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A Details of Downstream Tasks1

Table 1: The illustration of all downstream tasks.
Task Pretrained Modality Downstream Dataset Generalization Direction

Cross-Modal Audio-Visual AVE A−→V
Event Classification Audio-Visual-Text V−→A

Cross-Modal Audio-Visual AVVP A−→V
Event Localization Audio-Visual-Text V−→A

Cross-Modal Audio-Text AVS-S4 A−→T
Video Segmentation Audio-Visual-Text T−→A

Cross Modal & Dataset Audio-Visual AVE & AVVP A(AVE)−→V(AVVP)
Event Localization Audio-Visual-Text V(AVE)−→A(AVVP)

B Implementation and Training Details2

B.1 Pretraining Details3

Following previous work [1], we extract pool5 feature maps from sampled 16 RGB video frames by4

VGG-19 network for each 1s visual segment, then we use global average pooling over the 16 frames5

to generate visual feature maps as 7 × 7 × 512-D. Also, we use the VGG-like model pre-trained6

on AudioSet to extract 128-D audio features for each 1s audio segment. For text representations,7

we first design several prompt templates for each video label of the VGGSound-AVEL [2] dataset,8

and transform it into a descriptive sentence, see Section. B.3 for more details. Then we use Bert [3]9

as our text encoder and can get 768-D feature for each word. For all modalities, we extract their10

semantic features dimension as 256-D. We use three convolution networks to get visual-specific11

feature as T × 2048 and use an average pooling and Linear layer to compress it to apply mutual12

information minimization with the visual-semantic feature. Since audio and text do not contain13

spatial information, we use a Linear layer to get audio-specific and text-specific representations14

as T × 256, respectively. For Cross-CPC, we set the default prediction steps as 2. For the CLUB15

applied in each modality, we divide its training process into first forward (mainly used to optimize16

the approximation network qθ) and second forward (mainly used for MI minimization), during each17

epoch, the first forward will be updated 5 times and the second forward will be updated only once.18

We set the learning rate as 0.0004, the γ in MM-EMA as 0.99, and the batch size as 64. For the19

inactivated code reset mechanism, we set the Nre as 200.20

For three modalities of unified representation pre-training, most details are the same as previous21

stage. We need to apply Cross-CPC between every two modalities, i.e., visual-text, visual-audio, and22

audio-text. And the default prediction step is set as 1. All the above pre-training experiments are23

conducted on one NVIDIA A100 GPU.24
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B.2 Downstream Tasks25

Cross-Modal Event Classification: The AVE [1] dataset contains a total of 28 different event types,26

and the length of each audio and video is 10 seconds. Taking video-to-audio generalization (V2A)27

as an example: during downstream training, we use the Encoder obtained in the abovementioned28

pre-training phase to encode video input into the unified discrete space, the 10s second video can29

get discrete vectors of length 10. Then we use two Linear layers as the Decoder to map the discrete30

vectors into a 28-D feature space, and use the softmax function to find the event with the highest31

prediction probability and calculate the loss with Ground Truth. During the whole process, the32

parameters of the Encoder are frozen, only the Decoder will be updated. We set the learning rate33

as 2.5 × e−4, and the batch size as 256. After training, we directly replace the video with audio34

as input, and use the obtained Encoder and Decoder to predict events in the audio. The process of35

audio-to-video generalization (A2V) is similar.36

Cross-Modal Event Localization: The AVVP [4] dataset contains a total of 25 different event37

types, and the length of each audio and video is 10 seconds. Different from each video in the AVE38

dataset that only contains one event type, the audio and video in the AVVP dataset may contain39

multiple different event types. For example, in the same video, the audio information contains events40

A, B, while visual information contains events A, C, D. As with the previous task, we also use the41

pre-trained Encoder to map the video input to a unified discrete space, and then we use two layers of42

Linear as the Decoder to map the discrete vectors to a 25-dimensional space, activate with Sigmoid43

function and combine with Ground Truth to calculate the loss. Other settings are the same as the44

cross-modal event classification.45

Cross-Modal Video Segmentation: The AVS-S4 [5] dataset contains 4932 five-seconds videos46

over 23 categories, including humans, animals, vehicles, and musical instruments. As the same with47

VGGSound-AVEL dataset, we transform the text label corresponding to each video into a descriptive48

sentence. Taking audio-to-text generalization (A2T) as an example: during downstream training, we49

use the Encoder obtained in Audio-Text or Audio-Visual-Text pre-training phase to encode audio50

input into the unified discrete space. Then we use the architecture proposed in AVS [5] as our visual51

encoder, audio-video interaction module, and video decoder. During training, the audio encoder52

is frozen while others are trainable. We use the Adam optimizer with a learning rate of 1e−4 and53

the batch size is set to 4. After training, we directly replace the audio with text as input to test the54

performance of text-based video segmentation. The process of text-to-audio generalization (T2A) is55

similar.56

Cross Modal&Dataset Event Localization: To further prove that our model is widely applicable57

in various downstream tasks, we also test the cross-modal generalization ability in cross-dataset58

scenarios. There are 12 common event categories shared in AVE and AVVP datasets: dog, car,59

helicopter, violin fiddle, frying food, motorcycle, acoustic guitar, banjo, baby cry, chainsaw, cat,60

accordion. During the downstream task, we use the video or audio modality in the AVE training61

set to train the localization model in a weakly-supervised manner, and then directly test the event62

localization performance of the opposed modality in the AVVP val set. We choose the F1 score as63

the evaluation metric. The other training details are the same as the Cross-Modal Event Localization64

task. All the above downstream tasks are training and evaluating on one NVIDIA A100 GPU.65

B.3 Text Prompts66

We design different prompt templates for different event categories in VGGSound-AVEL and AVS-S467

datasets. For example, for event race car, we design the following prompts: The roar of a high-speed68

race car engine.; The race car is running on the road and making a loud engine sound.; There is69

a high-speed race car running on the road. For event playing violin, we can design the following70

prompts: The sweet and melodious sound of a violin being played.; The player is playing the violin.;71

Someone is playing beautiful music on the violin. For different kinds of events, we will design72

several unique templates for each event type according to their characteristics. Each piece of data73

will randomly choose a prompt from these templates as the audio-visual description.74
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Figure 1: The overview of our proposed MM-EMA. Step 1, we use the cross-attention to obtain
composite features and use EMA to update the latent VQ codes. Step 2, we use the modified
commitment loss to update the representation of modality A and B. After several steps, these different
modalities will be aggregated together, resulting in some redundant discrete code which will be reset.

Table 2: Ablation studies of audio-visual-text pre-training on three downstream tasks.

Method
VGGsounds-AVEL 40K

AVE
V→A A→V

AVVP
V→A A→V

AVE→AVVP
V→A A→V

AVS-S4 (mIoU)
A→T T→A

Encoder Frozen 54.1 55.0 63.4 71.0 53.0 52.4 78.0 77.7
Encoder Fine-tuned 44.5 54.9 54.0 50.8 44.5 50.0 77.8 77.1

C Details of Multi-Modal EMA75

During MM-EMA, we use the cross-attention vectors rbi and rai as the bridge to help the two modalities76

move closer to each other. At the initial training, the codes mapped from different modalities are not77

yet overlapped, thus the MM-EMA algorithm is similar to the original EMA equation:78
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with the help of the rbi , rai and the modified commitment loss, the distance between semantic features79

zai and zbi is gradually decreasing. With the training progress, more and more latent discrete codes80

can be mapped from two modalities, thus the MM-EMA algorithm can be written as:81
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Finally, the information with the same semantics is converged into the same latent discrete code. This82

process will generate many redundant codes that will never be utilized, as shown in Fig. 1, thus, it is83

obliged to use the code reset mechanism to reset these quantized vectors.84

D More Ablation Studies85

D.1 The Effect of Whether Froze Encoder in Downstream Tasks86

To evaluate whether the parameters of the pre-trained encoder should be frozen in downstream tasks,87

we conduct a series of experiments, as shown in Table. 2. The results demonstrate a significant88

decline in performance when the encoder is fine-tuned during these tasks. We argue the reason is89

that when the encoder parameters are not frozen, gradient updates from the downstream tasks may90

lead to updates in the encoder corresponding to the modality during training, thereby disrupting the91

alignment relationship between different modalities in the latent space.92

3



Table 3: Ablation studies of the number of Cross-CPC prediction steps on three downstream tasks.

Prediction Steps
VGGsounds-AVEL 40K

AVE
V→A A→V

AVVP
V→A A→V

AVE→AVVP
V→A A→V

step = 1 54.1 55.0 63.4 71.0 53.0 52.4
step = 2 51.8 54.4 58.2 72.2 50.1 48.2
step = 3 51.4 53.5 59.7 70.3 51.8 49.2
step = 4 52.7 51.8 50.0 62.9 47.4 40.1

Table 4: Ablation studies of Cross-CPC and InfoNCE on two downstream tasks.

Method
VGGsounds-AVEL 40K

AVE
V→A A→V

AVVP
V→A A→V

Cross-CPC 54.1 55.0 63.4 71.0
InfoNCE 54.2 55.9 46.5 39.7

D.2 The Effect of the Prediction Steps in Cross-CPC93

In this paper, we set the default prediction step in the audio-visual pre-training experiments as 2, while94

setting it in the audio-visual-text and audio-text pre-training experiments as 1. To further illustrate the95

impact of the number of prediction steps on the effectiveness of unified representation, we conduct96

a series of experiments on audio-visual-text pre-training, as shown in Table. 3. Our findings reveal97

that when the prediction steps are less than 4, the model’s performance in all downstream tasks98

exhibits only minor fluctuations. However, a significant decline in performance is observed when the99

prediction step reaches 4. This indicates that an excessive number of prediction steps can hinder the100

model’s ability to learn fine-grained multimodal alignment relationships, as predicting the distant101

future often proves to be more challenging.102

D.3 Replace Cross-CPC with InfoNCE103

To further evaluate the effectiveness of our proposed Cross-CPC, we replace it with a traditional104

InfoNCE loss. We first compress the sequence audio, visual, and text information into single vectors105

and then directly apply contrastive learning among these three modalities. As we can see in Table. 4,106

when the Cross-CPC is replaced with InfoNCE, the model achieves comparable performance in107

cross-modal event classification tasks, but exhibits inferior performance in event localization tasks.108

The results demonstrate that in the case of coarse-grained alignment, our proposed Cross-CPC has109

similar effects to InfoNCE. However, in comparison to InfoNCE, our method attains fine-grained110

alignment of distinct modality information, which further demonstrates the effectiveness of our111

approach in multi-modal sequence unified representation.112

E More Qualitative Analyses113

Visualization of Latent Discrete Codes: In order to illustrate the process of our method aligning114

different modalities in the latent space more intuitively, we visualize the discrete latent codes obtained115

from different training epochs and compare our method with the baseline model. As shown in Fig. 2,116

we can see that there exist many inactivated codes in the baseline model in the early stage, with117

the audio and visual modalities converging separately rather than aligning. In contrast, our method118

effectively aligns these distinct modalities. The figure also showcases the efficacy of our inactivated119

code reset mechanism. In epoch 1, our approach leaves only a few codes unactivated, which are120

promptly reactivated in subsequent epochs. Meanwhile, the baseline model continues to exhibit a121

large number of inactivated discrete codes.122

Visualization of Segmentation Results: Also we present more visualization results of A2T and123

T2A generalization of our model on AVS-S4 dataset. As we can see in Fig. 3 and 4, our model can124

accurately localize the area where the sound is produced even though the test modality has never125

been seen before.126

4



Figure 2: The visualization of latent codes of our model and the baseline model after training
different epochs. Red represents audio-only code mapping, blue represents visual-only code mapping,
purple represents audio-visual co-mapping, and black means that the code has not been activated.

Visualization of Fine-grained Prediction Score: To further illustrate that our model has fine-grained127

cross-modal generalization capabilities, we visualize the prediction results of the model on the AVVP128

dataset, as shown in Fig. 5. For different temporal segments, our model predict different probabilities129

for the occurrence of different events, and can accurately predict the types of events that appear in130

unknown modalities and the moments when these events occur.131

Figure 3: More visualization results of audio-to-text generalization on AVS-S4 dataset.

F Discussion132

During the pre-training phase, our goal is to map information with the same semantics from different133

modalities together. To achieve this, we first utilize DCID to extract semantic information from134

various modalities, avoiding the introduction of modal-specific information that may affect alignment135

results. We then employ Cross-CPC for contrastive learning prediction, aligning different modalities136

at a fine-grained level. Subsequently, MM-EMA can assist in mapping these segments with identical137

information to the same discrete code. Once the training is complete, we can obtain the multi-modal138

unified representation. Then in the downstream training, we can assign additional knowledge for the139

known modality, such as event label, and relation with visual objects. Therefore, when the model140

is dealing with unknown modalities, by mapping it into a unified space, the corresponding labels141

learned from the known modality can be obtained, thus achieving cross-modal generalization and142

knowledge transferring.143
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Figure 4: More visualization results of text-to-audio generalization on AVS-S4 dataset.

(a) video-to-audio generalization (b) audio-to-video generalizatoin

Figure 5: Visualization of the prediction scores on cross-modal event localization tasks. In each
subfigure, the vertical axis represents temporal dimension, and the horizontal axis represents event
types. The top layer is the possible score of each event at each segment predicted by the model. The
middle layer is the ground truth label. The bottom layer represents the results of multiplying the
prediction scores and ground truth.
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