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Abstract

Explanation methods for machine learning models tend to not provide any formal1

guarantees and may not reflect the underlying decision-making process. In this2

work, we analyze stability as a property for reliable feature attribution methods.3

We prove that a relaxed variant of stability is guaranteed if the model is sufficiently4

Lipschitz with respect to the masking of features. To achieve such a model, we5

develop a smoothing method called Multiplicative Smoothing (MuS). We show6

that MuS overcomes theoretical limitations of standard smoothing techniques and7

can be integrated with any classifier and feature attribution method. We evaluate8

MuS on vision and language models with a variety of feature attribution methods,9

such as LIME and SHAP, and demonstrate that MuS endows feature attributions10

with non-trivial stability guarantees.11

1 Introduction12

Modern machine learning models are incredibly powerful at challenging prediction tasks but notori-13

ously black-box in their decision-making. One can therefore achieve impressive performance without14

fully understanding why. In settings like like medical diagnosis [1, 2] and legal analysis [3, 4], where15

accurate and well-justified decisions are important, such power without proof is insufficient. In order16

to fully wield the power of such models while ensuring reliability and trust, a user needs accurate and17

insightful explanations of model behavior.18

One popular family of explanation methods is feature attributions [5, 6, 7, 8]. Given a model and19

input, a feature attribution method generates a score for each input feature that denotes its importance20

to the overall prediction. For instance consider Figure 1, in which the Vision Transformer [9] classifier21

predicts the full image (left) as “Goldfish”. We then use a feature attribution method like SHAP [7]22

to score each feature and select the top-25%, for which the masked image (middle) is consistently23

predicted as “Goldfish”. However, additionally including a single patch of features (right) alters24

the prediction confidence so much that it now yields “Axolotl”. This suggests that the explanation25

is brittle [10], as small changes easily cause it to now induce some other class. In this paper we26

study how to overcome such behavior by analyzing the stability of an explanation: we consider an27

explanation to be stable if once the explanatory features are included, the addition of more features28

does not change the prediction.29

Stability implies that the selected features are enough to explain the prediction [11, 12, 13] and that this30

selection maintains strong explanatory power even in the presence of additional information [10, 14].31

Similar properties are studied in literature and identified as useful for interpretability [15], and we32

emphasize that our main focus is on analyzing and achieving provable guarantees. Stability guarantees33

in particular are useful as they allow one to accurately predict how model behavior varies with the34

explanation. Given a stable explanation, one can include more features, e.g. adding context, while35

maintaining confidence in the consistency of the underlying explanatory power. Crucially, we observe36
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Figure 1: Classification by VisionTransformer [9] on an attribution generated by SHAP [7] with
top-25% selection. A single 28× 28 pixel patch of difference between the two attributions (marked
green) significantly affects prediction confidence and results in a classification flip.

that such guarantees only make sense when jointly considering the model and explanation method:37

the explanation method necessarily depends on the model to yield an explanation, and stability is38

then evaluated with respect to the model.39

Thus far, existing work on feature attributions with formal guarantees face challenges with com-40

putational tractability and explanatory utility. While some methods take an axiomatic approach41

[8, 16], others use metrics that appear reasonable but may not reliably reflect useful model behavior,42

a common and known limitation [17]. Such explanations have been criticized as at best a plausible43

guess, and at worst completely misleading [18] about model behavior.44

In this paper we study how to construct explainable models with provable stability guarantees. We45

jointly consider the classification model and explanation method, and present a formalization for46

studying such properties that we call explainable models. We focus on binary feature attributions [19]47

wherein each feature is either marked as explanatory (1) or not explanatory (0). We present a48

method to solve this problem, which is inspired by techniques from adversarial robustness, in49

particular randomized smoothing [20, 21]. Our method can take any off-the-shelf classifier and50

feature attribution method to efficiently yield an explainable model that satisfies provable stability51

guarantees. In summary, our contributions are as follows:52

• We formalize stability as a key property for binary feature attributions and study this in the53

framework of explainable models. We prove that relaxed variants of stability are guaranteed54

if the model is sufficiently Lipschitz with respect to the masking of features.55

• To achieve the sufficient Lipschitz conditions, we develop a smoothing method called56

Multiplicative Smoothing (MuS). We show that MuS achieves strong smoothness conditions,57

overcomes key theoretical and practical limitations of standard smoothing techniques, and58

can be integrated with any classifier and feature attribution method.59

• We evaluate MuS on vision and language models along with different feature attribution60

methods. We demonstrate that MuS-smoothed explainable models achieve strong stability61

guarantees at a small cost to accuracy.62

2 Overview63

We observe that formal guarantees for explanations must take into account both the model and64

explanation method, and for this we present in Section 2.1 a pairing that we call explainable models.65

This formulation allows us to then describe the desired stability properties in Section 2.2. We show66

in Section 2.3 that classifiers with sufficient Lipschitz smoothness with respect to feature masking67

allows us to yield provable guarantees of stability. Finally in Section 2.4 we show how to adapt68

existing feature attribution methods into our explainable model framework.69

2.1 Explainable Models70

We first present explainable models as a formalism for rigorously studying explanations. Let X = Rn71

be the space of inputs, a classifier f : X → [0, 1]m maps inputs x ∈ X tom logits (class probabilities)72
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that sum to 1, where the class of f(x) ∈ [0, 1]m is taken to be the largest coordinate. Similarly,73

an explanation method φ : X → {0, 1}n maps an input x ∈ X to an explanation φ(x) ∈ {0, 1}n74

that indicates which features are considered explanatory for the prediction f(x). In particular, we75

may pick and adapt φ from among a selection of existing feature attribution methods like LIME [6],76

SHAP [7], and many others [5, 8, 22, 23, 24], wherein φ may be thought of as a top-k feature selector.77

Note that the selection of input features necessarily depends on the explanation method executing or78

analyzing the model, and so it makes sense to jointly study the model and explanation method: given79

a classifier f and explanation method φ, we call the pairing ⟨f, φ⟩ an explainable model. Given some80

x ∈ X , the explainable model ⟨f, φ⟩ maps x to both a prediction and explanation. We show this in81

Figure 2, where ⟨f, φ⟩(x) ∈ [0, 1]m × {0, 1}n pairs the class probabilities and the feature attribution.82

Figure 2: An explainable model ⟨f, φ⟩ outputs both a classification and a feature attribution. The
feature attribution is a binary-valued mask (white 1, black 0) that can be applied over the original
input. Here f is Vision Transformer [9] and φ is SHAP [7] with top-25% feature selection.

For an input x ∈ X , we will evaluate the quality of the binary feature attribution φ(x) through its83

masking on x. That is, we will study the behavior of f on the masked input x⊙ φ(x) ∈ X , where ⊙84

is the element-wise vector product. To do this, we define a notion of prediction equivalence: for two85

x, x′ ∈ X , we write f(x) ∼= f(x′) to mean that f(x) and f(x′) yield the same class. This allows us86

to formalize the intuition that an explanation φ(x) should recover the prediction of x under f .87

Definition 2.1. The explainable model ⟨f, φ⟩ is consistent at x if f(x) ∼= f(x⊙ φ(x)).88

Evaluating f on x⊙ φ(x) this way lets us apply the model as-is and therefore avoids the challenge89

of constructing a surrogate model that is accurate to the original [25]. Moreover, this approach is90

reasonable, especially in domains like vision — where one intuitively expects that a masked image91

retaining only the important features should induce the intended prediction. Indeed, architectures like92

Vision Transformer [9] can maintain high accuracy with only a fraction of the image present [26].93

Particularly, we would like for ⟨f, φ⟩ to generate explanations that are stable and concise (i.e. sparse).94

The former is our central guarantee, and is ensured through smoothing. The latter implies that φ(x)95

has few ones entries, and is a desirable property since a good explanation should not contain too much96

redundant information. However, sparsity is a difficulty property to enforce, as this is contingent on97

the model having high accuracy with respect to heavily masked inputs. For sparsity we present a98

simple heuristic in Section 2.4 and evaluate its effectiveness in Section 4.99

2.2 Stability Properties of Explainable Models100

Given an explainable model ⟨f, φ⟩ and some x ∈ X , stability means that the prediction does not101

change even if one adds more explanatory features to φ(x). For instance, the model-explanation pair102

in Figure 1 is not stable, as the inclusion of a single feature group (patch) changes the prediction. To103

formalize this notion of stability, we first introduce a partial ordering: for α, α′ ∈ {0, 1}n, we write104

α ⪰ α′ iff αi ≥ α′
i for all i = 1, . . . , n. That is, α ⪰ α′ iff α includes all the features selected by α′.105

Definition 2.2. The explainable model ⟨f, φ⟩ is stable at x if f(x ⊙ α) ∼= f(x ⊙ φ(x)) for all106

α ⪰ φ(x).107

Note that the constant explanation φ(x) = 1, the vector of ones, makes ⟨f, φ⟩ trivially stable at every108

x ∈ X , though this is not a concise explanation. Additionally, stability at x implies consistency at x.109

Unfortunately, stability is a difficult property to enforce in general, as it requires that f satisfy a110

monotone-like behavior with respect to feature inclusion — which is especially challenging for111

complex models like neural networks. Checking stability without additional assumptions on f is112

also hard: if k = ∥φ(x)∥1 is the number of ones in φ(x), then there are 2n−k possible α ⪰ φ(x) to113

check. This large space of possible α ⪰ φ(x) motivates us to instead examine relaxations of stability.114

We introduce lower and upper-relaxations of stability below.115

Definition 2.3. The explainable model ⟨f, φ⟩ is incrementally stable at x with radius r if f(x⊙α) ∼=116

f(x⊙ φ(x)) for all α ⪰ φ(x) where ∥α− φ(x)∥1 ≤ r.117
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Incremental stability is the lower-relaxation since it considers the case where the mask α has only118

a few features more than φ(x). For instance, if one can provably add up to r features to a masked119

x⊙ φ(x) without altering the prediction, then ⟨f, φ⟩ would be incremental stable at x with radius r.120

We next introduce the upper-relaxation that we call decremental stability.121

Definition 2.4. The explainable model ⟨f, φ⟩ is decrementally stable at x with radius r if f(x⊙α) ∼=122

f(x⊙ φ(x)) for all α ⪰ φ(x) where ∥1− α∥1 ≤ r.123

Decremental stability is a subtractive form of stability, in contrast to the additive nature of incremental124

stability. Particularly, decremental stability considers the case where α has much more features than125

φ(x). If one can provably remove up to r features from the full x without altering the prediction,126

then ⟨f, φ⟩ is decrementally stable at x with radius r. Note also that decremental stability necessarily127

entails consistency of ⟨f, φ⟩, but for simplicity of definitions we do not enforce this for incremental128

stability. Furthermore, observe that for a sufficiently large radius of r = ⌈(n − ∥φ(x)∥1)/2⌉,129

incremental and decremental stability together imply stability.130

Remark 2.5. Similar notions to the above have been proposed in literature, and we refer to [15] for131

an extensive survey. In particular for [15], consistency is akin to preservation and stability is similar132

to continuity, except we are concerned with adding features. In this regard, incremental stability is133

most similar to incremental addition and decremental stability to incremental deletion.134

2.3 Lipschitz Smoothness Entails Stability Guarantees135

If f : X → [0, 1]m is Lipschitz with respect to the masking of features, then we can guarantee relaxed136

stability properties for the explainable model ⟨f, φ⟩. In particular, we require for all x ∈ X that137

f(x ⊙ α) is Lipschitz with respect to the mask α ∈ {0, 1}n. This then allows us to establish our138

main result (Theorem 3.3), which we preview below in Remark 2.6.139

Remark 2.6 (Sketch of main result). Consider an explainable model ⟨f, φ⟩ where for all x ∈ X the140

function g(x, α) = f(x⊙ α) is λ-Lipschitz in α ∈ {0, 1}n with respect to the ℓ1 norm. Then at any141

x, the radius of incremental stability rinc and radius of decremental stability rdec are respectively:142

rinc =
gA(x, φ(x))− gB(x, φ(x))

2λ
, rdec =

gA(x,1)− gB(x,1)
2λ

,

where gA − gB is referred to as the logit gap, with gA, gB the first and second-largest logits:143

k⋆ = argmax
1≤k≤m

gk(x, α), gA(x, α) = gk⋆(x, α), gB(x, α) = max
i ̸=k⋆

gi(x, α). (1)

Observe that Lipschitz smoothness is in fact a stronger assumption than necessary, as besides144

α ⪰ φ(x) it also imposes guarantees on α ⪯ φ(x). Nevertheless, Lipschitz smoothness is one of the145

few classes of properties that can be guaranteed and analyzed at scale on arbitrary models [21, 27].146

2.4 Adapting Existing Feature Attribution Methods147

Most existing feature attribution methods assign a real-valued score to feature importance, rather148

than a binary value. We therefore need to convert this to a binary-valued method for use with a149

stable explainable model. Let ψ : X → Rn be such a continuous-valued method like LIME [6] or150

SHAP [7], and fix some desired incremental stability radius rinc and decremental stability radius rdec.151

Given some x ∈ X a simple construction for binary φ(x) ∈ {0, 1}n is described next.152

Remark 2.7 (Iterative construction of φ(x)). Consider any x ∈ X and let ρ be an index ordering on153

ψ(x) from high-to-low (i.e. largest logit first). Initialize α = 0, and for each i ∈ ρ: assign αi ← 1154

then check whether ⟨f, φ : x 7→ α⟩ is now consistent, incrementally stable with radius rinc, and155

decrementally stable with radius rdec. If so then terminate with φ(x) = α; otherwise continue.156

Note that the above method of constructing φ(x) does not impose sparsity guarantees in the way that157

we may guarantee stability through Lipschitz smoothness. Instead, the ordering from a continuous-158

valued ψ(x) serves as a greedy heuristic for constructing φ(x). We show in Section 4 that some159

feature attributions (e.g. SHAP [7]) tend to yield sparser selections on average compared to others160

(e.g. Vanilla Gradient Saliency [5]).161
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3 Multiplicative Smoothing for Lipschitz Constants162

In this section we present our main technical contribution in Multiplicative Smoothing (MuS).163

The goal is to transform an arbitrary base classifier h : X → [0, 1]m into a smoothed classifier164

f : X → [0, 1]m that is Lipschitz with respect to the masking of features. This then allows one to165

appropriately couple an explanation method φ with f in order to form an explainable model ⟨f, φ⟩166

with provable stability guarantees.167

We give an overview of our MuS in Section 3.1, where we illustrate a principal motivation for its168

development is because standard smoothing techniques may violate an property that we call masking169

equivalence. We present the Lipschitz constant of the smoothed classifier f in Section 3.2 and show170

how this is used to certify stability. Finally we give an efficient computation of MuS in Section 3.3,171

allowing us to exactly evaluate f at a low sample complexity.172

Figure 3: Evaluating f(x) is done in three stages. (Stage 1) Generate N samples of binary masks
s(1), . . . , s(N) ∈ {0, 1}n, where each coordinate is Bernoulli with parameter λ (here λ = 1/4).
(Stage 2) Apply each mask on the input to yield x⊙ s(i) for i = 1, . . . , N . (Stage 3) Average over
h(x⊙ s(i)) to compute f(x), and note that the predicted class is given by a weighted average.

3.1 Technical Overview of MuS173

Our key insight is that randomly dropping (i.e. zeroing) features attains the desired smoothness. In174

particular, we uniformly drop features with probability 1− λ by sampling binary masks s ∈ {0, 1}n175

from some distribution D where each coordinate is distributed as Pr[si = 1] = λ. Then define f as:176

f(x) = E
s∼D

h(x⊙ s), such that si ∼ B(λ) for i = 1, . . . , n (2)

where B(λ) is the Beronulli distribution with parameter λ ∈ [0, 1]. We give an overview of evaluating177

f(x) in Figure 3. Importantly, our main results (Theorem 3.2, Theorem 3.3) hold provided D is178

coordinate-wise Bernoulli with λ, and so we avoid restricting ourselves to any one particular choice179

until necessary. However, it will be easy to intuit the exposition withD = Bn(λ), the coordinate-wise180

i.i.d. Bernoulli distribution with λ.181

We can equivalently parametrize f using the mapping g(x, α) = f(x⊙ α), where it follows that:182

g(x, α) = E
s∼D

h(x⊙ α̃), α̃ = α⊙ s. (3)

Note that one could have alternatively first defined g and then f due to the identity g(x,1) = f(x).183

We require that the relationship between f and g follows an identity that we call masking equivalence:184

g(x⊙ α,1) = f(x⊙ α) = g(x, α), for all x ∈ X and α ∈ {0, 1}n. (4)

This follows by definition of g, and the relevance to stability is this: if masking equivalence holds,185

then we can rewrite stability properties involving f in terms of g’s second parameter as follows:186

f(x⊙ α) = g(x, α) ∼= g(x, φ(x)) = f(x⊙ φ(x)), for all α ⪰ φ(x), (c.f. Definition 2.2))

where incremental and decremental stability may be analogously defined. This translation is useful,187

as we will prove that g is λ-Lipschitz in its second parameter (Theorem 3.2), which then allows us to188

establish the desired stability properties (Theorem 3.3).189

Observe that we have not given an exact construction for D, since many choices are in fact valid.190

Rather, so long as each coordinate of s ∼ D obeys si ∼ B(λ) then the Lipschitz properties for g191
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follow. The implication here is that although simple distributions like Bn(λ) suffices for D, they may192

not be sample efficient. We show in Section 3.3 how to exploit a structured statistical dependence in193

order to reduce the sample complexity of computing MuS.194

Importantly, we are motivated to develop MuS because standard smoothing techniques, namely195

additive smoothing [20, 21], may fail to satisfy masking equivalence. Additive smoothing is by far196

the most popular smoothing technique, and differs from our scheme (3) in how noise is applied,197

where let Dadd and Dmult be any two distributions on Rn:198

g(x, α) = E
s∼D

h(x⊙ α̃), α̃ =

{
α+ s, s ∼ Dadd, additive noise
α⊙ s, s ∼ Dmult, multiplicative noise

Particularly, additive smoothing has counterexamples to masking equivalence.199

Proposition 3.1. There exists h : X → [0, 1] and distribution D, where for200

g+(x, α) = E
s∼D

h(x⊙ α̃), α̃ = α+ s,

we have g+(x, α) ̸= g+(x⊙ α,1) for some x ∈ X and α ∈ {0, 1}n.201

Proof. Observe that it suffices to have h, x, α such that h(x⊙ (α+ s)) > h((x⊙ α)⊙ (1+ s)) for202

a non-empty set of s ∈ Rn. Let D be a distribution on these s, then:203

g+(x, α) = E
s∼D

h(x⊙ (α+ s)) > E
s∼D

h((x⊙ α)⊙ (1+ s)) = g+(x⊙ α,1)

204

Intuitively, this occurs because additive smoothing primarily applies noise by perturbing feature205

values, rather than completely masking them. As such, there might be “information leakage” when206

non-explanatory bits of α are changed into non-zero values. This then causes each sample of h(x⊙ α̃)207

within g(x, α) to observe more features of x than it would have been able to otherwise.208

3.2 Certifying Stability Properties with Lipschitz Classifiers209

Our core technical result is in showing that f as defined in (2) is Lipschitz to the masking of features.210

We present MuS in terms of g, where it is parametric with respect to the distribution D: so long as D211

satisfies a coordinate-wise Bernoulli condition, then it is usable with MuS.212

Theorem 3.2 (MuS). Let D be any distribution on {0, 1}n where each coordinates of s ∼ D is213

distributed as si ∼ B(λ). Consider any h : X → [0, 1] and define g : X × {0, 1}n → [0, 1] as214

g(x, α) = E
s∼D

h(x⊙ α̃), α̃ = α⊙ s.

Then the function g(x, ·) : {0, 1}n → [0, 1] is λ-Lipschitz in the ℓ1 norm for all x ∈ X .215

The strength of this result is in its weak assumptions. First, the theorem applies to any model h and216

input x ∈ X . It further suffices that each coordinate is distributed as si ∼ B(λ), and we emphasize217

that statistical independence between different si, sj is not assumed. This allows us to construct218

D with structured dependence in Section 3.3, such that we may exactly and efficiently evaluate219

g(x, α) at a sample complexity of N ≪ 2n. A low sample complexity is important for making MuS220

practically usable, as otherwise one must settle for of the expected value subject to probabilistic221

guarantees. For instance, simpler distributions like Bn(λ) do in fact satisfy the requirements of222

Theorem 3.2 — but costs 2n samples because of coordinate-wise independence.223

Whatever choice of D, one can guarantee stability so long as g is Lipschitz in its second argument.224

Theorem 3.3 (Stability). Consider any h : X → [0, 1]m with coordinates h1, . . . , hm. Fix λ ∈ [0, 1]225

and let g1, . . . , gm be the respectively smoothed coordinates as in Theorem 3.2, using which we226

analogously define g : X ×{0, 1}n → [0, 1]m. Also define f(x) = g(x,1). Then for any explanation227

method φ and input x ∈ X , the explainable model ⟨f, φ⟩ is incrementally stable with radius rinc and228

decrementally stable with radius rdec:229

rinc =
gA(x, φ(x))− gB(x, φ(x))

2λ
, rdec =

gA(x,1)− gB(x,1)
2λ

,

where gA, gB are the first and second largest logits of g as in (1).230
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Note that it is only in the case where the radius ≥ 1 do non-trivial stability guarantees exist. Because231

each gk has range in [0, 1], this means that a Lipschitz constant of λ ≤ 1/2 is necessary to attain at232

least one radius of stability. We present in Appendix A.2 some extensions to MuS that allows one to233

achieve higher coverage of features.234

3.3 Exploiting Structured Dependency235

We now present Lqv(λ), a distribution on {0, 1}n that allows for efficient and exact evaluation of a236

MuS-smoothed classifier. Our construction is an adaption of [27] from uniform to Bernoulli noise,237

where the primary insight is that one can parametrize n-dimensional noise using a single dimension238

via structured coordinate-wise dependence. In particular, we use a seed vector v, where with an239

integer quantization parameter q > 1 there will only exist q distinct choices of s ∼ Lqv(λ). All240

the while, we still enforce that any such s is coordinate-wise Bernoulli with si ∼ B(λ). Thus for a241

sufficiently small quantization parameter (i.e. q ≪ 2n) we may tractably enumerate through all q242

possible choices of s and thereby evaluate a MuS-smoothed model with only q samples.243

Proposition 3.4. Fix integer q > 1 and consider any vector v ∈ {0, 1/q, . . . , (q−1)/q}n and scalar244

λ ∈ {1/q, . . . , q/q}. Define s ∼ Lqv(λ) to be a random vector in {0, 1}n with coordinates given by245

si = I[ti ≤ λ], ti = vi + sbase mod 1, sbase ∼ U({1/q, . . . , q/q})− 1/(2q).

Then there are q distinct values of s and each coordinate is distributed as si ∼ B(λ).246

Proof. First, observe that each of the q distinct values of sbase defines a unique value of s, since247

we have assumed v and λ to be fixed. Next, observe that each ti has q unique values uniformly248

distributed as ti ∼ U(1/q, . . . , q/q}) − 1/(2q). Because λ ∈ {1/q, . . . , q/q} we therefore have249

Pr[ti ≤ λ] = λ, which implies that si ∼ B(λ).250

The seed vector v is the source of our structured coordinate-wise dependence and the one-dimensional251

source of randomness sbase is used to generate the n-dimensional s. Such s ∼ Lqv(λ) then satisfies252

the conditions for use in MuS (Theorem 3.2), and this noise allows for an exact evaluation of the253

smoothed classifier in q samples. We have found q = 64 to be sufficient in practice and values as254

low as q = 16 to also yield good performance. We remark that one drawback is that one may get an255

unlucky seed v, but we have not yet observed this in our experiments.256

4 Empirical Evaluations257

We evaluate the quality of MuS on different classification models and explanation methods as they258

relate to stability guarantees. To that end, we perform the following experiments.259

(E1) How good are the stability guarantees? There exists a natural measure of quality for stability260

guarantees over a dataset: what radii are achieved, and at what frequency. We investigate how261

different combinations of models, explanation methods, and λ affect this measure.262

(E2) What is the cost of smoothing? To increase the radius of a provable stability guarantee, we263

must decrease the Lipschitz constant λ. As λ decreases, however, more features are dropped during264

the smoothing process. This experiment investigates this stability-accuracy trade-off.265

(E3) Which explanation method is best? We evaluate which existing feature attribution methods266

are amenable to strong stability guarantees. We examine LIME [6], SHAP [7], Vanilla Gradient267

Saliency (VGrad) [5], and Integrated Gradients (IGrad) [8], with focus on the size of the explanation.268

(Experimental Setup) We use on two vision models (Vision Transformer [9] and ResNet50 [28])269

and one language model (RoBERTa [29]). For the vision dataset we use ImageNet1K [30] and270

for the language dataset we use TweetEval [31] sentiment analysis. We use feature grouping from271

Appendix A.2.1 on ImageNet1K to reduce the 3×224×224 dimensional input into n = 64 superpixel272

patches. We report stability radii r in terms of fraction of features, i.e. r/n. In all our experiments273

we use the quantized noise as in Section 3.3 with q = 64 unless specified otherwise. We refer to274

Appendix B for training details and the comprehensive experiments.275
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Figure 4: Rate of consistency and incremental (decremental) stability up to radius r vs. fraction of
feature coverage r/n. Left: certified Ncert = 2000; Right: empirical Nemp = 250 with q = 16.

4.1 (E1) Quality of Stability Guarantees276

We study how much radius of consistent and incremental (resp. decremental) stability is achieved,277

and how often. We take an explainable model ⟨f, φ⟩ where f is Vision Transformer and φ is SHAP278

with top-25% feature selection. We plot the rate at which a property holds (e.g. consistent and279

incrementally stable with radius r) as a function of radius (expressed as a fraction of features r/n).280

We show our results in Figure 4, where on the left we have the certified guarantees for Ncert = 2000281

samples from ImageNet1K; on the right we have the empirical radii for Nemp = 250 samples282

obtained by applying a standard box attack [32] strategy with q = 16. We observe for the certified283

results that the decremental stability have larger radii than the incremental stability. This is reasonable284

since the base classifier sees much more of the input when analyzing decremental stability, and can285

therefore be more confident on average, i.e. achieve a larger logit gap. Moreover, our empirical radii286

often cover up to half of the input, which suggests that our certified analysis is quite conservative.287

Figure 5: Certified accuracy vs. decremental stability radius. N = 2000.

4.2 (E2) Stability-Accuracy Trade-Offs288

We next investigate how smoothing impacts the classifier accuracy. As λ decreases due to more289

smoothing, the base classifier sees increasingly zerod out features — which should hurt accuracy.290

We took N = 2000 samples for each classifier on their respective datasets and plotted the certified291

accuracy vs. radius of decremental stability.292

We show the results in Figure 5, where as expected the clean accuracy (in parentheses) decreases with293

λ. This accuracy drop is especially pronounced for ResNet50, and we suspect that the transformer294
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architecture of Vision Transformer and RoBERTa make them more resilient to the randomized295

masking of features. Nevertheless, this experiment demonstrates that large models, especially296

transformers, can tolerate non-trivial noise from MuS while maintaining high accuracy.297

Figure 6: Average k/n vs. λ, where k = ∥φ(x)∥1 is the number of features for ⟨f, φ⟩ to be consistent,
incrementally stable with radius 1, and decrementally stable with radius 1. N = 250.

4.3 (E3) Which Explanation Method to Pick?298

Finally, we explore which feature attribution method is best suited to stability guarantees of explain-299

able model ⟨f, φ⟩. All four methods ψ ∈ {LIME,SHAP,VGrad, IGrad} are continuous-valued, for300

which we samples N = 250 inputs from each model’s respective dataset. For each input x we use301

the feature importance ranking generated by ψ(x) to iteratively build φ(x) in a greedy manner like in302

Section 2.4. For some x, let kx = φ(x)/n be the number fraction of features needed for ⟨f, φ⟩ to303

be consistent, incrementally stable with radius 1, and decrementally stable with radius 1. We then304

plot the average kx for different methods at λ ∈ {1/8, . . . , 4/8} in Figure 6, where note that SHAP305

tends to require fewer features to achieve the desired properties, while VGrad tends to require more.306

However, we do not believe these to be decisive results, as many curves are relatively close, especially307

for Vision Transformer and ResNet50.308

5 Related Works309

For extensive surveys on explainability methods see [15, 19, 33, 34, 35, 36, 37]. Notable feature310

attribution methods include Vanilla Gradient Saliency [5], SmoothGrad [22], Integrated Gradients [8],311

Grad-CAM [38], Occlusion [39], LIME [6], SHAP [7], and their variants. Of these, Shapley312

valued [16] based methods [7, 23, 24] are rooted in axiomatic principles, as are Integrated Gradients [8,313

40]. The work of [41] finds confidence intervals over attribution scores. A study of common314

feature attribution methods is done in [42]. Similar to our approach is [43], which studies binary-315

valued classifiers and presents an algorithm with succinctness and probabilistic precision guarantees.316

Different metrics for evaluating feature attributions are studied in [15, 17, 44, 45, 46, 47, 48, 49, 50].317

Whether an attribution correctly identifies relevant features is a well-known issue [51, 52]. Many318

methods are also susceptible to adversarial attacks [53, 54]. As a negative result, [55] shows that319

feature attributions have provably poor performance on sufficiently rich model classes. Related to320

feature attributions are data attributions [56, 57, 58], which assigns values to training data points.321

6 Conclusion322

We study provable stability guarantees for binary feature attribution methods through the framework323

of explainable models. A selection of features is stable if the additional inclusion of other features do324

not alter its explanatory power. We show that if the classifier is Lipschitz with respect to the masking325

of features, then one can guarantee relaxed variants of stability. To achieve this Lipschitz condition326

we develop a smoothing method called Multiplicative Smoothing (MuS). This method is parametric327

to the choice of noise distribution, allowing us to construct and exploit distributions with structured328

dependence for exact and efficient evaluation. We evaluate MuS on vision and language models, and329

demonstrate that MuS yields strong stability guarantees at only a small cost to accuracy.330
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A Proofs and Theoretical Discussions488

Here we present the proofs of our main results, as well as some extensions to MuS.489

A.1 Proofs of Main Results490

A.1.1 Proof of Theorem 3.2491

Proof. By linearity we have:492

g(x, α)− g(x, α′) = E
s∼D

h(x⊙ α̃)− h(x⊙ α̃′), α̃ = α⊙ s, α̃′ = α′ ⊙ s,

so it suffices to analyze an arbitrary term by fixing some s ∼ D. Consider any x ∈ X , let493

α, α′ ∈ {0, 1}n, and define δ = α − α′. Observe that α̃i ̸= α̃′
i exactly when |δi| = 1 and si = 1.494

Since si ∼ B(λ), we thus have Pr[α̃i ̸= α̃′
i] = λ|δi|, and applying the union bound:495

Pr
s∼D

[α̃ ̸= α̃′] = Pr
s∼D

[

n⋃
i=1

α̃i ̸= α̃′
i] ≤

n∑
i=1

λ|δi| = λ∥δ∥1,

and so:496

|g(x, α)− g(x, α′)| =
∣∣∣ E
s∼D

[h(x⊙ α̃)− h(x⊙ α̃′)]
∣∣∣

=
∣∣∣ Pr
s∼D

[α̃ ̸= α̃′] · E
s∼D

[h(x⊙ α̃)− h(x⊙ α̃′) | α̃ ̸= α̃′]

− Pr
s∼D

[α̃ = α̃′] · E
s∼D

[h(x⊙ α̃)− h(x⊙ α̃′) | α̃ = α̃′]
∣∣∣.

Note that E [h(x⊙ α̃)− h(x⊙ α̃′) | α̃ = α̃′] = 0, and so497

|g(x, α)− g(x, α′)| = Pr
s∼D

[α̃ ̸= α̃′] ·
∣∣∣ E
s∼D

[h(x⊙ α̃)− h(x⊙ α̃′) | α̃ ̸= α̃′]
∣∣∣︸ ︷︷ ︸

≤1 because h(·) ∈ [0, 1]

≤ Pr
s∼D

[α̃ ̸= α̃′]

≤ λ∥δ∥1.

Thus, g(x, ·) is λ-Lipschitz in the ℓ1 norm.498

A.1.2 Proof of Theorem 3.3499

Proof. We first show incremental stability. Consider any x ∈ X , then by masking equivalence:500

f(x⊙ φ(x)) = g(x⊙ φ(x),1) = g(x, φ(x)),

and let gA, gB be the top two logits of g as defined in (1). By Theorem 3.2, both gA, gB are Lipschitz501

in their second parameter, and so for all α ∈ {0, 1}n:502

∥gA(x, φ(x))− gA(x, α)∥1 ≤ λ∥φ(x)− α∥1
∥gB(x, φ(x))− gB(x, α)∥1 ≤ λ∥φ(x)− α∥1

Observe that if α is sufficiently close to φ(x), i.e.:503

2λ∥φ(x)− α∥1 ≤ gA(x, φ(x))− gB(x, φ(x)),

then the top logit index of g(x, φ(x) and g(x, α) are the same. This means that g(x, φ(x)) ∼= g(x, α)504

and thus f(x⊙ φ(x)) ∼= f(x⊙ α), thus proving incremental stability with radius d(x, φ(x))/(2λ).505

The decremental stability case is similar, except we replace φ(x) with 1.506

A.2 Some Basic Extensions507

Below we present some extensions to MuS that help increase the fraction of the input to which we508

can guarantee stability.509
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A.2.1 Feature Grouping510

We have so far assumed that X = Rn, but sometimes it may be desirable to group features together,511

e.g. color channels of the same pixel. Our results also hold for more general X = Rd1 × · · · × Rdn ,512

where for such x ∈ X and α ∈ Rn we lift ⊙ as513

⊙ : X × Rn → X , (x⊙ α)i = xi · I[αi = 1] ∈ Rdi .

All of our proofs are identical under this construction, with the exception of the dimensionalities of514

terms like (x⊙ α). An example of feature grouping is given in Figure 1.515

B All Experiments516

Models, Datasets, and Explanation Methods We evaluate on two vision models (Vision Trans-517

former [9] and ResNet50 [28]) and one language model (RoBERTa [29]). For the vision dataset we518

use ImageNet1K [30] and for the language dataset we use TweetEval [31] sentiment analysis. We519

use four explanation methods in SHAP [7], LIME [6], Integrated Gradients (IGrad) [8], and Vanilla520

Gradient Saliency (VGrad) [5]; where we take φ(x) as the top-k weighted features.521

Training Details We use Adam [59] as our optimizer with default parameters and learning rate522

10−6. For each λ ∈ {1/8, . . . , 8/8} we fine-tuned each model for 1 epoch, which results in a total of523

8× 3 = 24 models used in our experiments. To train with a particular λ: for each training input x we524

generate two random maskings — one where λ of the features are zerod and one where λ/2 of the525

features are zerod. This additional λ/2 zeroing is to account for the fact that inputs to a smoothed526

model will be subject to masking by λ as well as φ(x), where the scaling factor of 1/2 is informed527

by our prior experience about the size of a stable explanation.528

Miscellaneous Preprocessing For images in ImageNet1K we use feature grouping (Section A.2.1)529

to group the 3 × 224 × 224 dimensional image into patches of size 3 × 28 × 28, such that there530

remains n = 64 feature groups. Each feature of a feature group then receives the same value of531

noise during smoothing. We report radii of stability as a fraction of the feature groups covered. For532

example, if at some input from ImageNet1K we get an incremental stability radius of r, then we533

report r/64 as the fraction of features up to which we are guaranteed to be stable. This is especially534

amenable to evaluating RoBERTa on TweetEval where inputs do not have uniform token lengths, i.e.535

do not have uniform feature dimensions. In all of our experiments we use the quantized noise as in536

Section 3.3 with a quantization parameter of q = 64, with the exception of Appendix B.2 where for537

the box attack search we use q = 16.538

Our experiments are organized as follows:539

• (Section B.1) What is the quality of stability guarantees?540

• (Section B.2) What is the theoretical vs empirical stability that can be guaranteed?541

• (Section B.3) What are the stability-accuracy trade-offs?542

• (Section B.4) Which explanation method is best?543

B.1 Quality of Stability Guarantees544

Here we study what radii of stability are certifiable, and how often these can be achieved with different545

models and explanation methods. We therefore consider explainable models ⟨f, φ⟩ constructed546

from base models h ∈ {Vision Transformer,ResNet50,RoBERTa} and explanation methods φ ∈547

{SHAP,LIME, IGrad,VGrad} with top-k ∈ {1/8, 2/8, 3/8} feature selection. We take N = 2000548

samples from each model’s respective datasets and compute the following value for each radius:549

value(r) =
#{x : ⟨f, φ⟩ consistent and inc (dec) stable with radius ≤ r}

N
.

Plots of incremental stability are on the left; plots of decremental stability are on the right.550
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Figure 7: (Top) Vision Transformer with SHAP; (Bottom) Vision Transformer with LIME. (Left)
consistent and incrementally stable; (Right) consistent and decrementally stable.
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Figure 8: (Top) Vision Transformer with IGrad; (Bottom) Vision Transformer with VGrad. (Left)
consistent and incrementally stable; (Right) consistent and decrementally stable.
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Figure 9: (Top) ResNet50 with SHAP; (Bottom) ResNet50 with LIME. (Left) consistent and incre-
mentally stable; (Right) consistent and decrementally stable.
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Figure 10: (Top) ResNet50 with IGrad; (Bottom) ResNet50 with VGrad. (Left) consistent and
incrementally stable; (Right) consistent and decrementally stable.
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Figure 11: (Top) RoBERTa with SHAP; (Bottom) RoBERTa with LIME. (Left) consistent and
incrementally stable; (Right) consistent and decrementally stable.
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Figure 12: (Top) RoBERTa with IGrad; (Bottom) RoBERTa with VGrad. (Left) consistent and
incrementally stable; (Right) consistent and decrementally stable.
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B.2 Theoretical vs Empirical551

We compare the certifiable theoretical stability guarantees with what is empirically attained via552

a standard box attack search [32]. This is an extension of Section 4.2, where we now show all553

models as evaluated with SHAP-top25%. The certified plots are identical from Appendix B.1. We554

take Ncert = 2000 samples for the certified plots, and Nemp = 250 for the empirical plots. This555

comparatively small selection of methods and data is because box attack is very time-intensive.556

Figure 13: With SHAP top-25%: (Top) Vision Transformer; (Middle) ResNet50; (Bottom) RoBERTa.
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B.3 Stability-Accuracy Trade-Offs557

We study how the accuracy degrades with λ. We consider a smoothed model f constructed from a base558

classifier h ∈ {Vision Transformer,ResNet50,RoBERTa} and vary λ ∈ {1/16, 1/8, 2/8, 4/8, 8/8}.559

We then take N = 2000 samples from each respective dataset and measure the accuracy of f at560

different radii. We use f(x) ∼= true_label to mean that f attained the correct prediction at x ∈ X ,561

and we plot the following value at each radius r:562

value(r) =
#{x : f(x) ∼= true_label and dec stable with radius ≤ r}

N

The overall accuracy with each λ is shown in the parentheses of each plot’s legend.563

Figure 14: (Top) Vision Transformer; (Middle) ResNet50; (Bottom) RoBERTa.
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B.4 Which Explanation Method is the Best?564

We first investigate how may features are needed to yield consistent and non-trivially stable explana-565

tions, as done by the greedy selection algorithm in Section 2.4. For some x ∈ X , let kx denote the566

fraction of features that ⟨f, φ⟩ needs to be consistent, incrementally stable, and decrementally stable567

with radius 1. We vary λ ∈ {1/8, . . . , 4/8}, where recall λ ≤ 4/8 is needed for non-trivial stability,568

and use N = 250 samples to plot the average kx. This part is identical to Section 4.3.569

Figure 15: (Left) Vision Transformer; (Middle) ResNet50; (Right) RoBERTa.

We next investigate the ability of each method to predict features that lead to high accuracy. Let570

f(x ⊙ φ(x)) ∼= true_label, mean that the masked input x ⊙ φ(x) yields the correct prediction.571

We then plot this accuracy as we vary the top-k ∈ {1/8, 2/8, 3/8} for different methods φ, and572

λ ∈ {1/8, . . . , 8/8}, using N = 2000 samples.573

Figure 16: (Top) Vision Transformer; (Middle) ResNet50; (Bottom) RoBERTa.
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B.5 Discussion574

Effect of Smoothing We observe that smoothing can yield non-trivial stability guarantees, espe-575

cially for Vision Transformer and RoBERTa, as evidenced in Appendix B.1. We see that smoothing576

is least detrimental on these two transformer-based architectures, and most negatively impacts the577

performance of ResNet50. We conjecture that although different training set-ups may improve578

performance across every category, this still serves to illustrate the general trend.579

Theoretical vs Empirical It is expected that the certifiable radii of stability is more conservative580

than what is empirically observed. As mentioned in Section 3.2, for each λ there is a maximum581

radius to which stability can be guaranteed, which is an inherent limitation of using logit gaps and582

Lipschitz constants as the main theoretical technique. We emphasize that the notion of stability need583

not be tied to smoothing, though we are currently not aware of other viable approaches.584

Why these Explanation Methods? We chose SHAP, LIME, IGrad, and VGrad from among the585

large variety of methods available primarily due to their popularity, and because we believe that586

they are collectively representative of many techniques. In particular, we believe that LIME remains587

representative baseline for surrogate model-based explanation methods. SHAP and IGrad are, to our588

knowledge, the two most well-known families of axiomatic feature attribution methods. Finally, we589

believe that VGrad is representative of a traditional gradient saliency-based approach.590

Which Explanation Method is the Best? Based on our experiments in Appendix B.4 we see that591

SHAP generally achieves higher accuracy using the same amount of top-k features as other methods.592

On the other hand, VGrad tends to perform poorly. We remark that there is well-known critique593

against the usefulness of saliency-based explanation methods [52].594

C Miscellaneous595

Relevance to Other Explanation Methods Our key theoretical contribution of MuS in Theorem 3.2596

is a general-purpose smoothing method that is distinct from standard smoothing techniques, namely597

additive smoothing. MuS is therefore applicable to other problem domains beyond what is studied in598

this paper, and would be useful where Lipschitz constants with respect to maskings is desirable.599

Broader Impacts Reliable explanations are necessary for making well-informed decisions, and are600

increasingly important as machine learning models are integrated with fields like medicine, law, and601

business — where the primary users may not be well-versed in the technical limitations of different602

methods. Formal guarantees are therefore important for ensuring the predictability and reliability603

of complex system, which then allows users to construct accurate mental models of interaction and604

behavior. In this work we study a particular kind of guarantee known as stability, which is key to605

feature attribution-based explanation methods.606
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