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Abstract
In this paper we study the second-order optimality of decentralized stochastic1

algorithm that escapes saddle point efficiently for nonconvex optimization prob-2

lems. We propose a new pure gradient-based decentralized stochastic algorithm3

PEDESTAL with a novel convergence analysis framework to address the techni-4

cal challenges unique to the decentralized stochastic setting. Our method is the5

first decentralized stochastic algorithm to achieve second-order optimality with6

non-asymptotic analysis. We provide theoretical guarantees with the gradient com-7

plexity of Õ(ϵ−3) to find O(ϵ,
√
ϵ)-second-order stationary point, which matches8

state-of-the-art results of centralized counterparts or decentralized methods to find9

first-order stationary point. We also conduct two decentralized tasks in our exper-10

iments, a matrix sensing task with synthetic data and a matrix factorization task11

with a real-world dataset to validate the performance of our method.12

1 Introduction13

Decentralized optimization is a class of distributed optimization that trains models in parallel across14

multiple worker nodes over a decentralized communication network. Decentralized optimization has15

recently attracted increased attention in machine learning and emerged as a promising framework to16

solve large-scale tasks because of its capability to reduce communication costs. In the conventional17

centralized paradigm, all worker nodes need to communicate with the central node, which results in18

high communication cost on the central node when the number of nodes is large or the transmission19

between the center and some remote nodes suffers network latency. Conversely, decentralized20

optimization avoids these issues since each worker node only communicates with its neighbors.21

Although decentralized optimization has shown advantageous performance in many previous works22

(Lian et al. [2017], Tang et al. [2018]), the study of second-order optimality for decentralized23

stochastic optimization algorithms is still limited. Escaping saddle point and finding local minima is24

a core problem in nonconvex optimization since saddle point is a category of first-order stationary25

point that can be reached by many gradient-based optimizers such as gradient descent but it is not the26

expected point to minimize the objective function.27

Perturbed gradient descent (Jin et al. [2017]) and negative curvature descent (Xu et al. [2018],28

Allen-Zhu and Li [2018]) are two primary pure gradient-based methods (not involving second-order29

derivatives) to achieve second-order optimality. Typically, perturbed gradient descent method is30

composed of a descent phase and an escaping phase. If the norm of gradient is large, the algorithm31

will run the descent phase as normal. Otherwise it will run the escaping phase to discriminate whether32

the candidate first-order stationary point is a saddle point or local minimum. Negative curvature33

descent method escapes saddle point by computing the direction of negative curvature at the candidate34

point. If it is categorized as a saddle point then the algorithm will update along the direction of35

negative curvature. Generally it involves a nested loop to perform the negative curvature subroutine.36

Currently, the solution to the second-order optimality of decentralized problem in deterministic37

setting has been proposed. Perturbed Decentralized Gradient Tracking (PDGT) (Tziotis et al. [2020])38
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is a decentralized deterministic algorithm adopting the perturbed gradient descent strategy to achieve39

second-order stationary point. However, it is expensive to compute full gradients for large machine40

learning models. It is crucial to propose a stochastic algorithm to obtain second-order optimality41

for decentralized problems. Besides, there are some drawbacks of PDGT to make it less efficient42

and hard to be generalized to the stochastic setting. These drawbacks are also the key challenges to43

achieve second-order optimality for decentralized algorithms, which are listed as follows:44

(1) PDGT runs fixed numbers of iterations in descent phase and escaping phase such that the phases45

of all nodes can be changed simultaneously. This strategy works because the descent is easy to be46

estimated in deterministic setting. Nonetheless, the exact descent of stochastic algorithm over a fixed47

number of iterations is hard to be bounded because of randomness and noises. If the fixed number is48

not large enough it is possible that the averaged model parameter is not a first-order stationary point.49

If the fixed number is as large as the expected number of iterations to achieve first-order stationary50

point, the algorithm will become less efficient as it is probably stuck at a saddle point for a long51

time before drawing the perturbation, especially in the second and later descent phase. Specifically,52

applying fixed number of iterations in each phase results in the complexity of at least Õ(ϵ−4.5) (see53

Supplementary Material), which is higher than Õ(ϵ−3) of our method. Therefore, we are motivated54

to propose an algorithm that can change phases adaptively (based on runtime gradient norm) and55

independently (not required to consider status on other nodes or notify other nodes).56

(2) In PDGT the perturbations on all nodes are drawn from the same random seed. Besides, a57

coordinating protocol involving broadcast and aggregation is used to compute the averaged model58

parameter and the descent of overall loss function to discriminate the candidate point. These strategies59

together with the fixed number of iterations act as a hidden coordinator to make PDGT discriminate60

saddle point in the same way as centralized algorithms. However, when the number of worker61

nodes is large it is time-consuming to perform broadcast or aggregation over the whole decentralized62

network. Moreover, when generalized to stochastic setting the changing of phase is not guaranteed63

to be synchronized. Additionally, we will note in the Supplementary Material that the consensus64

error 1
n

∑n
i=1 ∥x

(i)
t − x̄t∥2 is another factor to impact the effectiveness of perturbed gradient descent,65

which is not present in centralized problems. All above issues are theoretical difficulties to study and66

ensure second-order optimality for decentralized stochastic algorithms.67

(Vlaski and Sayed [2020]) proves the theoretical guarantee of second-order optimality for decen-68

tralized stochastic algorithm with perturbed gradient descent. However, it does not provide a69

non-asymptotic analysis to estimate the convergence rate or gradient complexity. The effectiveness of70

the result relies on a sufficiently small learning rate, and it does not present a specific algorithm. The71

analysis is based on the assumption that the iteration formula can be approximated by a centralized72

update scheme when the learning rate is small enough. Nevertheless, in practice it is difficult to73

maintain an ideally small learning rate, and the iterative update process can be more complex as74

previously mentioned. To our best knowledge, the second-order optimality issue of decentralized75

stochastic algorithm with non-asymptotic analysis is still not solved. Therefore, we are motivated to76

study this important and challenging issue and raise the following questions:77

Can we design a decentralized stochastic optimization algorithm with non-asymptotic analysis to find78

local minima efficiently? Is the algorithm still effective to discriminate saddle point even if each node79

can change its phase adaptively and independently without any coordinating protocols?80

The answer is affirmative. In this paper, we propose a novel gradient-based algorithm named81

PErturbed DEcentralized STORM ALgorithm (PEDESTAL) which is the first decentralized stochastic82

algorithm to find second-order stationary point. We adopt perturbed gradient descent to ensure the83

second-order optimality and use STORM (Cutkosky and Orabona [2019]) estimator to accelerate the84

convergence. We provide completed convergence analysis to guarantee the second-order optimality85

theoretically. More details about the reason of choosing perturbed gradient descent and technical86

difficulties are discussed in Section 3.2. Next we will introduce the problem setup in this paper.87

We focus on the following decentralized optimization problem:88

min
x

f(x) =
1

n

n∑
i=1

fi(x), fi(x) = Eξ∼Di
Fi(x, ξ) (1)

where n is the number of worker nodes in the decentralized network and fi is the local loss function89

on i-th worker node. Here fi is supposed to take the form of stochastic expectation over local data90

distribution Di, which covers a variety of optimization problems including finite-sum problem and91
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online problem. Data distributions on different nodes are allowed to be heterogeneous. The objective92

function f is nonconvex such that saddle points probably exist.93

The goal of our method is to find O(ϵ, ϵH)-second-order stationary point of problem 1, which94

is defined by the point x satisfying ∥∇f(x)∥ ≤ ϵ and min eig(∇2f(x)) ≥ −ϵH , where eig(·)95

represents the eigenvalues. The classic setting is ϵH =
√
ϵ.96

We summarize the contributions of this paper as follows:97

• We propose a novel algorithm PEDESTAL, which is the first decentralized stochastic98

gradient-based algorithm to achieve second-order optimality with non-asymptotic analysis.99

• We provide a new analysis framework to support changing phases adaptively and indepen-100

dently on each node without any coordinating protocols involving broadcast or aggregation.101

We also address certain technical difficulties unique to decentralized optimization to justify102

the effectiveness of perturbed gradient descent in discriminating saddle point.103

• We prove that our PEDESTAL achieves the gradient complexity of Õ(ϵ−3 + ϵ−5
H ) to find104

O(ϵ, ϵH)-second-order stationary point. Particularly, PEDESTAL achieves the gradient105

complexity of Õ(ϵ−3) in the classic setting ϵH =
√
ϵ, which matches state-of-the-art results106

of centralized counterparts or decentralized methods to find first-order stationary point.107

2 Related Work108

In this section we will introduce the background of related works. The comparison of important109

features is shown in Table 1.110

2.1 Decentralized Algorithms for First-Order Optimality111

Decentralized optimization is an efficient framework to solve problem 1 collaboratively by multiple112

worker nodes. In each iteration a worker node only needs to communicate with its neighbors. One of113

the best-known decentralized stochastic algorithm is D-PSGD (Lian et al. [2017]), which integrates114

average consensus with local stochastic gradient descent steps and shows competitive result to115

centralized SGD. The ability to address Non-IID data is a limitation of D-PSGD and some variants of116

D-PSGD are studied to tackle the data heterogeneity issue, such as D2 (Tang et al. [2018]) by storing117

previous status and GT-DSGD (Xin et al. [2021b]) by using gradient tracking (Xu et al. [2015],118

Lorenzo and Scutari [2016]). D-GET (Sun et al. [2020]) and D-SPIDER-SFO (Pan et al. [2020])119

improve the gradient complexity of D-PSGD from O(ϵ−4) to O(ϵ−3) by utilizing variance reduced120

gradient estimator SPIDER (Fang et al. [2018]). GT-HSGD also achieves gradient complexity of121

O(ϵ−3) by combining gradient tracking and STORM gradient estimator (Cutkosky and Orabona122

[2019]). SPIDER requires a large batchsize of O(ϵ−1) on average and a mega batchsize of O(ϵ−2)123

periodically. In contrast, STORM only requires a large batch in the first iteration. After that the124

batchsize can be as small as O(1), which makes STORM more efficient to be implemented in practice.125

2.2 Centralized Algorithms for Second-Order Optimality126

Perturbed gradient descent is a simple and effective method to escape saddle points and find local127

minima. PGD (Jin et al. [2017]) is the representative of this family of algorithms, which achieves128

second-order optimality in deterministic setting. It draws a perturbation when the gradient norm129

is small. If this point is a saddle point, the loss function value will decrease by a certain threshold130

within a specified number of iterations (i.e., breaking the escaping phase) with high probability.131

Otherwise, the candidate point is regarded as a second-order stationary point. In stochastic setting,132

Perturbed SGD perturbs every iteration and suffers a high gradient complexity of O(ϵ−8) to achieve133

O(ϵ,
√
ϵ)-second-order stationary point and the gradient complexity hides a polynomial factor of134

dimension d. CNC-SGD requires a Correlated Negative Curvature assumption and the gradient135

complexity of Õ(ϵ−5) to achieve the classic second-order optimality. SSRGD (Li [2019]) adopts the136

same two-phase scheme as PGD but uses the moving distance as the criterion to discriminate saddle137

point in the escaping phase. It also takes advantage of variance reduction to improve the gradient138

complexity to Õ(ϵ−3.5). Pullback (Chen et al. [2022]) proposes a pullback step to further enhance the139

gradient complexity to Õ(ϵ−3), which matches the best result of reaching first-order stationary point.140

2.3 Stochastic Gradient Descent141

A branch of study of stochastic gradient descent argues that SGD can avoid saddle point under certain142

conditions. However, that is completely different from the problem we focus on. In this paper we143

propose a method that can find local minima effectively for a general problem 1, while escaping144

saddle point by stochastic gradient itself depends on some additional assumptions. For example,145
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Name Averaged Batchsize Gradient Complexity Classic Setting

D-PSGD [12] O(1) O(ϵ−4) -
GT-DSGD [22] O(1) O(ϵ−4) -

D-GET [16] O(ϵ−1) O(ϵ−3) -
D-SPIDER-SFO [15] O(ϵ−1) O(ϵ−3) -

GT-HSGD [21] O(1) O(ϵ−3) -

SGD+Neon2 [1] O(1) Õ(ϵ−4 + ϵ−2ϵ−3
H + ϵ−5

H ) Õ(ϵ−4)
SCSG+Neon2 [1] O(ϵ−0.5) Õ(ϵ−10/3 + ϵ−2ϵ−3

H + ϵ−5
H ) Õ(ϵ−3.5)

Natasha2+Neon2 [1] O(ϵ−2) Õ(ϵ−3.25 + ϵ−3ϵ−1
H + ϵ−5

H ) Õ(ϵ−3.5)
SPIDER-SFO+ [5] O(ϵ−1) Õ(ϵ−3 + ϵ−2ϵ−2

H + ϵ−5
H ) Õ(ϵ−3)

Perturbed SGD [6] O(1) O(ϵ−4 + ϵ−16
H ) O(ϵ−8)

CNC-SGD [4] O(1) Õ(ϵ−4 + ϵ−10
H ) Õ(ϵ−5)

SSRGD [11] O(ϵ−1) Õ(ϵ−3 + ϵ−2ϵ−3
H + ϵ−1ϵ−4

H ) Õ(ϵ−3.5)
Pullback [2] O(ϵ−1) Õ(ϵ−3 + ϵ−6

H ) Õ(ϵ−3)

PDGT [18] Full - -
PEDESTAL-S (ours) O(1) Õ(ϵ−3), ϵH ≥ ϵ0.2 -
PEDESTAL (ours) O(ϵ−3/4) Õ(ϵ−3 + ϵ−5

H ) Õ(ϵ−3)

Table 1: The comparison of important properties between related algorithms and our PEDESTAL.
Column “Averaged Batchsize" is computed when ϵH =

√
ϵ. Column “Classic Setting" refers

to the gradient complexity under the classic condition ϵH =
√
ϵ. The first group of algorithms

are decentralized methods achieving first-order optimality. The second group of algorithms are
centralized methods achieving second-order optimality. The last group of algorithms are decentralized
methods achieving second-order optimality. PEDESTAL-S is a special case of PEDESTAL with
O(1) batchsize. The complexity of PDGT is not shown because it is not stochastic.

(Mertikopoulos et al. [2020]) requires the noise of gradient should be uniformly excited. According146

to our experimental result in Section 5, we can see in some cases stochastic gradient descent cannot147

escape saddle point effectively or efficiently. Besides, the gradient noise in variance reduced methods148

is reduced in order to accelerate the convergence. Our experimental results indicate that the gradient149

noise in variance reduced algorithms is not as good as SGD to serve as the perturbation to avoid150

saddle point. Therefore, it is necessary to study the second-order stationary point for variance reduced151

algorithms so as to enable both second-order optimality and fast convergence.152

3 Method153

3.1 Algorithm154

In this section, we will introduce our PEDESTAL algorithm, which is demonstrated in Algorithm 1.155

Suppose there are n worker nodes in the decentralized communication network connected by a weight156

matrix W . The initial value of model parameters on all nodes are identical and equal to x0. x(i)
t , v(i)t157

and y
(i)
t are the model parameter, gradient estimator and gradient tracker on the i-th worker node158

in iteration t. z(i)t is the temporary model parameter that is awaiting communication. x̄t, v̄t and ȳt159

are corresponding mean values over all nodes. Counter esc(i) counts the number of iterations in the160

current escaping phase on the i-th worker node, which is also the indicator of current phase. When it161

runs the descent phase on the i-th worker node esc(i) is set to −1; otherwise esc(i) ≥ 0.162

In the first iteration, the gradient estimator is computed based on a large batch size with b0. Be-163

ginning from the second iteration, the gradient estimator v
(i)
t is calculated by small mini-batch164

of samples according to the update rule of STORM, which can be formulated by line 6 in Al-165

gorithm 1 where β is a hyperparameter of STORM algorithm. Notation ∇Fi(x
(i)
t , ξ

(i)
t ) repre-166

sents the stochastic gradient obtained from a batch of samples ξ
(i)
t , which can be written as167

∇Fi(x
(i)
t , ξ

(i)
t ) = (1/|ξ(i)t |)

∑
j∈ξ

(i)
t

Fi(x
(i)
t , j).168

After calculating v
(i)
t , each worker node communicates with its neighbors and update the gradient169

tracker y(i)t . Inspired by the framework of Perturbed Gradient Descent, our REDESTAL method also170

consists of two phase, the descent phase and the escaping phase. If worker node i is in the descent171
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Algorithm 1 Perturbed Decentralized STORM Algorithm (PEDESTAL)

Input: initial value x
(i)
0 = x0, v(i)−1 = 0, y(i)−1 = 0, esc(i) = −1.

Parameter: b0, b1, η, β, r, Cv , Cd, CT .
1: On i-th node:
2: for t = 0, 1, . . . , T − 1 do
3: if t = 0 then
4: Compute v

(i)
0 = ∇Fi(x0, ξ

(i)
0 ) with |ξ(i)0 | = b0.

5: else
6: Compute v

(i)
t = ∇Fi(x

(i)
t , ξ

(i)
t ) + (1− β)(v

(i)
t−1 −∇Fi(x

(i)
t−1, ξ

(i)
t )) with |ξ(i)t | = b1.

7: end if
8: Communicate and update the gradient tracker: y(i)t =

∑n
j=1 wij(y

(j)
t−1 + v

(j)
t − v

(j)
t−1).

9: if esc(i) = −1 and ∥y(i)t ∥ ≤ Cv then
10: Draw a perturbation ξ ∼ B0(r) and update z

(i)
t = x

(i)
t + ξ.

11: Save x
(i)
t as x̃(i) and set esc(i) = 0.

12: else
13: Update z

(i)
t = x

(i)
t − ηy

(i)
t .

14: end if
15: Communicate and update the model parameter: x(i)

t+1 =
∑n

j=1 wijz
(j)
t .

16: if esc(i) ≥ 0 then
17: Reset esc(i) = −1 if ∥x(i)

t+1 − x̃(i)∥ > Cd else update esc(i) = esc(i) + 1.
18: end if
19: end for
Return: x̄t−CT

if there are at least n
10 nodes satisfying esc(i) ≥ CT .

phase and the norm ∥y(i)t ∥ is smaller than the given threshold Cv, then it will draw a perturbation172

ξ uniformly from B0(r) and update z
(i)
t = x

(i)
t + ξ. The phase is switched to escaping phase and173

esc(i) is set to 0. Anchor x̃(i) = x
(i)
t is saved and will be used to discriminate whether the escaping174

phase is broken. After this iteration counter esc(i) will be added by 1 in each following iteration until175

the moving distance from the anchor on i-th worker node (i.e., ∥x(i)
t − x̃(i)∥) is larger than threshold176

Cd for some t, which breaks the escaping phase and turn back to descent phase. If the condition of177

drawing perturbation is not satisfied, z(i)t is updated by z
(i)
t = x

(i)
t − ηy

(i)
t no matter which phase is178

running currently.179

If the i-th worker node’s counter esc(i) is larger than the threshold CT , it indicates that x̄t−CT
is a180

candidate second-order stationary point. When at least n
10 nodes satisfy the condition esc(i) ≥ CT ,181

the algorithm is terminated. From Algorithm 1 we can see the decision of changing phases on each182

node only depends on its own status, which is adaptive and independent. Coordinating protocol183

including broadcast or aggregation is not required.184

3.2 Discussion185

Here we will discuss the insight of the algorithm design and compare the differences between our186

method and related works. Some novel improvements are the key to the questions in Section 1.187

3.2.1 Perturbed Gradient Descent or Negative Curvature Descent188

Perturbed gradient descent and negative curvature descent are two of the most widely used pure189

first-order methods to find second-order stationary points. In PEDESTAL algorithm, we adopt the190

strategy of perturbed gradient descent rather than negative curvature descent because of the following191

reasons. First, negative curvature descent methods such as Neon (Xu et al. [2018]) and Neon2192

(Allen-Zhu and Li [2018]) involves a nested loop to execute the negative curvature subroutine to193

recognize if a first-order stationary point is a local minimum. However, in decentralized setting, it is194

possible that the gradient norms on some nodes are smaller than the threshold while others are not.195

Therefore, some nodes will execute the negative curvature subroutine but its neighbors may not. In196

this case neighbor nodes need to wait for the nodes running negative curvature subroutines and there197

will be idle time on neighbor nodes. Besides, the analysis of negative curvature descent methods198

rely on the precision of the negative curvature direction. It is unknown if the theoretical results are199

still effective when only a fraction of nodes participate in the computation of negative curvature200

direction while the others use the gradient. In contrast, perturbed gradient descent only requires a201

simple operation of drawing perturbation, which is more suitable for decentralized algorithms.202
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3.2.2 Stepsize and Batchsize203

In Pullback, a dynamic stepsize ηt = η/∥vt∥ in the descent phase where η = O(ϵ) and vt is204

the gradient estimator, which is the same as SPIDER (Fang et al. [2018]). In the escaping phase,205

Pullback adopts a larger stepsize of O(1) in the escaping phase and a special pullback stepsize in206

the last iteration, which is the key to improve the gradient complexity. Different from Pullback,207

in Algorithm 1 we adopt a consistent stepsize such that it keeps invariant even if phase changes208

and all nodes always use the same stepsize. If there is no perturbation in iteration t, we have209

x̄t+1 = x̄t − ηv̄t, which is important to the convergence analysis. We discard the strategy in Pullback210

for two reasons. First, the normalization will probably cause convergence issues in decentralized211

optimization because in centralized algorithm the gradient direction is vt/∥vt∥, which is equivalent212

to vc =
∑n

i=1 v
(i)
t /∥

∑n
i=1 v

(i)
t ∥. However, in decentralized algorithm the average of v(i)t is not213

available on local nodes. If the normalization is done locally, we will get vd =
∑n

i=1 v
(i)
t /∥v(i)t ∥,214

which is different to v1 and the error is hard to bound even gradient tracking is used. Actually, both215

D-GET and D-SPIDER-SFO adopt a constant stepsize to avoid the normalization as SpiderBoost216

(Wang et al. [2019]) does. SPIDER uses the normalization because ∥xt+1 − xt∥ is required to be217

small in the proof, while SpiderBoost improves the proof to bound ∥xt+1 − xt∥ by η∥vt∥ which218

is canceled eventually. In our analysis we also adopt the strategy in SpiderBoost. Second, in our219

algorithm the changing of phase is occurred independently on each node. The phase-wise stepsize220

and pullback strategy will lead to different stepsizes among all nodes in one iteration, which will also221

cause potential convergence issues.222

In (Chen et al. [2022]), two versions of Pullback are proposed, i.e., Pullback-SPIDER and Pullback-223

STORM using SPIDER and STORM as the gradient estimator respectively. As introduced previously,224

one of the advantages of STORM is avoiding large batchsize. Nonetheless, Pullback-STORM adopt a225

large batchsize of O(ϵ−1) in each iteration, which violates the original intention of STORM. Besides,226

from Table 1 we can see all algorithms achieving second-order optimality with Õ(ϵ−3) gradient227

complexity require a large batchsize of O(ϵ−1). Therefore, we propose a small batch version named228

PEDESTAL-S as a special case of PEDESTAL that only requires an averaged batchsize of O(1).229

3.2.3 Conditions of Termination230

As a result of applying gradient tracking, we can bound 1
n

∑n
i=1 ∥y

(i)
t − ȳt∥2 by O(ϵ2). Even though231

we have such an estimation, it is still possible that the norm ∥y(i)t ∥ is as large as O(
√
nϵ) on some232

nodes when the entire decentralized network has already achieved optimality. Therefore, waiting for233

all nodes to reach second-order stationary point is not an efficient strategy. This is the reason why we234

terminate our algorithm when only a fraction of worker nodes satisfy esc(i) ≥ CT .235

In SSRGD and Pullback, there is an upper bound of iteration numbers in the escaping phase. If the236

escaping phase is not broken in this number of iterations then the candidate point is regarded as a237

second-order stationary point. If the escaping phase is broken, then the averaged moving distance238

is larger than a threshold and the loss function will be reduced by O(ϵ2) on average. This strategy239

guarantees that the algorithm will terminate with a certain gradient complexity. However, in our240

algorithm worker nodes do not enter escaping phase simultaneously and thus we do not set such an241

upper bound. In this case the averaged moving distance cannot be lower bounded as CT has no upper242

bound. Fortunately, we can complete our analysis by a different novel framework (see the proof243

outline in the Supplementary Material). An alternative solution is to stop the update on the node that244

has run certain number of iterations in the escaping phase while the algorithm will continue. But that245

solution is also challenging since the relation between the first-achieved local optimal solution and246

the final global optimal solution is unknown and the analysis is non-trivial.247

3.2.4 Small Stuck Region248

The theoretical guarantee of second-order optimality in SSRGD and Pullback is mainly credit to249

the lemma of small stuck region, which states that if there are two decoupled sequences xt and x′
t250

with identical stochastic samples, xs = x′
s and xs+1 − x′

s+1 = r0e1 where e1 is the eigenvector251

corresponding to the smallest eigenvalue, then it satisfies max{∥xt − xs∥, ∥x′
t − x′

s∥} ≥ Cd for252

some s ≤ t ≤ s+ CT with high probability. In SSRGD and Pullback, the averaged moving distance253
1

t−s

∑t
τ=s+1 ∥xτ+1 − xτ∥2 is used as the criterion to discriminate saddle point because the small254

stuck region lemma can be applied in this way. However, in decentralized algorithm some nodes255

enter the escaping phase before the candidate point x̄s is achieved. Suppose node i enters escaping256

phase in iteration s′, then the averaged moving distance starting from iteration s on node i cannot257

be well estimated because the condition of not breaking escaping phase on node i only guarantees258
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the bound of averaged moving distance starting from s′. Therefore, in our method we use the total259

moving distance ∥x(i)
t − x

(i)
s ∥ as the criterion because we can obtain estimation ∥x(i)

t − x
(i)
s ∥ ≤ 2Cd260

given ∥x(i)
t − x

(i)
s′ ∥ ≤ Cd and ∥x(i)

s − x
(i)
s′ ∥ ≤ Cd. And we can further complete our analysis by261

the small stuck region lemma. Actually we do not require more memory because x̃ is the point to262

return in SSRGD and Pullback (hence should be saved). In practice, we can also return x̃(i) for any263

node i drawing perturbation in iteration t − CT since ∥x(i)
t − x̄t∥ can be well bounded. Besides,264

we discover that the consensus error 1
n

∑n
i=1 ∥x

(i)
t − x̄t∥2 results in an extra term when proving the265

small stuck region lemma. We provide the corresponding proof to estimate this new term occurred in266

decentralized setting in our convergence analysis.267

4 Convergence Analysis268

4.1 Assumptions269

In this section we will provide the main theorem of our convergence analysis. First we will introduce270

the assumptions used in this paper. All assumptions used in this paper are mild and commonly used271

in the analysis of related works.272

Assumption 1. (Lower Bound) The objective f is lower bounded, i.e., infx f(x) = f∗ > −∞.273

Assumption 2. (Bounded Variance) The stochastic gradient of each local loss function is an unbiased274

estimator and has bounded variance, i.e., for any i ∈ {1, 2, · · · , n} we have275

Eξ∇Fi(x, ξ) = ∇fi(x), Eξ∥∇Fi(x, ξ)−∇fi(x)∥2 ≤ σ2 (2)

Assumption 3. (Lipschitz Gradient) For all ξ and i ∈ {1, 2, · · · , n}, Fi(x, ξ) has Lipschitz gradient,276

i.e., for any x1 and x2 we have ∥∇Fi(x1, ξ)−∇Fi(x2, ξ)∥ ≤ L∥x1− x2∥ with a constant L.277

Assumption 4. (Lipschitz Hessian) For all ξ and i ∈ {1, 2, · · · , n}, Fi(x, ξ) has Lipschitz hessian,278

i.e., for any x1 and x2 we have ∥∇2Fi(x1, ξ)−∇2Fi(x2, ξ)∥ ≤ ρ∥x1− x2∥ with a constant ρ.279

Assumption 1, Assumption 2 and Assumption 3 are common assumptions used in the analysis of280

stochastic optimization algorithms. Assumption 4 is the standard assumption to find second-order281

optimality, which is used in all algorithms that achieves second-order stationary point in Table 1.282

Assumption 5. (Spectral Gap) The decentralized network is connected by a doubly-stochastic weight283

matrix W ∈ Rn×n satisfying W1n = WT1n = 1n and λ := ∥W − J∥ ∈ [0, 1).284

Here J is a n× n matrix with all elements equal to 1
n . W is the weight matrix of the decentralized285

network where wij > 0 if node i and node j are connected, otherwise wij = 0. ∥ · ∥ denotes the286

spectral norm of matrix (i.e., largest singular value). Notice that λ is a connectivity measurement of287

the network graph and it is also the second largest singular value of W . We do not assume W to be288

symmetric and hence the communication network can be both directed graph and undirected graph.289

The spectral gap assumption is also used commonly in the analysis of decentralized algorithms.290

4.2 Main Theorem291

Theorem 1. Assume Assumption 1 to 5 are satisfied. Let ϵH = ϵα and θ = min{max{0, 3−5α
2 }, 1}.292

We set η = Θ̃(ϵθ), β = Θ(ϵ1+θ), b0 = Θ(ϵ−1), b1 = Θ(max{ϵ2−θ−5α, 1}), r = Θ(ϵ1+θ),293

Cv = Θ(ϵ), CT = Θ̃(ϵ−θ−α) and Cd = Θ̃(ϵ1−α). Then our PEDESTAL algorithm will achieve294

O(ϵ, ϵH)-second-order stationary point with Õ(ϵ−3 + ϵ−5
H ) gradient complexity.295

The specific constants hidden in Θ(·) and corollaries will be shown in the Supplementary Material296

due to the space limit. Proof outline and completed proof can also be found in the Supplementary297

Material. From Theorem 1 we can see our PEDESTAL-S with b1 = O(1) can achieve O(ϵ, ϵH)-298

second-order stationary point with Õ(ϵ−3) gradient complexity for ϵH ≥ ϵ0.2. In the classic setting,299

our PEDESTAL achieves second-order stationary point with Õ(ϵ−3) gradient complexity.300

5 Experiments301

In this section we will demonstrate our experimental results to validate the performance of our302

method. We conduct two tasks in our experiment, a matrix sensing task on synthetic dataset and303

a matrix factorization task on real-world dataset. Both of these two tasks are non-spurious local304

minimum problems (Ge et al. [2017, 2016]), which means all local minima are global minima. Thus,305

we conclude an algorithm is stuck at saddle point if the loss function value does not achieve the306

global minimum. The source code is available in the Supplementary Material.307
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(a) d = 50, ring (b) d = 50, toroidal (c) d = 50, exponential

(d) d = 100, ring (e) d = 100, toroidal (f) d = 100, exponential

Figure 1: Experimental results of the decentralized matrix sensing task on different network topology
for d = 50 and d = 100. Data is assigned to worker nodes by random distribution. The y-axis is the
loss function value and the x-axis is the number of gradient oracles divided by the number of data N .

5.1 Matrix Sensing308

We follow the experimental setup of (Chen et al. [2022]) to solve a decentralized matrix sensing309

problem. The goal of this task is to recover a low-rank d × d symmetric matrix M∗ = U∗(U∗)T310

where U∗ ∈ Rd×r for some small r. We set the number of worker nodes to n = 20. We generate a311

synthetic dataset with N sensing matrices {Ai}Ni=1 and N corresponding observations bi = ⟨Ai,M
∗⟩.312

Here the inner product ⟨X,Y ⟩ of two matrices X and Y is defined by the trace tr(XTY ). The313

decentralized optimization problem can be formulated by314

min
U∈Rd×r

n∑
i=1

Li(U), where Li(U) =
1

2

Ni∑
j=1

(⟨Aij , UUT ⟩ − bij)
2 , (3)

where Ni is the amount of data assigned to worker node i.315

The number of rows of matrix U is set to d = 50 and d = 100 respectively and the number of columns316

is set to r = 3. The ground truth low-rank matrix M∗ equals U∗(U∗)T where each entry of U∗ is317

generated by Gaussian distribution N (0, 1/d) independently. We randomly generate N = 20×n×d318

samples of sensing matrices {Ai}Ni=1, Ai ∈ Rd×d from standard Gaussian distribution and calculate319

the corresponding labels bi = ⟨Ai,M
∗⟩. We consider two different types of data distribution,320

random distribution and Dirichlet distribution Dir20(0.3) to assign data to each worker node. We321

conduct experiments on three different types of network topology, i.e., ring topology, toroidal322

topology (2-dimensional ring) and undirected exponential graph. The initial value of U is set to323

[u0,0,0] where u0 is yield from Gaussian distribution and multiplied by a scalar such that it satisfies324

∥u0∥ ≤ max eig(M∗). We compare our PEDESTAL algorithm to decentralized baselines including325

D-PSGD, GTDSGD, D-GET, D-SPIDER-SFO and GTHSGD. Details of parameter setting can be326

found in the Supplementary Material. The experimental results are shown in Figure 1. Due to the327

space limit, we only show the result of random data distribution in the main manuscript and leave the328

result of Dirichlet distribution to the Supplementary Material.329

From the experimental result we can see all baselines are stuck at the saddle point and cannot escape330

it effectively. In contrast, our PEDESTAL reaches and escapes saddle points and finally find the331

local minimum. We also calculate the smallest eigenvalue of hessian matrix for each algorithm at332

the converged optimal point, which is left to the Supplementary Material because of space limit.333

According to the eigenvalue result, we can see the smallest eigenvalue is much closer to 0 than all334

baselines. Therefore, our experiment verifies that our PEDESTAL achieves the best performance to335

escape saddle point and find local minimum.336
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(a) ring, random (b) toroidal, random (c) exponential, random

(d) ring, Dirichlet (e) toroidal, Dirichlet (f) exponential, Dirichlet

Figure 2: Experimental results of the decentralized matrix factorization task on different network
topology on MovieLens-100k. The y-axis is the loss function value and the x-axis is the number of
gradient oracles divided by the size of matrix N × l.

5.2 Matrix Factorization337

The second task in our experiment is matrix factorization, which aims to approximate a given matrix338

M ∈ RN×l by a low-rank matrix that can be decomposed to the product of two matrices U ∈ RN×r339

and V ∈ Rl×r for some small r. The optimization problem can be formulated by340

min
U∈RN×r,V ∈Rl×r

∥M − UV T ∥2F :=

N∑
i=1

l∑
j=1

(Mij − (UV T )ij)
2 (4)

where ∥ · ∥F denotes the Frobenius norm and subscript ij refers to the element at i-th row and341
j-th column. In our experiment we solve this problem on the MovieLens-100k dataset (Harper and342

Konstan [2015]). MovieLens-100k contains 100,000 ratings of 1682 movies provided by 943 users.343

Each rating is in the interval [0, 5] and scaled to [0, 1] in the experiment. This task can be regarded as344

an association task to predict users’ potential ratings for unseen movies. In our experiment we set345

the number of worker node to n = 50. Each node is assigned the data from different group of users.346

Similar to the matrix sensing task, here we also use random distribution and Dirichlet distribution347

respectively to distribute users to worker nodes. And we also use ring topology, toroidal topology348

and undirected exponential graph as the communication network. The baselines are also D-PSGD,349

GTDSGD, D-GET, D-SPIDER-SFO and GTHSGD. Details of parameter setting can be found in the350

Supplementary Material. The experimental results are shown in Figure 2.351

From the experimental results we can see our PEDESTAL achieves the best performance to escape352

saddle point and find second-order stationary point. All baselines cannot escape saddle point353

effectively or efficiently. Particularly, variance reduced methods D-GET and D-SPIDER-SFO shows354

worse performance than SGD based algorithms D-PSGD and GTDSGD, which indicates that although355

reducing gradient noise can accelerate convergence, it also weakens the ability to escape saddle point.356

Therefore, our contribution is important since we make the fast convergence of variance reduction357

compatible with the capability to avoid saddle point.358

6 Conclusion359

In this paper we propose a novel algorithm PEDESTAL to find local minima in nonconvex decentral-360

ized optimization. PEDESTAL is the first decentralized stochastic algorithm to achieve second-order361

optimality with non-asymptotic analysis. We improve the drawbacks in previous deterministic362

counterpart to make phase changed independently on each node and avoid consensus protocols of363

broadcast or aggregation. We prove that PEDESTAL can achieve O(ϵ,
√
ϵ)-second-order stationary364

point with the gradient complexity of Õ(ϵ−3), which matches state-of-the-art results of centralized365

counterpart or decentralized method to find first-order stationary point. We also conduct the matrix366

sensing and matrix factorization tasks in our experiments to validate the performance of PEDESTAL.367
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A Additional Experimental Results449

A.1 Matrix Sensing450

In this experiment, the learning rate is chosen from {0.01, 0.001, 0.0001}. The batchsize is set to 10.451

For PEDESTAL and GTHSGD, parameter β is set to 0.01. For D-GET and D-SPIDER-SFO, the452

period q is 100. For PEDESTAL, threshold Cv is set to 0.0001. Perturbation radius r is set to 0.001.453

The threshold of moving distance Cd is set to 0.01. The experimental results of Dirichlet distribution454

is shown in Figure 3. The smallest eigenvalue at the converged point for each algorithm is shown in455

Table 2 and Table 3.456

(a) d = 50, ring (b) d = 50, toroidal (c) d = 50, exponential

(d) d = 100, ring (e) d = 100, toroidal (f) d = 100, exponential

Figure 3: Experimental results of the decentralized matrix sensing task on different network topology
for d = 50 and d = 100. Data is assigned to worker nodes by Dirichlet distribution. The y-axis is the
loss function value and the x-axis is the number of gradient oracles divided by the number of data N .

D-PSGD GTDSGD D-GET D-SPIDER-SFO GTHSGD PEDESTAL
d = 50, ring -0.0332 -0.0327 -0.0333 -0.0328 -0.0329 −1.78e−5

d = 50, toroidal -0.0331 -0.0334 -0.0334 -0.0327 -0.0329 −4.18e−5

d = 50, exponential -0.0323 -0.0330 -0.0331 -0.0332 -0.0333 −1.09e−6

d = 100, ring -0.0184 -0.0184 -0.0184 -0.0184 -0.0185 −2.07e−6

d = 100, toroidal -0.0185 -0.0186 -0.0185 -0.0184 -0.0184 −2.25e−7

d = 100, exponential -0.0184 -0.0184 -0.0186 -0.0184 -0.0184 −3.07e−5

Table 2: Smallest eigenvalue of hessian matrix at the converged point (random data distribution).

D-PSGD GTDSGD D-GET D-SPIDER-SFO GTHSGD PEDESTAL
d = 50, ring -0.0332 -0.0337 -0.0332 -0.0325 -0.0330 −3.60e−6

d = 50, toroidal -0.0334 -0.0324 -0.0329 -0.0325 -0.0327 −2.29e−5

d = 50, exponential -0.0334 -0.0326 -0.0333 -0.0330 -0.0328 −3.97e−5

d = 100, ring -0.0184 -0.0184 -0.0184 -0.0185 -0.0183 −4.48e−5

d = 100, toroidal -0.0184 -0.0184 -0.0184 -0.0184 -0.0185 −1.24e−5

d = 100, exponential -0.0186 -0.0185 -0.0186 -0.0183 -0.0185 −3.63e−6

Table 3: Smallest eigenvalue of hessian matrix at the converged point (Dirichlet data distribution).
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A.2 Matrix Factorization457

In this experiment, the number of worker nodes is 50 and the rank of the matrix M is set to 25. The458

learning rate is chosen from {0.01, 0.001, 0.0001}. The batchsize is set to 100. For PEDESTAL459

and GTHSGD, parameter β is set to 0.1. For D-GET and D-SPIDER-SFO, the period q is 100. For460

PEDESTAL, threshold Cv is set to 0.002. Perturbation radius r is set to 0.01. The threshold of461

moving distance Cd is set to 0.5.462

B Proof of Theorem 1463

B.1 Notation464

We define matrix Xt = [x
(1)
t , · · · , x(n)

t ] ∈ Rd×n where x
(i)
t is the model parameter on i-th worker465

node with dimension d and n is the number of worker nodes. Similarly we have Yt = [y
(1)
t , · · · , y(n)t ],466

Zt = [z
(1)
t , · · · , z(n)t ] and Vt = [v

(1)
t , · · · , v(n)t ]. Let ωt = ∥x̄t+1 − x̄t∥2 and Ωt = Zt −Xt. Define467

pt = nt/n where nt is the number of worker nodes drawing perturbation in iteration t.468

B.2 Outline469

In this section we will provide the proof outline of Theorem 1. First, we prove some basic lemmas to470

estimate gradient noise and consensus error, which will be used frequently in later proof. The gradient471

noise is estimated by Lemma 1, the proof of which can be found in Section C.1. The consensus error472

is estimated by Lemma 2, the proof of which can be found in Section C.2.473

Lemma 1. (Gradient Noise) Under Assumption 2 and Assumption 3 we have474

(a)
1

nT

T−1∑
t=0

n∑
i=1

∥v(i)t −∇fi(x
(i)
t )∥2 ≤ 16 log(4/δ)βσ2

b1
+

384 log(4/δ)L2

nb1βT

T−1∑
t=0

∥Xt − X̄t∥2F

+
192 log(4/δ)L2

b1βT

T−1∑
t=0

ωt +
2 log(4/δ)σ2

βb0T

(b)
1

T

T∑
t=1

∥v̄t −
1

n

n∑
i=1

∇fi(x
(i)
t )∥2 ≤ 16 log(4/δ)βσ2

nb1
+

384 log(4/δ)L2

n2b1βT

T∑
t=1

∥Xt − X̄t∥2F

+
192 log(4/δ)L2

nb1βT

T−1∑
t=0

ωt +
2 log(4/δ)σ2

nβb0T

Lemma 2. (Consensus Error) Let η ≤ (1−λ)2ϵθ

600 log(4/δ)λ2L , β = C−1
1 ϵ1+θ and b1 ≥ C1ϵ

−1+θ where475

C1 ≥ 1 is a constant. Under Assumption 2, 3 and 5 we have476

(a)
1

T

T∑
t=1

∥Xt − X̄t∥2F ≤ 160000n log(4/δ)L2η2λ4

(1− λ)4 min{b1β, 1}T

T−1∑
t=0

ωt +
12288n log(4/δ)βη2λ4σ2

(1− λ)4b1

+
2000n log(4/δ)η2λ4σ2

(1− λ)4βb0T
+

128λ4η2

(1− λ)3T

n∑
i=1

∥∇fi(x0)∥2 +
T−1∑
t=0

64nλ2pt(η
2C2

v + r2)

(1− λ)2T

(b)
1

T

T−1∑
t=0

∥Yt − Ȳt∥2F ≤ 4644 log(4/δ)nL2λ2

(1− λ)min{b1β, 1}T

T−1∑
t=0

ωt +
384 log(4/δ)nλ2βσ2

(1− λ)b1

+
50 log(4/δ)nλ2σ2

(1− λ)βb0T
+

8λ2

(1− λ)T

n∑
i=1

∥∇fi(x0)∥2+
T−1∑
t=0

150000 log(4/δ)nL2λ4pt(η
2C2

v+r2)

(1− λ)3 min{b1β, 1}T

Next we will prove that PEDESTAL will terminate in certain number of iterations. Under Assumption477

2, 3 and 5, we can prove the following Lemma 3. The proof is demonstrated in Section C.3.478
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Lemma 3. (Descent) Let η ≤ (1−λ)2ϵθ

600 log(4/δ)λ2L , β = C−1
1 ϵ1+θ, b1 ≥ C1ϵ

−1+θ and b0 = C1ϵ
−1 where479

C1 ≥ 1 is a constant. Under Assumption 2, 3 and 5 we have480

f(x̄T ) ≤ f(x0) +
σ2

L
+

1

nL

n∑
i=1

∥∇fi(x0)∥2 −
T−1∑
t=0

Dt

where481

Dt =
1

16η
ωt +

(1− λ)2

256nη

n∑
i=1

∥x(i)
t+1 − x

(i)
t ∥2 + η

2n

n∑
i=1

∥y(i)t ∥2 − 200ηϵ2σ2

(1− λ)2C2
1

− 7pt(η
2C2

v + r2)

4η

Here we call Dt the descent of iteration t. We categorize all iterations into three types:482

type-A: pt ≥
1

5
, type-B: pt <

1

5
and

1

n

n∑
i=1

∥y(i)t ∥2 ≥ 4C2
v

5
, type-C: otherwise

When at least n
5 nodes drawing perturbation in iteration t, then it is type-A. There are two cases483

where pt is small: most nodes in the descent phase or most nodes in the escaping phase. An iteration484

is type-B if pt < 1
5 and 1

n

∑n
i=1 ∥y

(i)
t ∥2 ≥ 4C2

v

5 , which represents the case where most nodes are in485

the descent phase. And type-C iteration represents the case where most nodes are in the escaping486

phase. Next we will estimate type-A and type-C iteration with the following Lemma 4.487

Lemma 4. Let η ≤ (1−λ)2ϵθ

600 log(4/δ)λ2L , β = C−1
1 ϵ1+θ, b1 ≥ C1ϵ

−1+θ, b0 = C1ϵ
−1, Cd = C2ηCT ϵ,488

Cv = (1−λ)C2ϵ
200 and r ≤ ηCv/4 where C1 = 20000σ

(1−λ)2C2
and C2 is a constant. Under Assumption 2, 3489

and 5, we can find disjoint intervals I = I1 ∪ · · · ∪ Ik such that the indexes of all type-A and type-C490

iterations except the last CT iterations are contained in I and the descent over I can be estimated by491 ∑
t∈I

Dt ≥ |I| · (1− λ)2C2
2ηϵ

2

10000

where | · | denotes the total number of the set.492

Besides, for all type-B iteration t, we have the following estimation493

Lemma 5. Let parameter and assumption settings be the same as Lemma 4, then for all type-B494

iteration t we have495

Dt ≥
(1− λ)2C2

2ηϵ
2

8000000

With Lemma 4, Lemma 5 and Assumption 1, we can conclude that PEDESTAL will terminate in496

Õ(ϵ−2−θ) + CT iterations. As the last two negative terms in Dt are canceled by 1
n

∑n
i=1 ∥x

(i)
t+1 −497

x
(i)
t ∥2 and 1

n

∑n
i=1 ∥y

(i)
t ∥2 respectively in Lemma 4 and Lemma 5, we have 1

η

∑T−1
t=0 ωt ≤ O(1).498

Hence by Lemma 2 we know the consensus error 1
n∥Xt − X̄t∥2F can be bounded by O(ϵ1+θ) on499

average. Besides, from the parameter setting we can see Cv is Θ(ϵ), which ensures the first-order500

optimality of the decentralized algorithm.501

Finally, we will prove PEDESTAL is able to achieve second-order stationary point. First, we will502

give the small stuck region lemma in decentralized setting. Recall that ϵH = ϵα is the tolerance of503

second-order stationary point. The proof is in Section C.6.504

Lemma 6. (Small Stuck Region) Suppose ns worker nodes draw perturbation in iteration s and505

−γ = min eig(∇2f(x̄s)) ≤ −ϵH . Let η ≤ (1−λ)2ϵθ

1000
√
n log(CT ) log(4/δ)λ2L

, β = C−1
1 ϵ1+θ, b1 ≥506

1000C1ϵ
2−θ−5α, Cd = C2ηCT ϵ

µ and CT = log(12nCd/r0)/(ηγ) where C1 = 20000
(1−λ)2C2

, C2 ≤507

1−λ
2000 log(4/δ)ρ log(Cd)

and µ = max{1, 2α}. Let Xt and X ′
t be two coupled decentralized sequences508

by running PEDESTAL from Xs with Xs = X ′
s, x(i)

s+1 = x
(i)′

s+1 if node i does not draw perturbation509

in iteration s and x
(i)
s+1 = x

(i)′

s+1 + r0e1 otherwise. Here e1 is the eigenvector with respect to the510

smallest eigenvalue γ. Define di = maxs≤t≤s+CT
{∥x(i)

t − x
(i)
s ∥, ∥x(i)′

t − x
(i)
s ∥}. Then there are at511

least 9n
10 nodes such that di ≥ 2Cd.512
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In decentralized small stuck region lemma, the consensus error will lead to a new term (see Eq. (34))513

and make the proof more complicated. In our proof, we use the condition of ϵH ≥ ϵ, i.e., α ≤ 1.514

For smaller ϵH the batchsize b1 is required to set larger. With Lemma 6, we can prove that when515

PEDESTAL is terminated, it finds a local minimum with high probability.516

Lemma 7. Let r0 = δr/
√
d where d is the dimension of model parameter. Other parameters are the517

same as Lemma 6. Suppose PEDESTAL is terminated in iteration s+CT . Then x̄s is a second-order518

stationary point with probability at least 1− δ.519

Lemma 7 provides the guarantee of second-order optimality of PEDESTAL. When ϵH ≥
√
ϵ, i.e.,

α ≤ 0.5 (including the classic setting ϵH =
√
ϵ), the parameter settings of all lemmas are consistent

and the main theorem is proven. The total gradient complexity is

Õ(ϵ−2−θ · ϵ−1+θ) = Õ(ϵ−3)

When α = 0.5, we have θ = 0.25 and b1 = Θ(ϵ−0.75). When α ≤ 0.2, we can set θ = 1 and520

b1 = O(1), which is result of PEDESTAL-S. In Section D we will provide the analysis of the case521

α > 0.5 with a different parameter setting of θ and b1. We can achieve the gradient complexity of522

Õ(ϵ−3 + ϵϵ−8
H + ϵ4ϵ−11

H ) (5)

over all cases of ϵH .523

C Proof of Lemmas524

C.1 Proof of Lemma 1525

Proof. According to the definition of v(i)t , we have526

v
(i)
t+1 −∇fi(x

(i)
t+1)

(1− β)t+1
− v

(i)
t −∇fi(x

(i)
t )

(1− β)t
=

β(∇Fi(x
(i)
t+1, ξ

(i)
t+1)−∇fi(x

(i)
t+1))

(1− β)t+1

+
(∇Fi(x

(i)
t+1, ξ

(i)
t+1)−∇fi(x

(i)
t+1))− (∇Fi(x

(i)
t , ξ

(i)
t+1)−∇fi(x

(i)
t ))

(1− β)t
(6)

where |ξ(i)t+1| = b1. The expectation of the right side of Eq. (6) over ξ(i)t+1 is 0. Using Cauchy-Schwartz527

inequality, Assumption 2 and Assumption 3 we have528

∥
β(∇Fi(x

(i)
t+1, j)−∇fi(x

(i)
t+1))

(1− β)t+1
+

(∇Fi(x
(i)
t+1, j)−∇fi(x

(i)
t+1))− (∇Fi(x

(i)
t , j)−∇fi(x

(i)
t ))

(1− β)t
∥2

≤ 2β2σ2

(1− β)2t+2
+

8L2∥x(i)
t+1 − x

(i)
t ∥2

(1− β)2t
(7)

for each j ∈ ξ
(i)
t+1. Thus, applying Azuma-Hoeffding inequality to Eq. (6) we can obtain529

∥v(i)t −∇fi(x
(i)
t )− (1− β)t(v

(i)
0 −∇fi(x0))∥2

≤ 4 log(4/δ)

b1
(2βσ2 + 8L2

t−1∑
s=0

(1− β)2(t−s)∥x(i)
s+1 − x(i)

s ∥2) (8)

with probability 1 − δ. Here we use the fact that
∑+∞

s=0(1 − β)s = 1
β . Using Cauchy-Schwartz530

inequality to Eq. (8) we have531

∥v(i)t −∇fi(x
(i)
t )∥2 ≤ 16 log(4/δ)

b1
(βσ2 + 4L2

t−1∑
s=0

(1− β)2(t−s)∥x(i)
s+1 − x(i)

s ∥2)

+ 2(1− β)2t∥v(i)0 −∇fi(x0))∥2 (9)
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Sum Eq. (9), we obtain532

1

log(4/δ)nT

T−1∑
t=0

n∑
i=1

∥v(i)t −∇fi(x
(i)
t )∥2

≤ 16βσ2

b1
+

64L2

nb1βT

T−2∑
t=0

∥Xt+1 −Xt∥2F +
2σ2

βb0T

≤ 16βσ2

b1
+

384L2

nb1βT

T−1∑
t=0

∥Xt − X̄t∥2F +
192L2

b1βT

T−1∑
t=0

ωt +
2σ2

βb0T
(10)

which finishes the proof of (a) in Lemma 1. In the first inequality of Eq. (10) we apply Azuma-533

Hoeffding inequality to v(i)0 −∇fi(x0). In the second inequality we apply Cauchy-Schwartz inequality534

and use the fact x(i)
t+1 − x

(i)
t = (x

(i)
t+1 − x̄t+1)− (x

(i)
t − x̄t) + (x̄t+1 − x̄t). Mimic above steps and535

we can achieve the inequality (b) in Lemma 1. The term n in the denominator is derived by the fact536

that ξ(i)t ’s on different nodes are independent.537

C.2 Proof of Lemma 2538

Proof. As Yt = W (Yt−1 + Vt − Vt−1), we have539

∥Yt − Ȳt∥2F
= ∥(W − J)(Yt−1 − Ȳt−1) + (W − J)(Vt − Vt−1)∥2F
≤ λ2∥Yt−1 − Ȳt−1∥2F + 2⟨(W − J)Yt, (W − J)(Vt − Vt−1)⟩+ λ2∥Vt − Vt−1∥2F

≤ 1 + λ2

2
∥Yt−1 − Ȳt−1∥2F +

λ2 + λ4

1− λ2
∥Vt − Vt−1∥2F

≤ 1 + λ2

2
∥Yt−1 − Ȳt−1∥2F +

3λ2(1 + λ2)

1− λ2

n∑
i=1

(∥v(i)t −∇fi(x
(i)
t )∥2 + ∥v(i)t−1 −∇fi(x

(i)
t−1)∥2)

+
9L2λ2(1 + λ2)

1− λ2
(∥Xt − X̄t∥2F + ∥Xt−1 − X̄t−1∥2F + nωt−1) (11)

where the first inequality is derived by Assumption 5, the second inequality is derived by Young’s540

inequality and the last inequality is derived by Cauchy-Schwartz inequality and Assumption 3. When541

t = 0, by Azuma-Hoeffding inequality we can get542

∥Y0 − Ȳ0∥2F ≤ 2λ2
n∑

i=1

∥∇fi(x0)∥2 +
8 log(4/δ)nλ2σ2

b0
(12)

with probability 1− δ. As Xt+1 = W (Xt +Ωt), by Assumption 5 and Young’s inequality we have543

∥Xt+1 − X̄t+1∥2F

≤ 1 + λ2

2
∥Xt − X̄t∥2F +

2λ2

1− λ2
∥Ωt − Ω̄t∥2F

≤ 1 + λ2

2
∥Xt − X̄t∥2F +

4η2λ2

1− λ2
∥Yt − Ȳt∥2F +

4λ2

1− λ2
∥Ωt − Ω̄t − η(Yt − Ȳt)∥2F

≤ 1 + λ2

2
∥Xt − X̄t∥2F +

4η2λ2

1− λ2
∥Yt − Ȳt∥2F +

8nλ2pt(η
2C2

v + r2)

1− λ2
(13)

where the second inequality is obtained by Cauchy-Schwartz inequality and the last inequality is544

because when node i draws perturbation it must satisfy ∥y(i)t ∥ ≤ Cv. Note that X0 = X̄0. Sum Eq.545

(13), we have546

T∑
t=1

∥Xt − X̄t∥2F
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≤ 8η2λ2

(1− λ2)2

T−1∑
t=0

∥Yt − Ȳt∥2F +
16nλ2(η2C2

v + r2)T

(1− λ2)2

≤ 288L2η2λ4(1 + λ2)

(1− λ2)4

T−1∑
t=0

∥Xt − X̄t∥2F +
96η2λ4(1 + λ2)

(1− λ2)4

T−1∑
t=0

n∑
i=1

∥v(i)t −∇fi(x
(i)
t )∥2

+
144nL2η2λ4(1 + λ2)

(1− λ2)4

T−1∑
t=0

ωt +
16λ2η2

(1− λ2)3
∥Y0 − Ȳ0∥2F +

T−1∑
t=0

16nλ2pt(η
2C2

v + r2)

(1− λ2)2
(14)

where the last inequality comes from Eq. (11). When η ≤ (1−λ)2

40λ2L we have 288L2η2λ4(1+λ2)
(1−λ2)4 ≤ 1

2 and547

1

T

T∑
t=1

∥Xt − X̄t∥2F

≤ 192η2λ4(1 + λ2)

(1− λ2)4T

T−1∑
t=0

n∑
i=1

∥v(i)t −∇fi(x
(i)
t )∥2 + 288nL2η2λ4(1 + λ2)

(1− λ2)4T

T−1∑
t=0

ωt

+
64λ4η2

(1− λ2)3T

n∑
i=1

∥∇fi(x0)∥2 +
256 log(4/δ)nλ4η2σ2

(1− λ2)3b0T
+

T−1∑
t=0

32nλ2pt(η
2C2

v + r2)

(1− λ2)2T

≤ 73728 log(4/δ)L2η2λ4(1 + λ2)

(1− λ2)4b1βT

T−1∑
t=0

∥Xt − X̄t∥2F +
24576n log(4/δ)L2η2λ4(1 + λ2)

(1− λ2)4b1βT

T−1∑
t=0

ωt

+
n log(4/δ)η2λ4(1 + λ2)σ2

(1− λ2)4
(
3072β

b1
+

384

βb0T
) +

288nL2η2λ4(1 + λ2)

(1− λ2)4T

T−1∑
t=0

ωt

+
64λ4η2

(1− λ2)3T

n∑
i=1

∥∇fi(x0)∥2 +
256 log(4/δ)nλ4η2σ2

(1− λ2)3b0T
+

T−1∑
t=0

32nλ2pt(η
2C2

v + r2)

(1− λ2)2T
(15)

where the last inequality is achieved by Lemma 1. According to the parameter setting, we have

73728 log(4/δ)L2η2λ4(1 + λ2)

(1− λ2)4b1β
≤ 1

2

Therefore, we have548

1

T

T∑
t=1

∥Xt − X̄t∥2F

≤ 160000n log(4/δ)L2η2λ4

(1− λ)4 min{b1β, 1}T

T−1∑
t=0

ωt +
12288n log(4/δ)βη2λ4σ2

(1− λ)4b1
+

2000n log(4/δ)η2λ4σ2

(1− λ)4βb0T

+
128λ4η2

(1− λ)3T

n∑
i=1

∥∇fi(x0)∥2 +
T−1∑
t=0

64nλ2pt(η
2C2

v + r2)

(1− λ)2T
(16)

where we have used the condition λ ≤ 1 to simplify the inequality. Moreover, sum Eq. (11) and we549

can achieve550

1

T

T−1∑
t=0

∥Yt − Ȳt∥2F

≤ 12λ2

(1− λ)T

T−1∑
t=0

n∑
i=1

∥v(i)t −∇fi(x
(i)
t )∥2 + 36L2λ2

(1− λ)T

T−1∑
t=0

∥Xt − X̄t∥2F +
18nL2λ2

(1− λ)T

T−1∑
t=0

ωt

+
2

(1− λ)T
∥Y0 − Ȳ0∥2F

≤ 36L2λ2

(1− λ)T
(1 +

128 log(4/δ)

b1β
)

T−1∑
t=0

∥Xt − X̄t∥2F +
18nL2λ2

(1− λ)T
(1 +

128 log(4/δ)

b1β
)

T−1∑
t=0

ωt
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+
192 log(4/δ)nλ2βσ2

(1− λ)b1
+

25 log(4/δ)nλ2σ2

(1− λ)βb0T
+

4λ2

(1− λ)T

n∑
i=1

∥∇fi(x0)∥2

≤ 4644 log(4/δ)L2λ2

(1− λ)min{b1β, 1}T

T−1∑
t=0

∥Xt − X̄t∥2F +
2322 log(4/δ)nL2λ2

(1− λ)min{b1β, 1}T

T−1∑
t=0

ωt

+
192 log(4/δ)nλ2βσ2

(1− λ)b1
+

25 log(4/δ)nλ2σ2

(1− λ)βb0T
+

4λ2

(1− λ)T

n∑
i=1

∥∇fi(x0)∥2

≤ 37152 log(4/δ)L2η2λ4

(1− λ)3 min{b1β, 1}T

T−1∑
t=0

∥Yt − Ȳt∥2F +
2322 log(4/δ)nL2λ2

(1− λ)min{b1β, 1}T

T−1∑
t=0

ωt

+
192 log(4/δ)nλ2βσ2

(1− λ)b1
+

T−1∑
t=0

74304 log(4/δ)nL2λ4pt(η
2C2

v + r2)

(1− λ)3 min{b1β, 1}T
+

25 log(4/δ)nλ2σ2

(1− λ)βb0T

+
4λ2

(1− λ)T

n∑
i=1

∥∇fi(x0)∥2 (17)

where the second inequality uses Lemma 1 and Eq. (12). The last inequality uses the sum of Eq. (13).551

As 37152 log(4/δ)L2η2λ4

(1−λ)3 min{b1β,1} ≤ 1
2 , we have552

1

T

T−1∑
t=0

∥Yt − Ȳt∥2F

≤ 4644 log(4/δ)nL2λ2

(1− λ)min{b1β, 1}T

T−1∑
t=0

ωt +
384 log(4/δ)nλ2βσ2

(1− λ)b1
+

50 log(4/δ)nλ2σ2

(1− λ)βb0T

+
8λ2

(1− λ)T

n∑
i=1

∥∇fi(x0)∥2 +
T−1∑
t=0

150000 log(4/δ)nL2λ4pt(η
2C2

v + r2)

(1− λ)3 min{b1β, 1}T
(18)

which finishes the proof.553

C.3 Proof of Lemma 3554

Proof. By Assumption 3 we have555

f(x̄t+1) ≤ f(x̄t) + ⟨∇f(x̄t), x̄t+1 − x̄t⟩+
L

2
∥x̄t+1 − x̄t∥2

= f(x̄t) + ⟨∇f(x̄t),−ηv̄t⟩+ ⟨∇f(x̄t), x̄t+1 − x̄t + ηv̄t⟩+
L

2
∥x̄t+1 − x̄t∥2

= f(x̄t)−
η

2
∥v̄t∥2 −

η

2
∥∇f(x̄t)∥2 +

η

2
∥v̄t −∇f(x̄t)∥2 +

η

2
∥∇f(x̄t)∥2

+
1

2η
∥x̄t+1 − x̄t + ηv̄t∥2 −

1

2η
∥x̄t+1 − x̄t + ηv̄t − η∇f(x̄t)∥2 +

L

2
∥x̄t+1 − x̄t∥2

≤ f(x̄t)−
η

2
∥v̄t∥2 +

η

2
∥v̄t −∇f(x̄t)∥2 +

1

2η
∥x̄t+1 − x̄t + ηv̄t∥2 +

Lωt

2

− 1

2η
ωt −

η

2
∥v̄t −∇f(x̄t)∥2 +

1

4η
ωt + η∥v̄t −∇f(x̄t)∥2

≤ f(x̄t)−
1

4η
ωt −

η

2
∥v̄t∥2 +

pt(η
2C2

v + r2)

η
+

Lωt

2
+ 2η∥v̄t −

1

n

n∑
i=1

∇fi(x
(i)
t )∥2

+
L2η

n
∥Xt − X̄t∥2F (19)

where the first inequality is obtained by Young’s inequality and the last inequality is obtained556

by Cauchy-Schwartz inequality, Assumption 3 and the fact that perturbation is only drawn when557
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∥y(i)t ∥ ≤ Cv and nt nodes draw perturbation in iteration t. Sum Eq. (19) and apply Lemma 1, we558

have559

f(x̄T ) ≤ f(x0)−
1

4η

T−1∑
t=0

ωt −
η

2

T−1∑
t=0

∥v̄t∥2 + (1 +
768 log(4/δ)

nb1β
)
L2η

n

T−1∑
t=0

∥Xt − X̄t∥2F

+

T−1∑
t=0

pt(η
2C2

v + r2)

η
+

32 log(4/δ)βηTσ2

nb1
+ (1 +

384 log(4/δ)Lη

nb1β
)

T−1∑
t=0

Lωt

+
4 log(4/δ)ησ2

nβb0
(20)

According to the update of gradient tracker, we have ȳt = v̄t. By Lemma 10 we have560

1

n

n∑
i=1

∥x(i)
t+1 − x

(i)
t ∥2 = ωt +

1

n
∥(Xt+1 − X̄t+1)− (Xt − X̄t)∥2F (21)

1

n

n∑
i=1

∥y(i)t ∥2 = ∥ȳt∥2 +
1

n
∥Yt − Ȳt∥2F (22)

Divide the term ∥v̄t∥2 in Eq. (20) into three portions and we get561

f(x̄T )

≤ f(x0)−
1

8η

T−1∑
t=0

ωt−
(1− λ)2

256η

T−1∑
t=0

ωt−
η

2

T−1∑
t=0

∥v̄t∥2 + (1 +
768 log(4/δ)

nb1β
)
L2η

n

T−1∑
t=0

∥Xt − X̄t∥2F

+

T−1∑
t=0

pt(η
2C2

v + r2)

η
+

32 log(4/δ)βηTσ2

nb1
+ (1 +

384 log(4/δ)Lη

nb1β
)

T−1∑
t=0

Lωt +
4 log(4/δ)ησ2

nβb0

≤ f(x0)−
1

8η

T−1∑
t=0

ωt −
(1− λ)2

256η

T−1∑
t=0

ωt −
η

2n

T−1∑
t=0

n∑
i=1

∥y(i)
t ∥2 + η

2n

T−1∑
t=0

∥Yt − Ȳt∥2F

+

T−1∑
t=0

pt(η
2C2

v + r2)

η
+ (1 +

768 log(4/δ)

nb1β
)
L2η

n

T−1∑
t=0

∥Xt − X̄t∥2F +
32 log(4/δ)βηTσ2

nb1

+ (1 +
384 log(4/δ)Lη

nb1β
)

T−1∑
t=0

Lωt +
4 log(4/δ)ησ2

nβb0

≤ f(x0)−
1

8η

T−1∑
t=0

ωt −
(1− λ)2

256nη

T−1∑
t=0

n∑
i=1

∥x(i)
t+1 − x

(i)
t ∥2 − η

2n

T−1∑
t=0

n∑
i=1

∥y(i)
t ∥2

+ (1 +
768 log(4/δ)

nb1β
+

(1− λ)2

128L2η2
)
L2η

n

T−1∑
t=0

∥Xt − X̄t∥2F +
η

2n

T−1∑
t=0

∥Yt − Ȳt∥2F

+ (1+
384 log(4/δ)Lη

nb1β
)

T−1∑
t=0

Lωt+

T−1∑
t=0

pt(η
2C2

v + r2)

η
+

32 log(4/δ)βηTσ2

nb1
+
4 log(4/δ)ησ2

nβb0

≤ f(x0)−
1

8Lη

T−1∑
t=0

Lωt −
(1− λ)2

256nη

T−1∑
t=0

n∑
i=1

∥x(i)
t+1 − x

(i)
t ∥2 − η

2n

T−1∑
t=0

n∑
i=1

∥y(i)
t ∥2

+A1

T−1∑
t=0

Lωt +A2
Tβησ2

b1
+A3

ησ2

βb0
+A4

T−1∑
t=0

pt(η
2C2

v + r2)

η
+A5

η

n

n∑
i=1

∥∇fi(x0)∥2 (23)

In the second inequality we use Eq. (22). In the third inequality we use Eq. (21) and Cauchy-Schwartz562

inequality. In the last inequality we use Lemma 2 and the coefficients are563

A1 = 1+
384 log(4/δ)Lη

nb1β
+(1+

768 log(4/δ)

nb1β
+

(1− λ)2

128L2η2
)
160000 log(4/δ)L3η3λ4

(1− λ)4 min{b1β, 1}
+
774 log(4/δ)Lηλ2

(1− λ)

A2 =
32 log(4/δ)

n
+ (1 +

768 log(4/δ)

nb1β
+

(1− λ)2

128L2η2
)
12288 log(4/δ)L2η2λ4

(1− λ)4
+

64 log(4/δ)λ2

(1− λ)

A3 =
4 log(4/δ)

n
+ (1 +

768 log(4/δ)

nb1β
+

(1− λ)2

128L2η2
)
2000 log(4/δ)L2η2λ4

(1− λ)4
+

10 log(4/δ)λ2

(1− λ)
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A4 = 1 + (1 +
768 log(4/δ)

nb1β
+

(1− λ)2

128L2η2
)
64λ2L2η2

(1− λ)2
+

25000 log(4/δ)L2η2λ4

(1− λ)3

A5 = (1 +
768 log(4/δ)

nb1β
+

(1− λ)2

128L2η2
)
128λ4L2η2

(1− λ)3
+

2λ2

1− λ

According to the parameter setting, we have A1 ≤ 1
16Lη , A2 ≤ 200 log(4/δ)

(1−λ)2 , A3 ≤ 40 log(4/δ)
(1−λ)2 ,564

A4 ≤ 7
4 and A5 ≤ 5

1−λ . Therefore, we have565

f(x̄T ) ≤ f(x0) +
40 log(4/δ)ησ2

(1− λ)2βb0
+

5η

(1− λ)n

n∑
i=1

∥∇fi(x0)∥2 −
T−1∑
t=0

Dt

≤ f(x0) +
σ2

L
+

1

nL

n∑
i=1

∥∇fi(x0)∥2 −
T−1∑
t=0

Dt (24)

where566

Dt =
1

16η
ωt +

(1− λ)2

256nη

n∑
i=1

∥x(i)
t+1 − x

(i)
t ∥2 + η

2n

n∑
i=1

∥y(i)
t ∥2 − 200ηϵ2σ2

(1− λ)2C2
1

− 7pt(η
2C2

v + r2)

4η
(25)

which reaches the conclusion.567

C.4 Proof of Lemma 4568

Proof. For convenience, the iteration that draws perturbation is considered to be included in the569

escaping phase. If an iteration belongs to type-A, i.e., pt ≥ 1
5 , then at least n/5 worker nodes are in570

the escaping phase. If an iteration belongs to type-C, we have 1
n

∑n
i=1 ∥y

(i)
t ∥2 ≤ 4C2

v

5 . Therefore,571

there are at least n
5 worker nodes satisfying ∥y(i)t ∥ ≤ Cv , which also indicates that at least n

5 worker572

nodes are in the escaping phase. Then if iteration t is either type-A or type-C, there must be n/5573

worker nodes in the escaping phase. We denote the set of these n/5 worker nodes as Et. Furthermore,574

if this iteration t is not one of the last CT iterations before termination, then there must exist n/10575

worker nodes out of Et such that they have not met the condition esc(i) ≥ CT and will break the576

escaping phase before meeting the condition because of the termination criterion in Algorithm 1. We577

use Bt to denote these worker nodes.578

For each i ∈ Bt, we have an interval [a(i)t , b
(i)
t ] such that t ∈ [a

(i)
t , b

(i)
t ] and node i enters escaping579

phase in iteration a
(i)
t and breaks escaping phase in iteration b

(i)
t . Besides, we also have580

b
(i)
t − a

(i)
t ≤ CT and ∥x(i)

b
(i)
t

− x
(i)

a
(i)
t

∥ ≥ Cd

Then by Cauchy-Schwartz inequality we have581

C2
d ≤ ∥x(i)

b
(i)
t

− x
(i)

a
(i)
t

∥2 ≤ CT

∑b
(i)
t

t=a
(i)
t

∥x(i)
t+1 − x

(i)
t ∥2 (26)

Let at = mini{a(i)t } and bt = maxi{b(i)t }. It is easy to check that bt − at ≤ 2CT . Next, we will582

perform the refining step. If t < t′ are two iterations that are either type-A or type-C and t′ ∈ [at, bt],583

then we make at′ = at and bt′ = bt. Let I = ∪t[at, bt] for all type-A and type-C iterations t. Then584

I can be written as disjoint union of585

I = I1 ∪ I2 ∪ · · · ∪ Ik (27)

because if at ≤ at′ ≤ bt then [at, bt] and [at′ , bt′ ] can be merged into one interval. Now we can see586

for each iteration t that is either type-A or type-C and t is not one of the last CT iterations, we have587

t ∈ I. Next we will estimate the descent over I. Without loss of generality, we consider an interval588

Ij . Ij can be expressed by union J1 ∪ · · · ∪ Jl where Jm = [atm , btm ] for some tm, m = 1, · · · , l.589

Because of the refining step, we have each tm is only included in interval Jm and the intersection of590

any three intervals in J1, · · · ,Jl is ∅. According to Eq. (26) we have591

1

n

n∑
i=1

∑
t∈Jm

∥x(i)
t+1 − x

(i)
t ∥2 ≥ C2

d

10CT
(28)
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since |Bt| ≥ n
10 . Next, we will consider the intersection of Jm and Jm+1. Notice that when592

estimating Eq. (28) we only add the terms ∥x(i)
t+1 − x

(i)
t ∥2 on nodes i ∈ Btm and in the intervals593

[a
(i)
tm , b

(i)
tm ]. Therefore, for any node i /∈ Btm ∩ Btm+1

, the terms used to estimate Eq. (28) will not594

be added repeatedly. If i ∈ Btm ∩ Btm+1
, we have [a

(i)
tm , b

(i)
tm ] and [a

(i)
tm+1

, b
(i)
tm+1

] are disjoint because595

tm+1 ∈ [a
(i)
tm+1

, b
(i)
tm+1

] but tm+1 /∈ [a
(i)
tm , b

(i)
tm ] and a node cannot draw perturbation before breaking596

the escaping phase. Hence we can sum Eq. (28) over m and achieve597

1

n

n∑
i=1

∑
t∈Ij

∥x(i)
t+1 − x

(i)
t ∥2 ≥ lC2

d

10CT
(29)

Since the length of each Jm is not larger than 2CT , we have598

1

n

n∑
i=1

∑
t∈Ij

∥x(i)
t+1 − x

(i)
t ∥2 ≥ |Ij |C2

d

20C2
T

and
1

n

n∑
i=1

∑
t∈I

∥x(i)
t+1 − x

(i)
t ∥2 ≥ |I|C2

d

20C2
T

(30)

Combining Eq. (30) and Lemma 3, we can estimate the descent over I by599 ∑
t∈I

Dt ≥ |I|
( (1− λ)2C2

d

5120ηC2
T

− 200ηϵ2σ2

(1− λ)2C2
1

− 7(η2C2
v + r2)

4η

)
≥ |I| · (1− λ)2C2

2ηϵ
2

10000
(31)

according to the parameter setting.600

C.5 Proof of Lemma 5601

Proof. According to Lemma 3 and the definition of type-B iteration, we have602

Dt ≥
ηC2

v

20
− 200ηϵ2

(1− λ)2C2
1

− 7r2

20η
≥ ηC2

v

40
− 200ηϵ2σ2

(1− λ)2C2
1

≥ (1− λ)2C2
2ηϵ

2

8000000
(32)

for all type-B iteration t where we have used the parameter setting.603

C.6 Proof of Lemma 6604

Proof. Suppose the conclusion is not true and we will find the conflict. Thus, we have the assumption605

that there are at least n
10 worker nodes satisfying di ≤ 2Cd. First, we define606

w
(i)
t = x

(i)
t − x

(i)′

t , wt = x̄t − x̄′
t, H = ∇2f(x̄s), H(i) = ∇2fi(x̄s), H(i)

t = ∇2Fi(x
(i)
s , ξ

(i)
t )

607

ζt =
1

n

n∑
i=1

(∇Fi(x
(i)
t , ξ

(i)
t )−∇Fi(x̄t, ξ

(i)
t ))− (∇Fi(x

(i)′

t , ξ
(i)
t )−∇Fi(x̄

′
t, ξ

(i)
t ))

− (1− β)(∇Fi(x
(i)
t−1, ξ

(i)
t )−∇Fi(x̄t−1, ξ

(i)
t ))− (∇Fi(x

(i)′

t−1, ξ
(i)
t )−∇Fi(x̄

′
t−1, ξ

(i)
t ))

608

νt = v̄t −∇f(x̄t)− (v̄′t −∇f(x̄′
t))− ζt

and609

∆̄t =

∫ 1

0

(∇2f(x̄′
t + θ(x̄t − x̄′

t))−H)dθ

∆
(i)
t =

∫ 1

0

(∇2fi(x̄
′
t + θ(x̄t − x̄′

t))−H(i))dθ

Then we have610

wt = wt−1 − η(v̄t−1 − v̄′t−1)

= wt−1 − η(∇f(x̄t−1)−∇f(x̄′
t−1) + v̄t−1 −∇f(x̄t−1)− v̄′t−1 +∇f(x̄′

t−1))

= wt−1 − η
[
(x̄t−1 − x̄′

t−1)

∫ 1

0

∇2f(x̄′
t−1 + θ(x̄t−1 − x̄′

t−1))dθ + νt−1 + ζt−1

]
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= (I − ηH)wt−1 − η(∆̄t−1wt−1 + νt−1 + ζt−1) (33)

Here term ζt is yield from consensus error and does not exist in centralized algorithms. Applying611

recursion to Eq. (33), we can obtain612

wt = (I − ηH)t−s−1ws+1 − η

t−1∑
τ=s+1

(I − ηH)t−τ−1(∆̄τwτ + ντ + ζτ ) (34)

Let qt = η
∑t−1

τ=s+1(I − ηH)t−τ−1(∆̄τwτ + ντ + ζτ ). We will prove613

∥qt∥ ≤ 1

2
(1 + ηγ)t−s−1psr0 (35)

which leads to614

1

2
(1 + ηγ)t−s−1psr0 ≤ ∥wt∥ ≤ 3

2
(1 + ηγ)t−s−1psr0 (36)

because ∥(I−ηH)t−s−1ws+1∥ = (1+ηγ)t−s−1psr0 according to the definition of ws+1. We define615

d̄ = maxs≤t≤s+CT
{∥x̄t− x̄s∥, ∥x̄′

t− x̄s∥}. Since at least n
10 nodes satisfy di ≤ 2Cd, Cd = Õ(ϵ1−α)616

and the averaged consensus error is bounded by O(ϵ2(1+θ)), we have617

di ≤ 3Cd and d̄ ≤ 1

n

n∑
i=1

di ≤ 3Cd (37)

To achieve Eq. (35), it is sufficient to prove618

η

t−1∑
τ=s+1

(1 + ηγ)t−τ−1∥∆̄τwτ∥+ ∥ντ∥+ ∥ζτ∥ ≤ 1

2
(1 + ηγ)t−s−1psr0 (38)

∥νt∥ ≤

√
4 log(4/δ)

b1
· (1 + ηγ)t−s−1Lpsr0

t− s
+

1

12ηCT
(1 + ηγ)t−s−1psr0 (39)

∥ζt∥ ≤ 8(
1 + λ2

2
)

t−s−1
2 L

√
psr0 +

Lη(1 + ηγ)t−s−1Lpsr0√
b1(t− s)

+
1

12ηCT
(1 + ηγ)t−s−1psr0 (40)

which can be derived by induction. When t = s + 1, the left side of Eq. (38) is 0 and thus the619

inequality is satisfied. Suppose Eq. (38) holds for t ≤ t0. When t = t0 + 1, we have620

η

t−1∑
τ=s+1

(1 + ηγ)t−τ−1∥∆̄τwτ∥

≤ 3

2
ηρd̄

t−1∑
τ=s+1

(1 + ηγ)t−s−2psr0 ≤ 5ηρCdCT (1 + ηγ)t−s−2psr0

≤ 1

6
(1 + ηγ)t−s−1psr0 (41)

where we use Assumption 4 and the case of t ≤ t0 in the first two inequalities. We use the621

parameter setting of Cd in the last inequality. Next, we will estimate the terms related to νt. By622

Azuma-Hoeffding inequality we know Eq. (39) is satisfied when t = s+ 1. We define623

ϵt,i = (∇Fi(x̄t+1, ξ
(i)
t+1)−∇fi(x̄t+1))− (1− β)(∇Fi(x̄t, ξt+1)−∇fi(x̄t))

ϵ′t,i = (∇Fi(x̄
′
t+1, ξ

(i)
t+1)−∇fi(x̄

′
t+1))− (1− β)(∇Fi(x̄

′
t, ξt+1)−∇fi(x̄

′
t))

Then according to the definition of νt we have624

νt+1 = (1− β)νt +
1

n

n∑
i=1

(ϵt,i − ϵ′t,i) =
1

n

t∑
τ=s

(1− β)t−τ
n∑

i=1

(ϵτ,i − ϵ′τ,i) (42)
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Define625

∆̃
(i)
t,1 =

∫ 1

0

(∇2Fi(x̄
′
t + θ(x̄t − x̄′

t), ξ
(i)
t )−H(i)

t )dθ

∆̃
(i)
t,2 =

∫ 1

0

(∇2Fi(x̄
′
t−1 + θ(x̄t−1 − x̄′

t−1), ξ
(i)
t )−H(i)

t )dθ

∆̂
(i)
t,1 =

∫ 1

0

(∇2Fi(x
(i)′

t + θ(x
(i)
t − x

(i)′

t ), ξ
(i)
t )−H(i)

t )dθ

∆̂
(i)
t,2 =

∫ 1

0

(∇2Fi(x
(i)′

t−1 + θ(x
(i)
t−1 − x

(i)′

t−1), ξ
(i)
t )−H(i)

t )dθ (43)

Then we have626

ϵt,i − ϵ′t,i

= H(i)
t+1wt+1 + ∆̃

(i)
t+1,1wt+1 −H(i)wt+1 −∆

(i)
t+1wt+1 + (1− β)(H(i)wt +∆

(i)
t wt)

− (1− β)(H(i)
t+1wt + ∆̃

(i)
t+1,2wt)

= (H(i)
t+1 −H)(wt+1 − (1− β)wt) + (∆̃

(i)
t+1,1 −∆

(i)
t+1)wt+1 + (1− β)(∆

(i)
t − ∆̃

(i)
t+1,2)wt (44)

According to Assumption 3 and Assumption 4, we have627

∥ϵt,i − ϵ′t,i∥ ≤ 2L∥wt+1 − wt∥+ (2βL+ 3ρCd)∥wt∥+ 3ρCd∥wt+1∥ (45)

Applying Azuma-Hoeffding inequality to Eq. (42), with Eq. (45) we can obtain628

∥νt∥2 ≤ 4 log(4/δ)

nb1

t−1∑
τ=s

[2L∥wτ+1 − wτ∥+ (2βL+ 3ρCd)∥wτ∥+ 3ρCd∥wτ+1∥]2

≤ 48 log(4/δ)

nb1

t∑
τ=s+1

(L2∥wτ − wτ−1∥2 + 5ρ2C2
d∥wτ∥2) (46)

since β is Θ(ϵ1+θ) and Cd is Θ(ϵ1−α). According to Eq. (34), we have629

L∥wτ − wτ−1∥

= L∥ − ηH(I − ηH)τ−s−2ws+1 − η

τ−2∑
τ ′=s+1

ηH(I − ηH)τ
′−s−2(∆̄τ ′wτ ′ + ντ ′ + ζτ ′)

+ η(∆̄τ−1wτ−1 + ντ−1 + ζτ−1)∥

≤ Lηγ(1 + ηγ)τ−s−2psr0 +
Lηγ

2
(1 + ηγ)τ−s−2psr0 + Lη∥∆̄τ−1wτ−1 + ντ−1 + ζτ−1∥

≤ 2Lηγ(1 + ηγ)τ−s−2psr0 + Lη∥∆̄τ−1wτ−1 + ντ−1 + ζτ−1∥ (47)

In the first inequality, the first term is derived by the definition of ws+1. The second term is derived630

by the supposition that Eq. (38) holds for t ≤ t0 and the fact that Eq. (38) implies631

η

t−1∑
τ=s+1

(1 + ηγ)t−τ−1∥∆̄τwτ + ντ + ζτ∥ ≤ 1

2
(1 + ηγ)t−s−1psr0 (48)

Combining Eq. (46) and Eq. (47), we have632

∥νt∥2 ≤ 48 log(4/δ)

nb1

t∑
τ=s+1

(L2∥wτ − wτ−1∥2 + 5ρ2C2
d∥wτ∥2)

≤ 270 log(4/δ)ρ2C2
d

nb1ηγ
(1 + ηγ)2(t−s−1)p2sr

2
0 +

192 log(4/δ)L2ηγ

nb1
(1 + ηγ)2(t−s−1)p2sr

2
0

+
96 log(4/δ)L2η2

nb1

t−2∑
τ=s+1

∥∆̄τwτ + ντ + ζτ∥2
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≤ 300 log(4/δ)ρ2C2
d

nb1ηγ
(1 + ηγ)2(t−s−1)p2sr

2
0 +

192 log(4/δ)L2ηγ

nb1
(1 + ηγ)2(t−s−1)p2sr

2
0

+
4 log(4/δ)L2

nb1ηγC2
T

(1 + ηγ)2(t−s−1)p2sr
2
0 +

5000 log2(4/δ)L4η2p2sr
2
0

b21

t−2∑
τ=s+1

(1 + ηγ)2(τ−s−1)

(τ − s)2

≤ 1

288η2C2
T

(1 + ηγ)2(t−s−1)p2sr
2
0 +

800 log2(4/δ)L2ηγ

nb1
(1 + ηγ)2(t−s−1)p2sr

2
0

+
5000 log2(4/δ)L4η2p2sr

2
0

b21

s+ Lη
b1γ∑

τ=s+1

(1 + ηγ)2(τ−s−1)

(τ − s)2

≤ 10000 log(4/δ)L4η4

b41γ
2

· (1 + ηγ)2(t−s−1)L2p2sr
2
0

(t− s)2
+

1

144η2C2
T

(1 + ηγ)2(t−s−1)p2sr
2
0

≤ (1 + ηγ)2(t−s−1)L2p2sr
2
0

(t− s)2
+

1

144η2C2
T

(1 + ηγ)2(t−s−1)p2sr
2
0 (49)

The exponential term in Eq. (40) can be addressed by the following strategy. When t ≥ Õ( 1
1−λ ), the633

term can be dominated by other terms such as 1
ηCT

. When t < Õ( 1
1−λ ), it can be bounded by634

L2η2 log(4/δ)psr
2
0

n(1− λ)b1
≤ L2η2(t− s)2 log(4/δ)p2sr

2
0

(1− λ)b1(t− s)2
(50)

The term t − s in the numerator will be bounded by η in this case and hence it can be merged to635

the first term in Eq. (39). In the third inequality of Eq. (49), we split the last term into two parts:636

τ − s > Lη
b1γ

and τ − s ≤ Lη
b1γ

. Since
∫ +∞
t

dx
x2 = 1

t , we can merge the case τ − s > Lη
b1γ

into the637

second term and estimate the rest one where τ − s is small. According to the choice of θ, we have638

b1 ≥ Θ(ϵ2−θ−5α) and η2C2
dC

3
T

b1
≤ O(1) and hence get the estimation in Eq. (49). We should notice639

that we use the relation η
b1γ

≤ O(1) in our proof, which is automatically satisfied. By Eq. (49) we640

can reach the conclusion in Eq. (39). Furthermore, we have641

η

t−1∑
τ=s+1

(1 + ηγ)t−τ−1∥ντ∥

≤ Lη(1 + ηγ)t−s−1psr0(

t−1∑
τ=s+1

1

τ − s
) +

1

12
(1 + ηγ)t−s−1psr0

≤ Lη log(CT )(1 + ηγ)t−s−1psr0 +
1

12
(1 + ηγ)t−s−1psr0 ≤ 1

6
(1 + ηγ)t−s−1psr0 (51)

The last step to prove Eq. (38) is to estimate the term corresponding to ζt, which is a new term only642

occurred in decentralized algorithms. Recall the definitions in Eq. (43), we have643

ζt =
1

n

n∑
i=1

[
(H(i)

t + ∆̂
(i)
t,1)w

(i)
t − (H(i)

t + ∆̃
(i)
t,1)wt − (1− β)((H(i)
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(i)
t,2)w

(i)
t−1 − (H(i)

t + ∆̃
(i)
t,2)wt−1)

]
=

1

n

n∑
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H(i)
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(i)
t − wt)− (1− β)(w

(i)
t−1 − wt−1)] +

1

n

n∑
i=1

∆̂
(i)
t,1(w

(i)
t − wt)

+
1

n

n∑
i=1

(∆̂
(i)
t,1 − ∆̃

(i)
t,1)wt −

1− β

n

n∑
i=1

∆̂
(i)
t,2(w

(i)
t−1 − wt−1)−

1− β

n

n∑
i=1

(∆̂
(i)
t,2 − ∆̃

(i)
t,2)wt−1 (52)

Then by Assumption 3, Assumption 4, Eq. (37), Lemma 10 and Cauchy-Schwartz inequality, we644

have645

∥ζt∥2 ≤ 4L2

n
(∥Xt − X̄t − (X ′

t − X̄ ′
t)∥2F + ∥Xt−1 − X̄t−1 − (X ′

t−1 − X̄ ′
t−1)∥2F )

+ 144ρ2C2
d(∥wt∥2 + ∥wt−1∥2) (53)
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It is sufficient to prove646

L√
n
∥Xt − X̄t − (X ′

t − X̄ ′
t)∥F ≤ 2(

1 + λ2

2
)

t−s−1
2 L

√
psr0 +

1

48ηCT
(1 + ηγ)t−s−1psr0

+
Lη(1 + ηγ)t−s−1Lpsr0

4
√
b1(t− s)

(54)

because of Eq. (53) and the parameter setting. Eq. (54) can also be proven by induction. When647

t = s+1 the condition is satisfied. Next we will estimate ∥Xt− X̄t− (X ′
t− X̄ ′

t)∥2F . By Assumption648

5 and Young’s inequality we have649

∥Xt − X̄t − (X ′
t − X̄ ′

t)∥2F
= ∥(W − J)[(Xt−1 − X̄t−1 − (X ′

t−1 − X̄ ′
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t−1))]∥2F

≤ 1 + λ2

2
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t−1 − X̄ ′
t−1)∥2F +

2η2λ2

1− λ2
∥Yt−1 − Ȳt−1 − (Y ′

t−1 − Ȳ ′
t−1)∥2F

≤ 2η2λ2

1− λ2
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τ=s+1

(
1 + λ2

2
)t−τ−1∥Yτ − Ȳτ − (Y ′

τ − Ȳ ′
τ )∥2F
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1 + λ2

2
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s+1)∥2F

=
2η2λ2

1− λ

t−1∑
τ=s+1

(
1 + λ2

2
)t−τ−1∥Yτ − Ȳτ − (Y ′

τ − Ȳ ′
τ )∥2F +(

1 + λ2

2
)t−s−1λ2(n− ns)psr

2
0 (55)

where we apply recursion in the second inequality and use the definition of the decoupled sequences650

in the last equality. Similarly, by recursion we also have651

∥Yt − Ȳt − (Y ′
t − Ȳ ′

t )∥2F

≤ 1 + λ2

2
∥Yt−1 − Ȳt−1 − (Y ′

t−1 − Ȳ ′
t−1)∥2F +

λ2 + λ4

1− λ2
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t−1)∥2F

≤ 2λ2

1− λ

t∑
τ=s+1

(
1 + λ2

2
)t−τ∥Vτ − Vτ−1 − (V ′

τ − V ′
τ−1)∥2F (56)

Combining above two inequalities, we achieve652

∥Xt − X̄t − (X ′
t − X̄ ′

t)∥2F

≤ 2η2λ4

(1− λ)2
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(
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2
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1 + λ2

2
)t−s−1λ2(n− ns)psr

2
0 (57)

According to the update rule of v(i)t we have653

v
(i)
t − v

(i)
t−1 − (v

(i)′

t − v
(i)′

t−1)− (1− β)(v
(i)
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(i)
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(i)′
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(i)′

t−2))

= ∇Fi(x
(i)
t , ξ

(i)
t )− (1− β)∇Fi(x

(i)
t−1, ξ

(i)
t )−∇Fi(x
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(i)
t ) + (1− β)∇Fi(x
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(i)
t )
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(i)
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(i)
t−1)] (58)

Then mimic the estimation of νt, we can obtain654

∥Vt − Vt−1 − (V ′
t − V ′

t−1)∥2F

≤ 32 log(4/δ)

b1
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τ=s

n∑
i=1

[2L∥w(i)
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∥w(i)
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d
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∥w(i)
t ∥2 (59)
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Combining above inequalities and the parameter setting of β, we can obtain655

1
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2
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Using Eq. (36), Eq. (47) and Eq. (54) we have656
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where657
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If t ≥ Õ( 1
1−λ ), t

2( 1+λ2

2 )t−s−1 is small and the first term of Eq. (61) can be merged to the second658

term. Otherwise if t < Õ( 1
1−λ ), it can be merged to the last term according to the parameter setting659

of η and b1. When ϵ is small, we have (1+λ2)(1+ηγ)2

2 ≤ 3+λ2

4 . Hence the second term of Eq. (61)660

can be bounded by Lemma 8. The third term of Eq. (61) can be estimated by Lemma 9 (the case of661

t < Õ( 1
1−λ ) can be addressed by the parameter setting of η and b1). Therefore, we can prove662

L2
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2
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2
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2304ηCT
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2
0
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2
0

16b1(t− s)2
(63)

because of the parameter setting. We should notice that here we also use the relation η
b1γ

≤ O(1),663

which is always satisfied according to the setting of b1. Based on Eq. (53) and Eq. (63), it is easy to664
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check that ζt satisfies Eq. (40). Moreover, we have665
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1
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≤ 1

6
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where the first inequality is derived by666

1 + λ2

2
≤ (

3 + λ2

4
)2 and

(3 + λ2)(1 + ηγ)

4
≤ 4 + λ2

5
(65)

Now combining Eq. (41), Eq. (51) and Eq. (64), we can reach the conclusion in Eq. (38) and finish667

the proof of the induction. Recall the assumption at the beginning, we have668

1

2
(1 + ηγ)CT psr0 ≤ wCT

≤ 2d̄ ≤ 6Cd (66)

since ∥x̄t − x̄′
t∥ ≤ ∥x̄t − x̄s∥+ ∥x̄′

t − x̄s∥. Eq. (66) implies that669

CT ≤ log(12Cd/(psr0))

log(1 + ηγ)
<

2 log(12nCd/r0)

ηγ
(67)

which conflicts with the definition of CT . Therefore, the proof of Lemma 6 is finished.670

C.7 Proof of Lemma 7671

Proof. If node i enters the escaping phase in iteration s′ before iteration s and does not break it in672

iteration s+CT , then for s ≤ t ≤ s+CT , we have ∥x(i)
t −x

(i)
s ∥ ≤ ∥x(i)

t −x
(i)
s′ ∥+∥x(i)

s −x
(i)
s′ ∥ ≤ 2Cd.673

Therefore, there are at least n
10 worker nodes satisfying maxs≤t≤s+CT

∥x(i)
t − x

(i)
s ∥ ≤ 2Cd.674

Suppose min eig(∇2f(x̄s)) ≤ −ϵH and e1 is the corresponding eigenvector. Let Si denote the675

region of the perturbation on node i that PEDESTAL will terminate in iteration s + CT , i.e., n
10676

workers will not break the escaping phase. Then by Lemma 6 we can conclude that there must677

exist one worker node such that the projection of Si onto direction e1 is smaller than r0. Since the678

perturbation ξi is drawn from uniform distribution, the probability of ξi ∈ Si can be bounded by679

Pr(ξi ∈ Si) ≤
r0V (Ball(d− 1, r))

V (Ball(d, r))
≤ δ (68)

where V (·) denotes the volume and Ball(d, r) denotes the d-dimensional ball with radius r. The680

last inequality is achieved by the definition of r0. Therefore, we can prove that x̄s is a second-order681

stationary point with probability at least 1− δ.682

D Additional Theoretical Result683

In this section we will provide some additional theoretical result of our PEDESTAL algorithm. First684

we will demonstrate the convergence analysis of the case ϵH <
√
ϵ, i.e., α > 0.5. Next, we will685

discuss the strategy of using fixed number of iterations in each descent and escaping phase, which686

motivates the design of PEDESTAL.687

D.1 Smaller Tolerance for Second-Order Optimality688

When ϵH <
√
ϵ, the conclusions of previous Lemmas are still satisfied except Lemma 4. In this case,689

Cd = C2ηCT ϵ
µ where µ = 2α > 1. Parameter Cd should be smaller than the original setting in690

Lemma 4, which results in more iterations to converge. Fortunately, the analysis of Lemma 4 can be691

adjusted and we have the following Theorem.692
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Theorem 2. When ϵH <
√
ϵ (i.e., α > 0.5), we set η = Θ̃(ϵθ), β = Θ(ϵ1+θ), b0 = Θ(ϵ−1),693

b1 = Θ̃(ϵ−max{4α−1−θ,θ+α}), r = Θ(ϵ1+θ), Cv = Θ(ϵ), CT = Θ̃(ϵ−θ−α) and Cd = Θ̃(ϵα)694

where θ = min{ 3α−1
2 , 3α− 2}. Under Assumption 1 to 5, our PEDESTAL algorithm will achieve695

O(ϵ, ϵH)-second-order stationary point with Õ(ϵϵ−8
H + ϵ4ϵ−11

H ) gradient complexity.696

Proof. The fourth term of Dt in Lemma 3 is derived by ηβσ2

b1
and at this time we will set b1 ≥697

ϵ−(2µ−1−θ) so that the ϵ term is replaced by ϵµ. The last term of Dt can be written as698

T−1∑
t=0

7pt(η
2C2

v + r2)

4η
=

1

n

∑
(t,i)∈P

7(η2C2
v + r2)

4η
(69)

where P is the set of all pairs of (t, i) such that node i draws perturbation in iteration t. We can699

divide P into two parts. P1 contains all pairs of (t, i) such that node i breaks the escaping phase700

within M iterations, where M is an integer to be decided later. The rest part is denoted by P2.701

For any (t, i) ∈ P1, suppose node i breaks escaping phase in iteration t+m, where m ≤ M . Then702

node i will never draw perturbation between iteration t and iteration t+M . Mimic the steps of Eq.703

(26), by Cauchy-Schwartz inequality we can obtain704

t+m∑
τ=t

∥x(i)
τ+1 − x(i)

τ ∥2 ≥ C2
d

M
(70)

Let M = ϵ−2−2θ+2α. Then we have705

(1− λ)2

512η
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∥x(i)
τ+1 − x(i)

τ ∥2 ≥ 7(η2C2
v + r2)

4η
(71)

and706

(1− λ)2

512nη
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τ=t

n∑
i=1

∥x(i)
τ+1 − x(i)

τ ∥2 ≥ 1

n

∑
(t,i)∈P1

7(η2C2
v + r2)

4η
(72)

by the parameter setting of Cv. On the other hand, if (t, i) ∈ P2, then node i will not break the707

escaping phase in M steps and hence the perturbation step will not execute, either. Therefore, we708

have estimation709

1

n

∑
(t,i)∈P2

7(η2C2
v + r2)

4η
≤

T−1∑
t=0

7(η2C2
v + r2)

4Mη
(73)

With Eq. (72), Eq. (73) and the new setting of b1, the descent in Lemma 3 can be improved to710

Dt =
1

16η
ωt +

(1− λ)2

512nη

n∑
i=1

∥x(i)
t+1 − x

(i)
t ∥2 + η

2n
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∥y(i)t ∥2 − 200ηϵ2µσ2

(1− λ)2C2
1

− 7(η2C2
v + r2)

4Mη

When θ ≥ 3α− 2, we have ϵ2

M ≤ ϵ2µ and Lemma 4 still holds but the conclusion is changed to711 ∑
t∈I

Dt ≥ |I| · (1− λ)2C2
2ηϵ

2µ

10000

In this case, PEDESTAL algorithm will terminate in Õ(ϵ−θ−2µ) iterations. In Lemma 6 and Lemma712

7 we need the relations713

η2C2
dC

3
T

b1
≤ O(1),

η

b1ϵH
≤ O(1) (74)

which implies b1 ≥ Õ(ϵ−θ−α). Therefore, we set b1 = Θ̃(ϵ−max{4α−1−θ,θ+α}) with the condition714

θ ≥ 3α− 2. When α ≤ 1, we set θ = 3α−1
2 , which satisfies θ ≥ 3α− 2 and715

4α− 1− θ = θ + α =
5α− 1

2
(75)
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The gradient complexity in this case is716

Õ(ϵ−
11α−1

2 · ϵ−
5α−1

2 ) = Õ(ϵ−8α+1) (76)

When α > 1, we have θ = 3α− 2 and b1 = Θ̃(ϵ−(4α−2)). The gradient complexity is717

Õ(ϵ−(7α−2) · ϵ−(4α−2)) = Õ(ϵ−11α+4) (77)

which finishes the proof of Theorem 2.718

Therefore, the gradient complexity over all cases of α can by written by719

Õ(ϵ−3 + ϵϵ−8
H + ϵ4ϵ−11

H ) (78)

D.2 Phases with Fixed Number of Iterations720

If a decentralized stochastic perturbed gradient descent method adopt the strategy of fixed number721

of iterations in each phase, the gradient complexity in the descent phase should be at least O(ϵ−3)722

to ensure the first-order stationary point. But the total descent of a descent phase could be small723

because it is possible that it is stuck at a saddle point after only a few steps. Hence we need to724

consider the descent in the escaping phase. According to Lemma 3 and Lemma 4 we can see the725

descent of an escaping phase is O(
C2

d

ηCT
). As the conditions ηCdCT ≤ O(1) and CT = Õ( 1

ηϵH
) are726

required in Lemma 6, we can obtain that the total descent of an escaping phase is no larger than727

Õ(ϵ3H). In the classic setting of ϵH =
√
ϵ, the total descent of an escaping is upper bounded by728

Õ(ϵ1.5). Consequently, the total gradient complexity to achieve (ϵ,
√
ϵ)-second-order stationary point729

is at least Õ(ϵ−4.5), which is worse than the result of our PEDESTAL.730

E Auxiliary Lemmas731

Lemma 8. Let 0 < a < 1. Then we have
t∑

τ=1

τaτ−1 =
1− at

(1− a)2
− tat

1− a

Lemma 9. Let 0 < a < 1. When t ≥ Õ( 1
1−a ), we have

t∑
τ=1

τaτ−1

(t+ 1− τ)2
≤ 8

t2(1− a)2

Proof. When τ ≤ t
2 , by Lemma 8 we have732 ∑

τ≤t/2

τaτ−1

(t+ 1− τ)2
≤ 4

t2(1− a)2
(79)

When τ > t
2 , we have733 ∑

τ>t/2

τaτ−1

(t+ 1− τ)2
≤

∑
τ>t/2

τaτ−1 ≤ at/2(
t

2(1− a)
+

1

(1− a)2
) (80)

Therefore, we can reach the conclusion when t ≥ Õ( 1
1−a ).734

Lemma 10. (Definition of Variance) For any random variable X, we have

E[X − EX]2 = EX2 − (EX)2

Lemma 11. (Lemma D.1 in (Chen et al. [2022])) Let ϵ1:k ∈ Rd be a vector-valued martingale735

difference sequence with respect to Fk, i.e., for each k ∈ [K], E[ϵk|Fk] = 0 and ∥ϵk∥ ≤ Bk, then736

with probability 1− δ we have737

∥
K∑

k=1

ϵk∥2 ≤ 4 log(4/δ)

K∑
k=1

B2
k (81)
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