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Abstract
Graph neural networks, which typically exchange information between local neigh-1

bors, often struggle to capture long-range interactions (LRIs) within the graph.2

Building a graph hierarchy via graph pooling methods is a promising approach3

to address this challenge; however, hierarchical information propagation cannot4

entirely take over the role of local information aggregation. To balance locality5

and hierarchy, we integrate the local and hierarchical structures, represented by6

intra- and inter-graphs respectively, of a multi-scale graph hierarchy into a single7

mega graph. Our proposed MeGraph model consists of multiple layers alternating8

between local and hierarchical information aggregation on the mega graph. Each9

layer first performs local-aware message-passing on graphs of varied scales via10

the intra-graph edges, then fuses information across the entire hierarchy along11

the bidirectional pathways formed by inter-graph edges. By repeating this fusion12

process, local and hierarchical information could intertwine and complement each13

other. To evaluate our model, we establish a new Graph Theory Benchmark de-14

signed to assess LRI capture ability, in which MeGraph demonstrates dominant15

performance. Furthermore, MeGraph exhibits superior or equivalent performance16

to state-of-the-art models on the Long Range Graph Benchmark. The experimental17

results on commonly adopted real-world datasets further demonstrate the broad18

applicability of MeGraph.19

1 Introduction20

Graph-structured data, such as social networks, traffic networks, and biological data, are prevalent21

across a plethora of real-world applications. Recently, Graph Neural Networks (GNNs) have emerged22

as a powerful tool for modeling and understanding the intricate relationships and patterns present in23

such data. Most existing GNNs learn graph representations by iteratively aggregating information24

from individual nodes’ local neighborhoods through the message-passing mechanism. Despite their25

effectiveness, these GNNs struggle to capture long-range interactions (LRIs) between nodes in the26

graph. For instance, when employing a 4-layer vanilla GNN on the 9-node (A to I) graph (as shown27

in Fig. 1), the receptive field of node A is limited to 4-hop neighbors, making the aggregation of28

information from nodes G, H, and I into node A quite challenging. While GNNs could theoretically29

incorporate information from nodes n-hops away with n-layers of message passing, this often leads30

to over-smoothing and over-squashing issues [15, 3] when n is large.31

One mainstream solution to this problem involves constructing a multi-scale graph hierarchy through32

graph pooling methods. Previous efforts, such as Graph UNets [20] and HGNet [43], have attempted33

to broaden the receptive field using this strategy. They downsample and upsample the graph,34

aggregating information along the hierarchy. However, hierarchical information propagation cannot35

take over the role of local information aggregation. To illustrate, consider the graph hierarchy depicted36

in Fig. 1. The information propagated along the hierarchy from node B to nodes D, E, and F tends to37
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Figure 1: Illustration of the graph pooling operation, graph pyramid, and mega graph. Graph pooling is a
downsampling process comprising SELECT, CONNECT, and REDUCE steps. It begins by selecting subsets for
grouping and each subset collapses into a new node in the pooled graph. Next, it forms new edges by merging
the original ones, and finally calculates the pooled graph’s features. In this graph, nodes A B C, D E F, and G H
I are pooled into nodes 1, 2, and 3 respectively, while the edges (B, E) and (C, D) are merged into (1, 2). Graph
Pyramid involves multi-scaled graphs derived from iterative graph pooling, with the height indicating different
scales and h = 1 symbolizing the original graph. Mega Graph is formed by connecting the graph pyramid
using inter-graph edges, which are the by-products of graph pooling.

be similar since they share the common path B-1-X-2. However, in the original graph, node B holds38

different degrees of importance to nodes D, E, and F as they are 2, 1, and 3 hops away respectively.39

To balance the importance of locality and hierarchy, we amalgamate the local and hierarchical40

structures of a multi-scale graph hierarchy into a single mega graph as depicted in Fig. 1, where we41

refer to the local structure as intra-graph edges and hierarchical structure as inter-graph edges. Based42

on this mega graph, we introduce our MeGraph model consisting of n Mee layers. Each layer first43

performs local-aware message-passing on graphs of varied scales via the intra-graph edges and then44

fuses information across the whole hierarchy along the bidirectional pathways formed by inter-graph45

edges. This method enables hierarchically fused information to circulate within local structures and46

allows locally fused information to distribute across the hierarchy. By repeating this fusion process,47

local and hierarchical information could intertwine and complement each other. Moreover, to support48

flexible graph pooling ratios when constructing the multi-scale graph hierarchy, we propose a new49

graph pooling method S-EdgePool that improves from EdgePool [11].50

In our experiments, We first evaluate MeGraph’s capability to capture Long Range interactions51

(LRIs). We establish a Graph Theory Benchmark comprising four tasks related to shortest paths52

and one related to connected components. MeGraph demonstrates superior performance compared53

with many competitive baselines. MeGraph also achieves comparable or superior performance than54

the state-of-the-art on the Long Range Graph Benchmark (LRGB) [15]. In addition, we perform55

extensive experiments on widely-used real-world datasets that are not explicitly tailored for assessing56

the capacity to capture LRIs. These include the GNN benchmark [13] and OGB-G datasets [26].57

In these tests, MeGraph demonstrates superior or equivalent performance compared to the baseline58

models, suggesting its broad applicability and effectiveness.59

The main contributions of this work are summarized as follows: 1) Mega graph and novel architec-60

ture: we propose the mega graph, a multi-scale graph formed by intra- and inter-graph edges. On this61

basis, we introduce a novel architecture MeGraph, which alternates information aggregation along62

the intra- and inter-edges of the mega graph. This fusion process intertwines local and hierarchical63

information, leading to mutual benefits. 2) Hierarchical information fusion: we design a bidirec-64

tional pathway to facilitate information fusion among the hierarchies. 3) S-EdgePool: we enhance65

EdgePool into S-EdgePool, allowing an adjustable pooling ratio. 4) Benchmark and Evaluations:66

we establish a new graph theory benchmark to evaluate the ability of models to capture LRIs. In these67

evaluations, MeGraph exhibits dominant performance. Additionally, MeGraph achieves new SOTA in68

one task of LRGB and shows better or comparable performance compared with baselines on popular69

real-world datasets.70

2 Notations, Backgrounds and Preliminaries71

Let G = (V, E) be a graph with node set V (of cardinality Nv) and edge set E (of cardinality Ne). The72

edge set can be represented as E = {(sk, tk)}k=1:Ne , where sk and tk are the indices of the source73

and target nodes connected by edge k. We define XG as features of graph G, which is a combination74

of global (graph-level) features uG , node features VG , and edge features EG . Accordingly, we75
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use VGi to represent the features of a specific node vi, and EGk denotes the features of a specific76

edge (sk, tk). We may abuse the notations by omitting the superscript G when there is no context77

ambiguity.78

2.1 Graph Network (GN) Block79

We adopt the Graph Network (GN) block design in accordance with the GN framework [6]. In our80

notation, a GN block accepts a graph G and features X = (u,V,E) as inputs, and produces new81

features X′ = (u′,V′,E′). A full GN block [6] includes the following update steps. In each of these82

steps, ϕ denotes an update function, typically implemented as a neural network:83

Edge features: E′k = ϕe(Ek,Vsk ,Vtk ,u),∀k ∈ [1, Ne].84

Node features: V′i = ϕv(ρe→v({E′k}k∈[1,Ne],tk=i), Vi,u), ∀i ∈ [1, Nv], where ρe→v is an aggre-85

gation function taking the features of incoming edges as inputs.86

Global features: u′ = ϕu(ρe→u(E′), ρv→u(V′),u), where ρe→u and ρv→u are two global aggrega-87

tion functions over edge and node features.88

Given a fixed graph structure G and the consistent input and output formats outlined above, GN89

blocks can be seamlessly integrated to construct complex, deep graph networks.90

2.2 Graph Pooling91

Graph pooling operation downsamples the graph structure and its associated features while ensuring92

the preservation of structural and semantic information inherent to the graph. Drawing from the93

SRC framework [21], we identify graph pooling as a category of functions,POOL, that maps a graph94

G = (V, E) with Nv nodes and features XG to a reduced graph G̃ = (Ṽ, Ẽ) with N ṽ nodes and new95

features XG̃ . Here, N ṽ ≤ Nv and (G̃,XG̃) = POOL(G,XG).96

The SRC framework deconstructs the POOL operation into SELECT, REDUCE, and CONNECT functions,97

which encompass most existing graph pooling techniques. We reinterpret these functions in our own98

notation as follows:99

(Ĝ,XĜ) = SELECT(G,XG); G̃ = CONNECT(G, Ĝ,XĜ); XG̃ = REDUCE(XG , Ĝ,XĜ). (1)
100 As shown in Fig. 1, the SELECT establishes N ṽ nodes for the pooled graph, and each node ṽ101

corresponds to a subset of nodes Sṽ ⊆ V in the input graph. This creates an undirected bipartite102

graph Ĝ = (V̂, Ê), with V̂ = V ∪ Ṽ and (v, ṽ) ∈ Ê if and only if v ∈ Sṽ . We refer to this graph Ĝ as103

the inter-graph, a larger graph that links nodes in the input graph G with nodes in the pooled graph G̃.104

The SELECT function can be generalized to include inter-graph features XĜ . As an example, edge105

weights can be introduced for some edge (ŝk, t̂k) in graph Ĝ to gauge the importance of node ŝk from106

the input graph contributing to node t̂k in the pooled graph.107

The CONNECT function reconstructs the edge set Ẽ between the nodes in Ṽ of the pooled graph G̃108

based on the original edges in E and the inter-graph edges in Ê . The REDUCE function calculates109

the graph features XG̃ of graph G̃ by aggregating input graph features XG , taking into account both110

the inter-graph Ĝ and features XĜ . In a similar vein to the relationship between graph lifting and111

coarsening, we define the EXPAND function for graph features, which serves as the inverse of the112

REDUCE function: XG = EXPAND(XG̃ , Ĝ,XĜ).113

3 Methods114

We begin with the introduction of the mega graph (Sec.3.1), which amalgamates the local (intra-115

edges) and hierarchical (inter-edges) structures of a multi-scale graph hierarchy into a single graph.116

Following this, we present the MeGraph model (Sec.3.2), which alternates between the aggregation117

of local and hierarchical information along the intra- and inter-edges of the mega graph. We then118

discuss the specific choices made for the core modules of the MeGraph, along with the innovations119

(Sec.3.3). Finally, we delve into the computational complexity of the MeGraph model (Sec.3.4).120

3.1 Connecting Multi-scale Graphs into a Mega Graph121

Similar to the concept of an image pyramid [1], a graph pyramid is constructed by stacking multi-122

scale graphs, which are obtained through iterative downsampling of the graph using a graph pooling123

technique. Formally, in alignment with the definition of an image feature pyramid [36], we define124
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Figure 2: Illustration of the MeGraph model, where n− denotes n− 1. The blue and green circles represent
features of intra- and inter-graphs, respectively. In this figure, the horizontal and vertical directions represent the
interaction among the local structure (intra-graph) and graph hierarchy (inter-graph) respectively. The features
of intra- and inter-graphs are represented by blue and green circles, respectively. In this figure, the horizontal
and vertical directions denote the local structure and graph hierarchy respectively. During the encode stage, the
mega graph is constructed using graph pooling. In the process stage, the Mee layer, which features bidirectional
pathways across multiple scales, is stacked n times. In the decode stage, multi-scale features are read out. The
golden inter GN blocks form bidirectional pathways across the whole hierarchy.

a graph feature pyramid as a set of graphs G1:h := {Gi}i=1,··· ,h and their corresponding features125

XG1:h := {XGi}i=1,··· ,h. Here, G1 represents the original graph, XG1 signifies the initial features, h126

stands for the height, and (Gi,XGi) = POOL(Gi−1,XGi−1) for i > 1.127

By iteratively applying the POOL function, we can collect the inter-graphs Ĝ1:h := {Ĝi}i=1,··· ,h−1128

and their features XĜ1:h := {XĜi}i=1,··· ,h−1 (since there are h− 1 inter-graphs for h intra-graphs),129

where (Ĝi,XĜi) = SELECT(Gi,XGi) for i < h. The bipartite inter-graph Ĝ and its features XĜ130

essentially depict the relationships between the graphs before and after the pooling process (see131

Sec. 2.2).132

Finally, as illustrated in Fig. 1, we wire the graph pyramid G1:h using the edges found in the133

bipartite graphs Ĝ1:h. This results in a mega graphMG = (MV,ME), whereMV =
⋃h

i=1 Vi134

andME =
⋃h

i=1 Ei ∪
⋃h−1

i=1 Êi. The structure of the mega graph would vary as the graph pooling135

method trains. We denoteMGintra =
⋃h

i=1 Gi as the intra-graph ofMG, and refer to the edges136

therein as intra-edges. Correspondingly,MGinter =
⋃h−1

i=1 Ĝi is referred to as the inter-graph ofMG,137

with its corresponding edges termed as inter-edges. The features XMG of the mega graphMG is a138

combination of intra-graph features XG1:h and inter-graph features XĜ1:h .139

3.2 Mega Graph Message Passing140

We introduce the MeGraph architecture, designed to perform local and hierarchical aggregations over141

the mega graph alternately. As shown in Fig.2, the architecture follows the encode-process-decode142

design [6, 23] and incorporates GN blocks (refer to Sec. 2.1) as fundamental building blocks.143

During the encode stage, initial features are inputted into an intra-graph GN block, which is followed144

by a sequence of graph pooling operations to construct the mega graphMG and its associated features145

(X0)MG . In the process stage, the Mee layer, which performs both local and hierarchical information146

aggregation within the mega graph, is stacked n times. The i-th Mee layer receives (Xi−1)MG as147

input and outputs (Xi)MG . Through the stacking of Mee layers, a deeper architecture is created,148

enabling a more profound fusion of local and hierarchical information. Lastly, in the decode stage,149

the features (Xn)MG are transformed into task-specific representations using readout functions.150

Mee Layer. The Mee layer is designed to aggregate local and hierarchical information within the151

mega graph. A detailed structure of the Mee layer is depicted in Fig. 3.152

For the i-th Mee layer, we consider inputs denoted by (Xi−1)MG = {(Xi−1)G1:h , (Xi−1)Ĝ1:h}.153

For simplicity, we omit the superscript and denote the features of intra- and inter-graphs as154

{Xi−1
j }j=1,··· ,h := (Xi−1)G1:h and {X̂i−1

j }j=1,··· ,h−1 := (Xi−1)Ĝ1:h respectively.155
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Figure 3: Illustration of the Mee layer, where i− denotes i− 1 and j+ denotes for j + 1. The blue and green
circles represent the features of intra- and inter-graphs, respectively. Grey and golden arrows represent the intra
and inter GN blocks. The cross-update utilizes inter GN blocks to exchange information between consecutive
heights, as elaborated in the main text. The Mee layer first aggregates information locally along inter-graph
edges. It then applies cross-updates sequentially from lower to higher levels, accumulating information along
the pathway to pass to the higher hierarchy. The process is reversed in the last step.

The first step applies GN blocks on intra-graph edges, performing message passing on the local156

structure of graphs at each scale: X′j = GNi,j
intra(Gj ,X

i−1
j ). Here, X′j represents the updated157

intra-graph Gj features.158

The second and third steps focus on multi-scale information fusion. The second step applies cross-159

updates across consecutive heights from 1 to h, while the third step reverses the process, forming a160

bidirectional pathway for the information flow across the hierarchy. The cross-update between consec-161

utive heights j and j + 1 is denoted by a function (X′j , X̂
′
j ,Xj + 1′) = X-UPD(j,Xj , X̂j ,Xj + 1).162

The prime notation indicates the updated value, and residual links [24] are used in practice.163

This cross-update can be implemented via an inter-graph convolution with GNi,j
inter, referred to as X-164

Conv (detailed in App.C.1). Alternatively, it can be realized using the REDUCE and EXPAND operations165

of POOL (refer to Sec.2.2) by X′j+1 = REDUCE(Ĝj , X̂0
j ,Xj) and X′j = EXPAND(Ĝj , X̂0

j ,Xj+1),166

where Ĝj is the j-th inter-graph. We denote this implementation as X-Pool.167

The Mee layer outputs features {Xi
j}j=1,··· ,h and {X̂i

j}j=1,··· ,h−1. Residual links [24] can be added168

from Xi−1
j to Xi

j and from X̂i−1
j to X̂i

j empirically, creating shortcuts that bypass GN blocks in the169

Mee layer. It’s worth noting that the intra and inter GN blocks can share parameters across all heights170

j to accommodate varying heights, or across all Mee layers to handle varying layer numbers.171

3.3 Module Choice and Innovation172

MeGraph incorporates two fundamental modules: the graph pooling operator and the GN block. This173

architecture can accommodate any graph pooling method from the POOL function family (refer to174

Sec. 2.2). Furthermore, the GN block is not strictly confined to the graph convolution layer found in175

standard GCN, GIN, or GAT.176

Graph Pooling. There are a number of commonly used graph pooling methods, including Diff-177

Pool [58], TopKPool [20], EdgePool [11], etc. We opt for EdgePool due to its simplicity, efficiency,178

and ability to naturally preserve the graph’s connectivity through edge contraction. However, edge179

contraction is applied only to the edges in a specific maximal matching of the graph’s nodes [11],180

thereby setting a lower limit of 50% to the pooling ratio ηv . This constraint implies that a minimum181

of log2 N pooling operations is required to reduce a graph of N nodes to a single node. To address182

this limitation, we propose the Stridden EdgePool (S-EdgePool), which allows for a variable pooling183

stride.184

The principle behind S-EdgePool involves dynamically tracking the clusters of nodes created by the185

contraction of selected edges. Similar to EdgePool, edges are processed in descending order based on186

their scores. When an edge is contracted, if both ends do not belong to the same node cluster, the187

two clusters containing the endpoints of the edge merge. The current edge can be contracted if the188

resulting cluster contains no more than τc nodes after this edge’s contraction. The iteration stops189

prematurely once a pooling ratio, ηv, is achieved. During pooling, each node cluster is pooled as a190

new node. When τc = 2, S-EdgePool reverts to the original EdgePool. The algorithm’s details and191

pseudocode are available in App. C.2.192
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Table 1: Results on Graph Theory Benchmark. For each task, we report the MSE regression loss on test set,
averaged over different graph generation methods. Darker blue cells denote better performance and the bold
denotes the best one. We provide detailed results on each type of graphs in App. F.6.

Category Model SPsssd MCC Diameter SPss ECC Average

Baselines
(h=1)

n=1 12.188 1.377 12.654 25.159 21.522 13.680
n=5 4.246 1.093 6.048 13.715 20.287 8.821
n=10 2.488 1.119 5.812 7.819 20.201 7.481

MeGraph (h=5)
EdgePool (τc=2)

n=1 1.856 0.772 4.801 6.110 14.920 5.662
n=5 0.817 0.616 2.196 0.785 6.892 2.337

MeGraph
S-EdgePool

Variants
(h=5, n=5)

τc=3 0.648 0.600 0.575 0.501 0.856 0.644
ηv=0.3 2.331 0.583 0.964 3.984 2.021 1.840
ηv=0.3, τc=4 0.584 0.565 0.517 0.475 0.925 0.624
ηv=0.5, τc=4 1.103 0.600 0.835 1.331 2.016 1.163
ηv=0.3, τc=4 (X-Pool) 0.935 0.619 0.734 1.618 2.014 1.165
ηv=0.3, τc=4 (w/o pw) 0.616 0.602 0.812 0.796 2.344 1.055

Graph-UNets h=5,n=9,ηv=0.3,τc=4 1.115 0.825 2.038 1.106 2.568 1.525

For efficiency, we employ the disjoint-set data structure to dynamically maintain the node clusters,193

which has a complexity of O(Eα(E)), where E is the number of edges and α(E) is a function that194

grows slower than log(E) [46]. The total time complexity of S-EdgePool is equivalent to EdgePool195

and is calculated as O(ED+E logE), where D is the embedding size, O(ED) from computing edge196

scores and O(E logE) from sorting the edges.197

GN block. The full GN block, introduced in Sec. 2.1, is implemented as a graph full network (GFuN)198

layer. This layer exhibits a highly configurable within-block structure, enabling it to express a variety199

of other architectures (see Sec. 4.2 of [6]), like GCN, GIN, GAT, GatedGCN. Thus, modifying the200

within-block structure of GFuN is akin to plugging in different GNN cores. Further details can be201

found in App. C.3.202

Encoder and decoder. Most preprocessing methods (including positional encodings and graph203

rewiring), encoding (input embedding) and decoding (readout functions) schemes applicable to GNNs204

can also be applied to MeGraph. We give implementation details in App. C.4.205

3.4 Computational Complexity and Discussion206

The overall complexity of the MeGraph model is contingent on the height h, the number of Mee207

layers n, the chosen modules, and the corresponding hyperparameters. Let D be the embedding208

size, V the number of nodes, and E the number of edges in the input graph G. The time complexity209

of S-Edgepool is O(ED+E logE), and that of a GFuN layer is O(V D2+ED). Assuming both210

the pooling ratios of nodes and edges are η, the total time complexity to construct the mega graph211

MG becomes O((ED + E logE)/(1− η)), where
∑h−1

i=0 ηi < 1/(1− η). Similarly, the total time212

complexity of an Mee layer is O((V D2 + ED)/(1− η)). This complexity is equivalent to a typical213

GNN layer if we consider 1/(1−η) as a constant (for instance, it is a constant of 2 when η = 0.5). In214

practice, we introduce several variants of MeGraph to reduce further the time complexity in App. C.5.215

Theoretically, when using the same number of layers, MeGraph is better at capturing LRIs than216

standard message-passing GNNs owning to the hierarchical structure (see App. D.1 for details). On217

the other hand, MeGraph can degenerate into standard message-passing GNNs (see App. D.2 for218

details), indicating it should not perform worse than them on other tasks.219

4 Experiments220

We conduct extensive experiments to evaluate the MeGraph’s ability to capture long-range interactions221

(LRIs) and its performance in general graph learning tasks.222

4.1 Experimental Settings223

Baselines. We compare MeGraph model to three baselines as follows: 1) MeGraph h=1 variant does224

not use the hierarchical structure and falls back to standard GNNs. 2) MeGraph n=1 variant gives up225

repeating information exchange over the mega graph. 3) Graph U-Nets [20] uses a U-shaped design226

and only traverses the multi-scale graphs once.227

Due to page limits, statistics of the datasets are provided in App. B.1, hyper-parameters are reported228

in Table 8, and the training and implementation details are reported in App. E.229
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Table 3: Results on GNN benchmark. Regression tasks are colored with blue. ↓ indicates that smaller numbers
are better. Classification tasks are colored with green. ↑ indicates that larger numbers are better. Darker colors
indicate better performance. † denotes the results are reported in [13].

Model ZINC ↓ AQSOL ↓ MNIST ↑ CIFAR10 ↑ PATTERN ↑ CLUSTER ↑
GCN† 0.416 ±0.006 1.372 ±0.020 90.120 ±0.145 54.142 ±0.394 85.498 ±0.045 47.828 ±1.510
GIN† 0.387 ±0.015 1.894 ±0.024 96.485 ±0.252 55.255 ±1.527 85.590 ±0.011 58.384 ±0.236
GAT† 0.475 ±0.007 1.441 ±0.023 95.535 ±0.205 64.223 ±0.455 75.824 ±1.823 57.732 ±0.323
GatedGCN† 0.435 ±0.011 1.352 ±0.034 97.340 ±0.143 67.312 ±0.311 84.480 ±0.122 60.404 ±0.419

Graph-UNets 0.332 ±0.010 1.063 ±0.018 97.130 ±0.227 68.567 ±0.339 86.257 ±0.078 50.371 ±0.243
MeGraph (h=1) 0.323 ±0.002 1.075 ±0.007 97.570 ±0.168 69.890 ±0.209 84.845 ±0.021 58.178 ±0.079
MeGraph (n=1) 0.310 ±0.005 1.038 ±0.018 96.867 ±0.167 68.522 ±0.239 85.507 ±0.402 50.396 ±0.082
MeGraph 0.260 ±0.005 1.002 ±0.021 97.860 ±0.098 69.925 ±0.631 86.507 ±0.067 68.603 ±0.101
MeGraphbest 0.202 ±0.007 1.002 ±0.021 97.860 ±0.098 69.925 ±0.631 86.732 ±0.023 68.610 ±0.164

4.2 Perfomance on LRI Tasks230

To test MeGraph’s ability to capture long-range interactions, we establish a Graph Theory Benchmark,231

of which four tasks related to shortest path distance, i.e., Single Source Shortest Path (SPss), Single232

Source Single Destination Shortest Path (SPsssd), Graph Diameter (Diameter) and Eccentricity of233

nodes (ECC); and 1 task related to connected component, i.e., Maximum Connected Component234

of the same color (MCC). To generate diversified undirected and unweighted graphs for each task,235

we adopt the ten methods used in [10] and add three new methods: cycle graph, pseudotree, and236

geographic threshold graphs. The details of the dataset generation can be found in App. B.2.237

Table 2: Results on LRGB [15], numbers are taken from corre-
sponding papers. All methods use around 500K parameters for
a fair comparison. Message-passing-based models have 5 layers,
while the Transformer-based models have 4 layers [15]. PE in the
method name indicates using positional encoding.

Methods Peptide-func ↑ Peptide-struct ↓
GCN [15] 59.30 ±0.23 0.3496 ±0.0013
GINE [15] 55.43 ±0.78 0.3547 ±0.0045

GatedGCN [15] 58.64 ±0.77 0.3420 ±0.0013
GatedGCN+RWSE [15] 60.69 ±0.35 0.3357 ±0.0006
Transformer+LapPE [15] 63.26 ±1.26 0.2529 ±0.0016

SAN+LapPE [15] 63.84 ±1.21 0.2683 ±0.0043
SAN+RWSE [15] 64.39 ±0.75 0.2545 ±0.0012

GPS [42] 65.35 ±0.41 0.2500 ±0.0005
GNN-AK+ [25] 64.80 ±0.89 0.2736 ±0.0007

SUN [25] 67.30 ±0.78 0.2498 ±0.0008
GraphTrans+PE [25] 63.13 ±0.39 0.2777 ±0.0025

GINE+PE [25] 64.05 ±0.77 0.2780 ±0.0021
GINE-MLP-Mixer+PE [25] 69.21 ±0.54 0.2485 ±0.0004

MeGraph (h=9,n=1) 67.52 ±0.78 0.2557 ±0.0011
MeGraph (h=9,n=4) 69.45 ±0.77 0.2507 ±0.0009

As depicted in Table 1, the MeGraph238

model with h=5, n=5 significantly239

outperforms both the h=1 and n=1240

baselines in terms of reducing re-241

gression error across all tasks. It is242

worth noting that even the h=5, n=1243

baseline outperforms the h=1, n=10244

baseline, indicating that adopting a245

multi-scale graph hierarchy is cru-246

cial in these tasks. The improvement247

is also substantial when compared248

with our reproduced Graph-UNets us-249

ing S-EdgePool ([MeGraph] 0.624 vs.250

[Graph UNets] 1.525). These results251

collectively demonstrate the superior252

ability of MeGraph to capture LRIs.253

Furthermore, we evaluated MeGraph254

model and compared it with other255

recent methods on the Long Range256

Graph Benchmark (LRGB) [15] that257

contains real-world tasks that require258

capturing LRIs. As depicted in Table 2, the h=9, n=4 variant of MeGraph achieves superior results259

on the Peptide-func task, and comparable performance on the Peptide-struct task, relative to state-of-260

the-art models. It is worth noting that the n = 1 variant already surpasses other methods except the261

recent MLP-Mixer [25] in the Peptide-func task.262

4.3 Generality of MeGraph263

To verify the generality of MeGraph model, we evaluate MeGraph on widely adopted GNN Bench-264

mark [13], Open Graph Benchmark [26] and TU Dataset [39]. Results on TU Datasets are available265

in App. F.2. In addition to the standard model that shares hyper-parameters in similar tasks, we also266

report MeGraphbest with specifically tuned hyper-parameters for each task.267

GNN Benchmark. We experiment on chemical data (ZINC and AQSOL), image data (MNIST and268

CIFAR10) and social network data (PATTERN and CLUSTER). As shown in Table 3, MeGraph269

outperforms the three baselines by a large margin, indicating the effectiveness of repeating both the270

local and hierarchical information aggregation.271

Open Graph Benchmark (OGB). We choose 10 datasets related to molecular graphs from the graph272

prediction tasks of OGB. The task of all datasets is to predict some properties of molecule graphs273
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Table 4: Results on OGB-G. † indicates that the results are reported in [26].
Model molhiv ↑ molbace ↑ molbbbp ↑ molclintox ↑ molsider ↑

GCN† 76.06 ±0.97 79.15 ±1.44 68.87 ±1.51 91.30 ±1.73 59.60 ±1.77
GIN† 75.58 ±1.40 72.97 ±4.00 68.17 ±1.48 88.14 ±2.51 57.60 ±1.40

Graph-UNets 79.48 ±1.06 81.09 ±1.66 71.10 ±0.52 91.67 ±1.69 59.38 ±0.63
MeGraph (h=1) 78.54 ±1.14 71.77 ±2.15 67.56 ±1.11 89.77 ±3.48 58.28 ±0.51
MeGraph (n=1) 78.56 ±1.02 79.72 ±1.24 67.34 ±0.98 91.07 ±2.21 58.08 ±0.59
MeGraph 77.20 ±0.88 78.52 ±2.51 69.57 ±2.33 92.04 ±2.19 59.01 ±1.45
MeGraphbest 79.20 ±1.80 83.52 ±0.47 69.57 ±2.33 92.06 ±1.32 63.43 ±1.10

Model moltox21 ↑ moltoxcast ↑ molesol ↓ molfreesolv ↓ mollipo ↓

GCN† 75.29 ±0.69 63.54 ±0.42 1.114 ±0.03 2.640 ±0.23 0.797 ±0.02
GIN† 74.91 ±0.51 63.41 ±0.74 1.173 ±0.05 2.755 ±0.34 0.757 ±0.01

Graph-UNets 77.85 ±0.81 66.49 ±0.45 1.002 ±0.04 1.885 ±0.07 0.716 ±0.01
MeGraph (h=1) 75.89 ±0.45 64.49 ±0.46 1.079 ±0.02 2.017 ±0.08 0.768 ±0.00
MeGraph (n=1) 77.01 ±0.93 66.89 ±1.21 0.896 ±0.04 1.892 ±0.06 0.730 ±0.01
MeGraph 78.11 ±0.47 67.67 ±0.53 0.886 ±0.02 1.876 ±0.05 0.726 ±0.00
MeGraphbest 78.11 ±0.47 67.90 ±0.19 0.867 ±0.02 1.876 ±0.05 0.688 ±0.01

based on their chemical structures. As shown in Table 4, MeGraph outperforms the h=1 baseline by a274

large margin, suggesting that building a graph hierarchy is also essential in molecule graphs. The275

performance of MeGraph, n = 1 baseline, and the reproduced Graph U-Nets are comparable. This276

observation may be because the information obtained from multi-hop neighbors offers only marginal277

improvements compared to the information aggregated hierarchically.278

4.4 Ablation Study279
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Figure 4: Node classification accuracy
(averaged over 10 random repetitions) for
MeGraph on TreeCycle (left) and TreeGrid
(right) datasets by varying the height h and
the number of Mee layers n. Clear gaps can
be observed among heights 1, 2, and ≥ 3.
Detailed numbers can be found in Table 13
of App. F.4.

Hierarchy vs. Locality. We study the impact of the280

height h and the number of Mee layers n on four syn-281

thetic datasets introduced in [57], which are BAShape,282

BACommunity, TreeCycle, and TreeGrid. Each dataset283

contains one graph formed by attaching multiple motifs to284

a base graph. The motif can be a ‘house’-shaped network285

(BAShape, BACommunity), six-node cycle (TreeCycle),286

or 3-by-3 grid (TreeGrid). The task is to identify the nodes287

of the motifs in the fused graph.288

As shown in Fig. 4, we can observe trends of improved289

performance along the increasing of parameters h and290

n. Although increasing height is more effective, both hi-291

erarchy and locality are indispensable in TreeCycle and292

TreeGrid tasks. Similar conclusions can also be drawn293

in easier datasets BAShape and BACommunity (Fig. 5 in294

App. F.4). The significance of integrating locality with295

hierarchy is also demonstrated in the CLUSTER task, as296

presented in Table 3. Here, MeGraph reaches 68.6% accu-297

racy, which is markedly higher than the 50.4% accuracy298

achieved by both the n=1 baseline and Graph-UNets.299

Varying S-EdgePool. We studied the impact of the node300

pooling ratio ηv and the maximum cluster size τc in S-301

EdgePool by perturbing these parameters. As indicated302

in Table 1, the best variant (ηv=0.3,τc=4) achieved a re-303

gression error nearly 4x smaller (0.624) compared to the304

original EdgePool (τc=2 with an error of 2.337). This305

suggests the benefit of having a flexible pooling stride.306

Moreover, the mega graph produced by S-EdgePool can vary significantly with different parameters.307

However, irrespective of the parameter set used, MeGraph consistently outperforms h = 1 baselines.308

This suggests that MeGraph exhibits robustness against different architectures of the mega graph.309
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Varying GN Block. We vary the aggregation function of the GN block as attention (w/ ATT) and310

gated function (w/ GATE). We observe similar results as in Sec. 4.2 and 4.3, verifying the robustness311

of MeGraph towards different types of GN blocks. Detailed results can be found in Tables 15, 16 and312

17 in App. F.5.313

Changing cross update function (X-UPD). The unpool operation is frequently used by other hier-314

archical architectures that build upon graph pooling. As illustrated in Table 1, we substituted the315

X-Conv implementation with the X-Pool implementation of X-UPD, which resulted in a performance316

decline from 0.624 to 1.165 (smaller is better). This finding suggests that other hierarchical GNNs317

might also benefit from replacing the unpool operation with a convolution over the inter-graph edges.318

Disabling bidirectional pathway. We verify the effectiveness of the bidirectional pathway design by319

replacing steps 2 and 3 of the Mee layer as a standard message-passing along the inter-graph edges320

(denoted w/o pw). As shown in Table 1, the performance degrades from 0.624 to 1.055 (smaller is321

better), which indicates the contribution of the bidirectional pathway.322

5 Related Work323

Long-Range Interactions (LRIs). Various methods have been proposed to address the issue of324

LRIs, including making the GNNs deeper [37]. Another way is to utilize attention and gating325

mechanism, including GAT [48], jumping knowledge (JK) network [55], incorporating Transformer326

structures [32, 56, 52, 42] and MLP-Mixer [25]. Another line of research focuses on multi-scale327

graph hierarchy using graph pooling methods [58, 20, 43], or learning representation based on328

subgraphs [5, 62]. Recently, Long Range Graph Benchmark [15] has been proposed to better evaluate329

models’ ability to capture LRIs.330

Feature Pyramids and Multi-Scale Feature Fusion. Multi-scale feature fusion methods on image331

feature pyramids have been widely studied in computer vision literature, including the U-Net [44],332

FPN [36], UNet++ [63], and some recent approaches [59, 38, 35, 34]. HRNet [49] is a similar method333

compared to MeGraph. HRNet alternates between multi-resolution convolutions and multi-resolution334

fusion by stridden convolutions. However, the above methods are developed for image data. The key335

difference compared to these approaches is that the multi-scale feature fusion in MeGraph is along336

the inter-graph edges, which is not as well structured as the pooling operation in image data. For337

graph networks, the GraphFPN [61] builds a graph feature pyramid according to the image feature338

pyramid and superpixel hierarchy. It applies GNN layers on the hierarchical graph to exchange339

information within the graph pyramid. Existing works [20, 18, 43] have also explored similar ideas340

in graph-structured data. Our approach aligns with the broader concept of multi-scale information341

fusion, but it is the first method that builds a mega graph using graph pooling operations and alternates342

local and hierarchical information aggregation.343

Graph Pooling Methods. Graph pooling is an important part of hierarchical graph representation344

learning. There have been some traditional graph pooling methods like METIS [29] in early liter-345

ature. Recently, many learning-based graph pooling methods have been proposed, including the346

DiffPool [58], TopKPool [20], SAG pool [33], EdgePool [11], MinCutPool [7], Structpool [60], and347

MEWISPool [40], etc. In this work, we utilize S-EdgePool improved from EdgePool to build the348

mega graph, while this module can be substituted with any of the above-mentioned pooling methods.349

Graph Neural Network (GNN) Layers. The GNN layer is the core module of graph representation350

learning models. Typical GNNs include the GCN [31], GraphSage [22], GAT [48, 8], GIN [54],351

PNA [10]. MeGraph adopts the full GN block [6] by removing part of links in the module as an352

elementary block, and similarly this can be replaced by any one of the popular GNN blocks.353

6 Limitations and Future Work354

The MeGraph model suffers from some limitations. The introduced mega graph architecture inevitably355

increases both the number of trainable parameters and tuneable hyper-parameters. The flexible choices356

of many modules in MeGraph post burdens on tuning the architecture on specific datasets. For future357

research, MeGraph encourages new graph pooling methods to yield edge features in addition to358

node features, when mapping the input graph to the pooled graph. It is also possible to improve359

MeGraph using adaptive computational steps [45]. Another direction is to apply some expressive but360

computationally expensive models like Transformers [47] and Neural Logic Machines [12, 53] (only)361

over the pooled small-sized graphs.362
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Summary of Appendix533

We first provide code and discuss reproducibility in Section A. We present dataset details in Section534

B, method details in Section C, analysis and discussions in Section D, implementation and training535

details in Section E and extra experiment results in Section F.536

A Code and Reproducibility537

We provide an anonymous code in the supplementary material. We set the random seed as 2022 for538

all experiments to enable reproducible results. We provide dataset statistics in Table 5 and details539

for the proposed graph theory benchmark in Appendix B.2. Details of the hyper-parameters are540

reported in Table 8. Configuration of all hyper-parameters and the command lines to reproduce the541

experiments have been included in the code repository.542

B Dataset Details543

B.1 Dataset Statistics and Metrics544

We provide the statistics of all datasets used in our experiments in Table 5 and introduce the evaluation545

metrics for each dataset.546

For Synthetic datasets, we use classification accuracy (ACC) as the evaluation metric. We use Mean547

Square Error (MSE) as the evaluation metric for all datasets in our Graph Theory Benchmark. For548

GNN Benchmark, we follow the original work [13] for evaluation, i.e., Mean Absolute Error (MAE)549

for ZINC and AQSOL, classification accuracy for MNIST and CIFAR10, and balanced classification550

accuracy for PATTERN and CLUSTER. For OGB Benchmark, we follow the original work [26] and551

use the ROC-AUC for classification tasks and Root Mean Square Error (RMSE) for regression tasks.552

For TU datasets, we follow the setting used by [9] and use classification accuracy as the evaluation553

metric.554

B.2 Graph Theory Benchmark555

In this section, we provide the details about the tasks and how the graph features and the labels are556

generated given a base graph G = (V, E):557

• Single source single destination shortest path (SPsssd): a source node s ∈ V and a destination558

node t ∈ V are selected uniform randomly. The feature of each node v contains three559

numbers: (1, whether the node v is s, whether the node v is t). The label of a graph is the560

length of the shortest path from s to t.561

• A maximum connected component of the same color (MCC): each node of the graph is562

colored with one of three colors. The feature for each node is the one-hot representation of563

its color. The label of graph is the size of the largest connected component of the same color564

for each color.565

• Graph diameter (Diameter): the label of the graph is the diameter of the graph. The diameter566

of a graph G is the maximum of the set of shortest path distances between all pairs of nodes567

in the graph. The feature of each node is a uniform number 1.568

• Single source shortest path (SPss): a source node s is selected uniformly randomly. The569

feature of each node contains two numbers: (1, whether the node is s). The label of each570

node is the length of the shortest path from s to this node.571

• Graph eccentricity (ECC): the label of each node v is node’s eccentricity in the graph, which572

is the maximum distance from v to the other nodes. The feature of each node is a uniform573

number 1.574

For each task and graph generation method, We generate the dataset by the following steps:575

• Sample N (number of nodes) from [20, 50], totally 300 graphs. These numbers can be576

configured.577
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Table 5: The statistics of the datasets used in experiments. Some statistics (like the average number
of edges) of the Graph Theory datasets may vary depending on different random graph generation
methods. The regression tasks are marked with ✓ in a separate column. The tasks of 4 synthetic
datasets are transductive, where the same graph is used for both training and testing. We do not use
the node labels as features during the training time. The train-val-test split is over nodes. All other
datasets in the table are inductive, where the testing graphs do not occur during training, and the
train-val-test split is over graphs.

Collection Dataset #
Graphs

Avg
#

Nodes

Avg
#

Edges

#
Node
Feat

#
Edge
Feat

#
Classes Task Reg.

Synthetic BaShape 1 700 1761 1 - 4 Trans-Node
Synthetic BaCommunity 1 1400 3872 10 - 8 Trans-Node
Synthetic TreeCycle 1 871 970 1 - 2 Trans-Node
Synthetic TreeGrid 1 1231 1705 1 - 2 Trans-Node

GraphTheory SPsssd 300 35.0 - 3 - - Graph ✓
GraphTheory Diameter 300 35.0 - 1 - - Graph ✓
GraphTheory MCC 300 35.0 - 3 - - Graph ✓
GraphTheory SPss 300 35.0 - 2 - - Node ✓
GraphTheory ECC 300 35.0 - 1 - - Node ✓

LRGB Peptides-func 15535 150.94 307.30 9 3 10 Graph
LRGB Peptides-struct 15535 150.94 307.30 9 3 - Graph ✓

GNNBenchmark ZINC 12000 23.16 49.83 28 4 2 Graph ✓
GNNBenchmark AQSOL 9823 17.57 35.76 65 5 2 Graph ✓
GNNBenchmark MNIST 70000 70.57 564.53 3 1 10 Graph
GNNBenchmark CIFAR10 60000 117.63 941.07 5 1 10 Graph
GNNBenchmark PATTERN 14000 118.89 6078.57 3 - 2 Node
GNNBenchmark CLUSTER 12000 117.20 4301.72 7 - 6 Node

OGB Graph molhiv 41127 25.51 80.45 9 3 2 Graph
OGB Graph molbace 1513 34.09 107.81 9 3 2 Graph
OGB Graph molbbbp 2039 24.06 75.97 9 3 2 Graph
OGB Graph molclintox 1477 26.16 81.93 9 3 2 Graph
OGB Graph molsider 1427 33.64 104.36 9 3 2 Graph
OGB Graph moltox21 7831 18.57 57.16 9 3 2 Graph
OGB Graph moltoxcast 8576 18.78 57.30 9 3 2 Graph
OGB Graph molesol 1128 13.29 40.64 9 3 - Graph ✓
OGB Graph molfreesolv 642 8.7 25.50 9 3 - Graph ✓
OGB Graph mollipo 4200 27.04 86.04 9 3 - Graph ✓

TU MUTAG 188 17.93 19.79 7 - 3 Graph
TU NCI1 4110 29.87 32.30 37 - 2 Graph
TU PROTEINS 1113 39.06 72.82 4 - 2 Graph
TU D&D 1178 284.32 715.66 89 - 2 Graph
TU ENZYMES 600 32.63 62.14 21 - 6 Graph
TU IMDB-B 1000 19.77 96.53 10 - 2 Graph
TU IMDB-M 1500 13.00 65.94 10 - 3 Graph
TU RE-B 2000 429.63 497.75 10 - 2 Graph
TU RE-M5K 4999 508.52 594.87 10 - 5 Graph
TU RE-M12K 11929 391.41 456.89 10 - 11 Graph
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• Use the graph generation method to generate a graph of N nodes.578

• Create graph features and labels according to the task.579

We then provide the details about the random graph generation methods we used to create our Graph580

Theory datasets.581

Following [10], we continue to use undirected and unweighted graphs from a wide variety of582

types. We inherit their 10 random graph generation methods and quote their descriptions here for583

completeness (the percentage after the name is the approximate proportion of such graphs in the584

mixture setting).585

• Erdös-Rényi (ER) (20%) [16]: with a probability of presence for each edge equal to p,586

where p is independently generated for each graph from U [0, 1]587

• Barabási-Albert (BA) (20%) [2]: the number of edges for a new node is k, which is taken588

randomly from {1, 2, . . . , N − 1} for each graph589

• Grid (5%): m× k 2d grid graph with N = mk and m and k as close as possible590

• Caveman (5%) [51]: with m cliques of size k, with m and k as close as possible591

• Tree (15%): generated with a power-law degree distribution with exponent 3592

• Ladder graphs (5%)593

• Line graphs (5%)594

• Star graphs (5%)595

• Caterpillar graphs (10%): with a backbone of size b (drawn from U [1, N)), and N − b596

pendent vertices uniformly connected to the backbone597

• Lobster graphs (10%): with a backbone of size b (drawn from U [1, N)), p (drawn from598

U [1, N−b] ) pendent vertices uniformly connected to the backbone, and additional N−b−p599

pendent vertices uniformly connected to the previous pendent vertices.600

Additional, we add three more graph generation methods:601

• Cycle graphs602

• Pseudotree graphs: A tree graph plus an additional edge. The graph is generated by first603

generating a cycle graph of size m = sample(0.3N, 0.6N). Then n−m remaining nodes604

are sampled to m parts, where i-th part represents the size of the tree hanging on the i-th605

node on the cycle. The trees are randomly generated with the given size.606

• Geographic (Geo) graphs: geographic threshold graphs, but with added edges via a607

minimum spanning tree algorithm, to ensure all nodes are connected. This graph generation608

method is introduced by [6] in their codebase 1. We use the geographic threshold θ = 200609

instead of the default value θ = 1000.610

Note that we do not have randomization after the graph generation as in [10]. Therefore, very long611

diameter is preserved for some type of graphs.612

C Method Details613

C.1 Cross Update Function614

The cross update function (X′j , X̂
′
j ,X

′
j+1) = X-UPD(j,Xj , X̂j ,Xj+1) perform information ex-615

change in consecutive hierarchies.616

The X-Conv realization contains the following steps:617

1. Merge the node features of Xj and Xj+1 with the inter-graph feature X̂j , results in X̄j .618

2. Apply GN blocks on inter-graph Ĝj : X̂′j = GNi,j
inter(Ĝj , X̄j).619

3. Retrieve X′j and X′j+1 from the node features of inter-graph features X̂′j .620

1https://github.com/deepmind/graph_nets, the shortest path demo
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C.2 S-EdgePool621

In this subsection, we introduce the details of S-EdgePool. We first introduce the score generation622

method, then give details about the SELECT, CONNECT, REDUCE and EXPAND functions, and lastly623

provide pseudocode of the algorithm.624

C.2.1 Edge Score Generation625

Both S-EdgePool and EdgePool methods compute a raw edge score rk for each edge k using a linear
layer:

rk = W · (Vsk ||Vtk ||Ek) + b

where sk and tk are the source and target nodes of edge k, V is node features, E is edge features,
W and b are learned parameters. The raw edge scores are further normalized by a local softmax
function over all edges of a node:

wk = exp(rk)/
∑

k′,tk′=tk

exp(rk′),

and biased by a constant 0.5 [11].626

C.2.2 Select, Connect, Reduce and Expand627

SELECT step. S-EdgePool shares the same computations as in EdgePool to generate learnable edge628

scores, as detailed above. Then, we use a clustering procedure to determine the subset of nodes to be629

reduced.630

Let Iv be the identifier of the cluster containing a set of nodes v. Initially, we let v = {v} for631

every single node v. A contraction of an edge merges a pair of nodes (v, v′) connected by this edge632

(where v ∈ v, v′ ∈ v′ and v ̸= v′), and thus unifies the cluster identifiers, i.e., Iv = Iv′ = Ivmerge633

and vmerge = v ∪ v′. That is, once an edge connecting any pair of nodes from two distinct clusters634

is contracted, we merge the two clusters and unify their identifiers. Edges are visited sequentially635

by a decreasing order on the edge scores, and contractions are implemented if valid. We set the636

maximum size of the node clusters to be a parameter τc, where τc = 2 degenerates to the case of637

EdgePool [11]. We further introduce the pooling ratio ηv to control the minimal number of remaining638

clusters after edge contractions to be Nv ∗ ηv. Contractions that violate the above two constraints639

are invalid and will be skipped. Both parameters control the number of nodes in the pooled graph.640

In our implementation, the cluster of nodes is dynamically maintained using the disjoint-set data641

structure [19].642

Then each node cluster i collapses into a new node ṽ of the pooled graph (i.e. Sṽ = {v|Iv = i}),643

with inter-graph edges connect the nodes in the cluster to the new node ṽ.644

CONNECT step. The CONNECT function rebuilds the edge set Ẽ between the nodes in Ṽ . As aforemen-645

tioned, we build the pooled graph’s nodes according to node clusters. We call this mapping function646

from node clusters to new nodes as c2n. After that, we build the pooled graph’s edges following three647

steps: First, for all edges in the original graph, we find out the corresponding node cluster(s) of its648

two endpoints (using a disjoint-set’s find index operation). Then, we find out the corresponding new649

nodes by using the mapping function n. Last, we add a new edge between the new nodes.650

REDUCE and EXPAND step. The REDUCE and EXPAND are generalized from the method mentioned in651

[11]. The REDUCE function computes new node features and edge features. We follow their method652

to compute new node features by taking the sum of the node features and multiplying it by the edge653

score. Specifically, we generalize the computation between two nodes to a node cluster. The node654

clusters are maintained with a disjoint-set data structure and a cluster Sṽ consists of |Sṽ| nodes. We655

define Edsṽ as a set of |Sṽ| − 1 edges, where the edges are the selected edges to be contracted in the656

SELECT step. Then,657

cṽ =
1 +

∑
ek∈Edsṽ

wk

|Sṽ|
Vṽ = cṽ

∑
v∈Sṽ

Vv
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To integrate the edge features between two node clusters, we first find all the connected edges658

between the two node clusters (the edges between node clusters are edges that connect two nodes659

from different node clusters). Then, we use the sum of all the connected edges’ features between the660

two node clusters as the new edge’s features.661

The EXPAND function is also referred as unpool operation. It computes node features of the input662

graph Vv given the node features of the pooled graph Vṽ as following:663

Vv =
Vṽ

cṽ

C.2.3 Pseudo Code664

The pseudo-code includes two parts, where Algorithm 1 describes how to maintain the clusters using665

a disjoint-set data structure, and Algorithm 2 describes the procedure of S-EdgePool that generates a666

pooled graph G̃ with configurable node pooling ratio ηv and maximum of cluster sizes τc.667

Algorithm 1 Get Cluster Index And Cluster Size of a Node (Using disjoint-set data structure)
function InitializeDisjointSet(graph G(V, E))

for v ∈ V do
index[v] = v {the identifier of the cluster the node v belongs to}

end for
end function
function FindIndex(node v)

if index[v] = v then
return v

else
index[v]←FindIndex(index[v])
return index[v]

end if
end function
function FindIndexAndSize(node v)
i← FindIndex(v)
s← size[i]
return i, s

end function
function MERGE(cluster index x, cluster index y)
size[y]← size[x] + size[y]
index[x]← index[y]

end function

C.3 GFuN668

We first realize the ϕe, ϕv , ϕu functions in the full GN block (Sec 2.1 and [6]) as neural networks:669

E′k = NNe(Ek,Vsk ,Vtk ,u), (2)
V′i = NNv(Ē

′
i,Vi,u), (3)

u′ = NNu(Ē
′, V̄′,u), (4)

respectively, where670

Ē′i = ρe→v({E′k}k∈[1...Ne],tk=i), (5)

Ē′ = ρe→u(E′), (6)
V̄′ = ρv→u(V′). (7)

We further decompose the neural networks according to the features in the function:671

NNe(Ek,Vsk ,Vtk ,u) = NNe←e(Ek) + NNe←vs(Vsk) + NNe←vt(Vtk) + NNe←u(u),(8)
NNv(Ē

′
i,Vi,u) = NNv←e(Ē

′
i) + NNv←v(Vi) + NNv←u(u), (9)

NNu(Ē
′, V̄′,u) = NNu←e(Ē

′) + NNu←v(V̄
′) + NNu←u(u) (10)
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Algorithm 2 Strided EdgePool
input graph G = (V, E), edge scores w, node pooling ratio ηv , maximum cluster sizes τc.
output pooled graph G̃ = (Ṽ, Ẽ) and inter graph Ĝ = (V̂, Ê)

InitializeDisjointSet(G)
remains← Nv {Nv is the number of nodes in graph G}
Ē ← Sort the edges E according to the edge scores w decreasingly.
for e ∈ Ē do
x, y ← the two endpoints of the edge e
rx, sx← FindIndexAndSize(x)
ry, sy ← FindIndexAndSize(y)
if rx ̸= ry and (sx+ sy ≤ τc) then

Merge(x, y)
remains← remains− 1
if remains ≤ Nv ∗ ηv then

break
end if

end if
end for
Ṽ, Ẽ , V̂, Ê ← {}, {}, {}, {}
create empty mapping c2n from cluster index to nodes
for v ∈ V do

if FindIndex(v) = v then
create new node ṽ
c2n[v] = ṽ

Ṽ ← Ṽ ∪ {ṽ}
end if

end for
for e ∈ E do

x, y ← the two endpoints of the edge e
x̃← c2n[FindIndex(x)]
ỹ ← c2n[FindIndex(y)]
Ẽ ← Ẽ ∪ {(x̃, ỹ)}

end for
for v ∈ V do

ṽ ← c2n[FindIndex(v)]
Ê ← Ê ∪ {(v, ṽ)}

end for
V̂ ← V ∪ Ṽ

However, such GN block uses 10 times the number of parameters as the standard GCN [31] layer672

when the node, edge and global embedding dimensions are all equivalent. In practice, we disable all673

computations related to global features u, as well as the neural networks NNe←e and NNe←vt . We674

also set NNv←e to be Identity.675

In practice, we use the summation function as the aggregator function ρe→v by default. But other676

choices like MEAN, MAX, gated summation, attention or their combinations can also be used.677

Overall, we call such GN block as graph full network (GFuN).678

C.4 Encorder and Decoder679

Encoder. For input embedding, we use the Linear layer or Embedding layer to embed input features.680

For example, we follow [13] and use the Linear layer on MNIST and CIFAR10 datasets, and use681

the Embedding layer on ZINC and AQSOL datasets. For the molecular graph in OGB, we use the682

same embedding method as in the original work [26]. Besides, we can adopt positional encoding683

methods like Laplacian [13] and Random Walk [14] to further embed global and local graph structure684

information. The embedding of positional encoding can be combined into (like concatenation,685

addition, etc.) input features and form new embeddings.686
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Decoder. We can freely choose from the multi-scale features computed during the process stage as687

inputs to the decoder module. Empirically, we use the features on the original graph for prediction in688

all experiments. For node-level tasks, we apply a last GNN layer on the original graph to get logits689

for every node. For graph-level tasks, we first use global pooling functions to aggregate features. We690

can use common global pooling methods like SUM, MEAN, MAX, or their combination. After the691

global pool, we use MLP layer(s) to generate the prediction.692

C.5 Architecture Variants693

We can replace some GN blocks within Mee layers as an Identity block to reduce the time complexity.694

We call the height j is reserved if the intra GN block of height j is not replaced by an Identity block.695

We prefer to reserve an interval of consecutive heights for the Mee layers. (The inter GN blocks696

between these heights remain unchanged while others are replaced as identities) By varying the697

heights reserved in each Mee layers, we can create a large number of variants of MeGraph model698

including U-Shaped, Bridge-Shaped and Staircase-Shaped.699

U-Shaped. This variant is similar to Graph U-Net [20]. In this U-Shaped variant, the relationship700

between the number of layers n and height h is n = 2h+ 1, and there is only one GN block in each701

layer. We keep the GN block at height j = i for each layer i at the first half layers and keep the GN702

block at height j = n− i+1 for each layer i at the later half layers. In the middle layer, only the last703

height j = h = (n− 1)/2 has a GN block.704

Bridge-Shaped. In this variant, all GN blocks are combined like an arch bridge. Describe in detail,705

in the first and last layers, there are GN blocks in each height. In other layers, there are GN blocks at706

a height of 1 to j (where 1 < j < h).707

Staircase-Shaped. There are four forms in this variant, and the number of layers n is equal to the708

height h in all forms. The first form is like the ‘downward’ staircase. In each layer i of this form,709

there are GN blocks at the height of j to h (where j = i). The second form is the inverted first form.710

In each layer i of this second form, there are GN blocks at height of 1 to h− i + 1 (where j = i).711

The last two forms are the mirror of the first and second forms.712

D Theoretical Discussions713

D.1 Smaller Number of Aggregation Steps for Capturing Long-Range Interactions714

We rephrase the analysis provided in [43] as following:715

We analyze the number of aggregation steps required to capture long-range interactions between716

nodes in the original graph while assuming the node representation capacity is large enough.717

Standard message-passing GNNs require n aggregation steps to capture long-range interactions of n718

hops away, therefore requiring a stack of n layers, which could be expensive when n is large.719

We also assume the height h of the hierarchy is large enough so that all nodes of the original graph720

are pooled into a single node. In that case, the information aggregation along the hierarchy captures721

all pairs of LRIs into the embedding of the single node. Which means the number of aggregation722

steps of MeGraph is h. When we adopt a pooling method that coarsens the graph at least half, h is723

at most O(log(|V |)) where |V | is the number of nodes of the input graph. Therefore, the height h is724

significantly smaller than the diameter of the graph (which could be O(|V |)) in most cases.725

D.2 MeGraph can degenerate to standard GNNs726

MeGraph can learn a gating function (within the X-UPD function) that only reserves the features of727

the same scale while performing cross-scale information exchanging. In that case, there will be no728

information exchange across multi-scale graphs, and features other than those in the original scale729

will not be aggregated. We provide a proof sketch below.730

Proof: The cross update function is (X ′j , X̂
′
j , X

′
j+1) = X-UPD(j,Xj , X̂j , Xj+1). There is a residual731

function applied here, and we assume it is implemented as a gated residual: X ′′j = σ(α)Xj+σ(β)X ′j ,732

where σ is the sigmoid function and α, β are learnable parameters. Theoremetically, it is possible that733

σ(α) = 1 and σ(β) = 0 after training. In that case, X ′′j = Xj , which means Xj is not changed over734
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Table 6: Running time (s) for one epoch on the GNN benchmark. See Sec. E for more implementation
details.

ZINC AQSOL CIFAR10 MNIST PATTERN CLUSTER

Megraph (h = 5) 25.69 20.22 336.63 307.23 101.52 69.65
Megraph (h = 1) 2.41 1.67 51.74 38.60 9.21 6.52

Table 7: Running time (s) for one epoch on the OGBG datasets. See Sec. E for more implementation
details.

molhiv molbace molbbbp molclintox molsider

Megraph (h = 5) 393.42 14.70 20.36 14.03 14.12
Megraph (h = 1) 22.50 1.43 1.58 1.26 1.41

moltox21 moltoxcast molesol molfreesolv mollipo

Megraph (h = 5) 70.15 78.77 11.68 6.24 44.77
Megraph (h = 1) 5.27 8.17 0.76 0.41 2.77

steps 2 and 3 of the Mee layer. Therefore, Xi
0 = GN i,0

intra(G, X
i−1
0 ), this is equivalent to a simple735

GNN layer that Xi = GNNi(G, Xi−1) as Xi
0 is the features of the original graph and GNintra is a736

GNN layer. Therefore, MeGraph degenerates to standard message-passing GNNs in this case. ■737

E Implementation and Training Details738

We use PyTorch [41] and Deep Graph Library (DGL) [50] to implement our method.739

We implement S-EdgePool using DGL, extending from the original implementation of EdgePool in740

the Pytorch Geometric library (PYG) [17]. We did Constant optimization over the implementation741

to speed up the training and inference of the pooling. We further use Taichi-Lang [27] to speed up742

the dynamic node clustering process of S-EdgePool. The practical running time of MeGraph model743

with height h > 1 after optimization is about 2h times as the h = 1 baseline. This is still slower744

than the theoretical computational complexity due to the constant in the implementation and the745

difficulty of paralleling the sequential visitation of edges (according to their scores) in the EdgePool746

and S-EdgePool. This process could be further sped up by implementing the operations with the747

CUDA library. We provide the practical running time for h > 1 and h = 1 in GNN benchmark and748

OGB-G datasets in Tables 6 and 7.749

We run all our experiments on V100 GPUs and M40 GPUs. For training the neural networks, we use750

Adam [30] as the optimizer. We report the hyper-parameters of the Megraph in Table 8.751

For models using GFuN layer as the core GN block, we find it benefits from using layer norms [4].752

However, for models using GCN layer as the core GN block, we find it performs best when using753

batch norms [28].754

The code along with the configuration of hyper-parameters to reproduce our experiments is provided755

in the Supplementary Material and will be made public.756

F Additional Experiment Results757

F.1 Experimental Protocol758

We evaluate MeGraph on public real-world graph benchmarks. To fairly compare MeGraph with the759

baselines, we use the following experimental protocols. We first report the public baseline results and760

our reproduced standard GCN’s results. We then replace GCN layers with GFuN layers (which is761

equivalent to MeGraph (h = 1)) to serve as another baseline. We tune the hyper-parameters (such762

as learning rate, dropout rate and the readout global pooling method, etc.) of MeGraph (h = 1) and763

choose the best configurations. We then run other diversely configured MeGraph candidates by tuning764

21



Table 8: Hyper-parameters of the standard version of MeGraph for each dataset. It is worth noting
that the total number of GNN layers is equals to one plus the number of Mee layers as n+ 1.

Hyper-parameters Synthetic
Datasets

Graph
Theory

Benchmark

LRGB
Benchmark

GNN
Benchmark

OGB
Benchmark

TU
Datasets

Repeated Runs 10 5 4 4 5 1 for each fold

Epochs per run 200 for BA*
500 for Tree*

300
(200 for MCC) 200

200
(100 for
MNIST,

CIFRA10)

100
100

(200 for
ENZYMES)

Learning rate 0.002 0.002
(0.005 for MCC) 0.001 0.001 0.001 0.002

Weight decay 0.0005 0.0005 0 0 0.0005 0.0005

Node hidden dim 64 128 160 144 300 128

Edge hidden dim
(for GFuN) 64 128 160 144 300 128

Num Mee
layers n - - 4 3 4 2

Height h - - 9 5 5 3 or 5

Batch size 32 32 128 128 32 128

Input embedding False True True True True True

Global pooling Mean Mean
Max

Mean
Max
Sum

Mean Mean
Mean
Max
Sum

Dataset split
(train:val:test) 8:1:1 8:1:1 Original

split
Original

split
Original

split
10-fold cross

validation

other hyper-parameters that only matters for h > 1, and these hyper-parameters are referred to as the765

MeGraph hyper-parameters. Detailed configurations are put in Table 8 in App. E.766

F.2 Other Real-Wrold Datasets767

TU dataset consists of over 120 datasets of varying sizes from a wide range of applications. We768

choose 10 datasets, 5 of which are molecule datasets (MUTAG, NCI1, PROTEINS, D&D and769

ENZYMES) and the other 5 are social networks (IMDB-B, IMDB-M, REDDIT-BINARY, REDDIT-770

MULTI-5K and REDDIT-MULTI-12K). They are all graph classification tasks. For more details of771

each dataset, please refer to the original work [39].772

Our Megraph uses the same network structure and hyper-parameters for the same type of dataset. As773

shown in Table 9, our Megraph achieves about 1% absolute gain than the h = 1 Baselines.774

F.3 GFuN775

We show our GFuN results on real-world datasets compared to our reproduced GCN in Table 10, 11776

and 12. Both GCN and GFuN have the same hyper-parameters except the batch norm for GCN and777

layer norm for GFuN as stated in Appendix E.778

F.4 Synthetic Datasets779

Figure 5 shows the influence of the height h and the number of Mee layers n for MeGraph model on780

the BAShape and BACommunity datasets. The trend on these easier datasets is similar to that on781

TreeCycle and TreeGrid but less significant.782
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Table 9: Results on Tu Dataset. † means the results taken from [9] (*: The result of GCN on
ENZYMES is 100 epoch).

Model MUTAG ↑ NCI1 ↑ PROTEINS ↑ D&D ↑ ENZYMES ↑ Average

GCN† 87.20 ±5.11 83.65 ±1.69 75.65 ±3.24 79.12 ±3.07 66.50 ±6.91* 78.42
GIN† 89.40 ±5.60 82.70 ±1.70 76.20 ±2.80 - - -

GCN 92.46 ±6.55 82.55 ±0.99 77.82 ±4.52 80.56 ±2.40 74.17 ±5.59 81.51
MeGraph (h=1) 93.01 ±6.83 82.53 ±1.89 81.32 ±4.08 81.32 ±3.17 74.83 ±3.20 82.60
MeGraph 93.07 ±6.71 83.99 ±0.98 81.41 ±3.10 81.24 ±2.39 75.17 ±4.86 82.98
MeGraphbest 94.12 ±5.02 84.40 ±1.11 81.68 ±3.40 82.00 ±2.86 75.17 ±4.86 83.47

Model IMDB-B ↑ IMDB-M ↑ RE-B ↑ RE-M5K ↑ RE-M12K ↑ Average

GCN 76.00 ±3.44 50.33 ±1.89 91.15 ±1.63 56.47 ±1.54 48.71 ±0.88 64.53
MeGraph (h=1) 68.60 ±3.53 51.33 ±2.23 93.10 ±1.16 57.47 ±2.31 51.56 ±1.06 64.41
MeGraph 72.40 ±2.80 51.27 ±2.71 93.75 ±1.25 57.69 ±2.22 52.03 ±0.86 65.43
MeGraphbest 74.30 ±2.97 52.00 ±2.49 93.75 ±1.25 58.45 ±2.22 52.13 ±1.01 66.13

Table 10: Comparison between GCN and GFuN on GNN benchmark.

Model ZINC ↓ AQSOL ↓ MNIST ↑ CIFAR10 ↑ PATTERN ↑ CLUSTER ↑

GCN 0.426 ±0.015 1.397 ±0.029 90.140 ±0.140 51.050 ±0.390 84.672 ±0.054 47.541 ±0.940
GFuN 0.364 ±0.003 1.386 ±0.024 95.560 ±0.190 61.060 ±0.500 84.845 ±0.021 58.178 ±0.079

MeGraph 0.260 ±0.005 1.002 ±0.021 97.860 ±0.098 69.925 ±0.631 86.507 ±0.067 68.603 ±0.101

F.5 Varying GN block783

We vary the aggregation function of the GN block as attention (w/ ATT) and gated function (w/784

GATE). We observe similar results as in Sec. 4.2 and 4.3, verifying the robustness of MeGraph over785

different GN blocks. Results are shown in Tables 15, 16 and 17.786

F.6 Graph Theory Dataset787

We provide a list of tables (from Table 18 to 28) showing the individual results of Table 1 for each788

possible graph generation method. Each table contains a list of variants of models and 5 tasks. Some789

graph generation methods and task combinations are trivial so we filter them out.790

Table 11: Comparison between GCN and GFuN on OGB-G.

Model molhiv ↑ molbace ↑ molbbbp ↑ molclintox ↑ molsider ↑

GCN 75.40 ±1.29 76.01 ±3.31 67.35 ±0.96 89.62 ±2.27 58.08 ±0.78
GFuN 78.54 ±1.14 71.77 ±2.15 67.56 ±1.11 89.77 ±3.48 58.28 ±0.51

MeGraph 77.20 ±0.88 78.52 ±2.51 69.57 ±2.33 92.04 ±2.19 59.01 ±1.45

Model moltox21 ↑ moltoxcast ↑ molesol ↓ molfreesolv ↓ mollipo ↓

GCN 75.11 ±0.41 64.13 ±0.52 1.141 ±0.02 2.407 ±0.15 0.788 ±0.01
GFuN 75.89 ±0.45 64.49 ±0.46 1.079 ±0.02 2.017 ±0.08 0.768 ±0.00

MeGraph 78.11 ±0.47 67.67 ±0.53 0.886 ±0.02 1.876 ±0.05 0.726 ±0.00

23



Table 12: Comparison between GCN and GFuN on Tu Dataset.

Model MUTAG ↑ NCI1 ↑ PROTEINS ↑ D&D ↑ ENZYMES ↑ Average

GCN 92.46 ±6.55 82.55 ±0.99 77.82 ±4.52 80.56 ±2.40 74.17 ±5.59 81.51
GFuN 93.01 ±7.96 82.80 ±1.30 80.60 ±3.83 82.43 ±2.60 73.00 ±5.31 82.37

Model IMDB-B ↑ IMDB-M ↑ RE-B ↑ RE-M5K ↑ RE-M12K ↑ Average

GCN 76.00 ±3.44 50.33 ±1.89 91.15 ±1.63 56.47 ±1.54 48.71 ±0.88 64.53
GFuN 68.90 ±3.42 51.27 ±3.22 92.25 ±1.12 57.53 ±1.31 51.54 ±1.19 64.30
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Figure 5: Node Classification accuracy for MeGraph model on BAShape (left) and BACommunity (right)
datasets, varying the height h and the number of Mee layers n. A clear gap can be observed between heights 1
and ≥ 2. The concrete number of accuracy can be found in Table 14.

Table 13: Node Classification accuracy for MeGraph model on TreeCycle (above) and TreeGrid (below).

layer
height 1 2 3 4 5 6

1 61.48 ±6.04 76.59 ±4.41 91.48 ±2.70 98.52 ±1.69 97.95 ±2.32 98.52 ±1.35
2 67.27 ±6.91 81.59 ±4.03 97.39 ±1.25 98.98 ±0.94 98.75 ±1.29 98.86 ±1.14
3 74.43 ±3.60 90.80 ±2.61 98.64 ±1.11 99.09 ±1.11 98.75 ±1.56 99.09 ±0.85
4 79.55 ±4.34 93.41 ±2.82 99.20 ±0.73 99.20 ±0.89 99.66 ±0.73 99.20 ±1.69
5 82.73 ±4.06 93.41 ±1.89 99.43 ±1.05 99.20 ±1.35 99.32 ±1.16 99.32 ±0.56
6 83.18 ±3.51 94.09 ±2.02 99.43 ±0.76 99.09 ±0.85 99.20 ±1.69 99.20 ±0.89
7 84.43 ±3.74 94.43 ±2.24 99.89 ±0.34 99.20 ±1.02 99.20 ±0.89 99.66 ±0.73
8 84.20 ±3.82 94.20 ±2.00 98.98 ±1.19 99.32 ±0.75 99.66 ±0.52 99.20 ±0.73
9 84.43 ±3.87 94.20 ±2.06 99.77 ±0.45 99.20 ±1.02 98.98 ±1.07 99.32 ±0.75

10 84.77 ±3.98 94.43 ±2.18 99.32 ±0.75 98.86 ±1.14 99.09 ±1.67 99.66 ±0.52

layer
height 1 2 3 4 5 6

1 79.11 ±3.07 91.13 ±2.01 96.85 ±1.11 97.18 ±1.31 97.10 ±1.45 97.42 ±1.34
2 89.68 ±1.76 93.55 ±1.53 98.31 ±0.76 97.82 ±1.14 97.42 ±1.24 97.98 ±0.74
3 90.81 ±1.36 96.13 ±1.48 97.66 ±1.22 98.23 ±0.94 98.87 ±0.82 98.39 ±0.62
4 91.53 ±1.04 96.69 ±1.05 98.06 ±1.03 98.55 ±1.01 98.63 ±1.08 97.98 ±1.15
5 93.95 ±1.58 96.13 ±1.76 98.47 ±1.17 98.47 ±0.92 98.31 ±0.84 97.90 ±0.65
6 94.35 ±1.25 96.69 ±1.46 98.06 ±1.03 98.31 ±1.05 98.15 ±1.20 98.39 ±1.20
7 94.76 ±1.10 97.02 ±1.44 98.47 ±0.84 98.47 ±1.05 98.71 ±0.74 98.87 ±0.90
8 95.08 ±0.76 97.02 ±1.20 98.55 ±1.24 98.87 ±0.82 98.47 ±0.92 98.71 ±1.15
9 94.68 ±1.09 96.94 ±1.19 98.47 ±0.43 98.15 ±1.20 98.15 ±0.89 98.39 ±1.08

10 94.84 ±1.21 96.77 ±1.20 98.47 ±0.92 97.98 ±1.50 98.15 ±1.02 98.23 ±1.19
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Table 14: Node Classification accuracy for MeGraph model on BAShape (above) and BACommunity (below).

layer
height 1 2 3 4 5 6

1 98.71 ±1.00 99.14 ±1.14 99.86 ±0.43 99.43 ±0.70 99.43 ±0.95 99.57 ±0.91
2 98.71 ±1.00 99.29 ±0.96 99.57 ±0.91 99.71 ±0.57 99.57 ±0.91 99.57 ±0.91
3 99.00 ±0.91 99.43 ±0.95 99.86 ±0.43 99.86 ±0.43 99.86 ±0.43 99.86 ±0.43
4 99.00 ±0.91 99.71 ±0.57 99.86 ±0.43 99.86 ±0.43 99.43 ±0.95 99.71 ±0.57
5 99.00 ±0.91 99.86 ±0.43 99.86 ±0.43 99.86 ±0.43 99.86 ±0.43 99.43 ±0.95
6 99.00 ±0.91 99.86 ±0.43 99.86 ±0.43 99.86 ±0.43 99.86 ±0.43 99.86 ±0.43
7 99.00 ±0.91 99.86 ±0.43 99.86 ±0.43 99.86 ±0.43 99.86 ±0.43 99.86 ±0.43
8 99.00 ±0.91 99.86 ±0.43 99.86 ±0.43 99.86 ±0.43 99.71 ±0.57 99.57 ±0.65
9 99.00 ±0.91 99.86 ±0.43 99.57 ±0.91 99.57 ±0.91 99.57 ±0.91 99.57 ±0.91

10 99.00 ±0.91 99.71 ±0.57 99.57 ±0.91 99.71 ±0.57 99.86 ±0.43 99.43 ±0.95

layer
height 1 2 3 4 5 6

1 94.93 ±1.30 97.00 ±1.80 96.93 ±1.60 97.00 ±1.88 97.21 ±1.70 96.86 ±1.67
2 97.93 ±0.87 98.36 ±0.72 98.79 ±0.46 98.79 ±0.46 98.57 ±0.55 98.50 ±1.03
3 98.07 ±0.91 98.64 ±0.87 98.86 ±0.91 98.86 ±0.80 98.50 ±0.98 98.93 ±0.80
4 98.21 ±0.97 98.86 ±0.65 98.86 ±0.80 98.79 ±0.64 99.00 ±0.73 99.07 ±0.64
5 98.50 ±0.87 98.86 ±0.91 99.07 ±0.64 99.21 ±0.67 99.14 ±0.70 99.00 ±0.73
6 98.71 ±0.83 98.64 ±0.87 99.07 ±0.64 99.14 ±0.70 99.07 ±0.85 99.14 ±0.70
7 98.29 ±0.91 98.86 ±0.65 99.07 ±0.56 98.79 ±0.56 98.79 ±0.72 98.86 ±0.57
8 98.43 ±0.77 99.00 ±0.47 99.14 ±0.53 98.93 ±0.58 99.14 ±0.29 99.14 ±0.43
9 98.79 ±0.79 99.07 ±0.56 99.21 ±0.50 99.00 ±0.73 99.29 ±0.45 99.36 ±0.50

10 98.86 ±0.73 98.93 ±0.80 99.21 ±0.87 99.14 ±0.70 99.00 ±0.73 99.29 ±0.64

Table 15: Comparison results of MeGraph with ATT and GATE on Graph Theory Benchmark.
Category Model SPsssd MCC Diameter SPss ECC

MeGraph w. ATT
h = 1 2.990 ±3.411 3.346 ±3.228 44.41 ±36.33 16.39 ±13.57 29.04 ±27.59
h = 5 0.594 ±0.903 1.706 ±1.409 3.256 ±2.956 1.018 ±1.071 14.80 ±17.09
h = 5, ηv = 0.3, τc = 4 0.749 ±1.131 1.128 ±0.794 4.430 ±4.329 0.640 ±0.833 5.649 ±4.496

MeGraph w. GATE
h = 1 4.144 ±4.181 0.908 ±0.934 6.343 ±7.152 13.94 ±12.78 19.73 ±19.47
h = 5 0.809 ±0.993 0.660 ±0.601 2.506 ±2.639 0.669 ±0.546 7.508 ±7.558
h = 5, ηv = 0.3, τc = 4 0.602 ±0.622 0.599 ±0.520 0.544 ±0.490 0.342 ±0.193 0.859 ±0.712

Table 16: Comparison results of MeGraph with ATT and GATE on GNN Benchmark.
ZINC AQSOL CIFAR10 MNIST PATTERN CLUSTER

MeGraph w. ATT (h = 1) 0.4258 ±0.0054 1.1421 ±0.0270 69.890 ±0.209 97.570 ±0.168 78.232 ±0.827 59.497 ±0.207
MeGraph w. ATT (h = 5) 0.3637 ±0.0116 1.0767 ±0.0105 69.925 ±0.631 97.860 ±0.098 83.798 ±0.885 68.930 ±68.76
MeGraph w. GATE (h = 1) 0.3336 ±0.0036 1.0766 ±1.0556 64.200 ±0.586 96.812 ±0.205 85.391 ±0.029 59.321 ±0.290
MeGraph w. GATE (h = 5) 0.2897 ±0.0291 1.0240 ±0.0098 64.935 ±0.829 97.290 ±0.140 86.611 ±0.041 67.122 ±3.323

Table 17: Comparison results of MeGraph with ATT and GATE on OGB-G.

Model molhiv ↑ molbace ↑ molbbbp ↑ molclintox ↑ molsider ↑

MeGraph w. ATT (h = 1) 77.33 ±0.78 74.83 ±4.87 64.74 ±1.14 86.34 ±1.04 58.12 ±0.53
MeGraph w. ATT (h = 5) 77.15 ±1.37 76.13 ±3.85 68.68 ±2.07 87.17 ±0.76 58.03 ±1.58
MeGraph w. GATE (h = 1) 76.35 ±0.70 76.36 ±1.55 65.97 ±1.98 87.12 ±0.74 58.11 ±1.29
MeGraph w. GATE (h = 5) 78.14 ±0.91 78.90 ±1.29 66.53 ±0.74 89.02 ±2.56 59.58 ±1.88

Model moltox21 ↑ moltoxcast ↑ molesol ↓ molfreesolv ↓ mollipo ↓

MeGraph w. ATT (h = 1) 75.88 ±0.64 64.65 ±0.59 1.091 ±0.030 2.318 ±0.089 0.790 ±0.012
MeGraph w. ATT (h = 5) 76.71 ±0.98 66.98 ±0.70 1.007 ±0.617 2.065 ±0.151 0.736 ±0.023
MeGraph w. GATE (h = 1) 75.30 ±0.43 64.34 ±0.62 1.064 ±0.015 2.191 ±0.068 0.766 ±0.008
MeGraph w. GATE (h = 5) 76.91 ±0.25 66.78 ±0.13 1.003 ±0.086 2.048 ±0.199 0.700 ±0.014
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Table 18: Graph Theory Benchmark results on Grid graphs, all results are obtained using our codebase.

Category Model SPsssd MCC Diameter SPss ECC

Baselines
(h=1)

n=1 6.60 ±0.541 1.50 ±0.050 22.49 ±1.36 26.74 ±0.347 20.99 ±0.232
n=5 4.18 ±0.737 1.29 ±0.124 5.04 ±1.26 15.54 ±0.155 20.32 ±0.326
n=10 3.70 ±0.422 1.33 ±0.100 0.737 ±0.116 7.24 ±0.243 20.32 ±0.422

MeGraph(h=5)
EdgePool(τc=2)

n=1 1.19 ±0.486 1.24 ±0.154 6.78 ±1.95 5.34 ±0.265 18.00 ±0.910
n=5 0.738 ±0.322 1.11 ±0.043 0.616 ±0.310 0.617 ±0.099 13.3 ±3.31

MeGraph
S-EdgePool

Variants
(h=5, n=5)

τc=3 0.361 ±0.182 1.24 ±0.113 0.382 ±0.120 0.442 ±0.130 0.918 ±0.220
ηv=0.3 4.77 ±2.50 1.33 ±0.161 0.349 ±0.074 5.40 ±0.954 3.59 ±0.354
ηv=0.3, τc=4 0.745 ±0.316 1.35 ±0.168 0.385 ±0.180 0.552 ±0.113 0.622 ±0.100
ηv=0.5, τc=4 1.61 ±0.394 1.28 ±0.138 0.458 ±0.220 1.71 ±0.535 1.48 ±0.283
ηv=0.3, τc=4 (X-Pool) 1.03 ±0.365 1.50 ±0.142 0.626 ±0.216 1.70 ±0.185 3.44 ±0.991
ηv=0.3, τc=4 (w/o pw) 0.616 ±0.194 1.66 ±0.083 0.361 ±0.147 0.678 ±0.139 1.70 ±0.485

Graph-UNets h=5,n=9,ηv=0.3,τc=4 0.969 ±0.643 2.18 ±0.381 0.111 ±0.091 0.773 ±0.086 0.548 ±0.131

Table 19: Graph Theory Benchmark results on Tree graphs. All results are obtained using our codebase.

Category Model SPsssd MCC Diameter SPss ECC

Baselines
(h=1)

n=1 5.21 ±0.209 1.28 ±0.050 3.77 ±1.22 17.16 ±0.168 24.63 ±0.427
n=5 3.34 ±0.375 0.405 ±0.089 0.504 ±0.109 7.66 ±0.325 18.11 ±1.85
n=10 3.16 ±0.252 0.338 ±0.046 0.100 ±0.059 2.28 ±0.209 14.93 ±0.800

MeGraph(h=5)
EdgePool(τc=2)

n=1 1.62 ±0.314 0.846 ±0.071 0.725 ±0.249 6.99 ±0.610 12.27 ±0.843
n=5 0.83 ±0.667 0.490 ±0.118 0.084 ±0.030 1.27 ±0.442 2.87 ±0.420

MeGraph
S-EdgePool

Variants
(h=5, n=5)

τc=3 0.599 ±0.200 0.483 ±0.081 0.075 ±0.012 0.497 ±0.121 0.429 ±0.105
ηv=0.3 0.868 ±0.230 0.413 ±0.054 0.142 ±0.047 0.789 ±0.092 0.534 ±0.074
ηv=0.3, τc=4 0.615 ±0.209 0.418 ±0.024 0.081 ±0.017 0.440 ±0.106 0.436 ±0.097
ηv=0.5, τc=4 1.06 ±0.327 0.424 ±0.042 0.214 ±0.018 1.20 ±0.128 2.03 ±0.507
ηv=0.3, τc=4 (X-Pool) 0.666 ±0.118 0.596 ±0.067 0.182 ±0.057 1.22 ±0.281 1.11 ±0.122
ηv=0.3, τc=4 (w/o pw) 0.771 ±0.141 0.455 ±0.056 0.124 ±0.032 0.700 ±0.190 1.07 ±0.260

Graph-UNets h=5,n=9,ηv=0.3,τc=4 0.873 ±0.247 0.667 ±0.043 0.804 ±0.284 0.606 ±0.123 1.00 ±0.221

Table 20: Graph Theory Benchmark results on Ladder graphs, all results are obtained using our codebase.

Category Model SPsssd MCC Diameter SPss ECC

Baselines
(h=1)

n=1 5.06 ±0.330 1.73 ±0.249 1.17 ±0.149 13.20 ±0.126 20.10 ±0.583
n=5 0.692 ±0.204 0.734 ±0.106 1.39 ±0.078 5.02 ±0.876 19.81 ±0.669
n=10 0.257 ±0.078 0.691 ±0.119 1.55 ±0.069 1.60 ±0.194 20.40 ±0.995

MeGraph(h=5)
EdgePool(τc=2)

n=1 0.662 ±0.165 0.866 ±0.071 1.57 ±0.992 2.18 ±0.181 6.61 ±1.32
n=5 0.251 ±0.108 0.753 ±0.091 0.175 ±0.169 0.321 ±0.058 1.18 ±0.746

MeGraph
S-EdgePool

Variants
(h=5, n=5)

τc=3 0.296 ±0.070 0.754 ±0.086 0.226 ±0.069 0.228 ±0.021 0.285 ±0.069
ηv=0.3 0.507 ±0.204 0.768 ±0.050 0.156 ±0.053 0.969 ±0.148 0.787 ±0.059
ηv=0.3, τc=4 0.297 ±0.113 0.712 ±0.059 0.095 ±0.046 0.180 ±0.026 0.225 ±0.043
ηv=0.5, τc=4 0.375 ±0.196 0.656 ±0.064 0.058 ±0.019 0.612 ±0.191 0.464 ±0.121
ηv=0.3, τc=4 (X-Pool) 0.442 ±0.108 0.742 ±0.047 0.158 ±0.074 0.710 ±0.076 0.765 ±0.089
ηv=0.3, τc=4 (w/o pw) 0.245 ±0.021 0.682 ±0.105 0.106 ±0.052 0.271 ±0.039 0.618 ±0.188

Graph-UNets h=5,n=9,ηv=0.3,τc=4 0.339 ±0.11 0.797 ±0.138 0.013 ±0.005 0.287 ±0.023 0.230 ±0.054

26



Table 21: Graph Theory Benchmark results on Line graphs, all results are obtained using our codebase.

Category Model SPsssd MCC Diameter SPss ECC

Baselines
(h=1)

n=1 30.37 ±1.41 0.458 ±0.035 21.49 ±8.84 68.99 ±0.247 75.46 ±1.86
n=5 10.55 ±2.40 0.019 ±0.004 9.97 ±10.85 46.39 ±3.09 78.49 ±4.38
n=10 3.29 ±0.813 0.012 ±0.003 10.18 ±10.59 35.07 ±2.71 77.23 ±3.42

MeGraph(h=5)
EdgePool(τc=2)

n=1 1.45 ±0.598 0.056 ±0.014 7.62 ±4.43 10.13 ±2.33 45.19 ±8.64
n=5 0.536 ±0.149 0.016 ±0.007 0.611 ±0.238 1.06 ±0.341 14.12 ±13.82

MeGraph
S-EdgePool

Variants
(h=5, n=5)

τc=3 0.349 ±0.206 0.013 ±0.003 0.724 ±0.479 0.339 ±0.102 1.15 ±0.267
ηv=0.3 3.65 ±2.13 0.017 ±0.005 1.75 ±1.63 13.99 ±2.09 7.45 ±0.989
ηv=0.3, τc=4 0.283 ±0.072 0.019 ±0.006 0.584 ±0.337 0.515 ±0.044 1.27 ±1.08
ηv=0.5, τc=4 1.81 ±0.121 0.022 ±0.006 0.711 ±0.213 2.64 ±0.047 3.77 ±0.763
ηv=0.3, τc=4 (X-Pool) 1.06 ±0.510 0.101 ±0.016 0.767 ±0.522 2.29 ±0.472 3.89 ±1.02
ηv=0.3, τc=4 (w/o pw) 0.377 ±0.106 0.022 ±0.007 1.19 ±1.17 1.12 ±0.115 3.34 ±0.904

Graph-UNets h=5,n=9,ηv=0.3,τc=4 0.426 ±0.223 0.062 ±0.008 2.89 ±1.89 0.767 ±0.129 4.78 ±1.94

Table 22: Graph Theory Benchmark results on Caterpillar graphs, all results are obtained using our codebase.

Category Model SPsssd MCC Diameter SPss ECC

Baselines
(h=1)

n=1 24.24 ±1.57 1.25 ±0.082 28.62 ±2.55 19.08 ±0.208 35.32 ±0.462
n=5 8.32 ±2.10 0.561 ±0.070 4.59 ±0.346 9.62 ±0.357 37.01 ±1.48
n=10 6.40 ±0.652 0.630 ±0.127 5.06 ±0.499 4.06 ±0.297 37.87 ±3.22

MeGraph(h=5)
EdgePool(τc=2)

n=1 5.04 ±1.03 0.685 ±0.077 6.08 ±1.40 5.40 ±0.843 28.52 ±2.16
n=5 3.44 ±1.13 0.533 ±0.064 2.00 ±1.28 0.921 ±0.149 5.20 ±1.57

MeGraph
S-EdgePool

Variants
(h=5, n=5)

τc=3 2.47 ±0.529 0.607 ±0.081 0.591 ±0.172 0.574 ±0.073 1.21 ±0.148
ηv=0.3 3.61 ±1.36 0.582 ±0.052 0.578 ±0.231 1.69 ±0.572 1.95 ±0.322
ηv=0.3, τc=4 1.59 ±0.444 0.535 ±0.091 0.317 ±0.104 0.474 ±0.170 1.32 ±0.272
ηv=0.5, τc=4 2.00 ±0.648 0.514 ±0.040 1.10 ±0.288 0.986 ±0.130 2.11 ±0.766
ηv=0.3, τc=4 (X-Pool) 1.39 ±0.478 0.602 ±0.110 0.736 ±0.230 1.78 ±0.254 3.36 ±0.873
ηv=0.3, τc=4 (w/o pw) 1.82 ±0.627 0.628 ±0.093 0.604 ±0.067 0.797 ±0.299 2.25 ±0.230

Graph-UNets h=5,n=9,ηv=0.3,τc=4 1.57 ±0.670 0.679 ±0.098 3.18 ±0.583 0.976 ±0.270 3.83 ±1.06

Table 23: Graph Theory Benchmark results on Lobster graphs, all results are obtained using our codebase.

Category Model SPsssd MCC Diameter SPss ECC

Baselines
(h=1)

n=1 23.92 ±0.319 1.06 ±0.166 11.93 ±1.32 38.44 ±0.065 40.46 ±0.350
n=5 10.89 ±1.47 0.544 ±0.067 3.66 ±0.424 20.12 ±0.105 28.81 ±1.14
n=10 7.35 ±2.50 0.631 ±0.067 2.59 ±0.517 10.52 ±0.619 28.47 ±1.65

MeGraph(h=5)
EdgePool(τc=2)

n=1 6.00 ±1.82 0.785 ±0.062 4.35 ±1.51 13.75 ±0.675 30.49 ±2.18
n=5 1.93 ±0.861 0.543 ±0.073 1.07 ±0.114 2.05 ±0.393 11.39 ±5.43

MeGraph
S-EdgePool

Variants
(h=5, n=5)

τc=3 2.02 ±0.791 0.447 ±0.123 0.705 ±0.133 1.66 ±0.270 2.23 ±0.378
ηv=0.3 6.01 ±1.52 0.521 ±0.028 0.707 ±0.202 3.04 ±0.250 2.70 ±0.212
ηv=0.3, τc=4 1.90 ±0.449 0.489 ±0.069 0.671 ±0.165 1.30 ±0.106 2.62 ±0.849
ηv=0.5, τc=4 3.27 ±0.716 0.451 ±0.090 0.941 ±0.324 2.82 ±0.803 4.04 ±0.527
ηv=0.3, τc=4 (X-Pool) 2.67 ±0.486 0.494 ±0.109 1.01 ±0.194 2.79 ±0.343 4.16 ±0.886
ηv=0.3, τc=4 (w/o pw) 1.85 ±0.432 0.473 ±0.069 0.892 ±0.277 1.77 ±0.329 4.33 ±1.71

Graph-UNets h=5,n=9,ηv=0.3,τc=4 4.85 ±1.48 0.782 ±0.026 3.74 ±0.361 2.96 ±0.443 4.25 ±0.544
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Table 24: Graph Theory Benchmark results on Cycle graphs, all results are obtained using our codebase.

Category Model SPsssd MCC Diameter SPss ECC

Baselines
(h=1)

n=1 18.75 ±0.066 0.534 ±0.022 22.35 ±0.149 24.07 ±0.009 21.47 ±0.060
n=5 3.39 ±0.304 0.027 ±0.001 25.11 ±0.325 12.44 ±1.05 21.81 ±0.102
n=10 0.352 ±0.060 0.011 ±0.003 26.54 ±1.16 8.65 ±1.02 24.09 ±0.360

MeGraph(h=5)
EdgePool(τc=2)

n=1 0.594 ±0.212 0.074 ±0.029 9.11 ±1.88 4.07 ±0.364 21.53 ±0.070
n=5 0.060 ±0.032 0.014 ±0.003 13.44 ±6.40 0.103 ±0.016 24.05 ±0.204

MeGraph
S-EdgePool

Variants
(h=5, n=5)

τc=3 0.066 ±0.036 0.015 ±0.006 0.241 ±0.049 0.090 ±0.037 0.342 ±0.186
ηv=0.3 2.45 ±0.873 0.015 ±0.001 0.709 ±0.226 8.36 ±0.261 0.488 ±0.267
ηv=0.3, τc=4 0.060 ±0.030 0.019 ±0.003 0.312 ±0.236 0.226 ±0.050 0.562 ±0.209
ηv=0.5, τc=4 0.451 ±0.203 0.014 ±0.004 0.252 ±0.124 1.05 ±0.524 4.30 ±1.90
ηv=0.3, τc=4 (X-Pool) 0.494 ±0.292 0.096 ±0.028 0.468 ±0.220 1.08 ±0.130 0.860 ±0.292
ηv=0.3, τc=4 (w/o pw) 0.159 ±0.209 0.017 ±0.008 1.23 ±0.928 0.461 ±0.118 8.26 ±3.70

Graph-UNets h=5,n=9,ηv=0.3,τc=4 0.144 ±0.073 0.035 ±0.010 3.21 ±0.893 0.439 ±0.089 5.91 ±1.31

Table 25: Graph Theory Benchmark results on Pseudotree graphs, all results are obtained using our codebase.

Category Model SPsssd MCC Diameter SPss ECC

Baselines
(h=1)

n=1 1.93 ±0.239 1.71 ±0.281 2.78 ±0.098 6.27 ±0.004 4.23 ±0.034
n=5 0.061 ±0.024 0.942 ±0.094 1.74 ±0.299 1.54 ±0.006 4.15 ±0.086
n=10 0.037 ±0.022 0.775 ±0.094 1.84 ±0.260 0.126 ±0.038 4.06 ±0.037

MeGraph(h=5)
EdgePool(τc=2)

n=1 0.404 ±0.096 1.75 ±0.133 1.50 ±0.494 2.25 ±0.280 3.97 ±0.270
n=5 0.141 ±0.022 0.999 ±0.054 1.16 ±0.069 0.148 ±0.034 3.12 ±0.202

MeGraph
S-EdgePool

Variants
(h=5, n=5)

τc=3 0.130 ±0.069 0.912 ±0.073 0.669 ±0.080 0.115 ±0.015 0.797 ±0.079
ηv=0.3 0.048 ±0.030 0.839 ±0.077 0.758 ±0.134 0.246 ±0.021 0.838 ±0.023
ηv=0.3, τc=4 0.106 ±0.054 0.814 ±0.092 0.663 ±0.076 0.133 ±0.028 0.845 ±0.101
ηv=0.5, τc=4 0.071 ±0.048 1.03 ±0.186 0.583 ±0.065 0.171 ±0.038 0.868 ±0.034
ηv=0.3, τc=4 (X-Pool) 0.564 ±0.155 0.966 ±0.172 0.977 ±0.054 0.611 ±0.065 1.10 ±0.036
ηv=0.3, τc=4 (w/o pw) 0.080 ±0.033 0.971 ±0.072 0.956 ±0.230 0.276 ±0.017 1.13 ±0.321

Graph-UNets h=5,n=9,ηv=0.3,τc=4 0.467 ±0.065 1.09 ±0.072 1.71 ±0.295 0.721 ±0.092 2.25 ±0.327

Table 26: Graph Theory Benchmark results on Geo graphs, all results are obtained using our codebase.

Category Model SPsssd MCC Diameter SPss ECC

Baselines
(h=1)

n=1 5.79 ±0.630 0.424 ±0.023 11.85 ±0.391 12.49 ±0.035 14.82 ±0.056
n=5 1.02 ±0.772 0.407 ±0.040 8.37 ±0.468 5.10 ±0.435 14.33 ±0.079
n=10 0.304 ±0.125 0.404 ±0.061 9.41 ±0.759 0.803 ±0.162 14.33 ±0.136

MeGraph(h=5)
EdgePool(τc=2)

n=1 1.60 ±0.880 0.347 ±0.033 10.17 ±2.04 4.87 ±0.777 11.91 ±0.451
n=5 0.232 ±0.061 0.273 ±0.018 2.70 ±0.288 0.575 ±0.127 6.92 ±2.36

MeGraph
S-EdgePool

Variants
(h=5, n=5)

τc=3 0.188 ±0.100 0.288 ±0.020 2.04 ±0.225 0.562 ±0.186 2.42 ±0.333
ηv=0.3 1.38 ±0.617 0.330 ±0.025 4.40 ±1.15 1.37 ±0.083 5.45 ±0.465
ηv=0.3, τc=4 0.230 ±0.070 0.231 ±0.034 1.99 ±0.549 0.454 ±0.057 2.69 ±0.369
ηv=0.5, τc=4 0.374 ±0.148 0.368 ±0.043 3.95 ±0.319 0.777 ±0.122 4.61 ±0.717
ηv=0.3, τc=4 (X-Pool) 1.04 ±0.502 0.362 ±0.031 2.32 ±0.440 2.37 ±0.260 5.08 ±0.737
ηv=0.3, τc=4 (w/o pw) 0.233 ±0.046 0.261 ±0.035 2.58 ±0.617 1.09 ±0.226 4.85 ±0.805

Graph-UNets h=5,n=9,ηv=0.3,τc=4 1.49 ±0.451 0.400 ±0.020 4.63 ±0.647 2.42 ±0.458 7.36 ±1.62
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Table 27: Graph Theory Benchmark results on BA graphs, all results are obtained using our codebase.

Category Model SPsssd MCC Diameter SPss ECC

Baselines
(h=1)

n=1 0.004 ±0.001 2.81 ±0.142 0.092 ±0.021 − 0.128 ±0.006
n=5 0.007 ±0.002 3.65 ±0.660 0.098 ±0.014 − 0.091 ±0.011
n=10 0.011 ±0.006 3.72 ±0.376 0.122 ±0.038 − 0.080 ±0.004

MeGraph(h=5)
EdgePool(τc=2)

n=1 0.006 ±0.004 2.00 ±0.380 0.101 ±0.020 − 0.084 ±0.017
n=5 0.003 ±0.001 2.00 ±0.240 0.104 ±0.011 − 0.052 ±0.010

MeGraph
S-EdgePool

Variants
(h=5, n=5)

τc=3 0.007 ±0.003 1.77 ±0.403 0.089 ±0.008 − 0.126 ±0.027
ηv=0.3 0.013 ±0.004 1.67 ±0.333 0.084 ±0.008 − 0.086 ±0.005
ηv=0.3, τc=4 0.011 ±0.005 1.42 ±0.252 0.073 ±0.015 − 0.163 ±0.007
ηv=0.5, τc=4 0.008 ±0.004 1.71 ±0.403 0.074 ±0.009 − 0.156 ±0.021
ηv=0.3, τc=4 (X-Pool) 0.009 ±0.003 1.22 ±0.242 0.088 ±0.021 − 0.076 ±0.006
ηv=0.3, τc=4 (w/o pw) 0.009 ±0.003 1.42 ±0.209 0.068 ±0.017 − 0.068 ±0.017

Graph-UNets h=5,n=9,ηv=0.3,τc=4 0.024 ±0.009 2.84 ±0.777 0.091 ±0.01 − 0.179 ±0.0227

Table 28: Graph Theory Benchmark results on mixed, ER, Caveman and Star graphs, all results are obtained
using our codebase.

Category Model MCC ECC

mix ER Caveman Star mix ER

Baselines
(h=1)

n=1 3.46 ±0.211 2.91 ±0.206 0.015 ±0.004 0.144 ±0.031 0.316 ±0.003 0.346 ±0.006
n=5 3.29 ±0.261 3.35 ±0.205 0.014 ±0.003 0.078 ±0.021 0.228 ±0.008 0.289 ±0.008
n=10 3.51 ±0.323 3.53 ±0.375 0.018 ±0.006 0.065 ±0.005 0.212 ±0.008 0.414 ±0.102

MeGraph(h=5)
EdgePool(τc=2)

n=1 1.25 ±0.167 0.749 ±0.058 0.018 ±0.005 0.135 ±0.055 0.150 ±0.011 0.320 ±0.071
n=5 1.11 ±0.143 0.723 ±0.073 0.017 ±0.005 0.052 ±0.017 0.125 ±0.010 0.345 ±0.064

MeGraph
S-EdgePool

Variants
(h=5, n=5)

τc=3 1.07 ±0.034 0.714 ±0.039 0.017 ±0.002 0.072 ±0.016 0.137 ±0.013 0.232 ±0.035
ηv=0.3 0.908 ±0.153 0.627 ±0.090 0.026 ±0.007 0.125 ±0.026 0.128 ±0.014 0.248 ±0.012
ηv=0.3, τc=4 1.10 ±0.085 0.709 ±0.092 0.019 ±0.004 0.073 ±0.012 0.129 ±0.009 0.224 ±0.053
ηv=0.5, τc=4 1.12 ±0.219 0.722 ±0.128 0.026 ±0.008 0.058 ±0.010 0.147 ±0.017 0.219 ±0.042
ηv=0.3, τc=4 (X-Pool) 1.01 ±0.166 0.838 ±0.078 0.029 ±0.007 0.107 ±0.021 0.119 ±0.008 0.213 ±0.027
ηv=0.3, τc=4 (w/o pw) 1.13 ±0.059 0.622 ±0.073 0.019 ±0.003 0.075 ±0.015 0.126 ±0.016 0.307 ±0.062

Graph-UNets h=5,n=9,ηv=0.3,τc=4 1.06 ±0.171 0.859 ±0.092 0.041 ±0.007 0.057 ±0.010 0.153 ±0.012 0.34 5±0.133
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