
Appendix396

A Additional Illustration for Section 2397

Figure 7: Average of the coefficient norm k�̂Jk for varying size of the set J of covariates.

As a further illustration of the behavior of linear regression in Figure 1 as complexity increases,398

Figure 7 shows the average norm of the model coefficients across different model complexities.399

Starting small, model coefficients initially grow (in terms of their Euclidean norm), reaching their400

peak at the interpolation threshold. To the right of the interpolation threshold, the norm of the401

model coefficients decreases mechanically, since the estimator now minimizes the norm among all402

interpolating solutions with fewer and fewer sparsity constraints.403

B Proofs404

Proof of Proposition 1. We provide a direct proof for the choice �j =
1�X0

j(XJX
0
J )

�1Xj

|J|�n via the405

Sherman–Morrison–Woodbury formula. We first note that, for k � n, A 2 Rn⇥k of full rank n,406

a 2 Rn, and ↵̂ = argmin↵2Rk;A↵=a k↵k we have that ↵̂ = A0(AA0)�1a. Indeed, A↵̂ = a, and for407

any ↵ 2 Rk with A↵ = a and ↵ 6= ↵̂, for ⇧ = A0(AA0)�1A we have that408

k↵k2 = k⇧↵k2 + k(I�⇧)↵k2 = k⇧↵̂k2 + k(I�⇧)(↵� ↵̂)k2 = k↵̂k2 + k↵� ↵̂k2 > k↵̂k2.

We next write XJ 2 Rn⇥k for the matrix with columns XJ
j = Xj for j 2 J and XJ

j = 0 for j /2 J .409

Applying the above result to �̂J and �̂J\{j} for all j 2 J , we find410

�̂J = XJ0(XJX
0
J)

�1Y, �̂J\{j} = XJ\{j}0(XJ\{j}X
0
J\{j})

�1Y.

Using that XJ\{j}X
0
J\{j} = XJX 0

J �XjX 0
j , which is invertible by the assumption that XJ\{j} is411

of full rank, we find by the Sherman–Morrison–Woodbury that412

(XJ\{j}XJ\{j})
�1 = (XJX

0
J)

�1 + (XJX
0
J)

�1Xj(1�X 0
j(XJX

0
J)

�1Xj)
�1X 0

j(XJX
0
J)

�1 (4)

with X 0
j(XJX 0

J)
�1Xj 6= 1. Plugging in,413

�̂J\{j} = (XJ �X{j})0(XJ\{j}XJ\{j})
�1Y

= �̂J �X{j}0(XJX
0
J)

�1Y �X{j}0(XJX
0
J)

�1Y
X 0

j(XJX 0
j)

�1Xj

1�X 0
j(XJX 0

j)
�1Xj

+XJ0(XJX
0
J)

�1XjX
0
j(XJX

0
J)

�1Y
1

1�X 0
j(XJX 0

j)
�1Xj

= �̂J +
⇣
XJ0(XJX

0
J)

�1XjX
0
j(XJX

0
J)

�1 �X{j}0(XJX
0
J)

�1
⌘
Y

1

1�X 0
j(XJX 0

j)
�1Xj

.

Since
P

j2J XjX 0
j = XJX 0

J and
P

j2J X{j} = XJ , we have that414

X

j2J

�̂J\{j}�j = �̂J
X

j2J

�j+(|J |�n)(XJ0(XJX
0
J)

�1XJX
0
J(XJX

0
J)

�1Y�XJ0(XJX
0
J)

�1Y ) = �̂J
X

j2J

�j .
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Finally, X 0
j(XJX 0

J)
�1Xj � 0 since XJX 0

J positive definite, X 0
j(XJX 0

J)
�1Xj  1 since415

XJ\{j}X
0
J\{j} = XJX 0

J � XjX 0
j � XJX 0

J in (4), and
P

j2J X 0
j(XJX 0

J)
�1Xj =416

tr
⇣P

j2J XjX 0
jXJX 0

J

⌘
= n, so �j 2 [0, 1] for all j 2 J and

PJ
j=1 �j = 1.417

Proof of Proposition 2. The result follows from Proposition 3 by noting that, for two indpendent418

draws YA and YB for fixed X , we have that419

E[k�̂J
A � �̂J

Bk2|X] = E[k(�̂J
A � E[�̂J |X])� (�̂J

B � E[�̂J |X])k2|X]

= E[k�̂J
A � E[�̂J |X]k2|X] + E[k�̂J

B � E[�̂J |X]k2|X] = 2 tr Var(�̂J |X)

(and the same for J \ {j}), and thus420

tr Var(�̂J |X) =
1

2
E[k�̂J

A � �̂J
Bk2|X]  1

2
E

min
j2J

k�̂J\{j}
A � �̂J\{j}

B k2
����X

�

 min
j

1

2
E[k�̂J\{j}

A � �̂J\{j}
B k2|X] = tr Var(�̂J\{j}|X).

Proof of Proposition 3. Consider first the case |J |  n. Under Assumption 1, we define the projec-421

tion matrices422

⇧J = XJ(X
0
JXJ)

�1X 0
J 2 Rn⇥n, ⇧J\{j} = XJ\{j}(X

0
J\{j}XJ\{j})

�1X 0
J\{j} 2 Rn⇥n.

Since ⇧J\{j} = ⇧J\{j}⇧J , we have that X�̂J\{j} = ⇧J\{j}Y = ⇧J\{j}⇧JY = ⇧J\{j}�̂J .423

Therefore,424

k�̂J
A � �̂J

Bk2X0X = kX�̂J
A �X�̂J

Bk2 = k⇧J\{j}(X�̂J
A �X�̂J

B)k2 + k(I�⇧J\{j})(X�̂J
A �X�̂J

B)k2

� k⇧J\{j}(X�̂J
A �X�̂J

B)k2 = kX�̂J\{j}
A �X�̂J\{j}

B k2 = k�̂J\{j}
A � �̂J\{j}

B k2X0X .

Consider now the case |J | > n. Using the notation from the proof of Proposition 1, under As-425

sumption 1 we have that XJ �̂J = X�̂J = Y = X�̂J\{j} = XJ �̂J\{j} and thus ⇧�̂J = ⇧�̂J\{j}426

(as well as (I � ⇧)�̂J = 0) for the projection matrix ⇧ = XJ0(XJX 0
J)

�1XJ 2 Rk⇥k. As a427

consequence,428

k�̂J
A � �̂J

Bk2 = k⇧(�̂J
A � �̂J

B)k2 + k(I�⇧)(�̂J
A � �̂J

B)k2 = k⇧(�̂J\{j}
A � �̂J\{j}

B )k2

 k⇧(�̂J\{j}
A � �̂J\{j}

B )k2 + k(I�⇧)(�̂J\{j}
A � �̂J\{j}

B )k2 = k�̂J\{j}
A � �̂J\{j}

B k2.

Proof of Proposition 4. Building upon the notation from Section 3.1, for J ⇢ {1, . . . , N} write429

WJ = {w 2 W;wj = 0 for all j /2 J} (where W = {w 2 [0, 1]N ;
PN

i=1 wi = 1} is the N � 1-430

simplex) and let @WJ =
S

j2J WJ\{j} ✓ WJ be the boundary of WJ . For outcomes, it will also431

be convenient to write X = (yit)t2{1,...,T},i2{1,...,N} 2 RT⇥N for the pre-treatment outcomes of the432

control units (with columns representing units), and y = (y0t)t2{1,...,T} 2 RT for the pre-treatment433

outcomes of the treated unit.434

As the first step, we note that we can express the quality of synthetic control weights w 2 WJ as435

kXw � yk2 = kXw � yJk2 + kyJ � yk2 (5)

in terms of the fitted values yJ = XwJ for the solution wJ to a relaxed problem that drops the436

non-negativity constraint. That solution with weights in W⇤ = {w 2 RN ;
Pn

i=1 wi = 1} is defined,437

analogously to the synthetic-control solution in (1), as438

wJ = argmin
w2WJ

kwk 2 W⇤, WJ
= argmin

w2W⇤;wj=08j /2J
kXw � yk ✓ W⇤.

For this solution, we note that kXw � yk2 = kX(w � wJ)k2 + 2(w � wJ)0X 0(XwJ � y) +439

kXwJ � yk2. Assume now that (w � wJ)0X 0(XwJ � y) 6= 0. Then there is some " 6= 0 such that440

wJ(") = wJ � (w � wJ) " 2 W⇤ with wj = 0 for j /2 J fulfills kXwJ(") � yk < kXwJ � yk,441
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contradicting the choice of wJ . Hence we must have that kXw� yk2 = kX(w�wJ)k2 + kXwJ �442

yk2 = kXw � yJk2 + kyJ � yk2, which establishes (5).443

As the second step, we note that we can therefore define the synthetic control solution in (1) in terms444

of the fitted values yJ of the relaxed solution as445

ŵJ = argmin
w2cWJ

kwk 2 WJ , cWJ = argmin
w2WJ

kXw � yJk ✓ WJ .

This follows immediately from (5) since kyJ �yk is not affected by the choice of w 2 WJ . Similarly,446

for the constrained solutions with index set J \ {j} for j 2 J , we have that447

ŵJ\{j} = argmin
w2cWJ\{j}

kwk 2 WJ\{j}, cWJ\{j} = argmin
w2WJ\{j}

kXw � yJk ✓ WJ\{j}

since WJ\{j} ✓ WJ for all j 2 J .448

As the third (and central) step, we use Farkas’ lemma to argue that there exist � 2 RJ with �j � 0449

for all j 2 J such that XwJ =
P

j2J �jXwJ\{j}.450

Assume first that XŵJ 6= yJ . Then we must have that ŵJ 2 @WJ . Indeed, if ŵJ 2 WJ \@WJ then451

there exists some " > 0 such that ŵJ(") = ŵJ (1� ") +wJ " 2 WJ , for which kXŵJ(")� yJk =452

kX(ŵJ(")�wJ)k = (1� ")kX(ŵJ �wJ)k < kXŵJ � yJk, contradicting the choice of cW J and453

ŵJ . Hence ŵJ 2 @WJ , so there is some j with ŵJ 2 WJ\{j}, which implies that ŵJ\{j} = ŵJ454

and XŵJ = XŵJ\{j}. This means that we can choose � as the indicator for component j.455

Assume now that XŵJ = yJ , and that there exists no such �. Then, by Farkas’ lemma, there exists456

v 2 RT \ {0} such that v0XŵJ < 0 and v0XŵJ\{j} � 0 for all j 2 J . Define the projection457

matrix ⇧ = vv0

v0v 2 RT⇥T , and let W⇤ = argminw2WJ ;⇧X(w�ŵJ )=X(w�ŵJ ) v
0Xw ✓ WJ . Then458

the minimum is attained at a boundary point w⇤ 2 W⇤ \ @WJ of the feasible set. Indeed, the459

feasible set is non-empty since it includes ŵJ , and it is compact and convex. The minimum of460

the linear function is therefore attained at a boundary point, which is in @WJ . As a consequence,461

w⇤ 2 WJ\{j} for some j 2 J . Since ŵJ 2 WJ , we have that v0Xw⇤  v0XŵJ < v0XŵJ\{j}.462

Hence there is some " 2 (0, 1] such that ŵJ\{j}(") = ŵJ\{j} (1 � ") + w⇤ " 2 WJ\{j} fulfills463

v0XŵJ\{j}(") = v0XŵJ . Since we therefore have ⇧XŵJ\{j}(") = ⇧XŵJ , as well as (I �464

⇧)XŵJ\{j}(") = (I�⇧)X(ŵJ\{j} (1� ")+ "ŵJ) since ⇧X(w⇤� ŵJ) = X(w⇤� ŵJ), we have465

that466

kXŵJ\{j}(")� yJk2 = kX(ŵJ\{j}(")� ŵJ)k2

= k⇧X(ŵJ\{j}(")� ŵJ)k2 + k(I�⇧)X(ŵJ\{j}(")� ŵJ)k2 = 0 + (1� ")2k(I�⇧)X(ŵJ\{j} � ŵJ)k2

< k⇧X(ŵJ\{j} � ŵJ)k2 + k(I�⇧)X(ŵJ\{j} � ŵJ)k2 = kX(ŵJ\{j} � ŵJ)k2 = kXŵJ\{j} � yJk2,
contradicting the choice of ŵJ\{j}. Hence, such � must exist.467

As the fourth step, we expand the previous result on fitted values to the weights themselves in the case468

of penalized synthetic control, and show that the weights sum to one in that case. To this end, note469

that we can write the penalized synthetic control estimator from (2) as ŵJ
⌘ = argminw2WJ kXw �470

yk2+⌘kwk2. Write now X̃J
⌘ = (X 0

JXJ +⌘I)1/2 2 RJ⇥J for the symmetric positive-definite matrix471

square root of the symmetric positive-definite X 0
JXJ + ⌘I, where XJ is a matrix of the columns of472

X with index in J , and ỹJ⌘ = (X̃J
⌘ )

�1X 0
Jy 2 RJ . For wJ the entries of w 2 WJ corresponding to473

the index set J , we find474

kXw � yk2 + ⌘kwk2 = kXJwJ � yk2 + ⌘kwJk2

= w0
JX

0
JXJwJ � 2w0

JX
0
Jy + y0y + ⌘w0

JwJ = w0
J(X

0
JXJ + ⌘I)wJ � 2w0

JX
0
Jy + y0y

= w0
JX̃

J0
⌘ X̃J

⌘ wJ � 2w0
JX̃

J0
⌘

⇣
(X̃J

⌘ )
�1X 0

Jy
⌘
+ y0y = kX̃J

⌘ wJ � ỹJ⌘ k2 � kỹJ⌘ k2 + kyk2.

Hence, we can write (noting that WJ\{j} ✓ WJ )475

ŵJ
⌘ = argmin

w2WJ

kX̃J
⌘ wJ � ỹJ⌘ k, wJ\{j}

⌘ = argmin
w2WJ\{j}

kX̃J
⌘ wJ � ỹJ⌘ k,
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so we can interpret penalized synthetic control on units J and J \ {j} with time periods {1, . . . , T}476

and the original outcomes as non-penalized synthetic control on units J and J \{j} with time periods477

J and transformed outcomes, where we note that the synthetic-control solutions are unique in this478

case. Hence, we can apply the previous result to conclude that there exists �⌘ 2 RJ with �⌘,j � 0479

for all j 2 J such that X̃J
⌘ w̃

J
⌘ =

P
j2J �⌘,jX̃J

⌘ w̃
J\{j}
⌘ . Since X̃J

⌘ is invertible, it now also follows480

that w̃J
⌘ =

P
j2J �⌘,jw̃

J\{j}
⌘ . Since also w̃J

⌘ 2 W and w̃J\{j}
⌘ 2 W for all j 2 J , we have that481

P
j2J �⌘,j =

P
j2J �⌘,j10w̃J\{j}

⌘ = 10w̃J
⌘ = 1. This establishes the main claim of the proposition482

for penalized synthetic control.483

As the fifth and final step, we derive the main result on minimum-norm synthetic control from the484

above results on penalized synthetic control. Consider some sequence (⌘◆)1◆=1 in (0,1) with ⌘◆ ! 0,485

and for every ◆ apply the previous step to the penalized synthetic control estimator with penalty ⌘◆486

to obtain a weight vector �⌘◆ 2 ⇤J =
�
� 2 [0, 1]J ;

PJ
j=1 �j = 1

 
. Since ⇤J is compact, (�⌘◆)

1
◆=1487

must have a converging subsequence with some limit � 2 ⇤J . Using the limit along this subsequence,488

we have that489

ŵJ = lim
◆!1

ŵJ
⌘◆

= lim
◆!1

X

j2J

�⌘◆,jw̃
J\{j}
⌘◆

=
X

j2J

�
lim
◆!1

�⌘◆,j

��
lim
◆!1

w̃J\{j}
⌘◆

�
=
X

j2J

�jw̃
J\{j}.

Proof of Proposition 5. By Jensen’s inequality applied to an average over the bounds in (3),490

E[(y � f̂⇤(x))2]  1

|J |!
X

⇡

E[(y � f̂⇤
⇡(x))

2] 
X

j2J

E

"
1

|J |!
X

⇡

�̂⇡(j)

| {z }
= 1

|J|

(y � f̂ j(x))2
#
.

C Details of the Empirical Illustrations491

C.1 Many-Regressor Linear Least-Squares on CPS Data492

We utilize the publicly available2 CPS control and NSW experimental control datasets, drawn from493

the study presented in LaLonde (1986) as used by Dehejia and Wahba (1999, 2002). The resulting494

data has 15,992 observations for CPS and 260 for NSW, with both datasets containing an identical495

set of variables, detailed in Table 1.496

Variable Data Type Description

age Discrete Age
education Discrete Years of education
black Dummy Black
hispanic Dummy Hispanic
married Dummy Marital status
nodegree Dummy Lack of college degree
re74 Continuous Income in 1974
re75 Continuous Income in 1975
re78 Continuous Income in 1978

Table 1: CPS and NSW dataset variables

We use re78 as the outcome variable and all other variables as covariates. In order to achieve high497

dimensionality, we first discretize the continuous income covariates into 50 bins via quantile binning.498

We then construct a series of dummies for each discrete variable, corresponding to indicators for each499

discretized value. We then interact all these dummy variables, as well as those covariates which were500

originally dummies, taking care not to interact those which are mutually exclusive (e.g. originating501

2users.nber.org/~rdehejia/data/.nswdata2.html. We use the files corresponding to
cps_controls.txt and nswre74_control.txt.
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from the same original covariate or corresponding to race). We then drop any interactions that are zero502

for all observations in the data. The resulting transformed dataset contains 8,408 dummy covariates,503

as well as the unmodified outcome variable. In order to ensure that the covariate matrix is full rank504

for an arbitrary subset of columns, we go on to add iid N (0, 0.0004) noise to each of the covariate505

values (again leaving the outcome variable unaffected). We then select a random subset of 3,000506

observations from the CPS dataset as our in-sample set, keeping the remaining 12,992 CPS and 260507

NSW observations as out-of-sample sets.508

For fitting models of varying complexity, we randomly permute the order of the columns of the509

covariate matrix; denote the resulting matrix as X . We then add an intercept and iterate over varying510

levels of complexity `, ranging from 1 to 8,409, corresponding to the number of covariates that we511

will use for estimation. We then estimate the OLS coefficient vector �̂` = X`†y, where † denotes the512

Moore–Penrose pseudoinverse, and calculate the out-of-sample prediction error513

RMSE(`) =

vuut 1

m

mX

i=1

(y⇤i � x⇤>
i �̂`)2

Where X⇤, y⇤ denote the out-of-sample covariate and outcome variables, respectively, and can514

correspond to either the CPS or NSW held-out samples. We also calculate in-sample prediction error515

analogously, using the in-sample covariates and outcomes X, y. In order to smooth out the effects516

of the random ordering of columns, we repeat this exercise for five different random orderings and517

take a pointwise average to obtain smooth RMSE vs. complexity and coefficient vector norm vs.518

complexity curves (Figures 1 and 7, respectively).519

C.2 Many-Unit Synthetic Control on Smoking Data520

For our synthetic-control exercise, we utilize public data from the Centers for Disease Control and521

Prevention3 containing annual cost, revenue, tax, and quantity data for cigarette sales by state for522

the years 1970 to 2019. We follow the approach of Abadie et al. (2010) in using synthetic control523

to estimate per-capita cigarette pack consumption for the target state, California, as a function of524

the other 49 states and Washington, D.C. For our evaluation, we utilize two years of data (1987 and525

1988) as a hold-out sample and fit the model on three years (1984 to 1986). All of our data precedes526

the year in which anti-smoking legislation took effect in California (1989).527

We begin by selecting a random subset of 20 states to serve as our donor pool, for computational528

tractability. We then select a level of complexity ` and select a subset of ` states from the chosen529

20. Using that subset, we then estimate synthetic control weights based on the in-sample period,530

choosing convex weight vector ŵ` 2 W = {w 2 [0, 1]N ;
Pn

i=1 wi = 1} as described in Section 3.1:531

ŵ` = argmin
w2cW`

kwk cW` = argmin
w2W;wj=08j /2J

1986X

t=1984

(y0t �
X̀

i=1

wiyit)
2.

Here, y0 denotes the target state, California. We then compute the out-of-sample prediction error as:532

RMSE(`) =

vuut1

2

1988X

t=1987

(y0t �
X̀

i=1

ŵ`
iyit)

2

We then iterate over all
�20
`

�
possible combinations of donor units for the given complexity level and533

take the average RMSE value to be the predictive error for the given complexity level. We vary `534

from 1 to 20 to trace out the curve of synthetic control prediction risk vs. complexity (Figure 4).535

3chronicdata.cdc.gov/Policy/The-Tax-Burden-on-Tobacco-1970-2019/7nwe-3aj9.
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