
Summary of Appendix533

We first provide code and discuss reproducibility in Section A. We present dataset details in Section534

B, method details in Section C, analysis and discussions in Section D, implementation and training535

details in Section E and extra experiment results in Section F.536

A Code and Reproducibility537

We provide an anonymous code in the supplementary material. We set the random seed as 2022 for538

all experiments to enable reproducible results. We provide dataset statistics in Table 5 and details539

for the proposed graph theory benchmark in Appendix B.2. Details of the hyper-parameters are540

reported in Table 8. Configuration of all hyper-parameters and the command lines to reproduce the541

experiments have been included in the code repository.542

B Dataset Details543

B.1 Dataset Statistics and Metrics544

We provide the statistics of all datasets used in our experiments in Table 5 and introduce the evaluation545

metrics for each dataset.546

For Synthetic datasets, we use classification accuracy (ACC) as the evaluation metric. We use Mean547

Square Error (MSE) as the evaluation metric for all datasets in our Graph Theory Benchmark. For548

GNN Benchmark, we follow the original work [13] for evaluation, i.e., Mean Absolute Error (MAE)549

for ZINC and AQSOL, classification accuracy for MNIST and CIFAR10, and balanced classification550

accuracy for PATTERN and CLUSTER. For OGB Benchmark, we follow the original work [26] and551

use the ROC-AUC for classification tasks and Root Mean Square Error (RMSE) for regression tasks.552

For TU datasets, we follow the setting used by [9] and use classification accuracy as the evaluation553

metric.554

B.2 Graph Theory Benchmark555

In this section, we provide the details about the tasks and how the graph features and the labels are556

generated given a base graph G = (V, E):557

• Single source single destination shortest path (SPsssd): a source node s ∈ V and a destination558

node t ∈ V are selected uniform randomly. The feature of each node v contains three559

numbers: (1, whether the node v is s, whether the node v is t). The label of a graph is the560

length of the shortest path from s to t.561

• A maximum connected component of the same color (MCC): each node of the graph is562

colored with one of three colors. The feature for each node is the one-hot representation of563

its color. The label of graph is the size of the largest connected component of the same color564

for each color.565

• Graph diameter (Diameter): the label of the graph is the diameter of the graph. The diameter566

of a graph G is the maximum of the set of shortest path distances between all pairs of nodes567

in the graph. The feature of each node is a uniform number 1.568

• Single source shortest path (SPss): a source node s is selected uniformly randomly. The569

feature of each node contains two numbers: (1, whether the node is s). The label of each570

node is the length of the shortest path from s to this node.571

• Graph eccentricity (ECC): the label of each node v is node’s eccentricity in the graph, which572

is the maximum distance from v to the other nodes. The feature of each node is a uniform573

number 1.574

For each task and graph generation method, We generate the dataset by the following steps:575

• Sample N (number of nodes) from [20, 50], totally 300 graphs. These numbers can be576

configured.577
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Table 5: The statistics of the datasets used in experiments. Some statistics (like the average number
of edges) of the Graph Theory datasets may vary depending on different random graph generation
methods. The regression tasks are marked with ✓ in a separate column. The tasks of 4 synthetic
datasets are transductive, where the same graph is used for both training and testing. We do not use
the node labels as features during the training time. The train-val-test split is over nodes. All other
datasets in the table are inductive, where the testing graphs do not occur during training, and the
train-val-test split is over graphs.

Collection Dataset #
Graphs

Avg
#

Nodes

Avg
#

Edges

#
Node
Feat

#
Edge
Feat

#
Classes Task Reg.

Synthetic BaShape 1 700 1761 1 - 4 Trans-Node
Synthetic BaCommunity 1 1400 3872 10 - 8 Trans-Node
Synthetic TreeCycle 1 871 970 1 - 2 Trans-Node
Synthetic TreeGrid 1 1231 1705 1 - 2 Trans-Node

GraphTheory SPsssd 300 35.0 - 3 - - Graph ✓
GraphTheory Diameter 300 35.0 - 1 - - Graph ✓
GraphTheory MCC 300 35.0 - 3 - - Graph ✓
GraphTheory SPss 300 35.0 - 2 - - Node ✓
GraphTheory ECC 300 35.0 - 1 - - Node ✓

LRGB Peptides-func 15535 150.94 307.30 9 3 10 Graph
LRGB Peptides-struct 15535 150.94 307.30 9 3 - Graph ✓

GNNBenchmark ZINC 12000 23.16 49.83 28 4 2 Graph ✓
GNNBenchmark AQSOL 9823 17.57 35.76 65 5 2 Graph ✓
GNNBenchmark MNIST 70000 70.57 564.53 3 1 10 Graph
GNNBenchmark CIFAR10 60000 117.63 941.07 5 1 10 Graph
GNNBenchmark PATTERN 14000 118.89 6078.57 3 - 2 Node
GNNBenchmark CLUSTER 12000 117.20 4301.72 7 - 6 Node

OGB Graph molhiv 41127 25.51 80.45 9 3 2 Graph
OGB Graph molbace 1513 34.09 107.81 9 3 2 Graph
OGB Graph molbbbp 2039 24.06 75.97 9 3 2 Graph
OGB Graph molclintox 1477 26.16 81.93 9 3 2 Graph
OGB Graph molsider 1427 33.64 104.36 9 3 2 Graph
OGB Graph moltox21 7831 18.57 57.16 9 3 2 Graph
OGB Graph moltoxcast 8576 18.78 57.30 9 3 2 Graph
OGB Graph molesol 1128 13.29 40.64 9 3 - Graph ✓
OGB Graph molfreesolv 642 8.7 25.50 9 3 - Graph ✓
OGB Graph mollipo 4200 27.04 86.04 9 3 - Graph ✓

TU MUTAG 188 17.93 19.79 7 - 3 Graph
TU NCI1 4110 29.87 32.30 37 - 2 Graph
TU PROTEINS 1113 39.06 72.82 4 - 2 Graph
TU D&D 1178 284.32 715.66 89 - 2 Graph
TU ENZYMES 600 32.63 62.14 21 - 6 Graph
TU IMDB-B 1000 19.77 96.53 10 - 2 Graph
TU IMDB-M 1500 13.00 65.94 10 - 3 Graph
TU RE-B 2000 429.63 497.75 10 - 2 Graph
TU RE-M5K 4999 508.52 594.87 10 - 5 Graph
TU RE-M12K 11929 391.41 456.89 10 - 11 Graph
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• Use the graph generation method to generate a graph of N nodes.578

• Create graph features and labels according to the task.579

We then provide the details about the random graph generation methods we used to create our Graph580

Theory datasets.581

Following [10], we continue to use undirected and unweighted graphs from a wide variety of582

types. We inherit their 10 random graph generation methods and quote their descriptions here for583

completeness (the percentage after the name is the approximate proportion of such graphs in the584

mixture setting).585

• Erdös-Rényi (ER) (20%) [16]: with a probability of presence for each edge equal to p,586

where p is independently generated for each graph from U [0, 1]587

• Barabási-Albert (BA) (20%) [2]: the number of edges for a new node is k, which is taken588

randomly from {1, 2, . . . , N − 1} for each graph589

• Grid (5%): m× k 2d grid graph with N = mk and m and k as close as possible590

• Caveman (5%) [51]: with m cliques of size k, with m and k as close as possible591

• Tree (15%): generated with a power-law degree distribution with exponent 3592

• Ladder graphs (5%)593

• Line graphs (5%)594

• Star graphs (5%)595

• Caterpillar graphs (10%): with a backbone of size b (drawn from U [1, N)), and N − b596

pendent vertices uniformly connected to the backbone597

• Lobster graphs (10%): with a backbone of size b (drawn from U [1, N)), p (drawn from598

U [1, N−b] ) pendent vertices uniformly connected to the backbone, and additional N−b−p599

pendent vertices uniformly connected to the previous pendent vertices.600

Additional, we add three more graph generation methods:601

• Cycle graphs602

• Pseudotree graphs: A tree graph plus an additional edge. The graph is generated by first603

generating a cycle graph of size m = sample(0.3N, 0.6N). Then n−m remaining nodes604

are sampled to m parts, where i-th part represents the size of the tree hanging on the i-th605

node on the cycle. The trees are randomly generated with the given size.606

• Geographic (Geo) graphs: geographic threshold graphs, but with added edges via a607

minimum spanning tree algorithm, to ensure all nodes are connected. This graph generation608

method is introduced by [6] in their codebase 1. We use the geographic threshold θ = 200609

instead of the default value θ = 1000.610

Note that we do not have randomization after the graph generation as in [10]. Therefore, very long611

diameter is preserved for some type of graphs.612

C Method Details613

C.1 Cross Update Function614

The cross update function (X′j , X̂
′
j ,X

′
j+1) = X-UPD(j,Xj , X̂j ,Xj+1) perform information ex-615

change in consecutive hierarchies.616

The X-Conv realization contains the following steps:617

1. Merge the node features of Xj and Xj+1 with the inter-graph feature X̂j , results in X̄j .618

2. Apply GN blocks on inter-graph Ĝj : X̂′j = GNi,j
inter(Ĝj , X̄j).619

3. Retrieve X′j and X′j+1 from the node features of inter-graph features X̂′j .620

1https://github.com/deepmind/graph_nets, the shortest path demo
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C.2 S-EdgePool621

In this subsection, we introduce the details of S-EdgePool. We first introduce the score generation622

method, then give details about the SELECT, CONNECT, REDUCE and EXPAND functions, and lastly623

provide pseudocode of the algorithm.624

C.2.1 Edge Score Generation625

Both S-EdgePool and EdgePool methods compute a raw edge score rk for each edge k using a linear
layer:

rk = W · (Vsk ||Vtk ||Ek) + b

where sk and tk are the source and target nodes of edge k, V is node features, E is edge features,
W and b are learned parameters. The raw edge scores are further normalized by a local softmax
function over all edges of a node:

wk = exp(rk)/
∑

k′,tk′=tk

exp(rk′),

and biased by a constant 0.5 [11].626

C.2.2 Select, Connect, Reduce and Expand627

SELECT step. S-EdgePool shares the same computations as in EdgePool to generate learnable edge628

scores, as detailed above. Then, we use a clustering procedure to determine the subset of nodes to be629

reduced.630

Let Iv be the identifier of the cluster containing a set of nodes v. Initially, we let v = {v} for631

every single node v. A contraction of an edge merges a pair of nodes (v, v′) connected by this edge632

(where v ∈ v, v′ ∈ v′ and v ̸= v′), and thus unifies the cluster identifiers, i.e., Iv = Iv′ = Ivmerge633

and vmerge = v ∪ v′. That is, once an edge connecting any pair of nodes from two distinct clusters634

is contracted, we merge the two clusters and unify their identifiers. Edges are visited sequentially635

by a decreasing order on the edge scores, and contractions are implemented if valid. We set the636

maximum size of the node clusters to be a parameter τc, where τc = 2 degenerates to the case of637

EdgePool [11]. We further introduce the pooling ratio ηv to control the minimal number of remaining638

clusters after edge contractions to be Nv ∗ ηv. Contractions that violate the above two constraints639

are invalid and will be skipped. Both parameters control the number of nodes in the pooled graph.640

In our implementation, the cluster of nodes is dynamically maintained using the disjoint-set data641

structure [19].642

Then each node cluster i collapses into a new node ṽ of the pooled graph (i.e. Sṽ = {v|Iv = i}),643

with inter-graph edges connect the nodes in the cluster to the new node ṽ.644

CONNECT step. The CONNECT function rebuilds the edge set Ẽ between the nodes in Ṽ . As aforemen-645

tioned, we build the pooled graph’s nodes according to node clusters. We call this mapping function646

from node clusters to new nodes as c2n. After that, we build the pooled graph’s edges following three647

steps: First, for all edges in the original graph, we find out the corresponding node cluster(s) of its648

two endpoints (using a disjoint-set’s find index operation). Then, we find out the corresponding new649

nodes by using the mapping function n. Last, we add a new edge between the new nodes.650

REDUCE and EXPAND step. The REDUCE and EXPAND are generalized from the method mentioned in651

[11]. The REDUCE function computes new node features and edge features. We follow their method652

to compute new node features by taking the sum of the node features and multiplying it by the edge653

score. Specifically, we generalize the computation between two nodes to a node cluster. The node654

clusters are maintained with a disjoint-set data structure and a cluster Sṽ consists of |Sṽ| nodes. We655

define Edsṽ as a set of |Sṽ| − 1 edges, where the edges are the selected edges to be contracted in the656

SELECT step. Then,657

cṽ =
1 +

∑
ek∈Edsṽ

wk

|Sṽ|
Vṽ = cṽ

∑
v∈Sṽ

Vv
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To integrate the edge features between two node clusters, we first find all the connected edges658

between the two node clusters (the edges between node clusters are edges that connect two nodes659

from different node clusters). Then, we use the sum of all the connected edges’ features between the660

two node clusters as the new edge’s features.661

The EXPAND function is also referred as unpool operation. It computes node features of the input662

graph Vv given the node features of the pooled graph Vṽ as following:663

Vv =
Vṽ

cṽ

C.2.3 Pseudo Code664

The pseudo-code includes two parts, where Algorithm 1 describes how to maintain the clusters using665

a disjoint-set data structure, and Algorithm 2 describes the procedure of S-EdgePool that generates a666

pooled graph G̃ with configurable node pooling ratio ηv and maximum of cluster sizes τc.667

Algorithm 1 Get Cluster Index And Cluster Size of a Node (Using disjoint-set data structure)
function InitializeDisjointSet(graph G(V, E))

for v ∈ V do
index[v] = v {the identifier of the cluster the node v belongs to}

end for
end function
function FindIndex(node v)

if index[v] = v then
return v

else
index[v]←FindIndex(index[v])
return index[v]

end if
end function
function FindIndexAndSize(node v)
i← FindIndex(v)
s← size[i]
return i, s

end function
function MERGE(cluster index x, cluster index y)
size[y]← size[x] + size[y]
index[x]← index[y]

end function

C.3 GFuN668

We first realize the ϕe, ϕv , ϕu functions in the full GN block (Sec 2.1 and [6]) as neural networks:669

E′k = NNe(Ek,Vsk ,Vtk ,u), (2)
V′i = NNv(Ē

′
i,Vi,u), (3)

u′ = NNu(Ē
′, V̄′,u), (4)

respectively, where670

Ē′i = ρe→v({E′k}k∈[1...Ne],tk=i), (5)

Ē′ = ρe→u(E′), (6)
V̄′ = ρv→u(V′). (7)

We further decompose the neural networks according to the features in the function:671

NNe(Ek,Vsk ,Vtk ,u) = NNe←e(Ek) + NNe←vs(Vsk) + NNe←vt(Vtk) + NNe←u(u),(8)
NNv(Ē

′
i,Vi,u) = NNv←e(Ē

′
i) + NNv←v(Vi) + NNv←u(u), (9)

NNu(Ē
′, V̄′,u) = NNu←e(Ē

′) + NNu←v(V̄
′) + NNu←u(u) (10)
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Algorithm 2 Strided EdgePool
input graph G = (V, E), edge scores w, node pooling ratio ηv , maximum cluster sizes τc.
output pooled graph G̃ = (Ṽ, Ẽ) and inter graph Ĝ = (V̂, Ê)

InitializeDisjointSet(G)
remains← Nv {Nv is the number of nodes in graph G}
Ē ← Sort the edges E according to the edge scores w decreasingly.
for e ∈ Ē do
x, y ← the two endpoints of the edge e
rx, sx← FindIndexAndSize(x)
ry, sy ← FindIndexAndSize(y)
if rx ̸= ry and (sx+ sy ≤ τc) then

Merge(x, y)
remains← remains− 1
if remains ≤ Nv ∗ ηv then

break
end if

end if
end for
Ṽ, Ẽ , V̂, Ê ← {}, {}, {}, {}
create empty mapping c2n from cluster index to nodes
for v ∈ V do

if FindIndex(v) = v then
create new node ṽ
c2n[v] = ṽ

Ṽ ← Ṽ ∪ {ṽ}
end if

end for
for e ∈ E do

x, y ← the two endpoints of the edge e
x̃← c2n[FindIndex(x)]
ỹ ← c2n[FindIndex(y)]
Ẽ ← Ẽ ∪ {(x̃, ỹ)}

end for
for v ∈ V do

ṽ ← c2n[FindIndex(v)]
Ê ← Ê ∪ {(v, ṽ)}

end for
V̂ ← V ∪ Ṽ

However, such GN block uses 10 times the number of parameters as the standard GCN [31] layer672

when the node, edge and global embedding dimensions are all equivalent. In practice, we disable all673

computations related to global features u, as well as the neural networks NNe←e and NNe←vt . We674

also set NNv←e to be Identity.675

In practice, we use the summation function as the aggregator function ρe→v by default. But other676

choices like MEAN, MAX, gated summation, attention or their combinations can also be used.677

Overall, we call such GN block as graph full network (GFuN).678

C.4 Encorder and Decoder679

Encoder. For input embedding, we use the Linear layer or Embedding layer to embed input features.680

For example, we follow [13] and use the Linear layer on MNIST and CIFAR10 datasets, and use681

the Embedding layer on ZINC and AQSOL datasets. For the molecular graph in OGB, we use the682

same embedding method as in the original work [26]. Besides, we can adopt positional encoding683

methods like Laplacian [13] and Random Walk [14] to further embed global and local graph structure684

information. The embedding of positional encoding can be combined into (like concatenation,685

addition, etc.) input features and form new embeddings.686
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Decoder. We can freely choose from the multi-scale features computed during the process stage as687

inputs to the decoder module. Empirically, we use the features on the original graph for prediction in688

all experiments. For node-level tasks, we apply a last GNN layer on the original graph to get logits689

for every node. For graph-level tasks, we first use global pooling functions to aggregate features. We690

can use common global pooling methods like SUM, MEAN, MAX, or their combination. After the691

global pool, we use MLP layer(s) to generate the prediction.692

C.5 Architecture Variants693

We can replace some GN blocks within Mee layers as an Identity block to reduce the time complexity.694

We call the height j is reserved if the intra GN block of height j is not replaced by an Identity block.695

We prefer to reserve an interval of consecutive heights for the Mee layers. (The inter GN blocks696

between these heights remain unchanged while others are replaced as identities) By varying the697

heights reserved in each Mee layers, we can create a large number of variants of MeGraph model698

including U-Shaped, Bridge-Shaped and Staircase-Shaped.699

U-Shaped. This variant is similar to Graph U-Net [20]. In this U-Shaped variant, the relationship700

between the number of layers n and height h is n = 2h+ 1, and there is only one GN block in each701

layer. We keep the GN block at height j = i for each layer i at the first half layers and keep the GN702

block at height j = n− i+1 for each layer i at the later half layers. In the middle layer, only the last703

height j = h = (n− 1)/2 has a GN block.704

Bridge-Shaped. In this variant, all GN blocks are combined like an arch bridge. Describe in detail,705

in the first and last layers, there are GN blocks in each height. In other layers, there are GN blocks at706

a height of 1 to j (where 1 < j < h).707

Staircase-Shaped. There are four forms in this variant, and the number of layers n is equal to the708

height h in all forms. The first form is like the ‘downward’ staircase. In each layer i of this form,709

there are GN blocks at the height of j to h (where j = i). The second form is the inverted first form.710

In each layer i of this second form, there are GN blocks at height of 1 to h− i + 1 (where j = i).711

The last two forms are the mirror of the first and second forms.712

D Theoretical Discussions713

D.1 Smaller Number of Aggregation Steps for Capturing Long-Range Interactions714

We rephrase the analysis provided in [43] as following:715

We analyze the number of aggregation steps required to capture long-range interactions between716

nodes in the original graph while assuming the node representation capacity is large enough.717

Standard message-passing GNNs require n aggregation steps to capture long-range interactions of n718

hops away, therefore requiring a stack of n layers, which could be expensive when n is large.719

We also assume the height h of the hierarchy is large enough so that all nodes of the original graph720

are pooled into a single node. In that case, the information aggregation along the hierarchy captures721

all pairs of LRIs into the embedding of the single node. Which means the number of aggregation722

steps of MeGraph is h. When we adopt a pooling method that coarsens the graph at least half, h is723

at most O(log(|V |)) where |V | is the number of nodes of the input graph. Therefore, the height h is724

significantly smaller than the diameter of the graph (which could be O(|V |)) in most cases.725

D.2 MeGraph can degenerate to standard GNNs726

MeGraph can learn a gating function (within the X-UPD function) that only reserves the features of727

the same scale while performing cross-scale information exchanging. In that case, there will be no728

information exchange across multi-scale graphs, and features other than those in the original scale729

will not be aggregated. We provide a proof sketch below.730

Proof: The cross update function is (X ′j , X̂
′
j , X

′
j+1) = X-UPD(j,Xj , X̂j , Xj+1). There is a residual731

function applied here, and we assume it is implemented as a gated residual: X ′′j = σ(α)Xj+σ(β)X ′j ,732

where σ is the sigmoid function and α, β are learnable parameters. Theoremetically, it is possible that733

σ(α) = 1 and σ(β) = 0 after training. In that case, X ′′j = Xj , which means Xj is not changed over734
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Table 6: Running time (s) for one epoch on the GNN benchmark. See Sec. E for more implementation
details.

ZINC AQSOL CIFAR10 MNIST PATTERN CLUSTER

Megraph (h = 5) 25.69 20.22 336.63 307.23 101.52 69.65
Megraph (h = 1) 2.41 1.67 51.74 38.60 9.21 6.52

Table 7: Running time (s) for one epoch on the OGBG datasets. See Sec. E for more implementation
details.

molhiv molbace molbbbp molclintox molsider

Megraph (h = 5) 393.42 14.70 20.36 14.03 14.12
Megraph (h = 1) 22.50 1.43 1.58 1.26 1.41

moltox21 moltoxcast molesol molfreesolv mollipo

Megraph (h = 5) 70.15 78.77 11.68 6.24 44.77
Megraph (h = 1) 5.27 8.17 0.76 0.41 2.77

steps 2 and 3 of the Mee layer. Therefore, Xi
0 = GN i,0

intra(G, X
i−1
0 ), this is equivalent to a simple735

GNN layer that Xi = GNNi(G, Xi−1) as Xi
0 is the features of the original graph and GNintra is a736

GNN layer. Therefore, MeGraph degenerates to standard message-passing GNNs in this case. ■737

E Implementation and Training Details738

We use PyTorch [41] and Deep Graph Library (DGL) [50] to implement our method.739

We implement S-EdgePool using DGL, extending from the original implementation of EdgePool in740

the Pytorch Geometric library (PYG) [17]. We did Constant optimization over the implementation741

to speed up the training and inference of the pooling. We further use Taichi-Lang [27] to speed up742

the dynamic node clustering process of S-EdgePool. The practical running time of MeGraph model743

with height h > 1 after optimization is about 2h times as the h = 1 baseline. This is still slower744

than the theoretical computational complexity due to the constant in the implementation and the745

difficulty of paralleling the sequential visitation of edges (according to their scores) in the EdgePool746

and S-EdgePool. This process could be further sped up by implementing the operations with the747

CUDA library. We provide the practical running time for h > 1 and h = 1 in GNN benchmark and748

OGB-G datasets in Tables 6 and 7.749

We run all our experiments on V100 GPUs and M40 GPUs. For training the neural networks, we use750

Adam [30] as the optimizer. We report the hyper-parameters of the Megraph in Table 8.751

For models using GFuN layer as the core GN block, we find it benefits from using layer norms [4].752

However, for models using GCN layer as the core GN block, we find it performs best when using753

batch norms [28].754

The code along with the configuration of hyper-parameters to reproduce our experiments is provided755

in the Supplementary Material and will be made public.756

F Additional Experiment Results757

F.1 Experimental Protocol758

We evaluate MeGraph on public real-world graph benchmarks. To fairly compare MeGraph with the759

baselines, we use the following experimental protocols. We first report the public baseline results and760

our reproduced standard GCN’s results. We then replace GCN layers with GFuN layers (which is761

equivalent to MeGraph (h = 1)) to serve as another baseline. We tune the hyper-parameters (such762

as learning rate, dropout rate and the readout global pooling method, etc.) of MeGraph (h = 1) and763

choose the best configurations. We then run other diversely configured MeGraph candidates by tuning764
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Table 8: Hyper-parameters of the standard version of MeGraph for each dataset. It is worth noting
that the total number of GNN layers is equals to one plus the number of Mee layers as n+ 1.

Hyper-parameters Synthetic
Datasets

Graph
Theory

Benchmark

LRGB
Benchmark

GNN
Benchmark

OGB
Benchmark

TU
Datasets

Repeated Runs 10 5 4 4 5 1 for each fold

Epochs per run 200 for BA*
500 for Tree*

300
(200 for MCC) 200

200
(100 for
MNIST,

CIFRA10)

100
100

(200 for
ENZYMES)

Learning rate 0.002 0.002
(0.005 for MCC) 0.001 0.001 0.001 0.002

Weight decay 0.0005 0.0005 0 0 0.0005 0.0005

Node hidden dim 64 128 160 144 300 128

Edge hidden dim
(for GFuN) 64 128 160 144 300 128

Num Mee
layers n - - 4 3 4 2

Height h - - 9 5 5 3 or 5

Batch size 32 32 128 128 32 128

Input embedding False True True True True True

Global pooling Mean Mean
Max

Mean
Max
Sum

Mean Mean
Mean
Max
Sum

Dataset split
(train:val:test) 8:1:1 8:1:1 Original

split
Original

split
Original

split
10-fold cross

validation

other hyper-parameters that only matters for h > 1, and these hyper-parameters are referred to as the765

MeGraph hyper-parameters. Detailed configurations are put in Table 8 in App. E.766

F.2 Other Real-Wrold Datasets767

TU dataset consists of over 120 datasets of varying sizes from a wide range of applications. We768

choose 10 datasets, 5 of which are molecule datasets (MUTAG, NCI1, PROTEINS, D&D and769

ENZYMES) and the other 5 are social networks (IMDB-B, IMDB-M, REDDIT-BINARY, REDDIT-770

MULTI-5K and REDDIT-MULTI-12K). They are all graph classification tasks. For more details of771

each dataset, please refer to the original work [39].772

Our Megraph uses the same network structure and hyper-parameters for the same type of dataset. As773

shown in Table 9, our Megraph achieves about 1% absolute gain than the h = 1 Baselines.774

F.3 GFuN775

We show our GFuN results on real-world datasets compared to our reproduced GCN in Table 10, 11776

and 12. Both GCN and GFuN have the same hyper-parameters except the batch norm for GCN and777

layer norm for GFuN as stated in Appendix E.778

F.4 Synthetic Datasets779

Figure 5 shows the influence of the height h and the number of Mee layers n for MeGraph model on780

the BAShape and BACommunity datasets. The trend on these easier datasets is similar to that on781

TreeCycle and TreeGrid but less significant.782
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Table 9: Results on Tu Dataset. † means the results taken from [9] (*: The result of GCN on
ENZYMES is 100 epoch).

Model MUTAG ↑ NCI1 ↑ PROTEINS ↑ D&D ↑ ENZYMES ↑ Average

GCN† 87.20 ±5.11 83.65 ±1.69 75.65 ±3.24 79.12 ±3.07 66.50 ±6.91* 78.42
GIN† 89.40 ±5.60 82.70 ±1.70 76.20 ±2.80 - - -

GCN 92.46 ±6.55 82.55 ±0.99 77.82 ±4.52 80.56 ±2.40 74.17 ±5.59 81.51
MeGraph (h=1) 93.01 ±6.83 82.53 ±1.89 81.32 ±4.08 81.32 ±3.17 74.83 ±3.20 82.60
MeGraph 93.07 ±6.71 83.99 ±0.98 81.41 ±3.10 81.24 ±2.39 75.17 ±4.86 82.98
MeGraphbest 94.12 ±5.02 84.40 ±1.11 81.68 ±3.40 82.00 ±2.86 75.17 ±4.86 83.47

Model IMDB-B ↑ IMDB-M ↑ RE-B ↑ RE-M5K ↑ RE-M12K ↑ Average

GCN 76.00 ±3.44 50.33 ±1.89 91.15 ±1.63 56.47 ±1.54 48.71 ±0.88 64.53
MeGraph (h=1) 68.60 ±3.53 51.33 ±2.23 93.10 ±1.16 57.47 ±2.31 51.56 ±1.06 64.41
MeGraph 72.40 ±2.80 51.27 ±2.71 93.75 ±1.25 57.69 ±2.22 52.03 ±0.86 65.43
MeGraphbest 74.30 ±2.97 52.00 ±2.49 93.75 ±1.25 58.45 ±2.22 52.13 ±1.01 66.13

Table 10: Comparison between GCN and GFuN on GNN benchmark.

Model ZINC ↓ AQSOL ↓ MNIST ↑ CIFAR10 ↑ PATTERN ↑ CLUSTER ↑

GCN 0.426 ±0.015 1.397 ±0.029 90.140 ±0.140 51.050 ±0.390 84.672 ±0.054 47.541 ±0.940
GFuN 0.364 ±0.003 1.386 ±0.024 95.560 ±0.190 61.060 ±0.500 84.845 ±0.021 58.178 ±0.079

MeGraph 0.260 ±0.005 1.002 ±0.021 97.860 ±0.098 69.925 ±0.631 86.507 ±0.067 68.603 ±0.101

F.5 Varying GN block783

We vary the aggregation function of the GN block as attention (w/ ATT) and gated function (w/784

GATE). We observe similar results as in Sec. 4.2 and 4.3, verifying the robustness of MeGraph over785

different GN blocks. Results are shown in Tables 15, 16 and 17.786

F.6 Graph Theory Dataset787

We provide a list of tables (from Table 18 to 28) showing the individual results of Table 1 for each788

possible graph generation method. Each table contains a list of variants of models and 5 tasks. Some789

graph generation methods and task combinations are trivial so we filter them out.790

Table 11: Comparison between GCN and GFuN on OGB-G.

Model molhiv ↑ molbace ↑ molbbbp ↑ molclintox ↑ molsider ↑

GCN 75.40 ±1.29 76.01 ±3.31 67.35 ±0.96 89.62 ±2.27 58.08 ±0.78
GFuN 78.54 ±1.14 71.77 ±2.15 67.56 ±1.11 89.77 ±3.48 58.28 ±0.51

MeGraph 77.20 ±0.88 78.52 ±2.51 69.57 ±2.33 92.04 ±2.19 59.01 ±1.45

Model moltox21 ↑ moltoxcast ↑ molesol ↓ molfreesolv ↓ mollipo ↓

GCN 75.11 ±0.41 64.13 ±0.52 1.141 ±0.02 2.407 ±0.15 0.788 ±0.01
GFuN 75.89 ±0.45 64.49 ±0.46 1.079 ±0.02 2.017 ±0.08 0.768 ±0.00

MeGraph 78.11 ±0.47 67.67 ±0.53 0.886 ±0.02 1.876 ±0.05 0.726 ±0.00
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Table 12: Comparison between GCN and GFuN on Tu Dataset.

Model MUTAG ↑ NCI1 ↑ PROTEINS ↑ D&D ↑ ENZYMES ↑ Average

GCN 92.46 ±6.55 82.55 ±0.99 77.82 ±4.52 80.56 ±2.40 74.17 ±5.59 81.51
GFuN 93.01 ±7.96 82.80 ±1.30 80.60 ±3.83 82.43 ±2.60 73.00 ±5.31 82.37

Model IMDB-B ↑ IMDB-M ↑ RE-B ↑ RE-M5K ↑ RE-M12K ↑ Average

GCN 76.00 ±3.44 50.33 ±1.89 91.15 ±1.63 56.47 ±1.54 48.71 ±0.88 64.53
GFuN 68.90 ±3.42 51.27 ±3.22 92.25 ±1.12 57.53 ±1.31 51.54 ±1.19 64.30
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Figure 5: Node Classification accuracy for MeGraph model on BAShape (left) and BACommunity (right)
datasets, varying the height h and the number of Mee layers n. A clear gap can be observed between heights 1
and ≥ 2. The concrete number of accuracy can be found in Table 14.

Table 13: Node Classification accuracy for MeGraph model on TreeCycle (above) and TreeGrid (below).

layer
height 1 2 3 4 5 6

1 61.48 ±6.04 76.59 ±4.41 91.48 ±2.70 98.52 ±1.69 97.95 ±2.32 98.52 ±1.35
2 67.27 ±6.91 81.59 ±4.03 97.39 ±1.25 98.98 ±0.94 98.75 ±1.29 98.86 ±1.14
3 74.43 ±3.60 90.80 ±2.61 98.64 ±1.11 99.09 ±1.11 98.75 ±1.56 99.09 ±0.85
4 79.55 ±4.34 93.41 ±2.82 99.20 ±0.73 99.20 ±0.89 99.66 ±0.73 99.20 ±1.69
5 82.73 ±4.06 93.41 ±1.89 99.43 ±1.05 99.20 ±1.35 99.32 ±1.16 99.32 ±0.56
6 83.18 ±3.51 94.09 ±2.02 99.43 ±0.76 99.09 ±0.85 99.20 ±1.69 99.20 ±0.89
7 84.43 ±3.74 94.43 ±2.24 99.89 ±0.34 99.20 ±1.02 99.20 ±0.89 99.66 ±0.73
8 84.20 ±3.82 94.20 ±2.00 98.98 ±1.19 99.32 ±0.75 99.66 ±0.52 99.20 ±0.73
9 84.43 ±3.87 94.20 ±2.06 99.77 ±0.45 99.20 ±1.02 98.98 ±1.07 99.32 ±0.75

10 84.77 ±3.98 94.43 ±2.18 99.32 ±0.75 98.86 ±1.14 99.09 ±1.67 99.66 ±0.52

layer
height 1 2 3 4 5 6

1 79.11 ±3.07 91.13 ±2.01 96.85 ±1.11 97.18 ±1.31 97.10 ±1.45 97.42 ±1.34
2 89.68 ±1.76 93.55 ±1.53 98.31 ±0.76 97.82 ±1.14 97.42 ±1.24 97.98 ±0.74
3 90.81 ±1.36 96.13 ±1.48 97.66 ±1.22 98.23 ±0.94 98.87 ±0.82 98.39 ±0.62
4 91.53 ±1.04 96.69 ±1.05 98.06 ±1.03 98.55 ±1.01 98.63 ±1.08 97.98 ±1.15
5 93.95 ±1.58 96.13 ±1.76 98.47 ±1.17 98.47 ±0.92 98.31 ±0.84 97.90 ±0.65
6 94.35 ±1.25 96.69 ±1.46 98.06 ±1.03 98.31 ±1.05 98.15 ±1.20 98.39 ±1.20
7 94.76 ±1.10 97.02 ±1.44 98.47 ±0.84 98.47 ±1.05 98.71 ±0.74 98.87 ±0.90
8 95.08 ±0.76 97.02 ±1.20 98.55 ±1.24 98.87 ±0.82 98.47 ±0.92 98.71 ±1.15
9 94.68 ±1.09 96.94 ±1.19 98.47 ±0.43 98.15 ±1.20 98.15 ±0.89 98.39 ±1.08

10 94.84 ±1.21 96.77 ±1.20 98.47 ±0.92 97.98 ±1.50 98.15 ±1.02 98.23 ±1.19
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Table 14: Node Classification accuracy for MeGraph model on BAShape (above) and BACommunity (below).

layer
height 1 2 3 4 5 6

1 98.71 ±1.00 99.14 ±1.14 99.86 ±0.43 99.43 ±0.70 99.43 ±0.95 99.57 ±0.91
2 98.71 ±1.00 99.29 ±0.96 99.57 ±0.91 99.71 ±0.57 99.57 ±0.91 99.57 ±0.91
3 99.00 ±0.91 99.43 ±0.95 99.86 ±0.43 99.86 ±0.43 99.86 ±0.43 99.86 ±0.43
4 99.00 ±0.91 99.71 ±0.57 99.86 ±0.43 99.86 ±0.43 99.43 ±0.95 99.71 ±0.57
5 99.00 ±0.91 99.86 ±0.43 99.86 ±0.43 99.86 ±0.43 99.86 ±0.43 99.43 ±0.95
6 99.00 ±0.91 99.86 ±0.43 99.86 ±0.43 99.86 ±0.43 99.86 ±0.43 99.86 ±0.43
7 99.00 ±0.91 99.86 ±0.43 99.86 ±0.43 99.86 ±0.43 99.86 ±0.43 99.86 ±0.43
8 99.00 ±0.91 99.86 ±0.43 99.86 ±0.43 99.86 ±0.43 99.71 ±0.57 99.57 ±0.65
9 99.00 ±0.91 99.86 ±0.43 99.57 ±0.91 99.57 ±0.91 99.57 ±0.91 99.57 ±0.91

10 99.00 ±0.91 99.71 ±0.57 99.57 ±0.91 99.71 ±0.57 99.86 ±0.43 99.43 ±0.95

layer
height 1 2 3 4 5 6

1 94.93 ±1.30 97.00 ±1.80 96.93 ±1.60 97.00 ±1.88 97.21 ±1.70 96.86 ±1.67
2 97.93 ±0.87 98.36 ±0.72 98.79 ±0.46 98.79 ±0.46 98.57 ±0.55 98.50 ±1.03
3 98.07 ±0.91 98.64 ±0.87 98.86 ±0.91 98.86 ±0.80 98.50 ±0.98 98.93 ±0.80
4 98.21 ±0.97 98.86 ±0.65 98.86 ±0.80 98.79 ±0.64 99.00 ±0.73 99.07 ±0.64
5 98.50 ±0.87 98.86 ±0.91 99.07 ±0.64 99.21 ±0.67 99.14 ±0.70 99.00 ±0.73
6 98.71 ±0.83 98.64 ±0.87 99.07 ±0.64 99.14 ±0.70 99.07 ±0.85 99.14 ±0.70
7 98.29 ±0.91 98.86 ±0.65 99.07 ±0.56 98.79 ±0.56 98.79 ±0.72 98.86 ±0.57
8 98.43 ±0.77 99.00 ±0.47 99.14 ±0.53 98.93 ±0.58 99.14 ±0.29 99.14 ±0.43
9 98.79 ±0.79 99.07 ±0.56 99.21 ±0.50 99.00 ±0.73 99.29 ±0.45 99.36 ±0.50

10 98.86 ±0.73 98.93 ±0.80 99.21 ±0.87 99.14 ±0.70 99.00 ±0.73 99.29 ±0.64

Table 15: Comparison results of MeGraph with ATT and GATE on Graph Theory Benchmark.
Category Model SPsssd MCC Diameter SPss ECC

MeGraph w. ATT
h = 1 2.990 ±3.411 3.346 ±3.228 44.41 ±36.33 16.39 ±13.57 29.04 ±27.59
h = 5 0.594 ±0.903 1.706 ±1.409 3.256 ±2.956 1.018 ±1.071 14.80 ±17.09
h = 5, ηv = 0.3, τc = 4 0.749 ±1.131 1.128 ±0.794 4.430 ±4.329 0.640 ±0.833 5.649 ±4.496

MeGraph w. GATE
h = 1 4.144 ±4.181 0.908 ±0.934 6.343 ±7.152 13.94 ±12.78 19.73 ±19.47
h = 5 0.809 ±0.993 0.660 ±0.601 2.506 ±2.639 0.669 ±0.546 7.508 ±7.558
h = 5, ηv = 0.3, τc = 4 0.602 ±0.622 0.599 ±0.520 0.544 ±0.490 0.342 ±0.193 0.859 ±0.712

Table 16: Comparison results of MeGraph with ATT and GATE on GNN Benchmark.
ZINC AQSOL CIFAR10 MNIST PATTERN CLUSTER

MeGraph w. ATT (h = 1) 0.4258 ±0.0054 1.1421 ±0.0270 69.890 ±0.209 97.570 ±0.168 78.232 ±0.827 59.497 ±0.207
MeGraph w. ATT (h = 5) 0.3637 ±0.0116 1.0767 ±0.0105 69.925 ±0.631 97.860 ±0.098 83.798 ±0.885 68.930 ±68.76
MeGraph w. GATE (h = 1) 0.3336 ±0.0036 1.0766 ±1.0556 64.200 ±0.586 96.812 ±0.205 85.391 ±0.029 59.321 ±0.290
MeGraph w. GATE (h = 5) 0.2897 ±0.0291 1.0240 ±0.0098 64.935 ±0.829 97.290 ±0.140 86.611 ±0.041 67.122 ±3.323

Table 17: Comparison results of MeGraph with ATT and GATE on OGB-G.

Model molhiv ↑ molbace ↑ molbbbp ↑ molclintox ↑ molsider ↑

MeGraph w. ATT (h = 1) 77.33 ±0.78 74.83 ±4.87 64.74 ±1.14 86.34 ±1.04 58.12 ±0.53
MeGraph w. ATT (h = 5) 77.15 ±1.37 76.13 ±3.85 68.68 ±2.07 87.17 ±0.76 58.03 ±1.58
MeGraph w. GATE (h = 1) 76.35 ±0.70 76.36 ±1.55 65.97 ±1.98 87.12 ±0.74 58.11 ±1.29
MeGraph w. GATE (h = 5) 78.14 ±0.91 78.90 ±1.29 66.53 ±0.74 89.02 ±2.56 59.58 ±1.88

Model moltox21 ↑ moltoxcast ↑ molesol ↓ molfreesolv ↓ mollipo ↓

MeGraph w. ATT (h = 1) 75.88 ±0.64 64.65 ±0.59 1.091 ±0.030 2.318 ±0.089 0.790 ±0.012
MeGraph w. ATT (h = 5) 76.71 ±0.98 66.98 ±0.70 1.007 ±0.617 2.065 ±0.151 0.736 ±0.023
MeGraph w. GATE (h = 1) 75.30 ±0.43 64.34 ±0.62 1.064 ±0.015 2.191 ±0.068 0.766 ±0.008
MeGraph w. GATE (h = 5) 76.91 ±0.25 66.78 ±0.13 1.003 ±0.086 2.048 ±0.199 0.700 ±0.014
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Table 18: Graph Theory Benchmark results on Grid graphs, all results are obtained using our codebase.

Category Model SPsssd MCC Diameter SPss ECC

Baselines
(h=1)

n=1 6.60 ±0.541 1.50 ±0.050 22.49 ±1.36 26.74 ±0.347 20.99 ±0.232
n=5 4.18 ±0.737 1.29 ±0.124 5.04 ±1.26 15.54 ±0.155 20.32 ±0.326
n=10 3.70 ±0.422 1.33 ±0.100 0.737 ±0.116 7.24 ±0.243 20.32 ±0.422

MeGraph(h=5)
EdgePool(τc=2)

n=1 1.19 ±0.486 1.24 ±0.154 6.78 ±1.95 5.34 ±0.265 18.00 ±0.910
n=5 0.738 ±0.322 1.11 ±0.043 0.616 ±0.310 0.617 ±0.099 13.3 ±3.31

MeGraph
S-EdgePool

Variants
(h=5, n=5)

τc=3 0.361 ±0.182 1.24 ±0.113 0.382 ±0.120 0.442 ±0.130 0.918 ±0.220
ηv=0.3 4.77 ±2.50 1.33 ±0.161 0.349 ±0.074 5.40 ±0.954 3.59 ±0.354
ηv=0.3, τc=4 0.745 ±0.316 1.35 ±0.168 0.385 ±0.180 0.552 ±0.113 0.622 ±0.100
ηv=0.5, τc=4 1.61 ±0.394 1.28 ±0.138 0.458 ±0.220 1.71 ±0.535 1.48 ±0.283
ηv=0.3, τc=4 (X-Pool) 1.03 ±0.365 1.50 ±0.142 0.626 ±0.216 1.70 ±0.185 3.44 ±0.991
ηv=0.3, τc=4 (w/o pw) 0.616 ±0.194 1.66 ±0.083 0.361 ±0.147 0.678 ±0.139 1.70 ±0.485

Graph-UNets h=5,n=9,ηv=0.3,τc=4 0.969 ±0.643 2.18 ±0.381 0.111 ±0.091 0.773 ±0.086 0.548 ±0.131

Table 19: Graph Theory Benchmark results on Tree graphs. All results are obtained using our codebase.

Category Model SPsssd MCC Diameter SPss ECC

Baselines
(h=1)

n=1 5.21 ±0.209 1.28 ±0.050 3.77 ±1.22 17.16 ±0.168 24.63 ±0.427
n=5 3.34 ±0.375 0.405 ±0.089 0.504 ±0.109 7.66 ±0.325 18.11 ±1.85
n=10 3.16 ±0.252 0.338 ±0.046 0.100 ±0.059 2.28 ±0.209 14.93 ±0.800

MeGraph(h=5)
EdgePool(τc=2)

n=1 1.62 ±0.314 0.846 ±0.071 0.725 ±0.249 6.99 ±0.610 12.27 ±0.843
n=5 0.83 ±0.667 0.490 ±0.118 0.084 ±0.030 1.27 ±0.442 2.87 ±0.420

MeGraph
S-EdgePool

Variants
(h=5, n=5)

τc=3 0.599 ±0.200 0.483 ±0.081 0.075 ±0.012 0.497 ±0.121 0.429 ±0.105
ηv=0.3 0.868 ±0.230 0.413 ±0.054 0.142 ±0.047 0.789 ±0.092 0.534 ±0.074
ηv=0.3, τc=4 0.615 ±0.209 0.418 ±0.024 0.081 ±0.017 0.440 ±0.106 0.436 ±0.097
ηv=0.5, τc=4 1.06 ±0.327 0.424 ±0.042 0.214 ±0.018 1.20 ±0.128 2.03 ±0.507
ηv=0.3, τc=4 (X-Pool) 0.666 ±0.118 0.596 ±0.067 0.182 ±0.057 1.22 ±0.281 1.11 ±0.122
ηv=0.3, τc=4 (w/o pw) 0.771 ±0.141 0.455 ±0.056 0.124 ±0.032 0.700 ±0.190 1.07 ±0.260

Graph-UNets h=5,n=9,ηv=0.3,τc=4 0.873 ±0.247 0.667 ±0.043 0.804 ±0.284 0.606 ±0.123 1.00 ±0.221

Table 20: Graph Theory Benchmark results on Ladder graphs, all results are obtained using our codebase.

Category Model SPsssd MCC Diameter SPss ECC

Baselines
(h=1)

n=1 5.06 ±0.330 1.73 ±0.249 1.17 ±0.149 13.20 ±0.126 20.10 ±0.583
n=5 0.692 ±0.204 0.734 ±0.106 1.39 ±0.078 5.02 ±0.876 19.81 ±0.669
n=10 0.257 ±0.078 0.691 ±0.119 1.55 ±0.069 1.60 ±0.194 20.40 ±0.995

MeGraph(h=5)
EdgePool(τc=2)

n=1 0.662 ±0.165 0.866 ±0.071 1.57 ±0.992 2.18 ±0.181 6.61 ±1.32
n=5 0.251 ±0.108 0.753 ±0.091 0.175 ±0.169 0.321 ±0.058 1.18 ±0.746

MeGraph
S-EdgePool

Variants
(h=5, n=5)

τc=3 0.296 ±0.070 0.754 ±0.086 0.226 ±0.069 0.228 ±0.021 0.285 ±0.069
ηv=0.3 0.507 ±0.204 0.768 ±0.050 0.156 ±0.053 0.969 ±0.148 0.787 ±0.059
ηv=0.3, τc=4 0.297 ±0.113 0.712 ±0.059 0.095 ±0.046 0.180 ±0.026 0.225 ±0.043
ηv=0.5, τc=4 0.375 ±0.196 0.656 ±0.064 0.058 ±0.019 0.612 ±0.191 0.464 ±0.121
ηv=0.3, τc=4 (X-Pool) 0.442 ±0.108 0.742 ±0.047 0.158 ±0.074 0.710 ±0.076 0.765 ±0.089
ηv=0.3, τc=4 (w/o pw) 0.245 ±0.021 0.682 ±0.105 0.106 ±0.052 0.271 ±0.039 0.618 ±0.188

Graph-UNets h=5,n=9,ηv=0.3,τc=4 0.339 ±0.11 0.797 ±0.138 0.013 ±0.005 0.287 ±0.023 0.230 ±0.054
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Table 21: Graph Theory Benchmark results on Line graphs, all results are obtained using our codebase.

Category Model SPsssd MCC Diameter SPss ECC

Baselines
(h=1)

n=1 30.37 ±1.41 0.458 ±0.035 21.49 ±8.84 68.99 ±0.247 75.46 ±1.86
n=5 10.55 ±2.40 0.019 ±0.004 9.97 ±10.85 46.39 ±3.09 78.49 ±4.38
n=10 3.29 ±0.813 0.012 ±0.003 10.18 ±10.59 35.07 ±2.71 77.23 ±3.42

MeGraph(h=5)
EdgePool(τc=2)

n=1 1.45 ±0.598 0.056 ±0.014 7.62 ±4.43 10.13 ±2.33 45.19 ±8.64
n=5 0.536 ±0.149 0.016 ±0.007 0.611 ±0.238 1.06 ±0.341 14.12 ±13.82

MeGraph
S-EdgePool

Variants
(h=5, n=5)

τc=3 0.349 ±0.206 0.013 ±0.003 0.724 ±0.479 0.339 ±0.102 1.15 ±0.267
ηv=0.3 3.65 ±2.13 0.017 ±0.005 1.75 ±1.63 13.99 ±2.09 7.45 ±0.989
ηv=0.3, τc=4 0.283 ±0.072 0.019 ±0.006 0.584 ±0.337 0.515 ±0.044 1.27 ±1.08
ηv=0.5, τc=4 1.81 ±0.121 0.022 ±0.006 0.711 ±0.213 2.64 ±0.047 3.77 ±0.763
ηv=0.3, τc=4 (X-Pool) 1.06 ±0.510 0.101 ±0.016 0.767 ±0.522 2.29 ±0.472 3.89 ±1.02
ηv=0.3, τc=4 (w/o pw) 0.377 ±0.106 0.022 ±0.007 1.19 ±1.17 1.12 ±0.115 3.34 ±0.904

Graph-UNets h=5,n=9,ηv=0.3,τc=4 0.426 ±0.223 0.062 ±0.008 2.89 ±1.89 0.767 ±0.129 4.78 ±1.94

Table 22: Graph Theory Benchmark results on Caterpillar graphs, all results are obtained using our codebase.

Category Model SPsssd MCC Diameter SPss ECC

Baselines
(h=1)

n=1 24.24 ±1.57 1.25 ±0.082 28.62 ±2.55 19.08 ±0.208 35.32 ±0.462
n=5 8.32 ±2.10 0.561 ±0.070 4.59 ±0.346 9.62 ±0.357 37.01 ±1.48
n=10 6.40 ±0.652 0.630 ±0.127 5.06 ±0.499 4.06 ±0.297 37.87 ±3.22

MeGraph(h=5)
EdgePool(τc=2)

n=1 5.04 ±1.03 0.685 ±0.077 6.08 ±1.40 5.40 ±0.843 28.52 ±2.16
n=5 3.44 ±1.13 0.533 ±0.064 2.00 ±1.28 0.921 ±0.149 5.20 ±1.57

MeGraph
S-EdgePool

Variants
(h=5, n=5)

τc=3 2.47 ±0.529 0.607 ±0.081 0.591 ±0.172 0.574 ±0.073 1.21 ±0.148
ηv=0.3 3.61 ±1.36 0.582 ±0.052 0.578 ±0.231 1.69 ±0.572 1.95 ±0.322
ηv=0.3, τc=4 1.59 ±0.444 0.535 ±0.091 0.317 ±0.104 0.474 ±0.170 1.32 ±0.272
ηv=0.5, τc=4 2.00 ±0.648 0.514 ±0.040 1.10 ±0.288 0.986 ±0.130 2.11 ±0.766
ηv=0.3, τc=4 (X-Pool) 1.39 ±0.478 0.602 ±0.110 0.736 ±0.230 1.78 ±0.254 3.36 ±0.873
ηv=0.3, τc=4 (w/o pw) 1.82 ±0.627 0.628 ±0.093 0.604 ±0.067 0.797 ±0.299 2.25 ±0.230

Graph-UNets h=5,n=9,ηv=0.3,τc=4 1.57 ±0.670 0.679 ±0.098 3.18 ±0.583 0.976 ±0.270 3.83 ±1.06

Table 23: Graph Theory Benchmark results on Lobster graphs, all results are obtained using our codebase.

Category Model SPsssd MCC Diameter SPss ECC

Baselines
(h=1)

n=1 23.92 ±0.319 1.06 ±0.166 11.93 ±1.32 38.44 ±0.065 40.46 ±0.350
n=5 10.89 ±1.47 0.544 ±0.067 3.66 ±0.424 20.12 ±0.105 28.81 ±1.14
n=10 7.35 ±2.50 0.631 ±0.067 2.59 ±0.517 10.52 ±0.619 28.47 ±1.65

MeGraph(h=5)
EdgePool(τc=2)

n=1 6.00 ±1.82 0.785 ±0.062 4.35 ±1.51 13.75 ±0.675 30.49 ±2.18
n=5 1.93 ±0.861 0.543 ±0.073 1.07 ±0.114 2.05 ±0.393 11.39 ±5.43

MeGraph
S-EdgePool

Variants
(h=5, n=5)

τc=3 2.02 ±0.791 0.447 ±0.123 0.705 ±0.133 1.66 ±0.270 2.23 ±0.378
ηv=0.3 6.01 ±1.52 0.521 ±0.028 0.707 ±0.202 3.04 ±0.250 2.70 ±0.212
ηv=0.3, τc=4 1.90 ±0.449 0.489 ±0.069 0.671 ±0.165 1.30 ±0.106 2.62 ±0.849
ηv=0.5, τc=4 3.27 ±0.716 0.451 ±0.090 0.941 ±0.324 2.82 ±0.803 4.04 ±0.527
ηv=0.3, τc=4 (X-Pool) 2.67 ±0.486 0.494 ±0.109 1.01 ±0.194 2.79 ±0.343 4.16 ±0.886
ηv=0.3, τc=4 (w/o pw) 1.85 ±0.432 0.473 ±0.069 0.892 ±0.277 1.77 ±0.329 4.33 ±1.71

Graph-UNets h=5,n=9,ηv=0.3,τc=4 4.85 ±1.48 0.782 ±0.026 3.74 ±0.361 2.96 ±0.443 4.25 ±0.544
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Table 24: Graph Theory Benchmark results on Cycle graphs, all results are obtained using our codebase.

Category Model SPsssd MCC Diameter SPss ECC

Baselines
(h=1)

n=1 18.75 ±0.066 0.534 ±0.022 22.35 ±0.149 24.07 ±0.009 21.47 ±0.060
n=5 3.39 ±0.304 0.027 ±0.001 25.11 ±0.325 12.44 ±1.05 21.81 ±0.102
n=10 0.352 ±0.060 0.011 ±0.003 26.54 ±1.16 8.65 ±1.02 24.09 ±0.360

MeGraph(h=5)
EdgePool(τc=2)

n=1 0.594 ±0.212 0.074 ±0.029 9.11 ±1.88 4.07 ±0.364 21.53 ±0.070
n=5 0.060 ±0.032 0.014 ±0.003 13.44 ±6.40 0.103 ±0.016 24.05 ±0.204

MeGraph
S-EdgePool

Variants
(h=5, n=5)

τc=3 0.066 ±0.036 0.015 ±0.006 0.241 ±0.049 0.090 ±0.037 0.342 ±0.186
ηv=0.3 2.45 ±0.873 0.015 ±0.001 0.709 ±0.226 8.36 ±0.261 0.488 ±0.267
ηv=0.3, τc=4 0.060 ±0.030 0.019 ±0.003 0.312 ±0.236 0.226 ±0.050 0.562 ±0.209
ηv=0.5, τc=4 0.451 ±0.203 0.014 ±0.004 0.252 ±0.124 1.05 ±0.524 4.30 ±1.90
ηv=0.3, τc=4 (X-Pool) 0.494 ±0.292 0.096 ±0.028 0.468 ±0.220 1.08 ±0.130 0.860 ±0.292
ηv=0.3, τc=4 (w/o pw) 0.159 ±0.209 0.017 ±0.008 1.23 ±0.928 0.461 ±0.118 8.26 ±3.70

Graph-UNets h=5,n=9,ηv=0.3,τc=4 0.144 ±0.073 0.035 ±0.010 3.21 ±0.893 0.439 ±0.089 5.91 ±1.31

Table 25: Graph Theory Benchmark results on Pseudotree graphs, all results are obtained using our codebase.

Category Model SPsssd MCC Diameter SPss ECC

Baselines
(h=1)

n=1 1.93 ±0.239 1.71 ±0.281 2.78 ±0.098 6.27 ±0.004 4.23 ±0.034
n=5 0.061 ±0.024 0.942 ±0.094 1.74 ±0.299 1.54 ±0.006 4.15 ±0.086
n=10 0.037 ±0.022 0.775 ±0.094 1.84 ±0.260 0.126 ±0.038 4.06 ±0.037

MeGraph(h=5)
EdgePool(τc=2)

n=1 0.404 ±0.096 1.75 ±0.133 1.50 ±0.494 2.25 ±0.280 3.97 ±0.270
n=5 0.141 ±0.022 0.999 ±0.054 1.16 ±0.069 0.148 ±0.034 3.12 ±0.202

MeGraph
S-EdgePool

Variants
(h=5, n=5)

τc=3 0.130 ±0.069 0.912 ±0.073 0.669 ±0.080 0.115 ±0.015 0.797 ±0.079
ηv=0.3 0.048 ±0.030 0.839 ±0.077 0.758 ±0.134 0.246 ±0.021 0.838 ±0.023
ηv=0.3, τc=4 0.106 ±0.054 0.814 ±0.092 0.663 ±0.076 0.133 ±0.028 0.845 ±0.101
ηv=0.5, τc=4 0.071 ±0.048 1.03 ±0.186 0.583 ±0.065 0.171 ±0.038 0.868 ±0.034
ηv=0.3, τc=4 (X-Pool) 0.564 ±0.155 0.966 ±0.172 0.977 ±0.054 0.611 ±0.065 1.10 ±0.036
ηv=0.3, τc=4 (w/o pw) 0.080 ±0.033 0.971 ±0.072 0.956 ±0.230 0.276 ±0.017 1.13 ±0.321

Graph-UNets h=5,n=9,ηv=0.3,τc=4 0.467 ±0.065 1.09 ±0.072 1.71 ±0.295 0.721 ±0.092 2.25 ±0.327

Table 26: Graph Theory Benchmark results on Geo graphs, all results are obtained using our codebase.

Category Model SPsssd MCC Diameter SPss ECC

Baselines
(h=1)

n=1 5.79 ±0.630 0.424 ±0.023 11.85 ±0.391 12.49 ±0.035 14.82 ±0.056
n=5 1.02 ±0.772 0.407 ±0.040 8.37 ±0.468 5.10 ±0.435 14.33 ±0.079
n=10 0.304 ±0.125 0.404 ±0.061 9.41 ±0.759 0.803 ±0.162 14.33 ±0.136

MeGraph(h=5)
EdgePool(τc=2)

n=1 1.60 ±0.880 0.347 ±0.033 10.17 ±2.04 4.87 ±0.777 11.91 ±0.451
n=5 0.232 ±0.061 0.273 ±0.018 2.70 ±0.288 0.575 ±0.127 6.92 ±2.36

MeGraph
S-EdgePool

Variants
(h=5, n=5)

τc=3 0.188 ±0.100 0.288 ±0.020 2.04 ±0.225 0.562 ±0.186 2.42 ±0.333
ηv=0.3 1.38 ±0.617 0.330 ±0.025 4.40 ±1.15 1.37 ±0.083 5.45 ±0.465
ηv=0.3, τc=4 0.230 ±0.070 0.231 ±0.034 1.99 ±0.549 0.454 ±0.057 2.69 ±0.369
ηv=0.5, τc=4 0.374 ±0.148 0.368 ±0.043 3.95 ±0.319 0.777 ±0.122 4.61 ±0.717
ηv=0.3, τc=4 (X-Pool) 1.04 ±0.502 0.362 ±0.031 2.32 ±0.440 2.37 ±0.260 5.08 ±0.737
ηv=0.3, τc=4 (w/o pw) 0.233 ±0.046 0.261 ±0.035 2.58 ±0.617 1.09 ±0.226 4.85 ±0.805

Graph-UNets h=5,n=9,ηv=0.3,τc=4 1.49 ±0.451 0.400 ±0.020 4.63 ±0.647 2.42 ±0.458 7.36 ±1.62
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Table 27: Graph Theory Benchmark results on BA graphs, all results are obtained using our codebase.

Category Model SPsssd MCC Diameter SPss ECC

Baselines
(h=1)

n=1 0.004 ±0.001 2.81 ±0.142 0.092 ±0.021 − 0.128 ±0.006
n=5 0.007 ±0.002 3.65 ±0.660 0.098 ±0.014 − 0.091 ±0.011
n=10 0.011 ±0.006 3.72 ±0.376 0.122 ±0.038 − 0.080 ±0.004

MeGraph(h=5)
EdgePool(τc=2)

n=1 0.006 ±0.004 2.00 ±0.380 0.101 ±0.020 − 0.084 ±0.017
n=5 0.003 ±0.001 2.00 ±0.240 0.104 ±0.011 − 0.052 ±0.010

MeGraph
S-EdgePool

Variants
(h=5, n=5)

τc=3 0.007 ±0.003 1.77 ±0.403 0.089 ±0.008 − 0.126 ±0.027
ηv=0.3 0.013 ±0.004 1.67 ±0.333 0.084 ±0.008 − 0.086 ±0.005
ηv=0.3, τc=4 0.011 ±0.005 1.42 ±0.252 0.073 ±0.015 − 0.163 ±0.007
ηv=0.5, τc=4 0.008 ±0.004 1.71 ±0.403 0.074 ±0.009 − 0.156 ±0.021
ηv=0.3, τc=4 (X-Pool) 0.009 ±0.003 1.22 ±0.242 0.088 ±0.021 − 0.076 ±0.006
ηv=0.3, τc=4 (w/o pw) 0.009 ±0.003 1.42 ±0.209 0.068 ±0.017 − 0.068 ±0.017

Graph-UNets h=5,n=9,ηv=0.3,τc=4 0.024 ±0.009 2.84 ±0.777 0.091 ±0.01 − 0.179 ±0.0227

Table 28: Graph Theory Benchmark results on mixed, ER, Caveman and Star graphs, all results are obtained
using our codebase.

Category Model MCC ECC

mix ER Caveman Star mix ER

Baselines
(h=1)

n=1 3.46 ±0.211 2.91 ±0.206 0.015 ±0.004 0.144 ±0.031 0.316 ±0.003 0.346 ±0.006
n=5 3.29 ±0.261 3.35 ±0.205 0.014 ±0.003 0.078 ±0.021 0.228 ±0.008 0.289 ±0.008
n=10 3.51 ±0.323 3.53 ±0.375 0.018 ±0.006 0.065 ±0.005 0.212 ±0.008 0.414 ±0.102

MeGraph(h=5)
EdgePool(τc=2)

n=1 1.25 ±0.167 0.749 ±0.058 0.018 ±0.005 0.135 ±0.055 0.150 ±0.011 0.320 ±0.071
n=5 1.11 ±0.143 0.723 ±0.073 0.017 ±0.005 0.052 ±0.017 0.125 ±0.010 0.345 ±0.064

MeGraph
S-EdgePool

Variants
(h=5, n=5)

τc=3 1.07 ±0.034 0.714 ±0.039 0.017 ±0.002 0.072 ±0.016 0.137 ±0.013 0.232 ±0.035
ηv=0.3 0.908 ±0.153 0.627 ±0.090 0.026 ±0.007 0.125 ±0.026 0.128 ±0.014 0.248 ±0.012
ηv=0.3, τc=4 1.10 ±0.085 0.709 ±0.092 0.019 ±0.004 0.073 ±0.012 0.129 ±0.009 0.224 ±0.053
ηv=0.5, τc=4 1.12 ±0.219 0.722 ±0.128 0.026 ±0.008 0.058 ±0.010 0.147 ±0.017 0.219 ±0.042
ηv=0.3, τc=4 (X-Pool) 1.01 ±0.166 0.838 ±0.078 0.029 ±0.007 0.107 ±0.021 0.119 ±0.008 0.213 ±0.027
ηv=0.3, τc=4 (w/o pw) 1.13 ±0.059 0.622 ±0.073 0.019 ±0.003 0.075 ±0.015 0.126 ±0.016 0.307 ±0.062

Graph-UNets h=5,n=9,ηv=0.3,τc=4 1.06 ±0.171 0.859 ±0.092 0.041 ±0.007 0.057 ±0.010 0.153 ±0.012 0.34 5±0.133
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