
SEENN:
Towards temporal spiking early-exit neural networks

Anonymous Author(s)
Affiliation
Address
email

Abstract

Spiking Neural Networks (SNNs) have recently become more popular as a bio-1

logically plausible substitute for traditional Artificial Neural Networks (ANNs).2

SNNs are cost-efficient and deployment-friendly because they process input in both3

spatial and temporal manner using binary spikes. However, we observe that the4

information capacity in SNNs is affected by the number of timesteps, leading to an5

accuracy-efficiency tradeoff. In this work, we study a fine-grained adjustment of6

the number of timesteps in SNNs. Specifically, we treat the number of timesteps as7

a variable conditioned on different input samples to reduce redundant timesteps for8

certain data. We call our method Spiking Early-Exit Neural Networks (SEENNs).9

To determine the appropriate number of timesteps, we propose SEENN-I which10

uses a confidence score thresholding to filter out the uncertain predictions, and11

SEENN-II which determines the number of timesteps by reinforcement learning.12

Moreover, we demonstrate that SEENN is compatible with both the directly trained13

SNN and the ANN-SNN conversion. By dynamically adjusting the number of14

timesteps, our SEENN achieves a remarkable reduction in the average number of15

timesteps during inference. For example, our SEENN-II ResNet-19 can achieve16

96.1% accuracy with an average of 1.08 timesteps on the CIFAR-10 test dataset.17

1 Introduction18

Deep learning has revolutionized a range of computational tasks such as computer vision and natural19

language processing [1] using Artificial Neural Networks (ANNs). These successes, however, have20

come at the cost of tremendous computational demands and high latency [2]. In recent years, Spiking21

Neural Networks (SNNs) have gained traction as an energy-efficient alternative to ANNs [3,4]. SNNs22

infer inputs across a number of timesteps as opposed to ANNs, which infer over what is essentially a23

single timestep. Moreover, during each timestep, the neuron in an SNN either fires a spike or remains24

silent, thus making the output of the SNN neuron binary and sparse. Such spike-based computing25

produces calculations that substitute multiplications with additions.26

In the field of SNN research, there are two main approaches to getting an SNN: (1) directly training27

SNNs from scratch and (2) converting ANNs to SNNs. Direct training seeks to optimize an SNN28

using methods such as spike timing-based plasticity [5] or surrogate gradient-based optimization [6,7].29

In contrast, the ANN-SNN conversion approach [8, 9, 10, 11, 12, 13] uses the feature representation30

of a pre-trained ANN and aims to replicate it in the corresponding SNN. Both methods have the31

potential to achieve high-performance SNNs when implemented correctly.32

Despite the different approaches, both training-based and conversion-based SNNs are limited by33

binary activations. As a result, the key factor that affects their information processing capacity is the34

number of timesteps. Expanding the number of timesteps enables SNNs to capture more features in35

the temporal dimension, which can improve their accuracy in conversion and training. However, a36

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.



A Verification of Assumption 3.1460

In Assumption 3.1, we conjecture that if a correct prediction is made by ft(x), then for all t′ ≥ t that461

ft′(x) is also correct. And based on this assumption, we propose the equation to compute AET, i.e.462

Eq. (4). Here, to validate if our assumption holds, we propose another metric: empirical AET, given463

by464

ÃET =
1

N

(
N∑
i=1

t̃i

)
, (13)

where t̃i is the actual earliest number of timesteps that predicts the correct class for the i-th sample.465

Note that, similar to AET, if the network cannot make correct predictions in any timesteps, then we466

set t̃i to the maximum number of timesteps.467

Consider an example that does not satisfy Assumption 3.1, for example, the prediction results for the468

first 4 timesteps are {False, True, False, True}. The empirical AET will obtain 2 while the AET will469

obtain 2− 3 + 4 = 3. Therefore, by comparing the difference between the AET and the empirical470

AET we can verify if Assumption 3.1 holds. Table 5, as shown below, demonstrates the AET and the471

empirical AET comparison across different models and datasets. We can find that difference is very472

small, often less than 0.05. The only dataset that creates a slightly larger difference is CIFAR10-DVS.473

Indeed, the event-stream dataset may provide more variations over time. Nevertheless, the potential474

for early exit is still high.475

Table 5: Comparison between ATE and empirical AET across models and datasets.

Model Dataset maxT AET ÃET

Direct Training of SNNs

ResNet-19 CIFAR-10 4 1.1309 1.1188
ResNet-19 CIFAR-100 4 1.6075 1.5616
ResNet-34 ImageNet 6 2.9026 2.7781
SEW-ResNet-34 ImageNet 4 2.0646 2.0092
VGGSNN CIFAR10-DVS 10 3.096 2.774

B Hardware Evaluation476

For latency measurement, we directly tested on GPU with the Pytorch framework. The latency477

measurement is computed across the whole test dataset. For example, the throughput calculation is478

given by479

Throughput =
Test set inference time
Number of test samples

. (14)

For energy estimation, we adopt the conventional way to measure the addition and multiplication480

operations for the entire SNN inference. The addition costs 0.9pJ and the multiplication costs 4.6pJ ,481

respectively.482

C Architecture Details483

The major network architecture we adopt in this work is ResNet-series architecture. There are many484

variants of ResNets used in the field of SNNs, e.g. ResNet-18, ResNet-19, and ResNet-20. They are485

also mixedly referred to in existing literature [17, 19, 26, 49]. Therefore, to avoid confusion in these486

ResNet architectures, in this section, we sort out the details of the network configurations.487

Table 6 summarizes the different ResNets we used in our CIFAR experiments. For ImageNet models,488

we use the standard ResNet-34 [49] and SEW-ResNet-34 [52] which are well-defined. The basic489

difference between the four ResNets is the channel configurations and the block configurations.490

Therefore, their actual FLOPs difference is a lot larger than the difference suggested by their names.491

For example, our policy network (ResNet-8) only contains 0.547% number of operations of ResNet-19.492

Therefore, the cost of running SEENN-II is almost negligible.493

13



Table 6: The architecture details of ResNets. * denotes that the first residual block contains downsample layer
to reduce the feature resolution.

ResNet-8 ResNet-18
conv1 3× 3, 16, s1 3× 3, 64, s1

stage1
(
3× 3, 16
3× 3, 16

)
× 1

(
3× 3, 64
3× 3, 64

)
× 2

stage2
(
3× 3, 32
3× 3, 32

)∗

× 1

(
3× 3, 128
3× 3, 128

)∗

× 2

stage3
(
3× 3, 64
3× 3, 64

)∗

× 1

(
3× 3, 256
3× 3, 256

)∗

× 2

stage4 N/A
(
3× 3, 512
3× 3, 512

)∗

× 2

pooling Global average pooling

classifier (64, O) FC (512, O) FC
ResNet-19 ResNet-20

conv1 3× 3, 128, s1 3× 3, 16, s1

stage1
(
3× 3, 128
3× 3, 128

)
× 3

(
3× 3, 16
3× 3, 16

)
× 2

stage2
(
3× 3, 256
3× 3, 256

)∗

× 3

(
3× 3, 32
3× 3, 32

)∗

× 2

stage3
(
3× 3, 512
3× 3, 512

)∗

× 2

(
3× 3, 64
3× 3, 64

)∗

× 2

pooling Global average pooling

classifier (512, O) FC (64, O) FC

14


