤i≤p |di − 1/σ2| > δ) → 0396

as n, p → ∞. In addition, when max1≤i≤p |di − 1/σ2| ≤ δ is true, which is of approaching 1397

probability,398

1

p
· LHS of (11) ≤ sup

u:∥u∥/p<(1+Cs)s2

[
p∑

i=1

∣∣G(ui, di)−G(ui, 1/σ
2)
∣∣+ p∑

i=1

∣∣∣∣ u2i2σ2
− diu

2
i

2

∣∣∣∣
]

≤ 1

p
· sup
u:∥u∥/p<(1+Cs)s2

[
p∑

i=1

∣∣∣∣∂G(u, d)∂d
(ui, 1/σ

2 + δi)(di − 1/σ2)

∣∣∣∣
]
+

1

2

p∑
i=1

|di − 1/σ2|u2i ,

where δi ∈
(
min(0, di − 1/σ2),max(0, di − 1/σ2)

)
. By Lemma 9, it is further smaller than399

1

p
· sup
u:∥u∥/p<(1+Cs)s2

{
1

2

p∑
i=1

∣∣∣∣di − 1

σ2

∣∣∣∣ · [VarX∼π(h(ui,1/σ
2+δi),1/σ

2)(X) + u2i +Var
X∼π(0,1/σ2+δi))

(X) + u2i
]}

.

Lastly, note that when conditions of one of Lemma 2, 3, 4 and 5 are true, for d̃ close enough to 1/σ2,400

we have VarX∼π(h̃,d̃)(X) < 2σ2 for any h̃ ∈ R. Therefore upon choosing small enough δ such that401

all di’s are close enough to 1/σ2, the display above is controlled by402

1

p
· sup
u:∥u∥/p<2s2

{
1

2

p∑
i=1

[∣∣∣∣di − 1

σ2

∣∣∣∣ · (4σ2 + 2u2i )

]}

≤ max
1≤i≤p

|di − 1/σ2| · sup
u:∥u∥/p<2s2

[
4σ2 +

∥u∥2

p

]
≤δ · (4σ2 + (1 + Cs)s2),

Lastly, further requiring δ < ε
4σ2+(1+Cs)s2

renders Lemma 8.403

B.3 Regarding the fixed point equation404

Proof of Lemma 6. First of all, recall the definition of ϕ(·, ·) in (8),405

∂ϕ

∂b
(b, τ) =

1

2
(σ2/τ + τ)− b− τ

2α
+

1

2τα
E
[
(τZ +B − η(τZ +B, τσ2/b))2

]
.

Note that for any fixed x, |x− η(x, t)| is always strictly increasing with respect to t, we have406

∂
{
E
[
(τZ +B − η(τZ +B, τσ2/b))2

]}
∂b

< 0,

which further leads to407

∂2ϕ

∂b2
(b, τ) < −1, ∀b, τ.

Therefore, for any fixed τ , ϕ(·, τ) is 1-strongly concave. Define ψ(b) := minτ≥σ ϕ(b, τ). Since ψ(·)408

is the minimum of a collection of 1-strongly concave functions, it is 1-strongly concave itself and409
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must have a unique maximizer b⋆ over [0,∞). In addition, by definition of η, limt→∞ η(x, t) = 0,410

dominated convergence theorem gives411

lim
b→0+

E
[
(τZ +B − η(τZ +B, τσ2/b))2

]
= E

[
(τZ +B)2

]
= τ2 + E[B2].

Therefore for any fixed τ ,412

lim inf
b→0

∂ϕ

∂b
(b, τ) =

1

2
(σ2/τ + τ) +

E[B2]

2τα
> 0.

Together with Lemma 11 and continuity of ϕ(·, ·), it ensures b⋆ ̸= 0. On the other hand, for any413

b > 0,414

∂ϕ

∂τ
(b, τ) =

b

2τ2

[
τ2 −

(
σ2 +

1

α
E
[(
η(τZ +B, τσ2/b)−B

)2])]
,

∂ϕ

∂τ
(b, τ = σ) < 0.

Together with Lemma 11, we have minτ≥σ ϕ(b
⋆, τ) has at least one minimizer τ⋆ ∈ (σ,∞). Finally,415

since b⋆ and τ⋆ are not on the boundary, we have ∂ϕ
∂b (b

⋆, τ⋆) = ∂ϕ
∂τ (b

⋆, τ⋆) = 0, which gives rise to416

the fixed point equation as in (10).417

Lemma 11. Recall the definition of ϕ in (8). For any fixed b ∈ (0,∞),418

lim
τ→∞

ϕ(b, τ) = ∞.

Therefore, minτ ϕ(b, τ) admits at least one minimizer.419

Proof. Since E[B2] = s2 <∞, Eminw∈S

{
b
2τw

2 − bZw + σ2F (w +B)− σ2F (B)
}

is decreas-420

ing in τ and always finite for any (b, τ) ∈ (0,∞)× [σ,∞). Therefore limτ→∞(b, τ) = ∞.421

B.4 Proof of the main results422

We devote this subsection to proving Theorem 1, while we note Corollary 1, 2, 3, 4 and 5 are all423

direct consequences of it. We prove Theorem 1 first while introducing some necessary lemmas along424

the way. Then we prove these lemmas at the end of this subsection. Throughout this subsection,425

whenever the optimization domains for w and s are omitted, they are understood to be Rp and Rn426

respectively. We use ν̂ to denote empirical distribution in general.427

Since F (·) is strongly convex, ŵ := ûN − β⋆ is the unique minimizer of428

L(w) :=
1

2n
∥Xw − ϵ∥2 + σ2

n

p∑
i=1

(F (wi + β⋆
i )− F (β⋆

i ))

By introducing a dual vector s, we get429

min
w
L(w) = min

w∈Rp
max
s∈Rn

1

n
sT (Xw − ϵ)− 1

2n
∥s∥2 + σ2

n

p∑
i=1

(F (wi + β⋆
i )− F (β⋆

i )) := min
w

max
s

ΦX(w, s)

Following the recipe in Theorem 2, we define430

Ψg,h(w, s) :=
1

n3/2
∥s∥gTw +

1

n3/2
∥w∥hTu− 1

n
sT ϵ− 1

2n
∥s∥2 + σ2

n

p∑
i=1

(F (wi + β⋆
i )− F (β⋆

i )) ,

where g ∼ N (0, Ip) and h ∼ N (0, In) and they are independent. Note that with a deliberate abuse431

of notations, we use Φ and Ψ to denote these two functions to indicate their resemblance to those in432

the statement of Theorem 2. By Theorem 2, it suffices now to study minw maxs Ψg,h(w, s) in place433

of minw maxs ΦX(w, s), which is made rigorous by the following lemma.434

Lemma 12. Let D be any close set.435

1. We have for all t ∈ R436

P
(
min
w∈D

max
s

ΦX(w, s) ≤ t

)
≤ 2P

(
min
w∈D

max
s

Ψg,h(w, s) ≤ t

)
.
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2. If D is in addition convex, then we have for all t ∈ R437

P
(
min
w∈D

max
s

ΦX(w, s) ≥ t

)
≤ 2P

(
min
w∈D

max
s

Ψg,h(w, s) ≥ t

)
.

Due to strong convexity, ŵΨ := argminw maxs Ψg,h(w, s) always exists and is unique. Note that438

the min and max can be flipped due to convex-concavity (Lemma 10). By optimizing with respect to439

s/∥s∥ and introducing440 √
∥w∥2
n

+ σ2 = min
τ≥σ

{
∥w∥2

n + σ2

2τ
+
τ

2

}
,

minw maxs Ψg,h(w, s) can be further reduced to441

max
b≥0

min
τ≥σ

Γg,h(b, τ)

Γg,h(b, τ) :=
b

2
(
σ2

τ
+ τ)− b2

2
+

1

α
min
w∈Rp

p∑
i=1

[
1

p

{
b

2τ
w2

i − bgiwi + σ2F (wi + β⋆
i )− σ2F (β⋆

i )

}]
,

in the sense that (1) the optimizers ŵΨ and ŵΓ are close, i.e, for any κ > 0,442

P
(
1

p
∥ŵΨ − ŵΓ∥2 > κ

)
→ 0, (13)

and (2) the optimum values are preserved with arbitrarily small error with high probabil-443

ity. The next lemma ensures empirical distribution of (ŵΨ, β
⋆) is close to the distribution of444 (

η
(
τ⋆Z +B, τ

⋆σ2

b⋆

)
−B,B

)
, which we denote as ν⋆(w⋆,π⋆), where (B,Z) ∼ π⋆ ⊗N (0, 1).445

Lemma 13. Suppose all conditions of Theorem1 are satisfied. For any ε > 0, there exists C(ε) ∈446

(0, ε), such that as p, n→ ∞,447

P
(
∃w̃ ∈ Rp such that W2

(
ν̂(w̃,β⋆), ν

⋆
(w⋆,π⋆)

)2
≥ ε and max

s
Ψg,h(w̃, s) < min

w
max

s
Ψg,h(w, s) + C(ε)

)
→ 0.

In the meantime,448

min
w

max
s

Ψg,h(w, s)
P−→ αb⋆2

2σ2
+ EF (η(B + τ⋆Z, τ⋆/b⋆)).

Build upon these lemmas, we now prove the empirical distribution of (ûN , β⋆) = (β⋆+ŵ, β⋆) is close449

to ν⋆ as defined in Definition 5. For ε > 0, define Dε =

{
w ∈ Rp :W2

(
ν̂(w,β⋆), ν

⋆
(w⋆,π⋆)

)2
≥ ε

}
.450

In order to establish451

P
(
W2(ν̂(ŵ,β⋆), ν

⋆
(w⋆,π⋆))

)
→ 0,

it suffices to show with high probability for some δ(ε) > 0,452

min
w∈Dε

max
s

ΦX(w, s) ≥ min
w∈Rp

max
s

ΦX(w, s) + δ(ε). (14)

On the one hand, by applying both (1) and (2) of Lemma 12 to D = Rp, together with Lemma 13,453

we have454

lim
n,p→∞

min
w

max
s

ΦX(w, s) = lim
n,p→∞

min
w

max
s

Ψg,h(w, s) =
αb⋆2

2σ2
+ EF (η(B + τ⋆Z, τ⋆/b⋆)),

where the “lim” is understood to be convergence in probability. It further leads to455

P
(∣∣∣min

w
max

s
ΦX(w, s)−min

w
max

s
Ψg,h(w, s)

∣∣∣ > ε
)
→ 0.

On the other hand, applying (1) of Lemma 12 to D = Dε, together with Lemma 13, we have456

P
(
min
w∈Dε

max
s

ΦX(w, s) > min
w

max
s

ΦX(w, s) + C(ε) + ε

)
→ 0,
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which establishes (14) with δ(ε) = C(ε) + ε, where C(ε) > 0 is defined in Lemma 13. Therefore,457

we have the empirical distribution of (ûn, β⋆) is close to the target distribution ν⋆, i.e.,458

P
(
W2(ν̂(ûN ,β⋆), ν

⋆)
)
→ 0. (15)

Finally, according to Lemma 8 and 7, Np(·) and Mp(·) are with high probability uniformly close.459

Together with strong convexity of Np(·), we have for any κ > 0460

P
(
1

p
∥û− ûN∥2 < κ

)
→ 0. (16)

Theorem 1 is therefore given by (15) and (16).461

In order to prove Lemma 12 using Theorem 2, one only needs to establish that the optimizer of462

ΦX(w, s) always has bounded norm with high probability. In fact, Lemma 7 ensures bounded-463

ness of ŵ = argminw maxs ΦX(w, s) while the boundedness of ŝ := argmaxs ΦX(ŵ, s) can be464

established by a similar argument.465

Now we turn to Lemma 13. Define466

Γ̃g,h(b, τ) :=
b

2
(
σ2

τ
+ τ)− b2

2
+

1

α
min
w∈Dε

p∑
i=1

[
1

p

{
b

2τ
w2

i − bgiwi + σ2F (wi + β⋆
i )− σ2F (β⋆

i )

}]
.

It is obvious that Γ̃g,h(b, τ) ≥ Γg,h(b, τ) for any fixed (b, τ) deterministically. By the max–min467

inequality,468

min
w∈Dε

max
s

Ψg,h(w, s) ≥ max
s

min
w∈Dε

Ψg,h(w, s)

= max
b≥0

min
τ≥σ

Γ̃g,h(b, τ) + on(1)

≥ min
τ≥σ

Γ̃g,h(b
⋆, τ) + on(1)

= Γ̃g,h(b
⋆, τ̃(b⋆)) + on(1)

(i)

≥ Γg,h(b
⋆, τ̃(b⋆)) + on(1)

(ii)

≥ min
τ≥σ

Γg,h(b
⋆, τ) + on(1)

= Γg,h(b
⋆, τ⋆) + on(1)

= min
w∈Rp

max
s

Ψg,h(w, s) + on(1),

where τ̃(b⋆) := argminτ≥σ Γ̃g,h(b
⋆, τ). Note that Lemma 13 is equivalent to469

P
(
min
w∈Dε

max
s

Ψg,h(w, s)− min
w∈Rp

max
s

Ψg,h(w, s) > C(ε)

)
→ 1,

which can be established by noticing that the gaps resulting from (i) and (ii) can not be both negligible.470

C Numerical simulations471

All source code can be found in a separate zip file submitted together with this PDF.472

C.1 Universality: non-Gaussian design matrix473

Instead of assuming Xij
iid∼ N (0, 1/n), we now present empirical evidence of universality, i.e.,474

Theorem 1 holds for a broader class of design matrix that has iid entries with variance 1/n. Since it475

is impossible to be exhaust all possible distributions, we will sticky with a representative example476

Xij
iid∼ Laplace(

√
2/2) and the Gaussian spike and slab prior. We use Gradient Decent to optimize477

Mp(u) and then demonstrate empirical MSE of its optimizer coincides with the prediction of478

Corollary 2. Please see Figure 4 for a visual summary.479

For more comprehensive and rigorous results on universality of Gaussian comparison inequalities,480

we refer interested readers to [9] and references within.481
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Figure 4: iid Gaussian design versus iid Laplace design (with Gaussian spike and slab prior): These
three plots showcase the empirical observation that prediction of Corollary 2 seem to be valid for a
design matrix with iid entries that have sub-exponential tails.

C.2 Fixed point equation482

Figure 5: As we can see, when q is large (q = 0.8 or 0.9 in the figure above), our initialization did not
lead to the right fixed point. On the other hand, the right panel showcases the fact that the iterative
algorithm might not converge for small α.

As allude in the main text, all our plots are generated by iteratively solving the fixed point equation483

(10). However, this naive strategy might not give the right fixed point, i.e., the (b⋆, τ⋆) that minimizes484

ϕ(b, τ), or it could just do not converge. Please see Figure 5 for an empirical example. In fact, since485

either F (·) or η(·, ·) lacks analytical forms for most natural priors, unlike other applications of CGMT486

(e.g. asymptotic analysis of lasso [13]), it is hard to determine whether (10) has an unique solution.487

Fortunately, there are two possible remedies. First, which is the option we took, one could solve488

minuMp(u) for some large n and check if the empirical MSE matches the prediction by the fixed489

point (b⋆, τ⋆). Alternatively, one could adapt a more brute-force way to find the actual optimizer of490

maxb minτ ϕ(b, τ), e.g. grid search or iteratively solving (10) with multiple initializations. After all,491

it is only an two dimensional scalar optimization problem. We chose to follow the first way simply492

because we want to use empirical simulations to corroborate our theoretical predictions anyway.493

18


	Introduction
	Main results
	Log normalizing constant: sub-optimality of NMF
	Uncertainty quantification: average coverage rate
	Extensions and Limitations
	Proof strategy
	Technical lemmas and basic facts
	Proofs
	Convexity of F()
	Replacing di with Edi
	Regarding the fixed point equation
	Proof of the main results

	Numerical simulations
	Universality: non-Gaussian design matrix
	Fixed point equation


