
Supplementary Material for
“Generalized Semi-Supervised Learning via

Self-Supervised Feature Adaptation”

In the Appendix, we provide algorithms of our SSFA in Section A. Section B presents the detailed
experimental setting. Section C provides complete experimental results on CIFAR100, OFFICE-31
and OFFICE-HOME benchmarks. Finally, we conduct more ablation studies in Section D.

A Algorithm

Algorithm 1 summarizes the proposed SSFA method. For easy understanding, the framework 1 of
SSFA is also shown.

Algorithm 1 Algorithm SSFA

1: Input: labeled batch {(xb, yb)}Bb=1, unlabeled batch {(ub)}µBb=1, the network parameter: θg for
the shared encoder, θc for the main task head, and θs for the auxiliary task head, total number of
training iterations T

2: for t← 1 to T do
3: for i = 1 to k do
4: Update θg to θ

′

g for {ub}µBb=1 based on Lapt in Equation 5
5: end for
6: Use (θ

′

g, θc) to generate refined pseudo-label q̂′b in Equation 6
7: Use q̂′b to calculate the unsupervised loss Lu in Equation 7
8: Compute the supervised loss Lx in Equation 1
9: Compute the auxiliary loss Laux in Equation 3

10: Compute the total loss LSSFA and update (θg, θc, θs) in Equation 4
11: end for
12: Output: optimized parameters (θg, θc) for evaluation

B Experimental Setting

B.1 Datasets

CIFAR100-C. Using the method of generating ImageNet-C [5], we construct a corruption variant
of CIFAR100 [6], CIFAR100-C. Let CIFAR100 denote the clean dataset and CIFAR100-C denote
the corrupted dataset. The labeled samples are drawn from CIFAR100 without corruptions, while
the unlabeled corrupted samples are drawn from the mixed dataset composed of CIFAR100 and
CIFAR100-C.

In the test phase, we make evaluations on the distributions of labeled data and unlabeled data
respectively. To further test the generalization of the model, we evaluate the distributions that have
not been encountered during the training process, namely unseen distributions.
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Figure 1: Architecture of SSFA. SSFA consists of two modules: a Semi-Supervised Learning
Module that supplements traditional SSL learners with a self-supervised auxiliary task, and a Feature
Adaptation Module that provides a higher-quality pseudo-label predictor through self-supervised
feature adaptation.

Figure 2: Visualization of distribution mismatch caused by image corruption. The labeled images are
uncorrupted images, while the unlabeled data may suffer these corruptions.

As shown in Figure 2, the unlabeled samples are obtained from the mixture of ten corrupted distri-
butions, including “gaussian_noise”, “shot_noise”, “impulse_noise”, “glass_blur”, “motion_blur”,
“frost”, “fog”, “elastic_transform”, “pixelate” and “jpeg_compression”. The unseen samples are
generated from the mixture of five corrupted distributions that have not been seen during training,
including “defocus_blur”, “zoom_blur”, “snow”, “brightness” and “contrast”.

In addition, we use a hyperparameter ratio to control the proportion of corrupted and clean distribu-
tions in the unlabeled dataset. For example, ratio 0.8 means the proportion of corrupted samples to
the total unlabeled samples is set to 0.8.

OFFICE-31. OFFICE-31 [8] contains three domains: “Amazon” (A), “DSLR” (D), and “Webcam”
(W). Each domain contains 31 classes. In the experiment, we use six combinations of “labeled
data domain/unlabeled data domain/ unseen data domain” including “A/D/W”, “A/W/D”, “D/A/W”,
“D/W/A”, “W/A/D”, and “W/D/A”. Throughout the experiment, we assess the performance of our
model across three domains: labeled, unlabeled, and unseen. Take “A/D/W” task as an example, we
test the model’s accuracy on the labeled domain A, the unlabeled domain D, and the unseen domain
W.

To further verify the general applicability of our method, we conduct experiments involving mixed
distribution of unlabeled data fields, specifically “A/DW”, “D/AW”, and “W/AD”. During the training
phase, for each combination, we select 155 labeled instances from the labeled domain, i.e., 5 labeled
instances per class. Additionally, we sample 310 unlabeled instances from each unlabeled domain,
i.e., 10 unlabeled instances per class for each unlabeled domain. In cases where a class has fewer
than 10 samples, we up-sampled the data to ensure an equal number of instances.
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In the testing phase, we construct the labeled test set using the remaining instances from the labeled
domain. Similarly, we create an unlabeled test set for each unlabeled domain using the remaining
instances from their respective domains. Additionally, we form an unseen test set consisting of all
instances from the unseen domain. This comprehensive testing setup allows us to evaluate our method
across labeled, unlabeled, and unseen data distributions.

OFFICE-HOME. As shown in Figure 3, OFFICE-HOME [10] contains four domains: “Art” (A),
“Clipart” (C), “Product” (P) and “RealWorld” (R), and each domain is composed of 65 classes. Similar
to the OFFICE-31 experiments, we use four combinations for mixed test distributions of unlabeled
data, including “A/CPR”, “C/APR”, “P/ACR” and “R/ACP”. We also add samples from the labeled
domain to the unlabeled data to explore the impact of the proportion of labeled domain data in the
unlabeled data, namely “A/ACPR”, “C/ACPR”, “P/ACPR” and “R/ACPR”. In the training phase, for
each combination, we choose 325 labeled instances from the labeled domain, i.e., 5 labeled instances
per class, and sample 1300 unlabeled instances from each unlabeled domain, i.e., 20 unlabeled
instances per class. In the test phase, we construct the labeled test set and the unlabeled test set with
the remaining instances respectively.

Figure 3: Visualization of distribution mismatch caused by style change. We select samples of a
certain style as labeled data, while unlabeled data may consist of multiple samples of different styles.
For example, selecting the "Art" samples as labeled data, unlabeled data can be composed of one or
more of the following domains: "Art", "Clipart", "Product", or "Real World".

B.2 Implementation Details

CIFAR-100-C. In the experiment, we adjust the ratio of unlabeled samples from labeled distributions
for training. We use WRN-28-8 [11] as the backbone except for [2] where we use WRN-28-2 to
prevent training collapse. All of the methods share the same set of hyper-parameters. The threshold τ
is set to 0.95. We use SGD with a momentum of 0.9 as the optimizer. The initial learning rate is set
to 0.03 with a cosine learning rate annealing scheduler. The batch size of labeled data is set to 64 and
the batch size of unlabeled data is set to 128. The model is trained for 100 epochs from scratch, with
1024 iterations per epoch. We use the exponential moving average with the momentum of 0.999 of
the training model to make predictions on the test dataset.

OFFICE-31 and OFFICE-HOME. We use ResNet-50 [4] pre-trained on ImageNet [3] as the
backbone. The thresholds τ on OFFICE-31 and OFFICE-HOME are set at 0.80 and 0.95 respectively.
We use SGD with a momentum of 0.9 and weight decay of 1e−3 as the optimizer. The initial learning
rates are set to 5e−4 on OFFICE-31 and 3e−3 on OFFICE-HOME with the cosine learning rate
annealing scheduler. The batch size of both labeled and unlabeled data are set to 64. The experiments
are set to run 5000 iterations in total.

C Main Results

To assess the impact of feature distribution mismatch between labeled and unlabeled images, we
consider two factors: image corruption and style change. In the case of the CIFAR100 dataset, the
unlabeled images demonstrate corruption, while in the OFFICE-31 and OFFICE-HOME datasets, the
unlabeled data showcases style change. Due to space constraints, we presented only partial experi-
mental results in Table 3 of the main paper. In this section, we provide the complete experimental
results in Tables 1 and Table 2.
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Table 1: Comparison of accuracy (%) for Feature Distribution Mismatch SSL on OFFICE-31.
(a) Single unlabeled domain

Method A/D A/W D/A

L UL US L UL US L UL US

supervised 65.9 57.1 52.0 65.9 47.8 61.0 93.0 56.8 84.9
DANN 53.9 17.9 20.1 15.3 7.2 4.6 74.6 4.8 16.7
CDAN 2.9 5.6 2.6 2.9 2.3 4.2 4.7 2.9 2.6
FixMatch 58.4 46.9 53.3 56.3 9.5 19.3 82.8 4.7 50.6
FM-Rot 60.0 53.1 57.1 54.6 27.4 19.3 70.9 29.5 50.6

FM-SSFA 67.5 61.7 63.0 66.4 56.5 62.5 93.0 59.3 85.9

Method D/W W/A W/D

L UL US L UL US L UL US

supervised 93.0 84.1 57.0 93.6 56.2 92.4 93.6 91.9 56.1
DANN [1] 4.7 2.3 2.9 2.5 2.9 4.2 80.9 16.8 26.8
CDAN [7] 4.7 2.3 2.9 41.3 7.7 18.5 1.7 3.1 1.3
FixMatch [9] 88.9 84.3 49.3 78.3 9.4 62.7 87.7 91.4 50.1
FM-Rot 89.5 89.7 56.4 75.9 17.9 66.9 86.7 86.8 48.7

FM-SSFA 93.3 86.2 58.5 93.0 56.4 92.8 93.4 91.9 54.7

(b) Multi unlabeled domains

Method A/DW D/AW W/AD

L UL L UL L UL

supervised 68.0 51.8 93.3 60.7 93.4 57.8
DANN [1] 28.1 7.6 4.7 2.8 66.7 12.4
CDAN [7] 2.9 3.2 45.5 10.7 2.5 3.1
FixMatch [9] 55.0 48.8 80.2 40.3 72.7 31.2
FM-Rot 54.0 40.1 63.0 26.9 70.6 30.9

FM-SSFA 69.1 60.8 92.4 61.8 92.2 57.4

Table 2: Comparison of accuracy (%) for Feature Distribution Mismatch SSL on OFFICE-HOME.

Method A/CPR C/APR P/ACR R/ACP

L UL UU L UL UU L UL UU L UL UU

supervised 48.4 39.9 - 40.9 31.2 - 68.4 36.5 - 60.6 37.2 -
DANN [1] 45.0 37.8 - 31.8 7.7 - 53.9 25.6 - 41.7 24.6 -
CDAN [7] 30.4 22.8 - 1.2 1.8 - 63.0 34.3 - 52.2 35.9 -
FixMatch [9] 27.2 17.7 19.3 28.1 19.6 19.4 55.6 24.9 30.6 23.9 15.0 17.5
FM-Pre 21.2 15.0 15.4 28.6 22.9 25.4 51.9 22.0 26.3 2.3 1.8 0.0
FM-Rot 1.7 2.1 0.0 33.4 20.1 0.7 43.4 14.6 17.2 33.7 20.7 24.1

FM-SSFA 50.7 44.0 69.0 45.1 37.6 66.2 70.6 41.9 70.5 62.4 43.2 78.0

Method A/ACPR C/ACPR P/ACPR R/ACPR

L UL UU L UL UU L UL UU L UL UU

supervised 49.3 43.0 - 41.0 36.3 - 70.0 48.0 - 61.6 46.8 -
DANN [1] 49.3 42.0 - 30.5 20.2 - 50.7 31.2 - 44.5 32.1 -
CDAN [7] 4.4 4.2 - 10.5 6.7 - 2.3 2.1 - 13.5 10.2 -
FixMatch [9] 32.4 23.0 31.0 36.9 30.6 36.0 52.9 32.6 37.7 42.2 31.5 35.4
FM-Pre 30.6 20.1 24.8 37.9 33.8 41.7 61.7 40.9 51.0 33.4 23.8 24.9
FM-Rot 25.6 17.7 21.3 37.3 31.0 33.2 55.3 33.2 35.8 45.6 34.7 42.3

FM-SSFA 55.0 45.5 73.2 44.7 41.7 66.0 71.8 52.6 78.6 64.8 52.7 80.3
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Table 3: The effectiveness of Feature Adaptation Module on CIFAR100.
(a) mix 10-ratio 1.0-level 5
Method L UL

FixMatch[9] 15.7 3.5
FM-Rot 18.4 2.9
FM-SSFA 25.7 22.2

(b) mix 10-ratio 0.5-level 5
Method L UL

FixMatch[9] 25.8 4.7
FM-Rot 37.9 5.0
FM-SSFA 37.0 23.2

Table 4: The impact of the parameters optimized in Feature Adaptation Module on OFFICE-HOME.

Method A/CPR C/APR P/ACR R/ACP

L UL UU L UL UU L UL UU L UL UU

FM-shared 48.9 39.9 70.8 46.1 39.5 69.1 70.4 42.0 67.3 61.0 40.8 67.0
FM-all 50.7 44.0 69.0 45.1 37.6 66.2 70.6 41.9 70.5 62.4 43.2 78.0

Method A/ACPR C/ACPR P/ACPR R/ACPR

L UL UU L UL UU L UL UU L UL UU

FM-shared 51.2 43.7 73.9 47.2 43.6 73.0 70.8 52.9 79.2 63.1 50.9 77.1
FM-all 55.0 45.5 73.2 44.7 41.7 66.0 71.8 52.6 78.6 64.8 52.7 80.3

D Ablation Study

The effectiveness of Feature Adaptation Module. To evaluate the effectiveness of the Feature
Adaptation Module in the SSFA framework, we compare FM-SSFA with a baseline method FM-
Rot, where we remove the Feature Adaptation Module and only add the self-supervised rotation
prediction task. As shown in Table 3, FM-SSFA largely outperforms FM-Rot on OFFICE-31 and
OFFICE-HOME, especially in the UL evaluation metric. The superiority of FM-SSFA highlights
that the Feature Adaptation Module helps the model to adapt to unlabeled samples from different
distributions, resulting in better generalization on unlabeled domain. Moreover, we can observe the
FM-Rot is only marginally better than FixMatch and, in some cases, may even perform worse. These
results suggest that simply integrating the self-supervised task into SSL methods only brings limited
performance gains and may even be detrimental in some scenarios.

The impact of the parameters optimized in the Feature Adaptation Module. We analyze the
impact of the parameters optimized in the Feature Adaptation Module. In Table 4, “FM-shared”
indicates that only the shared parameters (θg) are updated and “all” indicates that the whole parameters
of the auxiliary task (θg, θs) are updated. As shown in Table 4, the differences between updating the
shared parameters and updating the whole parameters can be ignored.

Table 5: The impact of shared layers between auxiliary and main task on OFFICE-HOME. “X layers”
denotes the number of shared layers for the feature extractor.

Method A/CPR C/APR P/ACR R/ACP

L UL UU L UL UU L UL UU L UL UU

FM-SSFA(2 layers) 48.9 39.9 70.8 46.1 39.5 69.1 70.4 42.0 67.3 61.0 40.8 67.0
FM-SSFA(3 layers) 47.5 39.8 71.0 45.4 39.0 77.6 72.4 45.4 74.4 63.4 43.9 76.8
FM-SSFA(4 layers) 44.4 39.1 57.1 1.3 2.4 0.0 57.9 33.4 59.6 40.3 28.7 54.3

Method A/ACPR C/ACPR P/ACPR R/ACPR

L UL UU L UL UU L UL UU L UL UU

FM-SSFA(2 layers) 51.2 43.7 73.9 47.2 43.6 73.0 70.8 52.9 79.2 63.1 50.9 77.1
FM-SSFA(3 layers) 52.9 44.9 80.4 46.2 40.6 68.7 75.0 54.3 85.2 64.2 52.2 82.8
FM-SSFA(4 layers) 51.1 44.1 71.8 46.9 44.3 63.2 2.3 2.1 0.0 2.3 2.1 0.0
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The number of shared layers between auxiliary and main task. As shown in Table 5, the
performance difference is negligible between sharing 2 and 3 layers in the feature extractor, while a
significant performance degradation happens if we share all layers (4 layers) of the feature extractor
in some cases. We argue that the main reason is that the excessive sharing of parameters in the
feature extractor can lead to over-adaptation and compromise the performance of the main task,
leading to more erroneous predictions of pseudo-labels. Self-supervised learning leverages structured
supervisory information to train the network and learn valuable representations for downstream tasks.
Typically, the shallow layers of the feature extractor capture low-level information that is independent
of the specific task, while the top layers extract high-level semantic information about the specific
task. Therefore, sharing proper layers of the feature extractor can facilitate the extraction of richer
feature representation. On the contrary, if the entire feature extractor is shared between the two tasks,
the extracted features mainly work for the auxiliary task rather than the main task. This can lead to
inaccurate predictions of pseudo-labels and compromise the performance of the main task.

Table 6: The impact of optimization steps in
Feature Adaptation Module on CIFAR100.

Method L UL US

FixMatch [9] 15.7 3.5 8.5
FM-SSFA (1 step) 25.7 22.2 22.5
FM-SSFA (5 steps) 26.2 14.9 16.0
FM-SSFA (10 steps) 41.1 18.7 33.7

More optimization steps in Feature Adaptation Mod-
ule. We further explore multi-step adaptation during
the optimization process in feature adaptation stage.
As shown in the Table 6, only one step of adaptation
can bring significant improvements over the baseline.
As the number of adaptation steps increases, the per-
formance will be further improved, but with greater
computational costs. Considering the trade-off between
performance and computational cost, we perform one-
step optimization in our paper.
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